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Mitigate Catastrophic Remembering via Continual Knowledge
Purification for Noisy Lifelong Person Re-Identification

Anonymous Authors

ABSTRACT
Current lifelong person re-identification (LReID) methods focus on
tackling a clean data stream with correct labels. When noisy data
with wrong labels are given, their performance is severely degraded
since the model inevitably and continually remembers erroneous
knowledge induced by the noises. Moreover, the well-known cata-
strophic forgetting issue in LReID becomes even more challenging
since the correct knowledge contained in the old model is disrupted
by noisy labels. Such a practical noisy LReID task is important but
challenging, and rare works attempted to handle it so far. In this pa-
per, we initially investigate noisy LReID by proposing a Continual
Knowledge Purification (CKP) method to address the catastrophic
remembering of erroneous knowledge and catastrophic forgetting
of correct knowledge simultaneously. Specifically, a Cluster-aware
Data Purification module (CDP) is designed to obtain a cleaner
subset of the given noisy data for learning. To achieve this, the
label confidence is estimated based on the intra-identity cluster-
ing result where the high-confidence data are maintained. Besides,
an Iterative Label Rectification (ILR) pipeline is proposed to rec-
tify wrong labels by fusing the prediction and label information
throughout the training epochs. Therefore, the noisy data are rec-
tified progressively to facilitate new model learning. To handle
the catastrophic remembering and forgetting issues, an Erroneous
Knowledge Filtering (EKF) algorithm is proposed to estimate the
knowledge correctness of the old model, and a weighted knowledge
distillation loss is designed to transfer the correct old knowledge to
the new model while excluding the erroneous one. Finally, a Noisy
LReID benchmark is constructed for performance evaluation and
extensive experimental results demonstrate that our proposed CKP
method achieves state-of-the-art performance.

CCS CONCEPTS
• Computing methodologies → Object identification; • Infor-
mation systems→ Information retrieval.

KEYWORDS
Lifelong Person Re-Identification, Noisy Learning

1 INTRODUCTION
Person re-identification (ReID) [1, 22] is a classical multimedia task
that has been thoroughly investigated in stationary scenes [1, 4,
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Figure 1: (a) Noisy data contains wrong labels which intro-
duce erroneous inter-instance affinity knowledge. During
LReID, noisy data not only (b) influences the knowledge
learning of new datasets but also (c) exacerbates the forget-
ting of correct historical knowledge. Besides, (d) the learned
erroneous knowledge is remembered by the new model𝑀𝑡
which severely hinders the LReID performance. The experi-
ment results are obtained from the latest LReIDmethod [42].

10]. Recently, lifelong person re-identification (LReID) [6, 27, 28,
40], aiming to continually learn from the practical non-stationary
data stream, has drawn increasing research attention. Nevertheless,
existing LReID methods simply assume that the training data are
all correctly annotated [27, 34]. In realistic scenarios, training labels
are often inevitably noisy due to inaccurate person detection or
annotation errors [5, 47, 48] which can hinder the stationary ReID
performance severely [44, 51].

The LReIDmodels are evenmore vulnerable to label noise, which
refers to the mislabeled data in Figure 1 (a). As shown in Figure 1
(b), when noisy data are given for learning, the LReID model learns
from erroneous identity-affinity supervision [45], leading to signifi-
cant performance degradation. Besides, even though the model has

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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acquired correct knowledge from historical data in Figure 1 (c), label
noises in the new data can introduce erroneous information, over-
writing the correct knowledge with erroneous knowledge [32, 54],
thereby exacerbating catastrophic forgetting during new model
learning. Additionally, as illustrated in Figure 1 (d), since the old
model inevitably remembers fatal erroneous knowledge of historical
noisy data, the anti-forgetting strategy aiming to maintain output
consistency between the new and old models can cause erroneous
knowledge accumulation and impede the acquisition of correct
knowledge. These issues can significantly hinder the performance
of the latest LReID method [42]. As presented in Figure 1 (b), the
histogram displays the performance drop when learning a dataset
with clean or noise labels respectively. The curves in Figure 1 (c)
depict the performance trend on the first dataset, where the model
learns with clean labels initially and subsequently adapts to datasets
with varying noise ratios. Figure 1 (d) shows the average perfor-
mance on all learned datasets with different noise ratios. As can be
seen, label noise is a crucial and challenging problem for LReID.

