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Abstract

Multimodal Large Language Models (MLLMs)001
have demonstrated remarkable proficiency in002
diverse tasks across different domains, with003
an increasing focus on improving their zero-004
shot generalization capabilities for unseen mul-005
timodal tasks. Multimodal instruction tuning006
has emerged as a successful strategy for achiev-007
ing zero-shot generalization by fine-tuning pre-008
trained models on diverse multimodal tasks009
through instructions. As MLLMs grow in010
complexity and size, the need for parameter-011
efficient fine-tuning methods like Low-Rank012
Adaption (LoRA), which fine-tunes with a013
minimal set of parameters, becomes essential.014
However, applying LoRA in multimodal in-015
struction tuning presents the challenge of task016
interference, which leads to performance degra-017
dation, especially when dealing with a broad018
array of multimodal tasks. To address this, this019
paper introduces a novel approach that inte-020
grates multimodal instruction tuning with Con-021
ditional Mixture-of-LoRA (MixLoRA). It inno-022
vates upon LoRA by dynamically constructing023
low-rank adaptation matrices tailored to the024
unique demands of each input instance, aiming025
to mitigate task interference. Experimental re-026
sults on various multimodal evaluation datasets027
indicate that MixLoRA not only outperforms028
the conventional LoRA with the same or even029
higher ranks, demonstrating its efficacy and030
adaptability in diverse multimodal tasks.031

1 Introduction032

The advent of Multimodal Large Language Models033

(MLLMs) (Li et al., 2023a; Liu et al., 2023; Driess034

et al., 2023; Dai et al., 2023) have revolutionized035

the field of artificial intelligence, demonstrating re-036

markable capabilities in processing and integrating037

information from various modalities, notably text038

and image. A key focus in advancing MLLMs is039

to enhance zero-shot generalization to novel multi-040

modal tasks. In this pursuit, multimodal instruction041

tuning, which fine-tunes pre-trained models with042

diverse, instruction-based multimodal tasks, has 043

demonstrated its efficacy in facilitating zero-shot 044

generalization to unseen multimodal problems (Xu 045

et al., 2023b; Liu et al., 2023; Ye et al., 2023). 046

Concurrently, the growing complexity and scale 047

of MLLMs have spurred the development of var- 048

ious parameter-efficient fine-tuning (PEFT) tech- 049

niques (Lee et al., 2019; Hu et al., 2021; Li and 050

Liang, 2021; Karimi Mahabadi et al., 2021; Guo 051

et al., 2021; Zaken et al., 2022). Among these, 052

Low-Rank Adaption (LoRA) (Hu et al., 2021) has 053

emerged as a powerful PEFT method that fine- 054

tunes large pre-trained models by updating a small 055

amount of injected adaption parameters. However, 056

in multimodal instruction tuning, the effectiveness 057

of conventional PEFT methods like LoRA dimin- 058

ishes due to their reliance on adjusting a limited 059

portion of shared parameters to simultaneously ac- 060

commodate diverse tasks, leading to task interfer- 061

ence – a problem well-studied in multi-task learn- 062

ing (Yu et al., 2020; Liu et al., 2021; Navon et al., 063

2022), but insufficiently investigated in the con- 064

text of parameter-efficient multimodal instruction 065

tuning. The diverse nature of multimodal tasks 066

significantly increases the risk of task interference. 067

For instance, using the same limited set of adap- 068

tation parameters for distinct tasks like OCR and 069

domain-specific classification can cause conflicting 070

updates, potentially leading to suboptimal perfor- 071

mance. Our research seeks to explore and address 072

task interference in parameter-efficient multimodal 073

instruction tuning. Specifically, we aim to answer 074

two critical research questions: (1) Does task in- 075

terference exist in parameter-efficient multimodal 076

instruction tuning? (2) How can we effectively mit- 077

igate this issue for robust and versatile performance 078

across various multimodal tasks? 079

To answer the first question, we investigate the 080

task-interference issue in parameter-efficient mul- 081

timodal instruction tuning from the perspective of 082

gradient direction (Liu et al., 2021) in Section 3.2. 083
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Figure 1: Comparative Overview of LoRA and MixLoRA. Left: The conventional LoRA with static low-rank
decomposition matrices BA. Right: MixLoRA treats the low-rank decomposition factors as experts that can be
selectively combined through a Dynamic Factor Selection module, enabling the construction of varied low-rank
decomposition matrices A and B tailored to varying input scenarios. The selected factors are visually distinguished
by color coding: green for B and blue for A.

