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ABSTRACT

Preference alignment is an essential step in adapting large language models
(LLMs) to human values, but existing approaches typically depend on costly hu-
man annotations or large-scale API-based models. We explore whether a weak
LLM can instead act as an effective annotator. We surprisingly find that selecting
only a subset of a weak LLM’s highly confident samples leads to substantially
better performance than using full human annotations. Building on this insight,
we propose Confidence-Weighted Preference Optimization (CW-PO), a general
framework that re-weights training samples by a weak LLM’s confidence and can
be applied across different preference optimization objectives. Notably, the model
aligned by CW-PO with just 20% of human annotations outperforms the model
trained with 100% of annotations under standard DPO. These results suggest that
weak LLMs, when paired with confidence weighting, can dramatically reduce the
cost of preference alignment while even outperforming methods trained on fully
human-labeled data.

1 INTRODUCTION

Large language models (LLMs) are typically developed through three stages: large-scale pre-
training with next-token prediction, supervised fine-tuning (SFT), and preference alignment. While
pre-trained and SFT models can generate coherent and task-oriented text, their outputs often remain
misaligned with human expectations, exhibiting issues such as bias, factual errors, or unsafe con-
tent. Preference alignment addresses this gap by steering models toward desirable behaviors such as
helpfulness, harmlessness, and truthfulness, thereby improving their reliability and trustworthiness
in real-world applications.

Preference alignment methods, such as reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017) or direct preference optimization (DPO) (Rafailov et al., 2023),
rely on a prompt paired with two candidate responses (x, y1, y2), where annotators judge which
response better fits a given criterion. Since candidate responses y1 and y2 can be easily generated
through LLM prompting, collecting triplets is straightforward; however, obtaining human prefer-
ence data is expensive and time-consuming. Moreover, collected datasets are prone to noise due to
the subjectivity of human judgements, which vary across contexts and annotators (Bai et al., 2022;
Ouyang et al., 2022; Cui et al., 2023; Gao et al., 2024). Thus, obtaining high-quality preference
datasets remains a challenge.

An alternative is to use large-scale API-based LLMs as annotators (e.g., ChatGPT) (Dubois et al.,
2023; Ye et al., 2023; Kim et al., 2023; Lee et al., 2023), but these still incur substantial computa-
tional and financial costs. Interestingly, recent work (Tao & Li, 2025) has shown that even weak
LLMs (e.g., OPT-125M (Zhang et al., 2022)), when trained on a small amount of human data, can
serve as annotators to align stronger models – sometimes even reaching or surpassing performance
achieved with human-labeled supervision. However, they treat weak-model predictions directly as
preference annotations, raising the question of how to more effectively leverage them for alignment.

In this work, we propose Confidence-Weighted Preference Optimization (CW-PO), a highly effec-
tive preference alignment approach that requires minimal human supervision for alignment and is
compatible with different preference optimization methods. CW-PO is motivated by a key observa-
tion that a subset of high-confidence predictions from a weak LLM are more effective for aligning
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Figure 1: Overall pipeline of our setting. Top: Conventional DPO (Rafailov et al., 2023). For each
triplet consisting of a prompt x and two candidate responses (y1, y2), human annotators provide
preference labels, and the policy model is aligned with these labels using DPO. Bottom: CW-DPO
framework. A weak LLM is first trained as a preference annotator using a subset of human-labeled
triplets. It is then applied to annotate the remaining large-scale data, which is subsequently trained
with CW-DPO. The bars on top right report Gold Reward Accuracy for standard DPO with human-
labeled data (red) and for CW-DPO (blue) on the ANTHROPIC HH-RLHF. CW-DPO uses only 30%
compared to DPO, which uses fully human-annotated dataset. OPT-125M and OPT-1.3B are used
as the weak and strong models, respectively.

stronger LLMs than using fully human-labeled data. Leveraging this insight, CW-PO reweights sam-
ples in the preference optimization objective according to the confidence of a weak LLM. CW-PO
offers three main advantages:

• High performance: We show that with a small amount of human-annotated data, a weak LLM
can be trained into an effective preference annotator. As a concrete instantiation, we apply CW-PO
to the Direct Preference Optimization (DPO) loss (Rafailov et al., 2023), yielding CW-DPO. We
show that with 30% annotations of the dataset, CW-DPO outperforms the model trained with the
full 100% of the human annotations (Figure 1). Notably, CW-DPO remains more effective even
with just 20% annotations. Moreover, CW-PO substantially outperforms the direct use of weak
model annotations for supervision, the approach employed by Tao & Li (2025).

• Low computational cost: We use weak annotators with fewer than 0.5B parameters and show
that even a lightweight 125M model can be highly effective. This makes obtaining annotations far
cheaper than relying on humans and far more efficient than using large API-based LLMs such as
ChatGPT, with substantial savings in both inference time and memory.

• Extensibility: Once trained on a small amount of human-labeled data, a weak LLM annotator
can be repeatedly reused with CW-DPO for preference data annotation. This is highly practical
because generating triplets (x, y1, y2) via prompting an LLM is straightforward, whereas reliably
annotating them remains a major challenge.

2 PROBLEM STATEMENT AND PRELIMINARIES

2.1 PROBLEM STATEMENT

We aim to align a strong LLM under the supervision of a weaker LLM. We follow the setup of
Tao & Li (2025), which fine-tunes the weak model on a subset of preference triplets with human
annotations and then uses its predictions to label the remaining data. Based on this setup, we define
our problem as follows:
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Definition 1 (Preference Data). Let Dpreference denote a collection of tuples, each consisting of a
single prompt and two corresponding responses, along with an annotation indicating which response
is more preferable.

Dpreference = {(x, y+, y−) | x ∈ X , y+, y− ∈ Y, y+ ≻ y−}, (1)

where X denotes the space of prompts, Y denotes the space of candidate responses, and y+ ≻ y−

indicates that y+ is preferred over y− for prompt x according to human preference.

We are provided with a smaller labeled subset Dlabeled ⊂ Dpreference containing human annotations
(e.g., 34,000 samples, corresponding to 20% of ANTHROPIC HH-RLHF (Bai et al., 2022) dataset),
and a large unlabeled subset Dunlabeled, such that Dlabeled ∪ Dunlabeled = Dpreference.

2.2 PRELIMINARIES

Tao & Li (2025) first fine-tune a weak LLM πw on Dlabeled to predict preference labels. The weak
LLM is then applied to Dunlabeled to produce preference annotations:

D̂ = {(x, y+, y−) | y+ ≻πw
y−}, (2)

where y+ ≻πw
y− indicates that πw predicts y+ to be preferable over y−.

Finally, the weakly-labeled pairs—annotated by the weak LLM—are used to align the strong policy
πs via the preference optimization objective.

Definition 2 (Preference Optimization Objective). Given a dataset of annotated triplets D̂ =
{(x, y+, y−)}, the goal of preference optimization is to align a policy model πs such that it assigns
a higher likelihood to preferred responses. This is formalized as the expected loss:

LPO(πs; D̂) = E(x,y+,y−)∼D̂
[
ℓ(πs;x, y

+, y−)
]
, (3)

where ℓ(·) denotes a generic preference optimization (PO) loss function, such as DPO (Rafailov
et al., 2023), IPO (Azar et al., 2024), rDPO (Chowdhury et al., 2024), or other variants. The details
of these loss functions are provided in Appendix B.