Recently, several label noise learning (LNL) techniques have been
explored to settle the noisy ReID and classification tasks [12, 47, 48].
They primarily rely on identity prediction results [47] or loss reg-
ularization strategies [48, 49] to mitigate the influence of noisy
data [23, 36, 44]. However, these approaches neglect the disparity
between the prediction/loss and the actual identity distribution [37].
As a result, noisy samples near the distribution boundary tend to
exhibit prediction scores or regularization effects that are indistin-
guishable from those of clean samples. Thus, some wrongly labeled
samples can easily be confused with clean ones, leading to the ac-
cumulation of erroneous knowledge during learning. Therefore,
when directly applying these LNL methods to Noisy LReID without
considering the characteristics of LReID, the issues illustrated in
Figure 1 remain critical.

In this paper, we initially investigate this challenging noisy
LReID task and propose a novel method named Continual Knowl-
edge Rectification (CKR) to handle the catastrophic remembering
and forgetting issues. Our approach can not only adaptively rectify
the noisy samples to ensure the learning of correct knowledge but
also actively forget the remembered erroneous knowledge from the
old model. Specifically, a Cluster-aware Data Purification module
(CDP) and an Iterative Label Rectification pipeline (ILR) are pro-
posed in our CKR to achieve high-quality clean data. CDP can adap-
tively select the clean samples for newmodel training by estimating
the label confidence from intra-identity clustering, thereby settling
the problems in Figure 1 (b) and (c). Instead of simply discarding
the wrongly labeled samples, the proposed ILR aims to fully utilize
them by rectifying their labels along with model learning so that
these data can be recollected by CDP for reuse. Furthermore, to ac-
tively forget the erroneous old knowledge, an Erroneous Knowledge
Filtering algorithm (EKF) is proposed to estimate the knowledge
correctness of the old model outputs, and a weighted knowledge
distillation loss is designed to transfer the correct old knowledge
to the new model while excluding the erroneous one. Thus, the
erroneous knowledge remembering issue in Figure 1 (d) could be
greatly mitigated. To evaluate the performance of our method, a
Noisy LReID Benchmark (NLReID) is proposed inspired by the ex-
isting LReID and LNL benchmark configurations [27, 47]. Extensive

experimental results under various noisy conditions demonstrate
the superiority of our CKR model.

In summary, the contributions of this work are three-fold: (1) We
provide a pioneer investigation on the important and challenging
Noisy LReID task, and a comprehensive Noisy LReID benchmark
(NLReID) is proposed for the evaluation of existing methods. (2)
To handle the catastrophic remembering and forgetting issues, a
novel Continual Knowledge Rectification (CKR)method is proposed.
A Cluster-aware Data Purification module and an Iterative Label
Rectification pipeline are designed to obtain cleaner training data
for correct new knowledge learning and mitigating erroneous new
knowledge acquisition. Besides, an Erroneous Knowledge Filtering
algorithm is developed to actively forget erroneous old knowledge
and ensure correct new knowledge remembering. (3) Extensive
experiments demonstrate that our CKR achieves state-of-the-art
Noisy LReID performance, and the proposed method can be readily
integrated with the latest LReID or LNL approaches to further
improve the performance in the noisy LReID scenario.

2 RELATEDWORK
2.1 Lifelong Person Re-Identification
Lifelong person re-identification (LReID) [27, 40] aims to train a
ReID model with non-stationary data, improving the model’s adapt-
ability to various conditions. Existing LReID works [6, 27–29, 34, 40,
50] primarily focus on alleviating the catastrophic forgetting prob-
lem, which indicates that the performance of themodel on historical
data is degraded greatly when the new data is learned [13, 35, 38, 46].
Nevertheless, these methods assume that the training data are all
correctly annotated [27, 40]. However, in real scenarios, the training
data labels are often noisy due to inaccurate person detection or
annotation errors [3, 5, 47]. Such a Lifelong Person Re-Identification
with the Noisy Label (Noisy LReID) scenario is more challenging
since not only the correct knowledge catastrophic forgetting exacer-
bated due to erroneous new knowledge continually overwriting the
correct old knowledge, but also catastrophic remembering [15, 52]
issues occur as the erroneous knowledge from different domains
accumulates, resulting in degraded performance on new domains.

2.2 Label Noise Learning
Label Noise Learning (LNL) has drawn much research attention in
recent years [18, 33, 55]. Most existing LNLmethods rely on identity
prediction [12, 44, 47] or loss regularization strategies [23, 48, 49] to
filter noisy data or accomplish noise-robust learning. For example,
LCNL [45] adopts GaussianMixture Model (GMM) [36, 44] to model
the loss distribution and select the unreliable samples. CORE [47]
introduces a regularization loss to mitigate the influence of the la-
bel on high-confidence prediction. However, existing works reveal
that there is a discrepancy between the prediction score/loss and
the actual identity distribution [37]. Specifically, the noisy samples
around the distribution boundary tend to exhibit indistinguishable
prediction scores or regularization effects from the clean ones. Thus,
these samples can easily be confused with the wrong labels, result-
ing in inaccurate filtering or invalid regularization. Therefore, the
learned models in these methods contain considerable erroneous
knowledge, and the catastrophic remembering problem in the Noisy
LReID scenario is still critical.
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Figure 2: Given the noisy training dataset 𝐷𝑡 at the 𝑡-th LReID step, our CKR updates the rectified noisy data 𝐷𝑒𝑡 and model𝑀𝑒
𝑡