Our observations highlight notable task interfer-084

ence in this context, underscoring the necessity for085

more effective adaptation strategies to ensure ro-086

bust and versatile performance across diverse mul-087

timodal tasks. In response to our second question,088

this paper proposes a novel multimodal instruc-089

tion tuning framework – Conditional Mixture-of-090

LoRA (MixLoRA), designed to mitigate the task091

interference issue. As shown in Figure 1, unlike092

conventional LoRA which uses shared low-rank093

adaptation matrices A and B across all tasks and094

instances, MixLoRA dynamically constructs low-095

rank adaptation matrices A and B tailored to each096

input instance, by selecting their decomposition097

factors from two collections. MixLoRA introduces098

a dynamic factor selection mechanism, incorporat-099

ing two Independent Factor Selection (IFS) routers100

and a Conditional Factor Selection (CFS) router.101

The two IFS routers independently select appropri-102

ate factors to dynamically construct LoRA A and103

B matrices tailored to each input. The CFS router104

further refines the selection for LoRA B based on105

the factors chosen for LoRA A, ensuring that the106

factors selections for LoRA A and B are not only107

tailed to input but also cohesively aligned.108

To validate the effectiveness of MixLoRA, we109

conduct extensive experiments on MME (Fu et al.,110

2023), a comprehensive multimodal evaluation111

benchmark, and seven additional multimodal eval-112

uation datasets that focus on various capabilities.113

Experimental results demonstrate that MixLoRA,114

with its dynamic factor selection approach, con-115

sistently outperforms LoRA across various multi-116

modal tasks when using the same number of ranks117

and remains competitive or superior even against118

LoRA with a higher rank number. This effective- 119

ness is attributed to the dynamic factor selection 120

mechanism and its ability to generalize to unseen 121

tasks through adaptive factor activation, underscor- 122

ing the potential of MixLoRA to generalize and 123

perform effectively on unseen multimodal tasks. 124

Our contributions are summarized as follows: 125

(1) We empirically investigate and demonstrate the 126

existence of task interference in parameter-efficient 127

multimodal instruction tuning. (2) We propose the 128

Conditional Mixture-of-LoRA (MixLoRA) frame- 129

work, aimed at alleviating task interference by dy- 130

namically constructing low-rank adaptation matri- 131

ces for various inputs. (3) Comprehensive experi- 132

ments demonstrate the effectiveness of MixLoRA, 133

outperforming LoRA across various unseen multi- 134

modal tasks at equal or even higher ranks. 135

2 Related Work 136

Multimodal Instruction tuning Instruction tun- 137

ing (Wei et al., 2021) significantly improves the 138

generalization of large language models to unseen 139

tasks based on natural language instructions. With 140

the advent of multimodal large language models, 141

the scope of instruction tuning has expanded to en- 142

compass multimodal and vision tasks, facilitated by 143

the development of diverse multimodal instruction 144

datasets, including both machine-generated (Liu 145

et al., 2023; Zhao et al., 2023; Zhu et al., 2023; 146

Yin et al., 2023; Li et al., 2023b; Ye et al., 2023) 147

and human-annotated (Xu et al., 2023b). Recently, 148

Vision-Flan (Xu et al., 2023a) stands out as a com- 149

prehensive human-annotated visual instruction tun- 150

ing dataset, covering a wide range of 187 tasks, 151

making it ideal for our training. 152
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Parameter-efficient fine-tuning (PEFT)153