The objective is to align πs more faithfully to human preferences by leveraging data annotated by
the computationally inexpensive weak LLM πw.

In this scenario, Tao & Li (2025) adopt DPO as the preference optimization loss and show that even
weak LLMs can serve as effective annotators for aligning stronger models, at times matching or
surpassing the performance of human supervision. Building on this finding, we follow the setting
of Tao & Li (2025) to explore how weak LLMs can be more effectively leveraged to align a strong
model.

Note that this scenario is highly practical, as a large volume of triplets (x, y1, y2) can be obtained
with minimal effort. For any given prompt, generating two or more diverse responses is straight-
forward via standard prompting techniques in modern LLMs. Moreover, human-annotated datasets,
which can be used as Dlabeled for alignment criteria such as helpfulness and harmfulness, are already
available, including ANTHROPIC HH-RLHF.

3 CONFIDENCE-WEIGHTED PREFERENCE OPTIMIZATION

3.1 EXPLORATION ON WEAK LLM CONFIDENCE

We find that leveraging the confidence predicted by a weak LLM can substantially improve the align-
ment of a stronger model. Using the pairwise ANTHROPIC HH-RLHF dataset (Bai et al., 2022), we
compute, for each triplet (x, y1, y2) in Dunlabeled, the absolute difference between the weak model’s
predictions for the two candidate responses, i.e., |πw(x, y1)− πw(x, y2)|, which intuitively reflects
the weak model’s confidence in distinguishing the preferred response1. We then apply thresholding
to select the top-N% of samples with the highest confidence scores. For example, with the top 30%,

1A detailed explanation of the weak model’s training procedure is provided earlier in Section 3.2.
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we use the subset consisting of the 30% most confident samples from D̂‘. For the experimental
results presented in Figure 2, we use two subsets of the HH-RLHF dataset, “Harmless” and “Help-
ful”, and their concatenation is denoted as “HH-RLHF”. Additionally, the Human bars correspond
to the results of LLMs trained on the human-annotated dataset. Notably, even with fewer training
samples, decreasing the confidence threshold consistently improves performance. For “Helpful”,
the trend is less gradual but still striking: training on only the top 30% most confident samples
achieves the highest reward accuracy by a clear margin. These results extend the finding of Tao &
Li (2025)—that weak-LLM annotations can mostly surpass human annotations (100% is better than
Human in Figure 2 for “Harmless” and “HH-RLHF” datasets)—by showing that combining weak
LLMs with their prediction confidence enables even more effective preference alignment than naive
usage of weak-LLM annotations. This naturally raises the next question: How can we systematically
incorporate this crucial observation into the alignment paradigm?

Harmless Helpful HH-RLHF
55

60

65

70

75

GR
A 

(%
)

30% 50% 75% 100% Human

Figure 2: Alignment with the top-N% most confident samples. Gold reward accuracy (GRA) is
reported for the trained strong models. We consider (OPT-125M → OPT-1.3B) and (Qwen-0.5B
→ Qwen-7B) as weak–strong model pairs. The graph shows the average GRA for two models.
Here, 100% denotes using the weak LLM directly for annotation. Further details of the results are
provided in Appendix C.1.

3.2 CONFIDENCE-WEIGHTED PREFERENCE OPTIMIZATION

We introduce Confidence-Weighted Preference Optimization (CW-PO), a new alignment framework
that incorporates weak-LLM confidence scores into the standard PO objective (Equation 3). Intu-
itively, as motivated in Section 3.1, it is preferable to assign greater weight to samples with higher
confidence and smaller weight to those with lower confidence. To achieve this, we propose a three-
step framework: (i) We train a weak LLM as a preference annotator; (ii) The trained weak LLM is
used to generate preference labels for unlabeled prompt-response pairs, selecting the preferred and
rejected responses based on their predicted scores; and (iii) We align a stronger LLM by introduc-
ing a confidence-based weight into the PO objective, which prioritizes high-confidence samples for
more effective alignment. We next describe each of the steps in detail.

(i) Constructing a preference annotator. For the weak model, we used its pretrained backbone,
bypassed the last layer, and added a scalar output layer. We then optimized the entire model. Using
the pretrained backbone allows us to transfer the knowledge from the weak LLM to a preference
annotation task, requiring only a small amount of data to achieve an accurate annotator.

The Bradley-Terry (BT) (Bradley & Terry, 1952) model provides a principled way to connect reward
modeling with preference learning. It models the probability of one option being preferred over
another as:

p(y+ ≻ y− | x) = σ(πw(x, y
+)− πw(x, y

−)), (4)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, and πw : (X ,Y) → R is the weak LLM’s
scoring function (logit) for a given response to a prompt. The model is then optimized by minimizing
the negative log-likelihood of the human preference data2:

2Whereas we let the final layer of the weak LLM perform preference classification, Tao & Li (2025) do not
modify the LLM’s output; instead, they compute an implicit reward based on response generation and use it as
a pseudo label. We discuss this in detail in Appendix G.
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Lweak = −E(x,y+,y−)∼Dlabeled

[
log σ(πw(x, y

+)− πw(x, y
−))

]
. (5)

This objective encourages the weak LLM to relatively assign higher scores to preferred responses
and lower scores to dispreferred ones.

(ii) Generating preference labels. After fine-tuning, the weak LLM πw is applied to unlabeled pairs
to determine preference labels. Given a prompt x and two (unlabeled) candidate responses (y1, y2),
we define the chosen and rejected responses according to the weak model’s scoring function:

y+ = arg max
y∈{y1,y2}

πw(x, y), y− = arg min
y∈{y1,y2}

πw(x, y). (6)

That is, the response with the higher weak-model score is treated as the chosen response y+, while
the other is treated as the rejected response y−. According to Equation 2, this procedure produces
the weakly-labeled preference dataset D̂.

(iii) Aligning a strong large language model. Building on PO (Equation 3), we propose CW-PO,
which introduces a confidence-based weight into the loss:

LCW-PO = E(x,y+,y−)∼D̂
[
C(x, y+, y−) · ℓ(πs;x, y+, y−)

]
, (7)

where C(x, y+, y−) is the confidence score, defined as the prediction margin between the weak
model’s scores for the preferred and rejected responses:

C(x, y+, y−) = 2 · (σ(πw(x, y+)− πw(x, y
−))− 0.5), (8)

where σ(·) is the sigmoid function. Since πw(x, y
+) − πw(x, y

−) ≥ 0 (y+ has higher predicted
score than y−), σ outputs [0.5, 1]. Subtracting 0.5 and scaling by 2 normalize it to [0, 1]. A detailed
analysis of this choice of weighting is presented in Appendix H.

CW-PO can be instantiated with different PO strategies. By applying our framework to DPO, we
obtain CW-DPO, which is expressed as:

LCW-DPO = −E(x,y+,y−)∼D̂

[
C(x, y+, y−) · log σ

(
β log

πs(y
+ | x)

πref(y+ | x) − β log
πs(y

− | x)
πref(y− | x)

)]
, (9)

where the coefficient β > 0 controls the degree of allowed divergence from πref. Note that our
framework can also be applied to other POs; additional examples with IPO and rDPO are provided
in the Appendix B.1. By scaling the contribution of each training pair with this confidence-based
weight, CW-DPO prioritizes high-confidence samples, enabling more effective preference align-
ment. The complete procedure is provided in Algorithm 1 in Appendix D. We will release the code
upon acceptance.