along the training epoch 𝑒. The CDP aims to obtain a clean subset 𝐷𝑒∗𝑡 for the learning of𝑀𝑒
𝑡 . Besides, the EKF aims to filter

the features containing erroneous old knowledge. Finally, the ILR proposes to rectify the noise labels by fusing the learning
knowledge and label information.

2.3 Lifelong Learning with Label Noise
Lifelong (Continual) Learning with Label Noise problem has yet to
gain widespread attention and existing solutions focus on classifica-
tion task [9, 14, 16]. These methods rely on filtering and retaining
historical exemplars to address the catastrophic forgetting issue
during lifelong learning. However, as human images are highly
privacy-sensitive data, retaining historical exemplars is not feasible
in many actual applications [27, 34]. Therefore, in this paper, we
provide a pioneer investigation on the Noisy LReID problem, the
catastrophic forgetting of correct knowledge and the catastrophic
remembering of erroneous knowledge under such a scenario is thor-
oughly discussed, and a novel exemplar-free Noisy LReID method
showing state-of-the-art performance is proposed.

3 CONTINUAL KNOWLEDGE PURIFICATION
FOR NOISY LREID

3.1 Problem Definition and Formulation
Noisy lifelong person re-identification (Noisy LReID) aims to con-
tinually learn from a stream of 𝑇 ReID datasets D𝑡𝑟 = {𝐷𝑡 }𝑇𝑡=1,
each containing a certain ratio of noisy labels. The effectiveness of
the final model is evaluated on the clean test sets D𝑡𝑒 = {𝐷𝑡𝑒𝑡 }𝑇

𝑡=1
corresponding to each domain, to evaluate the new knowledge
acquisition and anti-forgetting capacity of the model. Besides, a
series of additional 𝑈 clean test sets D𝑢𝑛 = {𝐷𝑢𝑛𝑡 }𝑈

𝑡=1 are tested to
evaluate the generalization of the models on unseen domains. In
this paper, the model learned after training step 𝑡 is denoted as𝑀𝑡
and the intermediate model after each training epoch 𝑒 is denoted
as𝑀𝑒

𝑡 . The parameters initial model𝑀0
𝑡 is copied from𝑀𝑡−1.

3.2 Overview
As is shown in Figure 2, given the noisy training dataset 𝐷𝑡 at
training step 𝑡 , our overall approach generates a rectified dataset
𝐷𝑒𝑡 and model 𝑀𝑒

𝑡 at the training epoch 𝑒 , where 𝐷0
𝑡 is initialized

with original noisy data 𝐷𝑡 . The proposed framework consists of
three key components, i.e., Cluster-aware Data Purification (CDP),
Erroneous Knowledge Filtering (EKF), and Iterative Label Rectifi-
cation (ILR). Specifically, the CDP module aims to estimate label
confidence for each instance and generate a clean subset 𝐷𝑒∗𝑡 to en-
sure accurate new data learning. Then, EKF is employed to estimate
the knowledge correctness of the old model features, so that the
erroneous knowledge could be actively forgotten and the correct
new knowledge could be consolidated. Besides, at the end of the
𝑒-th epoch, the IRL pipeline is adopted to rectify the noisy labels
by fusing the model prediction and label information, resulting in
the rectified dataset 𝐷𝑒+1𝑡 for subsequent epochs. Since the label
confidence estimation function serves as a crucial component for
the proposed CDP and EKF modules, we introduce the proposed
Cluster-aware Label Scoring strategy first and depict the CDP, EKF,
and ILR designs sequentially.

3.3 Cluster-aware Label Scoring
In this work, we propose to utilize clustering [43] technology to
gather instances with shared characteristics to achieve reliable
label confidence estimation. Specifically, given the noisy dataset
{(𝑥𝑖 , 𝑦𝑖 )}𝑁

𝑡

𝑖=1 with 𝑁𝑡 images 𝑥𝑖 and corresponding labels 𝑦𝑖 , the ex-
tracted features are {𝑓𝑖 }𝑁𝑡

𝑖=1. The DBSCAN algorithm [31] is adopted
to generate clusters with different shared characteristics and each
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instance is assigned a cluster label 𝑦𝑖 ∈ {1, 2, ..., 𝑁𝑐 } where 𝑁𝑐 is a
cluster-aware identity. Note that the outliers during the clustering
process are collected as an extra cluster whose label is set to 𝑁𝑐 .
Then, we generate one-hot embedding 𝒍𝑖 ∈ R𝑁𝑐 for all instances.