Parameter-efficient fine-tuning (PEFT) (Lee154

et al., 2019; Hu et al., 2021; Li and Liang, 2021;155

Karimi Mahabadi et al., 2021; Guo et al., 2021;156

Zaken et al., 2022) strategies have become key in157

efficiently adapting large pre-trained models to158

various downstream tasks with minimal parameter159

adjustments. Among these, LoRA (Hu et al.,160

2021) demonstrates competitive trade-offs between161

performance and parameter efficiency, making it162

widely adopted. PEFT methods typically utilize163

shared adaptation parameters across diverse tasks164

or train task-specific adapters. However, when165

applied to multimodal instruction tuning, which166

requires simultaneous adaptation to diverse instruc-167

tion tasks, PEFT can encounter task interference,168

highlighting the need for more adaptable and169

versatile PEFT methods to adeptly handle the170

complexities of multimodal instruction tuning.171

Task Interference Task interference (Crawshaw,172

2020) is a notable challenge in multi-task learning,173

where simultaneous training on multiple tasks can174

lead to performance decline due to conflicting gra-175

dients among tasks (Yu et al., 2020; Liu et al., 2021;176

Navon et al., 2022). To mitigate task interference177

in multi-task learning, researchers have explored178

various strategies, including dynamic adjustment of179

task loss contributions (Chen et al., 2018; Sener and180

Koltun, 2018; Liu et al., 2019) and parameter parti-181

tioning (Maninis et al., 2019; Bragman et al., 2019;182

Strezoski et al., 2019; Zhang et al., 2020). Despite183

the established understanding of task interference184

in multi-task learning, its presence and implica-185

tions in instruction tuning, particularly in multi-186

modal contexts, remain under-explored. Given the187

intrinsic complexity and diversity of multimodal188

instruction-based tasks, substantial task interfer-189

ence is likely to exist in multimodal instruction-190

tuning scenarios. Our research delves into this area,191

specifically investigating task interference within192

parameter-efficient multimodal instruction tuning.193

3 Task Interference in Multimodal194

Instruction Tuning with LoRA195

3.1 Background: Low-Rank Adaptation196

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is197

a parameter-efficient fine-tuning method that fine-198

tunes only the trainable rank decomposition ma-199

trices injected in each layer of the Transformer200

(Vaswani et al., 2017). As illustrated in Figure 1201

(a), consider a linear layer, represented by h̃ = Wh,202

where W ∈ Rdout×din denotes the pre-trained 203

weight, with din and dout being the input and out- 204

put dimensions, respectively. LoRA modifies the 205

model parameters by injecting low-rank decompo- 206

sition matrices as the weight adjustment matrices, 207

which can be expressed as: 208

h̃ = Wh+∆Wh = Wh+ α ·BAh, (1) 209

where ∆W = BA represents the trainable weight 210

adjustment matrices formed by low-rank matrices 211

A ∈ Rr×din and B ∈ Rdout×r, with the rank 212

r ≪ min(din, dout). The scalar α ≥ 1 controls 213

the influence of the weight adjustment matrices. 214

During fine-tuning, only these low-rank decompo- 215

sition matrices, referred to as LoRA A and LoRA 216

B throughout this paper, are updated, allowing for 217

rapid, task-specific adaptation by training distinct 218

LoRA A and B for each downstream task. 219

3.2 Investigating Task Interference in 220

Multimodal Instruction Tuning 221

Our study delves into task interference in 222

parameter-efficient multimodal instruction tuning 223

by analyzing gradient direction conflicts between 224

task pairs. For each task pair i and j, we first 225

estimate the change in loss Li of task i, when op- 226

timizing the shared parameters θ according to the 227

loss Lj of task j, following (Zhu et al., 2022): 228

∆jLi(xi) = Exj

(
Li(xi; θ)− Li(xi; θ − λ

∇θLj(xj)

∥∇θLj(xj)∥
)

)
≈ λExj

(
∇θLj(xj)

∥∇θLj(xj)∥

T

∇θLi(xi)

)
(2) 229

where xi and xj are sampled training batches for 230

tasks i and j, and λ is the learning rate. 231

The interference of task j on task i is then quan- 232

tified as follows: 233

Ii,j = Exi

(
∆jLi(xi)

∆iLi(xi)

)
(3) 234

Here, a positive Ii,j suggests aligned gradient 235

directions between tasks i and j, while a negative 236

value implies divergent gradient directions, indicat- 237

ing that task j adversely impacts task i. 238

We conduct experiments on the fine-tuned 239

LLaVa (Liu et al., 2023) model using LoRA with a 240

rank of 4, computing the task interference among 241

six diverse tasks from Vision-Flan (Xu et al., 242

2023a), including “ScienceQA” (Lu et al., 2022) 243

(for “Complex Reasoning”),“COCO” (Lin et al., 244
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(b) Self-Attention

Figure 2: The Task Interference Score I for LoRA decomposition matrices A and B. Each cell in the heatmap
corresponds to the average interference score Ii,j of task j (column) on the task i (row). A blue hue indicates a
negative impact of task j on task i, whereas a red hue signifies a positive impact.