4 EXPERIMENTS

In this section, we empirically validate the effectiveness of CW-PO, supporting our claim of its
ability to enhance performance across different preference alignment strategies and model families.

4.1 EXPERIMENTAL SETUP

We evaluate the effectiveness of our proposed CW-PO framework when it is applied to different
preference optimization (PO) methods including three widely used methods: DPO (Rafailov et al.,
2023), IPO (Azar et al., 2024), and rDPO (Chowdhury et al., 2024). We compare our framework
against human annotation and the method by Tao & Li (2025) under the following settings:

• Human: Align πs on Dunlabeled using human-provided annotations.

• Weak LLM-Supervised DPO (WS-DPO) (Tao & Li, 2025): Train the weak model πw on Dlabeled,
then align the strong model πs on Dunlabeled using πw’s annotations with DPO3.

3Details of this method are provided in Appendix E.
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• CW-DPO: Train the weak model πw on Dlabeled, then align the strong model πs on Dunlabeled using
πw’s annotations with CW-DPO.

Note that the alignment data for the strong model is fixed to Dunlabeled, allowing us to directly com-
pare the quality of preference annotations from humans and the weak LLM, as well as to assess how
CW-PO can further enhance the weak LLM’s annotations. Additionally, to ensure a fair comparison,
Dlabeled is the same for both Tao & Li (2025) and the CW-PO settings unless stated otherwise. Due
of the scale of the experiments and the associated computational cost, we report results from a single
run, consistent with Tao & Li (2025).

Datasets. We evaluate CW-PO with three datasets, ANTHROPIC HH-RLHF (Bai et al., 2022),
ULTRAFEEDBACK BINARIZED (UFB) (Cui et al., 2024), and TL;DR (Stiennon et al., 2022).
For ANTHROPIC HH-RLHF, we use the “Harmless” and “Helpful” subsets both individually and
jointly (denoted as “HH-RLHF”). We preprocess the data by filtering out samples with fewer than
1024 tokens for the TL;DR dataset, and fewer than 512 tokens for the others. In all experiments, the
training data is randomly split into 30% for Dlabeled and 70% for Dunlabeled unless specified otherwise.
Further details of the datasets are provided in Appendix F.

Models. We conduct experiments with the OPT (Zhang et al., 2022) and Qwen (Yang et al., 2025)
model families. Specifically, we use Qwen2.5-0.5B and OPT-125M, both small-scale models, as
weak annotators to provide preference labels. For the strong models, we consider different sizes, all
initialized through Supervised Fine-Tuning (SFT) on prompt–chosen response pairs in Dunlabeled. In
our approach and in (Tao & Li, 2025), the chosen responses are based on the weak LLM annotations,
while for scenarios where πs is trained on human annotations, the chosen responses are based on
the human-provided labels. All models are trained for 5 epochs.

Evaluation metric. We use Gold Reward Accuracy (GRA) as the evaluation metric, which measures
how often the score assigned to the aligned model’s response by a pretrained reward model is higher
than the corresponding score for the SFT model. We use the reward model from (Liu et al., 2025)as
the evaluator for HH-RLHF and UFB, and the reward model from (OpenAssistant, 2023) as the
evaluator for TL;DR.

4.2 EXPERIMENTAL RESULTS

CW-PO improves alignment performance across different PO methods and model families, com-
pared to WS-DPO (Tao & Li, 2025) and the Human baseline (Table 1). In particular, CW-PO
achieves a 5.2% GRA improvement over WS-DPO and a 5% improvement over Human on average
across all experiments. These results underscore two key insights: (i) CW-PO makes conventional
preference alignment both more effective and cost-efficient. It reduces reliance on expensive human
annotations and is more cost-efficient than WS-DPO (Tao & Li, 2025) in weak model training (Ta-

Table 1: Results across different preference alignment methods. The reported values are GRA (%).
Weak models in WS-DPO and CW-DPO are trained with 30% of human annotated data. Alignment
data for the strong model is fixed across all experiments. CW-PO columns are highlighted in blue.

OPT-125M → OPT-13B
DPO IPO rDPO

Dataset Human WS-DPO CW-DPO Human WS-DPO CW-IPO Human WS-DPO CW-rDPO

HH-RLHF 56.9 56.7 61.3 58.2 62.8 63.5 55.9 57.6 63.0
TL;DR 57.0 53.5 56.6 53.3 49.7 54.6 54.2 47.7 61.4
UFB 61.3 63.4 63.1 63.4 61.3 66.4 58.9 61.2 63.7
Avg. 58.4 57.9 60.3 58.3 57.9 61.5 56.3 55.5 62.7

Qwen2.5-0.5B → Qwen2.5-14B
DPO IPO rDPO

Dataset Human WS-DPO CW-DPO Human WS-DPO CW-IPO Human WS-DPO CW-rDPO

HH-RLHF 78.8 81.4 80.6 83.4 81.0 86.8 81.2 82.2 86.2
TL;DR 64.2 64.8 66.0 61.8 62.8 64.2 67.0 66.4 68.8
UFB 78.1 78.3 80.1 78.5 77.2 80.7 72.4 75.1 76.8
Avg. 73.7 74.8 75.6 74.6 73.7 77.2 73.5 74.6 77.3
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ble 5); and (ii) CW-PO serves as a plug-and-play enhancement for existing PO methods, improving
their effectiveness without altering the underlying algorithm.

4.3 ANALYSIS

For further analysis, we conduct additional experiments, using HH-RLHF and CW-DPO unless
stated otherwise.

Different student models. We examine whether a weak model can effectively align a range of
stronger policy models within the CW-PO framework. We vary the strong models across experi-
ments and find that smaller and mid-sized models benefit more by CW-PO, whereas gains diminish
as the strong model size increases (Table 2).

Table 2: Performance across different student models measured as GRA (%). We use OPT-125M
and Qwen2.5-0.5B as the weak models for the OPT and Qwen families, respectively. GRA measures
improvement over a model’s SFT baseline; thus larger models may not score higher GRA, since
stronger baselines leave less room to improve even if absolute performance is higher.

Dataset Strong OPT Strong Qwen
Human WS-DPO CW-DPO Human WS-DPO CW-DPO

HH-RLHF

1.3B 71.5 66.7 69.9 1.5B 53.4 55.8 63.3
2.7B 55.1 58.5 60.3 3B 66.0 63.3 73.3
6.7B 56.1 62.8 67.6 7B 71.1 72.0 75.2
13B 56.9 56.7 61.3 14B 78.8 81.4 80.6

Avg. 59.9 61.2 64.8 Avg. 67.3 68.1 73.1

TL;DR

1.3B 53.7 44.7 59.5 1.5B 51.8 53.7 60.3
2.7B 52.6 51.6 59.1 3B 55.0 56.1 62.7
6.7B 57.5 50.2 57.7 7B 61.2 60.1 64.4
13B 57.0 53.5 56.6 14B 64.2 64.8 66.0
Avg. 55.2 50.0 58.2 Avg. 58.1 58.7 63.4

Comparison to using full human annotations. Unlike the settings in Table 1 and Table 2, where
only Dunlabeled is used to align the strong model, we next investigate whether CW-DPO trained exclu-
sively on Dunlabeled remains competitive when compared against models trained on the full preference
dataset (i.e., Dlabeled ∪ Dunlabeled) with human annotations. Remarkably, with just 30% of human an-
notations, CW-DPO still outperforms the model trained with 100% of human annotations (Table 3).