Then, to bridge the connection between the annotated label and
the generated cluster label, an annotation-aware average cluster
label 𝒍𝑖 for each instance 𝑥𝑖 is calculated by

𝒍𝑖 =
1
𝑛𝑖𝑡

𝑁𝑡∑︁
𝑗=1

𝛿 (𝑦𝑖 , 𝑦 𝑗 )𝒍𝑖 , (1)

where 𝛿 (𝑦𝑖 , 𝑦 𝑗 ) is a sign function that outputs 1 and 0 when 𝑦𝑖 = 𝑦 𝑗

and𝑦𝑖 ≠ 𝑦 𝑗 respectively. 𝑛𝑖𝑡 =
∑𝑁𝑡

𝑗=1 𝛿 (𝑦𝑖 , 𝑦 𝑗 ) is the instance number
of the identity 𝑓𝑖 belonging to. Equation (1) indicates that given
𝑥𝑖 with annotated label 𝑦𝑖 , obtain the average cluster label of all
instances 𝑥 𝑗 annotated with label 𝑦𝑖 . Therefore, 𝒍𝑖 is shared across
instances with the same annotated label and reflects the overall
value of each annotated label in the cluster label space.

To quantify the label confidence of each instance 𝑥𝑖 , the label
distance 𝑑𝑖 is defined as the squared L2 norm between 𝑙𝑖 and 𝒍𝑖 ,
represented as:

𝑑𝑖 = | |𝒍𝑖 − 𝒍𝑖 | |22, (2)
where 𝑑𝑖 measures the disparity between the cluster label𝑦𝑖 and the
annotated identity centers. Note that 𝑑𝑖 ∈ [0, 2) and the 𝑑𝑖 values
of outliers during clustering are adjusted to 2. This adjustment is
made because the outliers exhibit minimal resemblance to other
instances and thus possess the lowest confidence.

Then the annotated label confidence score 𝑠𝑖 is calculated by

𝑠𝑖 = (2 − 𝑑𝑖 )/2, (3)

where 𝑠𝑖 ∈ [0, 1] with higher values indicating greater trustworthi-
ness of the annotated label.

Discussion: Existing label confidence scoring methods primar-
ily utilize the Gaussian Mixture Model (GMM) to model the noise
distribution for clean data selection [12, 45]. However, since there
is a discrepancy between the model loss and the actual identity
distribution [37], GMM can reserve many noisy samples, thereby
limiting the new knowledge acquisition and correct knowledge anti-
forgetting capacity (Figure 1 (a)(b)). However, the elaborately de-
signed CLS strategy can effectively mine fine-grained inter-instance
similarity to evaluate identity coherence across instances, there-
fore the intra-identity distribution is fully modeled and utilized to
enhance the reliability of label confidence estimation results.

3.4 Cluster-aware Data Purification
As is shown in Figure 2, given the input dataset𝐷𝑒−1𝑡 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑡

𝑖=1
at 𝑒-th epoch of training step 𝑡 , the previous epoch learned model
𝑀𝑒−1
𝑡 is used to process the images and obtain the features {𝑓 𝑖𝑡 }

𝑁𝑡

𝑖=1.
Then the CLS strategy is adopted to process {𝑓 𝑖𝑡 }

𝑁𝑡

𝑖=1 to get the label
confidence 𝑠𝑖 of each image 𝑥𝑖 .

Then, we remove the data of low-confidence labels with a confi-
dence threshold 𝑇𝑐 and obtain the clean subset 𝐷𝑒∗𝑡 :

𝐷𝑒∗𝑡 = {(𝑥𝑖 , 𝑦𝑖 )}
𝑁 ∗
𝑡

𝑖=1, (4)

where each instance 𝑥𝑖 in 𝐷𝑒∗𝑡 has the 𝑠𝑖 higher than 𝑇𝑐 and 𝑁 ∗
𝑡 is

the selected instance number.

3.5 Erroneous Knowledge Filtering
The knowledge distillation [7] strategy is awidely-used anti-forgetting
approach adopted by the existing LReID methods [6, 27, 34, 40].
Despite its knowledge consolidation capacity, such a strategy can
lead to erroneous knowledge accumulation and even mislead the
learning of the new data, as shown in Figure 1 (d).