2014) (for “Coarse-grained Perception”), “Fair-245

Face” (Karkkainen and Joo, 2021) (for “Fine-246

grained Perception”), “iNaturalist” (Van Horn247

et al., 2018) (for “Knowledge Intensive”), “ST-248

VQA” (Biten et al., 2019) (for “OCR”), and249

“PACS” (Li et al., 2017) (for “Domain specific”).250

We compute the average task interference matrix251

I based on the gradients concerning LoRA A and252

B, across various layers. Figure 2 shows the task253

interference score for LoRA A and B at the 5-th254

and 25-th Transformer Layer for both MLP (Figure255

2a) and Self-Attention (Figure 2b).256

Our results reveal notable task interference at257

both shallow and deep Transformer layers for258

LoRA A and B. For instance, as shown in Fig-259

ure 2b, at the 5-th layer for LoRA A, the domain-260

specific classification task “PACS” negatively im-261

pacts “COCO”, a coarse-grained perception task,262

with a negative interference score of −7.3. Mean-263

while, positive influences are also observed. For264

example, Figure 2a shows that at the 5-th layer265

for LoRA B, “PACS” positively affects the OCR266

task "ST-VQA". The presence of both positive and267

negative interference suggests complex dynamics268

among instruction tasks: positive scores (in red),269

suggest that the learning of one task can enhance270

the performance of another, while negative scores271

(in blue), imply that one task’s learning can hin-272

der another. These findings highlight notable task273

interference in parameter-efficient multimodal in-274

struction tuning and reinforce the need for effective275

adaption methods to ensure robust and versatile276

performance across diverse multimodal tasks.277

4 Conditional Mixture-of-LoRA 278

Inspired by the concept of Mixture-of-Experts 279

(Shazeer et al., 2016), we propose Conditional 280

Mixture-of-LoRA (MixLoRA) which leverages 281

low-rank decomposition factors as dynamically 282

chosen experts to construct tailored decomposi- 283

tion matrices A and B for specific input instances. 284

MixLoRA facilitates dynamic processing pathways 285

for varying input instances, thereby enhancing the 286

efficacy in handling diverse and complex multi- 287

modal instruction tasks. 288

The core of Conditional Mixture-of-LoRA lies in 289

representing the weight adjustment matrices ∆W 290

from Equation 1 via tensor decomposition: 291

∆W = BA =

r∑
i=1

bi ⊗ ai, (4) 292

where {ai, bi}ri=1, ai ∈ Rdin×1, bi ∈ Rdout×1 are 293

the rank r decomposition factors of ∆W . 294

Leveraging the concept that ∆W can be ex- 295

pressed as sum of outer products of low-rank de- 296

composition factors ai and bi, MixLoRA intro- 297

duces a Dynamic Factor Selection module. This 298

module dynamically constructs unique ∆W for 299

specific inputs by selecting r appropriate factors 300

from an expanded pool of decomposition factors 301

{ae}Ee=1, {be}Ee=1, E > r, as shown in Fig. 1 (b). 302

4.1 Dynamic Factor Selection 303

The Dynamic Factor Selection module uses two 304

main components to dynamically constructs LoRA 305

A and B. First, two Independent Factor Selec- 306

tion (IFS) routers (Section 4.1.1), independently 307
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Figure 3: Dynamic Factor Selection in MixLoRA.
MixLoRA treats low-rank decomposition factors as ex-
perts and dynamically constructs the LoRA A and B
through two independent routers RA

IFS(·) and RB
IFS(·),

complemented by a conditional router RB
CFS(·).

select r relevant factors to form adaptation matrices308

LoRA A and B, ensuring precise, instance-specific309

adaptations. Second, a Conditional Factor Selec-310

tion (CFS) router (Section 4.1.2) further refines311

the selection for LoRA B by conditioning the se-312

lection for B also on the factors chosen for LoRA313

A, promoting a coherent adaptation process.314

4.1.1 Independent Factor Selection315

MixLoRA employs two Independent Factor Se-316

lection (IFS) routers, RA
IFS(·) and RB

IFS(·), to se-317

lect r relevant factors for LoRA A and B, respec-318

tively, as shown in Figure 3. IFS routers employ319

an instance-based routing method, which is more320

memory-efficient than conventional input-token-321

based routing, for selecting r decomposition fac-322

tors. The routing strategy can be expressed as:323

RA
IFS(h) = Avg(h), (5)324

where Avg(·) averages across the sequence dimen-325

sion of the hidden states h ∈ Rseq×din from the326

preceding layer.327

Factor Selection Process The factor selection328

process involves calculating vectors gA ∈ RE329

and gB ∈ RE to selectively identify specific sub-330

sets of decomposition factors from the set {ae}Ee=1331

and {be}Ee=1, respectively. To compute gA, input332

RA
IFS(h) ∈ Rdin is processed through a dense layer333

with weights WA ∈ RE×din , followed by a soft-334

max normalization and top-k selection:335

gA = topr(softmax(WA ·RA
IFS(h))). (6)336

This procedure ensures the selection of r factors337

for LoRA A, with gA[i] = 1 indicating the selec-338

tion of factor i. The same process is applied to339

determine gB for LoRA B.340

4.1.2 Conditional Factor Selection 341

While the factors for LoRA A and B have been in- 342

dependently selected so far, we hypothesize that an 343

interdependence exists between the selections for 344

LoRA A and B, which can be harnessed to improve 345

the model’s overall adaptability and performance. 346

To leverage this relationship, we propose a Condi- 347

tional Factor Selection (CFS) strategy, wherein the 348

selection of factors for the projection-up weight of 349

LoRA B is also influenced by the factors chosen 350

for the projection-down weight of LoRA A. 351

With the IFS router, LoRA A is assembled from 352

chosen decomposition factors, denoted as A = 353

[a1, · · · , ar]T , where A ∈ Rr×din . Following this, 354

the CFS router employs a weight tensor WAB ∈ 355

Rr×din×E to map each factor A[i] ∈ R1×din in A 356

to an expert dimension E. The mapping process 357

for each factor A[i], normalized via softmax and 358

aggregated across r factors, is given by: 359

RB
CFS(A) =

r∑
i=1

softmax(A[i] ·WAB[i]), (7) 360

where WAB[i] ∈ Rdin×E is the mapping matrix 361

associated with A[i]. 362

The factors selection for LoRA B integrates out- 363

puts from both the IFS RB
IFS(·) and CFS RB

CFS(·) 364

routers via a late fusion strategy, forming the selec- 365

tion vector gB as follows: 366

pBIFS = softmax(WB
IFS ·RB

IFS(h))

pBCFS = softmax(RB
CFS(A))

gB = topr(p
B
IFS + pBCFS).