Table 3: Comparison between DPO using the fully human-annotated dataset (Dlabeled∪Dunlabeled) and
CW-DPO. Numbers in parentheses indicate the relative improvement of CW-DPO over the human
baseline (positive: improvement, negative: drop). CW-DPO columns are highlighted in blue.

Dataset OPT-125M → OPT-1.3B Qwen2.5-0.5B → Qwen2.5-7B
Human (100%) CW-DPO Human (100%) CW-DPO

HARMLESS 69.2 72.9 (+3.7) 65.7 72.0 (+6.3)
HELPFUL 70.2 72.7 (+2.5) 58.5 70.8 (+12.3)
HH-RLHF 71.9 69.9 (−2.0) 72.7 75.2 (+2.5)
TL;DR 54.2 59.5 (+5.3) 63.4 64.4 (+1.0)

Avg. 66.4 68.8 (+2.4) 65.1 70.6 (+5.5)

Different split ratios of Dlabeled and Dunlabeled. To evaluate the impact of labeled data size on
CW-PO, we vary the proportion of Dlabeled while keeping Dunlabeled fixed. Overall, CW-PO tends to
outperform WS-DPO (Figure 3, Left).

When there is a fixed pool of preference triplets and only a subset is annotated, one can either align
directly the policy model on the labeled subset or adopt CW-PO. Namely, we can either train πs
directly on Dlabeled using DPO, or first train πw on Dlabeled and then use its annotations to further
train πs on Dunlabeled. To test robustness in this setting, we compare CW-DPO against the baseline
of applying DPO directly on Dlabeled under different labeled–unlabeled splits. CW-DPO consistently
outperforms direct DPO across all split ratios, demonstrating its effectiveness under limited super-
vision (Figure 3 Right). Note that CW-DPO with only 20% of the annotations (reported in Figure 3
Right) surpasses DPO trained on the fully human-annotated dataset (70.3% vs. 69.7%).
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Figure 3: Left: GRA when adjusting the proportion of Dlabeled used to fine-tune the weak LLM, while
retaining 50% of the data as training for the strong LLM. Right: GRA across varying proportions
of Dlabeled. As the split ratio decreases, the size of Dlabeled decreases and Dunlabeled increases because
the total dataset (Dlabeled ∪ Dunlabeled) is fixed.

Comparison to confidence-based filtering. Our CW-PO framework is motivated by the observa-
tion that filtering the preference alignment data to the most confident examples from a weak model
is more effective than leveraging human annotated data. However, filtering based on the confidence
is impractical in real-world scenarios because it is difficult to know in advance how to set up the
confidence threshold. Nevertheless, we compare CW-PO against confidence-based filtering, where
only the top-N% most confident samples are retained. We find that CW-DPO consistently surpasses
the best thresholded setting (30% for HARMLESS/HELPFUL and 40% for HH-RLHF), demonstrat-
ing that confidence-based weighting leads to more robust and higher-quality alignment (Table 4).
Moreover, we observe two main limitations of confidence-based filtering (Figure 4): (I) the optimal
threshold varies across datasets, making it costly and impractical to determine a universal cutoff;
(II) setting the threshold too high or too low can dramatically reduce the amount of training data,
causing significant performance degradation.
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Figure 4: Alignment results across top-N% confidence thresholds.

Table 4: Comparison of confidence-
based weighting, i.e., CW-DPO, and
confidence-based filtering using the top
30% and 40% of samples.

OPT-125M → OPT-1.3B
Dataset Top 30% Top 40% CW-DPO
HARMLESS 72.3 70.5 72.9
HELPFUL 70.1 66.3 72.7
HH-RLHF 67.7 68.2 69.9

Qwen2.5-0.5B → Qwen2.5-7B
Dataset Top 30% Top 40% CW-DPO
HARMLESS 70.6 69.1 72.0
HELPFUL 58.7 60.2 70.8
HH-RLHF 71.3 70.4 75.2
Avg. 68.5 67.5 72.3

Table 5: Weak models’ accuracy.

Model Dataset DPO SFT+DPO BT

OPT-125M
HARMLESS 55.2 56.3 69.1
HELPFUL 54.1 55.4 64.2
HH-RLHF 50.8 52.1 63.8

Qwen-0.5B
HARMLESS 56.1 57.1 65.3
HELPFUL 55.2 56.0 63.1
HH-RLHF 51.4 52.6 63.2

Avg. – 53.8 54.9 64.8
Time cost (s) – 3,319 4,978 2,450

Comparison on the training objective for
the weak LLM. We compare the perfor-
mance of weak LLMs under different train-
ing objectives. Using Dlabeled as training data,
we benchmark our BT approach against (1)
DPO and (2) a two-stage method that first ap-
plies supervised fine-tuning (SFT) followed
by DPO, as adopted in WS-DPO (Tao & Li,
2025). For evaluation, we use Dunlabeled with
human annotations as a proxy for weak model
performance. Across all datasets and both
model families, BT consistently achieves the highest reward accuracy while requiring substantially
less training time (4,978 vs. 2,450 seconds for 5 epochs) (Table 5). These results highlight that BT

8
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not only provides better accuracy but also reduces training cost, making it the most effective and
practical choice for training the weak model (See Appendix G for more details).

5 RELATED WORK

Direct preference optimization. Unlike RLHF, DPO directly aligns the policy model with pre-
defined preference data without requiring a reward model (Rafailov et al., 2023). Building on
this framework, Identity Preference Optimization (IPO) introduces a regularization term to pre-
vent overfitting (Azar et al., 2024), while Odds Ratio Preference Optimization (ORPO) (Hong et al.,
2024) reformulates preference pairs using odds ratios to simplify optimization and improve sta-
bility. Simple DPO removes both the reference model and KL penalty, enabling faster and more
straightforward training (Meng et al., 2024), and Park et al. (2024) address length bias. Robust
DPO (rDPO) (Chowdhury et al., 2024) introduces robustness to noisy preference flips with theoret-
ical guarantees. Contrastive Preference Optimization (CPO) (Xu et al., 2024) frames alignment as
a contrastive learning task to maximize the margin between preferred and dispreferred responses.
Finally, β-DPO (Wu et al., 2024) proposes dynamically calibrating β at the batch level according to
data quality.

Weak-to-strong generalization. Weak-to-strong generalization is a learning paradigm aimed at
building superhuman models by leveraging weaker models as proxies for human supervision. The
key challenge is that superhuman-level data is often beyond human understanding, making it impos-
sible to provide accurate annotations. Consequently, the focus shifts to how we can effectively elicit
the capabilities of a well-pretrained model even under weak supervision (Burns et al., 2024). While
our framework also adopts weak-model supervision to align a stronger model, it fundamentally dif-
fers from this scenario: in our setting, supervision from a weaker LLM can, in fact, be stronger and
even more effective than human annotation.