Therefore, in this section, we aim to filter the features of samples
that reflect the learned correct knowledge of old model𝑀𝑡−1 and
discard the features that contain erroneous knowledge contained
in𝑀𝑡−1. Specifically, given the clean subset 𝐷𝑒∗𝑡 , we utilize𝑀𝑡−1 to
process the 𝐷𝑒∗𝑡 and the generated features {𝑓 𝑖

𝑡−1}
𝑁 ∗
𝑡

𝑖=1 are fed into
the CLS (Section 3.3), where the obtained scores of each instance is
named feature confidence 𝑠𝑜

𝑖
. Then a knowledge distillation weight

𝑤𝑜
𝑖
is assigned to each instance 𝑥𝑖 by

𝑤𝑜𝑖 =

{
0 𝑠𝑜𝑖 ≤ 𝑇𝑜

1 𝑠𝑜𝑖 > 𝑇𝑜
, (5)

where 𝑇𝑜 is the hyperparameter serving as the threshold of 𝑠𝑜
𝑖
.

Notably,𝑤𝑜
𝑖
= 0 indicates that the old knowledge can not correctly

process the instance 𝑥𝑖 , thus 𝑓 𝑖𝑡−1 primarily contains erroneous old
knowledge and should be discarded during knowledge distillation.

Then we proposed a weighted knowledge distillation loss L𝑤𝐾𝐷
to ensure correct old knowledge transfer and active erroneous old
knowledge forgetting. Considering there are primarily two kinds
of knowledge distillation loss, i.e. logits-based and inter-instance
relation-based. We design the L𝑤𝐾𝐷 variants accordingly.

Specifically, as for logits-based knowledge distillation loss [24,
27],𝑤𝑜

𝑖
serve as the weight of each instance directly:

L𝑤𝐾𝐷−𝑙𝑔𝑠 = 𝑤𝑜𝑖 L𝐾𝐷 (𝑀𝑡−1 (𝑥𝑖 ), 𝑀
𝑒
𝑡 (𝑥𝑖 )), (6)

where L𝐾𝐷 is a ordinary loss function, e.g., KL-diverigence [42],
MSE [26]. As for the inter-instance relation-based knowledge distil-
lation, given a batch of instances B, a maximum subset B𝑜 where
each instance with𝑤𝑜

𝑖
= 1 is selected to calculate the inter-instance

relation loss:

L𝑤𝐾𝐷−𝑟𝑒𝑙 = L𝐾𝐷 (𝜃𝑟 (𝑀𝑡−1 (B𝑜 ) , 𝑀𝑡 (B𝑜 ))) , (7)

where 𝜃𝑟 is a relation evaluation function [42] andL𝐾𝐷 is a relation
knowledge distillation loss [34].

3.6 Iterative Label Rectification
Although the above CDP and EKF modules could ensure the model
learning the correct knowledge, the wrongly labeled data which can
contain abundant information are discarded. To settle this draw-
back, we propose to rectify the annotated data iteratively along the
model learning epochs, ensuring the correct knowledge learning
and enhancing informative data utilization simultaneously.

Specifically, the label rectification is accomplished by

𝑦∗𝑖 = argmax{𝒚𝑖 ∗𝑤𝑙 + �̂�𝑖 ∗ (1 −𝑤𝑙 )}, (8)

where 𝒚𝑖 ∈ R𝑁𝑝 is a one-hot embedding generated from annotated
label 𝑦𝑖 in 𝐷𝑒𝑡 and 𝑁𝑝 is the annotated person identity number.
The label rectification weight 𝑤𝑙 aims to fuse the information of
annotation and prediction. �̂�𝑖 ∈ R𝑁𝑝 is the identity prediction
vector generated by𝑀𝑒

𝑡 . 𝑦
∗
𝑖
is utilized to replace 𝑦𝑖 in 𝐷𝑒𝑡 to obtain

new dataset 𝐷𝑒+1𝑡 .
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Table 1: Results under the RandomNoise. † indicates the state-of-the-art LNLmethod is combined with the latest anti-forgetting
strategy of LSTKC.