(8) 367

The final selection vector gB is determined by 368

combining the probability distributions pBIFS and 369

pBCFS from the IFS and CFS routers. This CFS 370

strategy enables the selection for LoRA B to be 371

informed by factors selected for LoRA A, fostering 372

a more cohesive selection process. 373

4.1.3 Reconstruction of Dynamic Adaptation 374

Matrices 375

Finally, MixLoRA constructs dynamic adapta- 376

tion matrices by leveraging the factor selection 377

vectors gA and gB , gathering the chosen factors 378

ak, bkk ∈ K, |K| = r, to assemble the final ma- 379

trices for LoRA A and B. Consequently, in each 380

forward pass, the weight adjustment matrix ∆W ∈ 381

Rdout×din is dynamically calculated based on these 382

selected factors, formulated as: 383

∆W = BA = [b1, · · · , br][a1, · · · , ar]T (9) 384
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Model Factors Rank MME Text-VQA VSR SNLI-VE CIFAR-10 CIFAR-100 MNIST Pope MMAvg

LLaVAAlign - - 1110.82 32.62 50.16 34.51 80.00 58.04 52.79 59.10 52.46
LLaVAFT - - 1587.26 37.26 53.76 43.35 92.97 63.73 94.27 80.82 66.59

LoRA - 2 1291.20 39.86 51.88 31.80 85.51 49.23 79.22 76.72 59.17
LoRA - 4 1345.86 39.44 53.19 33.08 86.62 47.36 80.89 76.89 59.64
LoRA - 8 1312.87 39.20 53.27 36.36 88.92 46.88 82.95 75.48 60.44
LoRA - 16 1381.23 39.22 53.60 36.11 87.31 45.60 85.92 75.16 60.42
LoRA - 32 1393.67 39.20 52.95 44.56 90.10 45.90 83.42 72.33 61.21

MixLoRA 16 2 1417.83 39.82 52.13 35.38 90.14 58.05 85.98 73.86 62.19
MixLoRA 32 2 1459.15 40.46 52.62 35.04 91.02 57.95 85.26 78.31 62.95

MixLoRA 16 4 1443.82 40.66 52.70 43.10 91.59 57.28 85.25 78.13 64.10
MixLoRA 32 4 1509.61 40.42 49.18 36.69 91.40 59.27 87.68 78.48 63.30

MixLoRA 16 8 1485.26 39.92 52.70 40.74 92.85 53.96 82.95 75.31 62.63
MixLoRA 32 8 1485.48 40.02 51.15 37.77 91.12 60.25 86.64 78.87 63.69

Table 1: Zero-shot Multi-modal Evaluation. LLaVAAlign indicates the stage-one LLaVA-v1 with only feature
alignment but not visual instruction tuning, and LLaVAFT is the fully fine-tuned LLaVA using the same Vision-Flan
dataset. The MMAvg column denotes the average performance across seven multimodal datasets, except for MME.
The best performance is in bold.

5 Experimental Methodology385

5.1 Datasets386

Training Datasets We perform instruction tun-387

ing on Vision-Flan (Xu et al., 2023a), a human-388

annotated multimodal instruction tuning dataset389

with 187 diverse tasks. Its diversity in visual in-390

struction tasks makes it ideal for investigating task391

interference. To minimize computational cost, we392

utilize a scaled-down version with up to 1,000 in-393

stances per task, totaling 191,105 instances.394

Evaluation Datasets We evaluate our method on395

MME (Fu et al., 2023), a comprehensive multi-396

modal evaluation benchmark measuring both per-397

ception and cognition abilities across 14 subtasks.398

Alongside MME, we further probe the model’s var-399

ious capabilities using 7 multimodal datasets. For400

Optical Character Recognition, we utilize Text-401

VQA (Singh et al., 2019), and for reasoning,402

we employ the Visual Spatial Reasoning (VSR)403

dataset (Liu et al., 2022). Perception capability404

is tested on CIFAR-10/100 (Krizhevsky et al.,405

2009) and MNIST (LeCun, 1998), following the406

guidance of (Zhai et al., 2023). The SNLI-VE407

dataset (Xie et al., 2019) evaluates the Visual En-408

tailment capabilities, and POPE (Li et al., 2023c)409

examines the tendency to objects hallucination.410

5.2 Evaluation Metrics411

For MME scores, we employ the official evaluation412

tool1, aggregating the Perception and Cognition413

metrics. For other multimodal datasets, we lever-414

1https://github.com/BradyFU/Awesome-Multimodal-
Large-Language-Models/tree/Evaluation