Large language model-as-a-Judge. Recently, using powerful proprietary LLMs as evaluators for
long-form responses has become the de facto standard. Prior work has explored replacing hu-
man feedback from AI feedback (Bai et al., 2022), with reinforcement learning from AI feedback
(RLAIF) often outperforming human feedback (Lee et al., 2023). Strong LLMs have been used
for automatic method evaluation (Dubois et al., 2023) and as examiners that generate questions and
assess answers without references (Bai et al., 2023), sometimes decomposing tasks into multiple as-
pects and criteria for richer evaluation (Saha et al., 2023). Open-source evaluators matching GPT-4’s
performance with supporting references have also been proposed (Kim et al., 2023). Other efforts
include using strong LLMs for automatic low-quality data filtering (Chen et al., 2023) and intro-
ducing fine-grained evaluation protocols that break down coarse scores into skill-level assessments
(Ye et al., 2023). While these works have relied on strong models’ capability (e.g., GPT-4), Tao &
Li (2025) demonstrates that even weaker LLMs (e.g., OPT-125M) can achieve annotation quality
comparable to, or surpassing, that of humans, offering both effectiveness and efficiency.

Building on these insights, this paper further investigates strategies for making more effective use of
annotations produced by weak LLMs.

6 CONCLUDING REMARKS

In conclusion, we introduced CW-PO, a principled framework for leveraging weak LLMs as efficient
and scalable preference annotators. By reweighting samples based on annotator confidence, CW-PO
effectively amplifies the utility of weak-model supervision, achieving strong alignment performance
with only a fraction of human-labeled data. Our results demonstrate that even lightweight annotators
with fewer than 0.5B parameters can reliably guide much stronger LLMs, offering both substantial
computational savings and practical reusability.

Limitation. While CW-PO achieves significant improvements, there may exist other more effective
strategies to exploit confidence information for preference alignment. Our main contribution lies
in presenting a research direction on leveraging weak LLMs more effectively to align strong pol-
icy models and proposing a very effective methodology, while leaving deeper investigation of this
direction as future work.

9
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT (GPT-5, OpenAI) exclusively to aid with writing and polishing the text, such as
improving grammar, fluency, and clarity of exposition. The research ideas, methodology, experi-
ments, and analyses were entirely conducted by the authors without assistance from LLMs.

B DETAILS OF PREFERENCE OPTIMIZATION LOSS FUNCTIONS

RLHF incorporates human preferences to refine a model’s policy. In LLM alignment, a reward
model rψ(x, y) is trained to reflect human preference between two candidate responses yw (pre-
ferred) and yl (less preferred) for a prompt x. Using the Bradley-Terry model, the preference prob-
ability is modeled as:

p(yw ≻ yl | x) = σ(rψ(x, yw)− rψ(x, yl)),

where σ is the sigmoid function. The reward model is trained by minimizing the log-loss over a
dataset of human preferences D = {(x(i), (y

(i)
w , y

(i)
l ))}Ni=1:

−E(x,yw,yl)∼D
[
log σ(rψ(x, yw)− rψ(x, yl))

]
. (10)

After training the reward model, the policy πRL
θ is fine-tuned to maximize expected reward while

remaining close to a supervised fine-tuned reference policy πSFT
θ , formalized as:

max
θ

Ex∼D,y∼πRL
θ (y|x)

[
rψ(x, y)− β DKL(π

RL
θ (y|x)∥πSFT

θ (y|x))
]
, (11)

where β controls the trade-off between reward maximization and staying close to the reference
policy.

Direct Preference Optimization (DPO). DPO (Rafailov et al., 2023) leverages offline preference
data to directly optimize a policy without relying on reinforcement learning algorithms such as PPO.
It demonstrates that the optimal solution to Eq. (11), denoted as π∗

θ , satisfies:

rθ(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (12)

where rθ is the reward model, πθ is the policy model, and πref is the reference model. Both models
are initialized from the same SFT (Supervised Fine-Tuning) checkpoint; only πθ is further optimized
during DPO, while πref remains fixed. Here, Z(x) is the partition function and β is a hyper-parameter
controlling the strength of the reward signal.

Using pairwise comparisons under the Bradley-Terry model and substituting Eq. (12) into Eq. (10),
the resulting DPO loss is:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (13)

where σ is the sigmoid function, and D contains the preference triplets (x, yw, yl), with yw preferred
over yl for prompt x.

Identity Preference Optimization (IPO). While DPO performs well in many scenarios, it can suf-
fer from overfitting to the preference dataset (Azar et al., 2024). IPO extends DPO by introducing
a regularization term that controls the gap between the log-likelihood ratios of preferred and dispre-
ferred outputs for both the model and the reference, mitigating overfitting. The IPO loss is defined
as:

LIPO(πθ;πref) = −E(x,yw,yl)∼D

[(
log

(
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

)
− β−1

2

)2
]
. (14)

This regularization encourages better generalization, prevents overfitting to specific preference pat-
terns, and stabilizes performance across different datasets.
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robust Direct Preference Optimization (rDPO). rDPO (Chowdhury et al., 2024) extends DPO by
introducing a distributionally robust approach to handle noisy or uncertain preference data. This
method aims to improve the stability and generalization of preference-based fine-tuning by incorpo-
rating a worst-case loss component.

The rDPO loss function is defined as:

LrDPO(πθ;πref) = ED

[
− 1− ϵ

1− 2ϵ
log σ

(
β log

πθ(yw|x)
πθ(yw|x)

− β log
πref(yl|x)
πref(yl|x)

)
+

ϵ

1− 2ϵ
log σ

(
β log

πθ(yl|x)
πθ(yl|x)

− β log
πref(yw|x)
πref(yw|x)

)]
,

The first term places higher weight when the model orders the observed preferences incorrectly,
scaled proportionally to 1 − ϵ, while the second term places higher weight when the model orders
the preferences correctly, scaled proportionally to ϵ. Here, ϵ denotes the flip probability of a prefer-
ence label in the training dataset (i.e., the noise ratio). Together, these terms effectively debias the
impact of noisy preference labels on average, enhancing the robustness of the learned policy. In our
experiments, we used ϵ = 0.1.

B.1 VARIANTS OF CONFIDENCE-WEIGHTED PREFERENCE OPTIMIZATION LOSS FUNCTIONS

By applying our weighting approach to the variants described above, we obtain:

LCW-DPO(πθ;πref) = −E(x,yw,yl)∼D

[
C(x, yw, yl) log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (15)

LCW-IPO(πθ;πref) = −E(x,yw,yl)∼D

[
C(x, yw, yl)

(
log

(
πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

)
− β−1

2

)2
]
, (16)

LCW-rDPO(πθ;πref) = ED

[
C(x, yw, yl)

(
− 1− ϵ

1− 2ϵ
log σ

(
β log

πθ(yw|x)
πθ(yw|x)

− β log
πref(yl|x)
πref(yl|x)

)
+

ϵ

1− 2ϵ
log σ

(
β log

πθ(yl|x)
πθ(yl|x)

− β log
πref(yw|x)
πref(yw|x)

))]
. (17)

C FURTHER RESULTS

In this appendix, we first report per-model Gold Reward Accuracy (GRA) for each weak–strong
pair—(OPT-125M → OPT-1.3B) and (Qwen2.5-0.5B → Qwen2.5-7B)—in place of the cross-model
average shown in Figure 2. We then present results across weak-annotator model sizes, followed by
results across weak-annotator training-set portions (10–50%) for OPT-125M.

C.1 PER-MODEL RESULTS OF SECTION 3.1

To complement Figure 2, which reports the average Gold Reward Accuracy (GRA) across both
weak–strong pairs, Tables 6 and 7 present the per-model results for (OPT-125M → OPT-1.3B) and
(Qwen2.5-0.5B → Qwen2.5-7B), respectively. Each table reports GRA under confidence-based
selection of the top-N% samples according to the weak model (with N ∈ {30, 50, 75, 100}; here,
100% denotes using the weak LLM directly for annotation), as well as the Human baseline. We
include results for HARMLESS, HELPFUL, and the combined HH-RLHF, along with their macro-
average.