Metric Type Method
Market-1501 CUHK-SYSU DukeMTMC MSMT17 CUHK03 Seen-Avg Unseen-Avg

10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%

m
A
P

LR
eI
D

LwF [24] 49.2 29.1 19.2 66.2 53.7 47.7 19.0 9.8 7.5 3.6 1.9 1.3 17.3 8.9 6.1 31.1 20.7 16.4 35.4 25.6 20.2
PatchKD [34] 51.0 30.6 23.9 66.8 58.0 52.6 19.3 11.9 8.4 3.6 2.1 1.5 18.1 10.3 6.4 31.8 22.6 18.6 35.0 27.3 23.8
KRKC [50] 29.4 20.1 14.8 71.7 65.3 59.2 23.3 15.3 10.3 5.1 3.1 2.2 35.3 20.9 12.7 33.0 24.9 19.8 42.5 35.4 29.0
DKP [17] 43.2 28.1 20.4 78.4 71.0 66.7 34.8 22.5 15.4 12.8 7.7 5.5 21.2 10.7 6.6 38.1 28.0 22.9 47.4 37.6 32.5
LSTKC [42] 41.4 35.1 25.8 78.7 74.2 67.4 39.7 19.4 9.3 14.8 5.2 2.6 27.8 15.3 6.9 40.5 29.8 22.4 47.2 37.0 30.0

LN
L CORE [47] 35.5 29.4 23.7 75.7 73.7 69.2 36.3 30.4 22.1 12.5 9.9 6.5 41.8 35.2 24.9 40.4 35.7 29.3 51.1 47.3 40.4

DICS [23] 34.0 23.1 15.7 72.1 70.1 63.6 34.8 22.3 13.1 12.2 7.3 4.5 35.5 18.5 9.3 37.7 28.3 21.2 48.0 38.8 32.2

N
oi
sy

LR
eI
D DICS† [23] 38.3 38.3 29.4 73.4 73.4 67.4 37.1 37.1 14.0 8.8 8.8 3.2 13.1 13.1 6.4 34.1 34.1 24.1 41.5 41.5 32.7

CORE† [47] 48.9 45.2 37.8 81.6 80.2 74.7 46.2 37.1 21.3 18.2 10.5 5.5 35.5 23.9 15.3 46.1 39.4 30.9 52.9 47.2 40.7
LCNL†[45] 28.9 23.5 16.2 69.2 67.9 63.1 29.4 20.0 11.6 9.7 6.8 4.3 38.1 27.8 18.6 35.1 29.2 22.8 45.1 38.4 33.8

CKP (Ours) 48.7 44.5 42.2 80.8 80.3 78.6 47.3 44.4 42.1 18.1 16.4 14.6 42.0 36.3 33.5 47.4 44.4 42.2 56.0 51.4 50.4

R@
1

LR
eI
D

LwF [24] 74.2 55.9 43.0 69.9 57.4 51.4 35.5 20.3 17.9 11.3 6.7 5.0 17.4 8.6 5.5 41.7 29.8 24.6 28.9 20.5 15.5
PatchKD [34] 74.2 56.9 49.5 70.5 61.7 56.0 34.1 23.1 18.1 11.0 7.2 5.5 17.2 9.8 5.9 41.4 31.7 27.0 29.6 21.7 18.9
KRKC [50] 54.0 42.0 34.4 75.1 68.8 63.4 38.4 28.0 19.8 14.9 9.8 7.5 37.1 19.6 11.1 43.9 33.6 27.2 36.9 29.4 24.3
DKP [17] 68.7 54.3 45.7 81.1 74.8 70.4 53.9 39.5 30.4 32.5 23.3 18.2 20.4 9.9 5.5 51.3 40.4 34.0 41.0 32.0 26.8
LSTKC [42] 66.8 60.5 50.2 81.3 77.6 70.9 59.3 34.0 19.5 35.5 16.2 8.8 27.7 14.6 6.2 54.1 40.6 31.1 40.3 30.7 25.0

LN
L CORE [47] 63.0 55.8 49.8 78.7 77.0 72.6 56.7 48.9 38.8 32.9 26.9 19.0 43.1 36.2 24.1 54.9 49.0 40.9 44.7 41.7 34.5

DICS [23] 58.6 48.5 38.2 74.9 74.2 67.9 55.7 40.6 27.2 33.1 23.0 16.6 36.3 18.3 8.6 51.7 40.9 31.7 42.0 33.4 27.3

N
oi
sy

LR
eI
D DICS† [23] 65.6 65.6 56.4 76.8 76.8 70.9 57.3 57.3 28.1 26.7 26.7 12.4 12.8 12.8 6.2 47.8 47.8 34.8 34.9 34.9 27.3

CORE† [47] 72.6 69.9 62.8 83.9 83.0 77.4 63.8 55.5 37.5 41.0 27.1 16.8 36.4 22.9 14.7 59.5 51.7 41.8 46.0 40.9 35.3
LCNL†[45] 55.3 48.8 37.6 72.7 71.8 66.9 49.1 36.3 23.1 27.6 21.0 14.7 39.7 29.4 18.9 48.9 41.5 32.2 38.4 32.6 28.5

CKP (Ours) 71.8 68.1 66.9 83.2 83.0 81.0 64.7 62.1 58.9 40.1 37.5 34.7 42.4 37.1 34.1 60.4 57.6 55.1 49.5 44.6 43.4

ILR is not necessarily conducted after each epoch, and a rectifi-
cation interval of 𝑒0 epochs is adopted for computational efficiency.