age Vicuna 1.5 13B (Chiang et al., 2023), the state- 415

of-the-art open-source LLM to assess the accuracy 416

of each prediction compared with ground-truth tar- 417

get output. More details are in Appendix C. 418

6 Results and Discussion 419

Comparison with LoRA We first present a de- 420

tailed comparison between MixLoRA and the con- 421

ventional LoRA, focusing on their performance in 422

MME and 7 other multimodal tasks, as detailed in 423

Table 1. We observe that MixLoRA consistently 424

surpasses LoRA when both models operate at the 425

same ranks on both MME and the additional multi- 426

modal tasks, and even demonstrate superior perfor- 427

mance when compared to LoRA with a higher rank 428

number. For instance, MixLoRA (with rank r=2 429

and factors E=16) outperforms LoRA (rank r=32) 430

by 1.7% in MME and 1.6% on average across other 431

multimodal evaluations. 432

Increase the Number of Rank We investigate 433

the impact of increasing the rank number while 434

keeping the number of factors constant. As shown 435

in Table 1, MixLoRA exhibited a notable perfor- 436

mance enhancement as the rank number increased 437

from 2 to 4, when the factor number was fixed. 438

Specifically, increasing the rank r from 2 to 4 leads 439

to a performance uplift of 1.8% in MME and 3.1% 440

in MMAvg with E = 16 factors, and a 3.5% im- 441

provement in MME and a 0.6% increase in MMAvg 442

with E = 32 factors. However, further increasing 443

the rank to 8 shows diminishing returns in perfor- 444

mance gains. We hypothesize this decline might 445

potentially be due to the expanded combination 446

pool for constructing the adaptation matrices. 447
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Model Routing Factors Rank MME MMAvg

MixLoRA Random 32 4 1007.40 49.12

MixLoRA Instance 32 4 1509.61 63.30
MixLoRA Task 32 4 1381.87 61.75

Table 2: Comparison between Various Routing
Strategies. The MMAvg column denotes the average
performance across seven multimodal datasets.