C.2 EFFECT OF WEAK MODEL SIZE

We analyze how the size of the weak annotator affects its prediction accuracy when deciding, for
a given prompt x, which of two responses (y1, y2) is preferred. As shown in Table 8, accuracy
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Table 6: Strong models’ Gold Reward Accuracy (GRA) for OPT-125M → OPT-1.3B.

Setting 30% 50% 75% 100% Human
HARMLESS 72.3 67.9 67.7 67.4 66.2
HELPFUL 70.1 68.0 67.2 66.8 66.4
HH-RLHF 67.7 67.5 66.9 65.9 64.4

Avg. 70.03 67.80 67.27 66.70 65.67

Table 7: Strong models’ Gold Reward Accuracy (GRA) for Qwen2.5-0.5B → Qwen2.5-7B.

Setting 30% 50% 75% 100% Human
HARMLESS 70.6 68.4 66.7 66.9 65.1
HELPFUL 58.7 55.2 51.5 52.3 54.4
HH-RLHF 71.3 68.4 64.9 63.2 61.8

Avg. 66.87 64.00 61.03 60.80 60.43

improves only modestly as we scale from Qwen2.5-0.5B to Qwen2.5-7B. This suggests that weak-
prediction accuracy is not highly sensitive to model size, likely due to its relatively simple decision
nature (choose the preferred of two options for a given x). Practically, this supports using smaller
weak models to build a more computationally efficient pipeline without sacrificing much labeling
quality. All weak models in this study were trained with Eq. 5.

Table 8: Weak Prediction Accuracy (%), across weak model sizes for the Qwen2.5 family. Accuracy
is measured based on human annotations.

Weak Model Size 0.5B 1.5B 3B 7B
HARMLESSNESS 63.5 65.9 66.6 67.1
HELPFULNESS 63.2 64.7 65.3 67.2
TL;DR 60.7 61.0 61.6 62.9

Avg. 62.5 63.9 64.5 65.7

C.3 EFFECT OF WEAK MODEL TRAINING DATASET SIZE

We study how the amount of data used to train the weak annotator affects its ability to choose,
for a given prompt x, the preferred response among (y1, y2). Using OPT-125M, Table 9 shows
that accuracy gains are modest as the training subset grows from 10% to 50%, with improvements
tapering beyond the 30–40% range (diminishing returns). Notably, 0.1 of the dataset is not sufficient,
yielding clearly lower accuracy than larger subsets. Based on these results, we fix the weak-model
training subset to 30% for the rest of our experiments as a cost–performance sweet spot. All weak
models in this study were trained with Eq. 5.

Table 9: Weak prediction accuracy (%) for OPT-125M across training-set portions (10–50%) of the
weak model, measured based on human annotations.

Dataset % 10% 20% 30% 40% 50%
HARMLESSNESS 62.6 65.5 67.2 67.8 67.1
HELPFULNESS 61.9 63.4 65.3 66.4 65.3
BOTH 56.7 60.2 61.9 62.6 62.2

Avg. 60.4 63.1 64.8 65.6 64.9

D ALGORITHM OF CW-PO

The complete procedure of CW-PO is summarized in Algorithm 1.

14
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Algorithm 1 Confidence-Weighted Preference Optimization (CW-PO)

Require: Triplet dataset D = Dlabeled
⋃
Dunlabeled, weak LLM πw, strong LLM πs

1: (i) Train weak preference annotator.
2: for each (x, y+, y−) in Dlabeled do
3: Update πw by minimizing Lweak as in Eq. (5)
4: end for

5: (ii) Compute preference labels and confidence scores.
6: for each (x, y1, y2) in Dunlabeled do
7: Compute annotation for (x, y1, y2) as in Eq. (6)
8: Compute confidence weight C(x, y+, y−) as in Eq. (23)
9: end for

10: (iii) Train the strong model with CW-PO.
11: for each (x, y+, y−) in D̂ do
12: Update πs by minimizing LCW-PO as in Eq. (7)
13: end for

E BASELINE DETAILS

The baseline introduced by Tao & Li (2025) adopts the weak-to-strong alignment framework.
Specifically, a weak model πw is first trained on the labeled dataset Dlabeled using DPO. The op-
timized weak model π∗

w is then employed to generate preference feedback on the unlabeled dataset
Dunlabeled. For each triplet (x, y1, y2) ∈ Dunlabeled, rewards are computed via DPO’s implicit reward
formulation:

rw(x, y) = β log
πw(y|x)
πSFT
w (y|x)

. (18)

The response with the higher reward is assigned as the preferred label ŷw, and the other as the
dispreferred label ŷl, forming the weakly labeled dataset:

Dweak = {(x, ŷw, ŷl)}, |Dweak| = |Dunlabeled|.
Finally, a strong model πs is aligned on Dweak via DPO, using a supervised fine-tuned model πSFT

s as
the reference. This procedure mirrors the semi-supervised workflow but relies exclusively on DPO
for alignment.

F DATASET DETAILS

In this study, we evaluate the CW-PO framework using three distinct datasets:

1. ANTHROPIC HH-RLHF (Bai et al., 2022)

The HH-RLHF dataset consists of human preference annotations collected through pairwise com-
parisons of model outputs. Each data point contains a prompt x and two candidate responses, y1
and y2, with a human-annotated label indicating which response is preferred. The dataset is di-
vided into two main subsets: Harmless and Helpful. For preprocessing, we filter out samples with
more than 512 tokens. After length-based filtering, the Harmless subset contains 35,908 training
examples and 1,927 test examples, while the Helpful subset contains 34,873 training examples and
1,878 test examples. For experiments using both aspects jointly, the concatenated dataset includes
70,781 training samples and 3,805 test samples. These annotations are derived from crowdworker
evaluations, assessing which response is more helpful or harmless, making this dataset a standard
benchmark for alignment research.

For evaluating models trained on the concatenated dataset, i.e, HH-RLHF, we construct the test set
by randomly sampling from the test splits of both subsets and concatenating them.

2. ULTRAFEEDBACK BINARIZED (UFB)4

4https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback binarized
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The UFB dataset is a pre-processed version of the UltraFeedback dataset and was used to train
Zephyr-7B-β. The original UltraFeedback dataset (Cui et al., 2024) contains 64k prompts, each
accompanied by four model completions from a variety of open and proprietary models. GPT-4 is
used to assign a score to each completion based on criteria such as helpfulness and honesty. To
create the UFB dataset, the highest-scored completion is selected as the chosen” response, while
one of the remaining three completions is randomly selected as the rejected” response. This defines
the preference modeling splits used for techniques such as reward modeling or Direct Preference
Optimization (DPO). The training set contains 61.1k samples, and the test set contains 2k samples.
We also filter out samples with more than 1024 tokens.

3. TL;DR (Stiennon et al., 2022)

The TL;DR dataset contains Reddit posts paired with human-written summaries. For our experi-
ments, we use a filtered version of this dataset, which includes 123,169 posts with their correspond-
ing summaries. Approximately 5% of the data is held out for validation. This dataset is utilized for
supervised fine-tuning and preference optimization tasks. Since this dataset contains longer inputs
on average—because Reddit posts are used as prompts—we filter out samples with more than 1024
tokens.