Model Training During training, our framework can be inte-
grated with existing LReID and LNL methods by introducing their
noisy data learning loss L𝑅𝑒𝐼𝐷 and our weighted knowledge distil-
lation loss L𝑤𝐾𝐷 (Equation (6) and (7)). Therefore, the overall loss
is calculated by:

L = L𝑅𝑒𝐼𝐷 + L𝑤𝐾𝐷 . (9)
Model InferenceWe follow existing methods to use the feature

generated by the final model𝑀𝑇 for person matching.

4 EXPERIMENTS
4.1 Benchmark
In this paper, following the existing LReID [27] and Noisy ReID [47]
works, a new Noisy LReID benchmark (NLReID) is proposed as
below.

Datasets: NLReID contains 12 ReID datasets, 5 of them are used
for lifelong training and evaluation (Market1501 [56], DukeMTMC-
reID [30], CUHK-SYSU [41], MSMT17-V2 [39], and CUHK03 [21]),
and the other 7 test datasets are used evaluate the generalizability
of the model (CUHK01 [20], CUHK02 [19], VIPeR [8], PRID [11],
i-LIDS [2], GRID [25], and SenseReID [53]). More details of the
datasets are provided in our Supplementary Materials.

Label Noise Generation: Two different noisy settings are con-
sidered [47]. (1) Random Noise means a certain percentage (10%,
20%, 30%) of training data are randomly selected and assigned
with random labels of other identities. (2) Patterned Noise means
a certain percentage (10%, 20%, 30%) of randomly selected images
are assigned with the labels of its most similar sample from other
identities where the similarity is evaluated by a base model pre-
trained with clean labels. Note that the random and patterned
noises assume that the wrong labels are randomly distributed and
semantic-relevant respectively. Usually, random noise can signifi-
cantly disturb the learned feature but can be found out more easily.
Whereas patterned noise shows a smaller influence on the learned
feature but is harder to find out.

EvaluationMetrics: Following existing LReID works [6, 27, 34],
the mean Average Precision (mAP) and Rank@1 accuracy (R@1)
are adopted to evaluate the model performance on each seen and un-
seen dataset. Additionally, the seen/unseen average mAP and R@1
are reported to compare the lifelong learning and generalization
capacity of the models across different scenarios.

4.2 Implementation Details
The state-of-the-art LReID method [42] is used as the baseline
based on which our proposed CKR method is implemented. For
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Table 2: Results under the Patterned Noise. † indicates the state-of-the-art LNL method is combined with the latest anti-
forgetting strategy of LSTKC.

Metric Type Method
Market-1501 CUHK-SYSU DukeMTMC MSMT17 CUHK03 Seen-Avg Unseen-Avg

10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%

m
A
P

LR
eI
D

LwF [24] 47.8 33.2 17.4 60.8 47.3 32.5 22.6 11.6 5.9 4.4 2.0 1.0 11.9 5.7 3.3 29.5 20.0 12.0 35.4 23.8 19.0
PatchKD [34] 50.6 34.2 18.9 62.1 48.2 34.7 22.1 12.1 5.9 4.5 2.2 1.1 11.4 5.5 2.9 30.1 20.4 12.7 35.1 25.5 18.5
KRKC [50] 31.9 22.3 18.0 73.1 66.7 63.5 27.1 16.2 10.4 5.7 3.4 2.6 39.1 24.8 16.1 35.4 26.7 22.1 45.4 36.9 31.9
DKP [17] 46.1 33.7 27.4 80.3 73.8 70.1 37.4 26.1 20.3 14.2 9.2 7.2 24.8 14.9 9.3 40.6 31.5 26.9 50.5 41.2 36.7
LSTKC [42] 40.3 36.0 33.2 78.3 75.4 71.6 38.3 30.6 18.0 15.2 8.0 4.4 30.2 20.0 13.2 40.5 34.0 28.1 50.8 42.2 37.9

LN
L CORE [47] 35.7 33.4 30.1 75.8 74.8 73.3 36.9 30.9 29.2 13.5 11.1 9.3 42.4 37.7 31.5 40.9 37.6 34.7 52.2 46.5 45.0

DICS [23] 32.3 26.1 19.1 69.3 71.3 67.3 34.2 26.6 16.1 10.8 9.5 5.7 35.8 23.6 13.2 36.5 31.4 24.3 45.9 43.7 35.8

N
oi
sy

LR
eI
D DICS† [23] 40.5 39.5 31.4 77.4 75.0 68.1 40.1 39.5 33.8 16.4 9.0 6.9 33.7 21.1 16.4 41.6 36.8 31.3 52.7 47.4 41.1