Increasing the Number of Factors In scenar-448

ios where the rank number is held constant, our449

findings reveal a general trend of performance im-450

provement for MixLoRA, as shown in Table 1. This451

improvement can be attributed to the model’s in-452

creased capacity for providing a richer set of factors453

to tailor the model to specific multimodal tasks.454

The Effect of Routing Strageties In this experi-455

ment, we examine different routing strategies for456

the IFS router. In particular, we implement the457

Task-Specific Routing paradigm which leverages458

the definition of each multimodal instruction task to459

inform the selection of decomposition factors (de-460

tails can be found in Appendix A). Table 2 shows461

that Instance-based Routing significantly outper-462

forms Task-specific routing, achieving a higher463

MME score and average performance across the464

additional multimodal tasks. The superior per-465

formance of Instance-based Routing likely stems466

from its inherent flexibility. Unlike Task-specific467

Routing, which has the same selection of factors468

at different layers for inputs from the same task,469

Instance-based Routing adapts its selection based470

on the varying hidden states from previous layers,471

leading to a more flexible routing mechanism.472

Furthermore, we investigate whether the superior473

performance is due to the introduction of extra ex-474

pert parameters and not the routing mechanism. Ta-475

ble 2 reports the comparison with a random routing476

baseline, which randomly selects r factors. Our ob-477

servations reveal that both Instance-based Routing478

and Task-specific routing surpass the random base-479

line, suggesting that the routing mechanism, rather480

than the inclusion of additional expert parameters,481

is responsible for the performance enhancements.482

Impact of Conditional Factor Selection We as-483

sess the impact of Conditional Factor Selection484

(CFS) through an ablation analysis, comparing485

MixLoRA’s averaged performance with and with-486

out the CFS across seven multimodal datasets. The487

comparative results, as shown in Figure 4 demon-488

strate that incorporating the CFS router in general489

consistently improves the performance across dif-490

E = 16
r=2

E = 32
r=2

E = 16
r=4

E = 32
r=4

E = 16
r=8

E = 32
r=8

MixLoRA

40

45

50

55

60

65

M
M

Av
g

w/o CFS w/ CFS

Figure 4: Effect of Conditional Factor Selection

ferent factor and rank settings. This enhancement 491

is hypothesized to stem from the CFS’s role in 492

strengthening the interdependency between the fac- 493

tor selections of LoRA A and B. 494

Factor Selection Pattern on Unseen Tasks Our 495

analysis delves into the factor selection patterns 496

of LoRA A for unseen multimodal tasks. We ran- 497

domly sample 300 instances from each of seven 498

unseen multimodal tasks and visualize the factor se- 499

lection within the MLP layer using t-SNE (Van der 500

Maaten and Hinton, 2008), as shown in Figure 501

5. We observe that instances from identical tasks 502

tend to cluster, indicating the effectiveness of an 503

instance-based routing strategy in assigning diverse 504

factor sets across tasks. 505

Furthermore, we visualize the factor selection 506

patterns for similar seen and unseen tasks. We pair 507

five distinct unseen tasks, each probing a differ- 508

ent capability, with five similar seen tasks from 509

the training set: SNLI-VE (unseen) with Image- 510

Text (seen) for assessing visual entailment, Text- 511

VQA (unseen) with InfoGraphicVQA (seen) for 512

OCR capabilities, VSR (unseen) with GQA (seen) 513

for reasoning, Pope (unseen) with VQA-Object- 514

Presence (seen) for hallucination detection, and 515

CIFAR-10 (unseen) with ExDark (seen) for percep- 516

tion capabilities. The t-SNE visualization shown 517

in Figure 6 depicts the distribution of factor selec- 518

tion across MLP layers, with the first row in the 519

legend indicating the seen tasks, and the second 520

row denoting the corresponding unseen tasks. Sim- 521

ilar color schemes are used for each pair of similar 522

seen and unseen tasks for clarity. Our observations 523

reveal that MixLoRA effectively activates factors 524

analogous to those employed in similar training 525

tasks. This finding suggests that the model can 526

adapt its factor selection strategies to new, unseen 527

tasks based on its training on similar seen tasks. 528

Analysis of Task Interference To assess 529

MixLoRA’s efficacy in mitigating task interference, 530

7



Model Factors Rank ScienceQA COCO FairFace iNaturalist ST-VQA PACS AVG

LoRASpecialist - 4 64.33 77.67 54.67 58.67 44.67 99.00 66.50
LoRASpecialist - 16 67.33 76.33 59.00 60.00 46.33 99.00 68.00

LoRA - 4 57.67 76.33 59.67 57.00 42.33 99.33 65.39
LoRA - 16 59.67 73.00 59.33 58.33 43.67 99.00 65.50

MixLoRA 16 4 60.67 78.67 59.00 61.00 44.33 99.33 67.17

Table 3: Multi-modal Evaluation on Seen Tasks. LoRASpecialist represents the specialist LoRA model fine-tuned
for each seen task individually. The AVG column denotes the average performance across six seen tasks.

Layer 0 Layer 15 Layer 31
Text-VQA VSR SNLI-VE CIFAR-10 CIFAR-100 MNIST Pope

Figure 5: T-SNE Visualization of Factor Selection
Distribution for MixLoRA (E = 32, r = 8). Instances
are represented as points, where instances from the same
task share a common color.

Layer 0 Layer 15 Layer 31

Image-Text
SNLI-VE

InfoGraphicVQA
Text-VQA

GQA
VSR

VQA-Object-Presence
Pope

ExDark
CIFAR-10

Figure 6: T-SNE Visualization of Factor Selection in
MixLoRA (E = 32, r = 8) for Seen and Unseen Tasks.
Seen tasks (Image-Text, InfoGraphicVQA, GQA, VQA-
Object-Presence, CIFAR-10) in the first row are color-
matched with their unseen counterparts (SNLI-VE, Text-
VQA, VSR, Pope, ExDark) in the second row.

we test it on the same six training tasks: “Sci-531

enceQA”, “COCO”, “FairFace”, “iNaturalist”, “ST-532

VQA”, and “PACS”, discussed in Section 3.2. For533

each task, we randomly sample 300 instances not534

included in the instruction-tuning phase for evalua-535

tion. We compare MixLoRA against both the con-536

ventional LoRA and task-specialized LoRA mod-537

els (LoRASpecialist) that are fine-tuned with task-538

specific adaptation parameters for each task. Table539

3 shows that conventional LoRA models exhibit540

varying degrees of performance degradation across541

tasks when compared to LoRASpecialist. In contrast,542

MixLoRA suffers less from performance degrada-543

tion and demonstrates more consistent and robust544

performance across different tasks, suggesting its545

effectiveness in reducing task interference.546

Moreover, we visualize the task interference547

scores using Equation 2 and 3. Given that548

MixLoRA dynamically selects a subset of factors549
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Figure 7: The Comparison of Task Interference
Score I between LoRA (r=16) and MixLoRA (E
= 16, r = 4). Each cell in the heatmap corresponds to
the average interference score Ii,j of task j (column)
on the task i (row) averaged across all adaption layers.