G FURTHER ANALYSIS ON WEAK LLM ANNOTATION

The task under consideration is a comparison task, i.e., selecting the preferred response given a fixed
input. An advantage of the method of Tao & Li (2025) (see Appendix E) is that it does not require
modifying the architecture of the language model and directly optimizes the weak model. However,
computing the implicit reward as a measure for comparing responses appears unnecessarily com-
plex for this setting. Moreover, as detailed in Appendix B, the DPO objective inherently enforces
proximity to the reference model, even though such a constraint is not required in this annotation
task for training the weak model.

Comparison. In contrast, instead of employing a probabilistic formulation of the weak model, i.e.,

πw(y|x) =
n∏
i=1

πw(yi|x),

where yi denotes the i-th token of response y, and then deriving the implicit reward as in Eq. 18 to
perform comparisons, we propose a deterministic design of the weak annotator as a reward function
πw(x, y), whose output lies in [−∞,+∞]. This formulation allows us to directly quantify the weak
annotator’s preference for a response, rather than relying on the construction of implicit rewards in
a cumbersome probabilistic form.

Furthermore, by optimizing the weak model with the loss defined in Eq. (5), each training datapoint
contributes two gradient signals, enabling the model to learn relatively between pairs (x, y1) and
(x, y2) and to distinguish between them more effectively.

Finally, the results in Table 5 demonstrate that, although we modify the weak model’s architecture
(by replacing the final projection layer with a scalar-output linear layer), our proposed regime for
weak annotation is both more efficient and more effective.

H CONFIDENCE WEIGHTING ANALYSIS

In this section, we provide the rationale behind the design of our confidence weighting function:

C(x, y+, y−) = 2 ·
(
σ(πw(x, y

+)− πw(x, y
−))− 0.5

)
, (19)

where σ(·) denotes the sigmoid function.

Range normalization. By definition of y+ and y−, we always have πw(x, y
+) ≥ πw(x, y

−).
Hence, πw(x, y+)− πw(x, y

−) ≥ 0, which implies:

σ(πw(x, y
+)− πw(x, y

−)) ∈ [0.5, 1].

Subtracting 0.5 shifts the range to [0, 0.5], and multiplying by 2 normalizes it to [0, 1]. Thus,
C(x, y+, y−) is a well-calibrated confidence score bounded between 0 and 1.
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Interpretation. The value of C reflects the margin between the weak model’s preference scores:
C ≈ 0 when the weak model is highly uncertain (both responses are scored similarly). C ≈ 1 when
the weak model is highly confident (large margin between y+ and y−).

This design ensures that low-confidence samples contribute minimally to the strong model’s align-
ment, while high-confidence samples are emphasized more strongly. Alternative choices, such as
using the raw difference πw(x, y

+) − πw(x, y
−), would yield unbounded values and potentially

destabilize optimization. In contrast, the sigmoid-based normalization produces smooth gradients
and bounded weights, aligning with the weak model’s training objective in Eq. (5) and the preference
formulation of the Bradley–Terry model as in Eq. (4), thereby enhancing training stability.

Other Weighting Variants. We also conducted experiments using alternative forms of weighting
functions beyond our default choice. Specifically, we considered the following variants:

• i)
C1(x, y+, y−) = 2 ·

(
σ(πw(x, y

+)− πw(x, y
−))− 0.5

)
, (20)

• ii)
C2(x, y+, y−) = σ(πw(x, y

+)− πw(x, y
−)), (21)

• iii)
C3(x, y+, y−) = min{πw(x, y+)− πw(x, y

−), 1}, (22)

• iiii)
C4(x, y+, y−) = min{0.2 · (πw(x, y+)− πw(x, y

−)), 1}, (23)

0 1 2 3 4 5 6
Margin = w(x, y + ) w(x, y )

0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce
 w

ei
gh

t

1 = 2( ( ) 0.5)
2 = ( )
3 = min{ , 1}
4 = min{0.2 , 1}

Figure 5: Comparison of different confidence weighting functions as a function of the margin ∆ =
πw(x, y

+) − πw(x, y
−) produced by the weak model. While all functions capture the intuition

that larger margins should correspond to higher confidence, they differ in how aggressively they
emphasize high-margin examples.

Figure 5 illustrates how the confidence weight varies with the margin between the weak model’s
scores for the chosen and rejected responses. All variants share the desirable property that con-
fidence increases with the margin, but they differ in range and scaling. C1 smoothly normalizes
confidence to [0, 1], C2 compresses the values into [0.5, 1], while C3 and C4 grow linearly with the
margin until saturation. The goal of this analysis is to understand how different functional forms
affect the relative weighting of samples during optimization, and to highlight that our proposed
formulation C1 provides a balanced trade-off: it downweights low-confidence samples while still
smoothly scaling up for high-confidence ones, which leads to more stable and effective training.

Table 10 reports the performance of the different confidence weighting variants across all evaluation
datasets. We observe that C1 provides the most stable and robust improvements overall. These results
verify our design choice: C1 offers a smooth normalization to [0, 1], balances sample weighting, and
generalizes reliably across both subsets. Therefore, we adopt C1 as the default confidence weighting
function in our final framework.
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Table 10: Performance comparison of different confidence weighting functions on the HARMLESS,
HELPFUL, and combined HH-RLHF datasets using the Qwen2.5-0.5B → Qwen2.5-7B model pair.
C1 (our proposed formulation) consistently outperforms alternative weighting schemes, demonstrat-
ing its effectiveness in preference alignment.

Dataset C1 C2 C3 C4
HARMLESS 72.0 70.3 68.6 69.1
HELPFUL 70.8 67.8 67.4 68.7
HH-RLHF 75.2 70.1 69.2 72.5

Avg. 72.7 69.4 68.4 70.1

I HYPERPARAMETERS

Hyper-parameters for model generation. Unless otherwise noted, we use temperature 0.95 and
max new tokens = 512 at inference.

Table 11: Training hyperparameters for weak models.

Parameter Value

Model(s) OPT-125M; Qwen2.5-0.5B
Training epochs 5
Optimizer Adam
Learning rate 1× 10−5

Per-device train batch size 32
Gradient accumulation steps 1
LoRA rank 0

Table 12: Training hyperparameters for strong models with DPO, IPO, rDPO and their confidence-
weighted variants.

Parameter Value

Training epochs 5
Learning rate 5× 10−6

LR scheduler cosine
Warmup steps 100
Weight decay 0.05
Optimizer paged adamw 32bit
Per-device train batch size 16
Per-device eval batch size 16
Gradient accumulation steps 4
Gradient checkpointing True
β 0.5
LoRA rank (r) 8
LoRA α 16
LoRA dropout 0.05

For SFT, we leveraged the paired prompt and preferred-response tuples (x, yw) from the datasets
to train the models in a supervised manner. The corresponding hyperparameters are summarized
below. For models larger than 7B parameters, we reduced the per-device batch size to 4 for both
training and evaluation.

All supervised fine-tuning (SFT) and preference-optimization experiments (DPO, IPO, rDPO, and
their confidence-weighted variants) were implemented using the open-source TRL library5.

5https://github.com/huggingface/trl
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Table 13: Training hyperparameters for supervised fine-tuning (SFT).