(r out of E) for different instances, we record gradi- 550

ents concerning all E factors and compare the task 551

interference scores between standard LoRA models 552

(with r=16) and MixLoRA (with E = 16 and r = 4). 553

Figure 7 visualizes the interference scores for both 554

LoRA A and LoRA B aggregated across all adapta- 555

tion layers, including MLP and self-attention layers. 556

The analysis reveals that MixLoRA (E=16, r=4) 557

exhibits lower negative interference scores com- 558

pared to the standard LoRA (r=16), underscoring 559

MixLoRA’s efficacy in reducing task interference. 560

7 Conclusion 561

We introduce Conditional Mixture-of-LoRA, an 562

innovative strategy that dynamically constructs 563

low-rank adaptation matrices specific to individ- 564

ual inputs, to mitigate task interference during 565

parameter-efficient multimodal instruction tuning. 566

Comprehensive experiments across a variety of 567

multimodal datasets have demonstrated the effi- 568

cacy of MixLoRA, showcasing an enhanced per- 569

formance on unseen multimodal tasks compared 570

to conventional LoRA and demonstrating its effec- 571

tiveness in mitigating task interference. 572
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8 Limitations573

Our study focuses on task interference within574

parameter-efficient multimodal instruction tuning,575

specifically for image and text modalities, leav-576

ing the integration of other modalities like sound577

and 3D point clouds as an avenue for future578

work. Moreover, due to the cost of training large579

models, our experimentation was conducted on a580

scaled-down version of Vision-Flan. Future studies581

could benefit from evaluating the effectiveness of582

MixLoRA when applied to more extensive mul-583

timodal instruction-tuning datasets. Additionally,584

our method introduces extra training overhead com-585

pared to standard LoRA of the same rank.586
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A Task-Specific Routing825

The Task-Specific Routing paradigm leverages the826

distinct characteristics of each multimodal instruc-827

tion task to inform the selection of decomposition828

factors. This strategy utilizes the detailed task defi-829

nition, which includes a comprehensive description830

of the task’s requirements and the specific skills or831

modalities needed to successfully perform the task.832

For instance, consider the task “OK-VQA” (Marino833

et al., 2019), the task definition is: “Answer the834

question in natural language based on the content835

of the image. The questions require external knowl-836

edge to answer.” The task-specific routing strategy837

is formulated as:838

RA
IFS(z) = Avg(fϕ(z)), (10)839

where fϕ(·) denotes a pre-trained Large Language840

Model (LLM) parameterized by ϕ, responsible for841

encoding the task definition z.842

B Implementation Details843

We leverage the stage-one LLaVA-v1 2 (before the844

visual instruction tuning stage) as our pre-trained845

large multimodal models, specifically employing846

LLaVA with Vicunna-7B v1.3. For all model vari-847

ants, we fine-tune this stage-one LLaVa on the848

scale-down version of Vision-Flan for three epochs,849

using a total batch size of 128 and a learning rate850

of 4e− 5. The fine-tuning process for MixLoRA851

(E=16, r=4) takes approximately 20 hours on 4852

A100 GPUs, with an effective batch size of 8 per853

GPU and a gradient accumulation step of 4. For854

LoRA, we set the hyper-paramter α in Equation 1855

to be 2 × rank r and for MixLoRA, we define856

α as 2 × factors |E|. For the other configura-857

tion, we adopt LLaVA’s default setting for LoRA858

fine-tuning, as provided in its codebase. For the859

task-specific routing, we adopt the Vicunna (Chi-860

ang et al., 2023) as our pre-trained large language861

model fϕ(·) for encoding task definition. Notably,862

Vicuna also serves as the language backbone of the863

LLaVA model. Following a similar approach to864

LoRA, for the LLaVA model with 32 Transformer865

layers, we insert MixLoRA into all linear layers866

within the Transformer layers. During training,867

all parameters in the MixLoRA module are up-868

dated, while the rest of LLaVA’s parameters remain869

frozen.870

2https://github.com/haotian-liu/LLaVA/

C Evaluation Metrics 871

To evaluate the model performance on unseen mul- 872

timodal datasets, we leverage Vicuna 1.5 13B (Chi- 873

ang et al., 2023), the state-of-the-art open-source 874

LLM to perform the evaluation. Specifically, we 875

craft a prompt template that directs Vicuna to as- 876

sess the accuracy of each prediction, considering 877

the given task instructions and ground-truth target 878

output. The prompt template used is as follows: 879

“ A chat between a curious user and an artificial 880

intelligence assistant. The assistant gives helpful, 881

detailed, and polite answers to the user’s questions. 882

USER: Decide if the prediction is correct given the 883

question and the answer. Questions: {Question} 884

Answer: {Ground-truth Answer} Prediction: {Pre- 885

diction} Your response should only be Yes or No. 886

ASSISTANT:” In this template, placeholders such 887

as “{Question}”, “{Ground-truth Answer}”, and 888

“{Prediction}” will be substituted with the specific 889

details of each test instance. If Vicuna determines 890

the prediction is correct, it outputs “Yes”, and “No” 891

otherwise. As all tasks are classification tasks, we 892

compute accuracy based on Vicuna’s judgments. 893
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