Parameter Value

Training epochs 3
Learning rate 1× 10−5

LR scheduler cosine
Warmup steps 100
Weight decay 0.05
Optimizer paged adamw 32bit
Per-device train batch size 16 (4 for >7B models)
Per-device eval batch size 16 (4 for >7B models)
Gradient accumulation steps 4
Gradient checkpointing True
LoRA rank (r) 8
LoRA α 16
LoRA dropout 0.05
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J QUALITATIVE GENERATIONS OF OPTIMIZED MODELS

In this section, we present qualitative examples generated by our optimized models. The examples
in Tables 14 and 15 illustrate improved alignment on the HH-RLHF and TL;DR datasets.

Table 14: Comparative examples from the HH-RLHF dataset. For each prompt, we show the responses from
the CW-DPO–optimized LLM and the SFT LLM.

Prompt
Human: How do I keep a nature journal?
Assistant:

Response of CW-DPO optimized LLM
Start with a simple observation, date, location, and description of your surroundings. Include sketches, notes on
weather, and any personal reflection. (gold reward: 15.44)

Response of SFT LLM
What kind of journal would you like to keep? Do you want to keep a journal of your observations and reflections on
nature, or a more general journal that includes your thoughts and feelings on a variety of topics? Would you like to
include drawings or sketches of the things you observe in nature? What would you like to focus on in your journal?
(gold reward: -7.88)

Example 1

Prompt
Human: How do I keep a baby’s teeth clean?
Assistant:

Response of CW-DPO optimized LLM
You can keep a baby’s teeth clean by gently wiping them with a damp cloth or a soft toothbrush and water. It’s also
important to schedule regular dental check-ups as your baby grows. (gold reward: 7.03)

Response of SFT LLM
I’m sorry, I don’t have the specific information you’re looking for. Can you please ask another question? (gold reward:
-19.50)

Example 2

Prompt
Human: Should you leave cookies for Santa?
Assistant:

Response of CW-DPO optimized LLM
Yes, leaving cookies for Santa is a nice tradition! It’s a way to show kindness and hospitality. Also, who doesn’t love a
warm cookie? (gold reward: 7.66)

Response of SFT LLM
Yes, it is a nice tradition to leave cookies for Santa. Do you have any other questions? (gold reward: 1.28)

Example 3

Prompt
Human: What can I do with leftover coffee grounds?
Assistant:

Response of CW-DPO optimized LLM
You can use leftover coffee grounds for a variety of purposes, such as conditioning soil, repelling pests, and even
making a DIY air freshener. (gold reward: 5.59)

Response of SFT LLM
How about making a compost? You could put your leftover coffee grounds in a compost bin. They also make a great
addition to garden soil. You could even try starting a garden with it! (gold reward: 3.98)

Example 4

Prompt
Human: How do I start meditating?
Assistant:

{response of CW-DPO optimized LLM}
Start with just a few minutes of meditation per day and gradually increase your time. (gold reward: 3.86)

Another answer
Great! Here are a few steps to get started: (gold reward: -2.42)

Example 5
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Table 15: Comparative examples from the TL;DR dataset. For each prompt, we show the responses from the
CW-DPO–optimized LLM and the SFT LLM.

Prompt
SUBREDDIT: r/relationships
TITLE: Should i tell my friend (17 f) her boyfriend (19 m) made out with another girl when they were briefly broken
up? They have been together for less than a year.
POST: So my friend, and ex friend, were dating. She is the sweetest, most caring and genuine person i know. He is a
selfish alcoholic asshole. He broke up with her because she got mad that he went to the bar with two of his ex
girlfriends then came home drunk. A couple days later he got drunk with one of his exes and they made out, and
possibly had sex. They were only broken up for 2 weeks and now they are back together. She doesn’t know they did
anything. It seems obvious to tell her but she became so depressed and down when they were broken up i dont know
if i want to do that to her. Should i tell her?
TL;DR:

Response of CW-DPO optimized LLM
The original poster (OP) is considering whether to inform their friend (17-year-old female), who is dating a
19-year-old male, about the recent infidelity of her boyfriend. The boyfriend broke up with her after a brief argument
about him going out with ex-girlfriends while intoxicated. He then resumed dating her after about two weeks, during
which time he allegedly had sex with another woman. The OP does not want to cause additional emotional distress
to their friend, who was already depressed during the breakup. The OP is seeking advice on whether or not to
disclose the information to their friend. (gold reward: 4.7579)

Response of SFT LLM
You are an assistant specialized in summarizing user-generated content. (gold reward: -3.4492)

Example 1

Prompt
SUBREDDIT: r/relationships
TITLE: My SO broke my trust. How can we fix our relationship?
POST: I don’t really want to go into details, but I (23F) have severe trust issues and my SO (22M) shattered all the
trust I had in him. We’re at the point where I can’t believe anything he says if there could possibly be an ulterior
motive. Would a no-privacy policy help, or just make me more paranoid? Any other suggestions?
TL;DR:

Response of CW-DPO optimized LLM
It seems like you’ve been struggling with trust issues in your relationship with your SO. You’ve shared that your SO
has broken your trust, causing you to be extremely skeptical and paranoid about what they say. You’re wondering if a
”no-privacy policy” would help or just make you more paranoid. Are there any other suggestions to help rebuild trust
in your relationship? (gold reward: 5.2994)

Response of SFT LLM
23F with big trust issues says her 22M partner broke her trust and now she doubts everything he says. She asks if a
strict “no-privacy” rule might help or just make things worse, and wants ideas to rebuild the relationship. (gold reward:
-5.0186)

Example 2

Prompt
SUBREDDIT: r/legaladvice
TITLE: Fighting open container ticket I received as a passenger in court
POST: Hey guys. This happened in Illinois. I was at a party last night and got a ride home when we were pulled over.
I was a passenger in the back seat, there was another passenger in the seat in front of me. The cop (who initially
pulled his gun because of an airsoft gun in the car) searched the car and found some open beer bottles, and I
received an 11-502B Illegal Transportation of Alcohol ticket, along with the other passenger. Curiously the driver did
not receive a ticket of any kind. I did not have any knowledge of the open containers and was just trying to get a ride
home, something I communicated to the officer. What are my odds trying to fight this in court? Thanks in advance.
TL;DR:

Response of CW-DPO optimized LLM
I was a passenger in a car that was searched by an Illinois police officer for open containers of alcohol. I received an
11-502B ticket and the other passenger was also ticketed, but the driver was not. I did not know about the open
containers and was just trying to get a ride home. I want to know my chances of fighting the ticket in court. (gold
reward: 8.2877)

Response of SFT LLM
You are an assistant specialized in summarizing user-generated content. Please summarize the following Reddit
post, focusing on the main points and key details:
SUBREDDIT: r/legaladvice
TITLE: Fighting open container ticket I received as a passenger in court
POST: Hey guys. This happened in Illinois. I was at a party last night and got a ride home when we were pulled over.
I was a passenger in the back seat, there was another passenger in the seat in front of me. The cop (who initially
pulled his gun because of an airsoft gun in the car) searched the car and found some open beer bottles, and I
received an 11-502B Illegal Transportation of Alcohol ticket, along with the other passenger. Curiously the driver did
not receive a ticket of any kind. I did not have any knowledge of the open containers and was just trying to get a ride
home, something I communicated to the officer. What are my odds trying to fight this in court? Thanks in advance.
TL;DR: fighting open container ticket I received as a passenger in court, what are my odds trying to fight this in court?
I am an AI assistant with expertise in summarizing user-generated content. I will summarize the following Reddit
. . . (gold reward: 0.6307)

Example 3
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