CORE† [47] 49.0 49.6 45.4 80.8 80.0 79.0 46.4 42.2 38.7 19.2 9.2 10.8 39.5 32.2 21.7 47.0 42.6 39.1 55.8 48.6 47.6
LCNL†[45] 29.6 25.9 21.1 68.4 67.6 65.6 29.2 23.0 19.6 9.7 7.6 6.2 38.5 31.5 23.6 35.1 31.1 27.2 45.1 40.7 38.0

CKP (Ours) 50.1 46.9 44.1 81.0 79.9 78.9 47.2 45.2 43.1 18.3 17.1 15.7 41.9 39.9 36.6 47.7 45.8 43.7 57.3 54.4 51.1

R@
1

LR
eI
D

LwF [24] 72.0 59.8 37.5 63.8 49.3 32.7 42.1 25.0 14.5 14.5 7.0 4.4 12.8 6.7 3.8 41.0 29.6 18.6 28.3 17.8 13.7
PatchKD [34] 74.6 60.2 40.8 64.7 50.9 36.4 40.8 26.8 15.7 14.2 7.7 4.6 11.6 6.1 3.2 41.2 30.3 20.1 28.9 20.1 13.1
KRKC [50] 57.5 44.7 38.5 76.5 70.4 67.0 43.4 28.6 20.0 16.2 10.9 8.6 40.3 23.9 15.9 46.8 35.7 30.0 38.5 32.2 27.0
DKP [17] 71.1 60.2 53.8 82.9 77.2 74.1 55.4 42.8 36.8 34.8 25.9 21.5 24.8 14.3 7.6 53.8 44.1 38.8 43.4 35.9 30.7
LSTKC [42] 65.2 59.9 58.1 80.8 78.0 74.8 56.3 48.6 32.4 36.8 22.5 13.6 31.3 20.5 12.9 54.1 45.9 38.4 44.3 36.1 32.2

LN
L CORE [47] 63.4 60.1 57.1 78.7 77.9 76.7 57.3 50.7 46.7 34.1 29.6 25.6 43.8 38.2 32.4 55.5 51.3 47.7 45.9 40.1 38.9

DICS [23] 57.3 51.9 43.2 72.5 75.0 71.3 55.1 44.5 31.2 29.7 28.4 19.3 36.4 24.1 13.0 50.2 44.8 35.6 38.7 37.3 30.3

N
oi
sy

LR
eI
D DICS† [23] 65.7 64.5 58.9 79.5 78.0 71.9 58.8 59.2 54.8 40.1 26.8 22.9 35.1 21.6 16.4 55.8 50.0 45.0 46.5 40.9 35.0

CORE† [47] 72.6 72.8 69.9 82.8 82.3 81.6 65.0 59.0 56.3 43.4 24.6 28.1 40.5 31.9 21.2 60.9 54.1 51.4 48.7 42.1 40.8
LCNL†[45] 55.8 51.6 47.0 71.5 71.1 69.5 49.2 41.1 35.7 27.2 23.0 19.4 39.6 33.3 24.6 48.7 44.0 39.2 38.4 34.9 32.3

CKP (Ours) 73.2 70.8 67.5 82.7 82.3 81.4 65.8 62.5 61.2 41.0 38.9 36.7 42.7 40.8 37.0 61.1 59.1 56.8 50.1 47.5 44.6

training, the first dataset is trained for 80 epochs and the subsequent
datasets are trained for 60 epochs. 32 identities with 4 images for
each identity are sampled as a mini-batch. The learning rate and
weight decay are set as 0.008 and 0.0001 respectively, and an SGD
optimizer is adopted. The hyperparameters 𝑇𝑐 , 𝑇𝑜 ,𝑤𝑙 , 𝑒0 are set to
0.8, 0.2, 0.1, 5 respectively.

4.3 The Comparison Methods
To comprehensively evaluate our method, extensive state-of-the-
art LReID approaches (PatchKD [34], KRKC [50], LSTKC [42] and
DKP [17]) are compared. The well-known class incremental learn-
ing method LwF [24] is also included. In addition, we combine
the state-of-the-art LReID method, LSTKC, with the latest noisy
label learning methods (LCNL [45], DICS [23], and CORE [47]) to
adapt them to the Noisy LReID scenario. Note that parameter grid
search is conducted to the above noisy LReID method to ensure
their performance is optimized. All the methods above are imple-
mented with the official codes, and we ensure a fair comparison by
adopting the same backbone and data configurations.

4.4 Comparison with state-of-the-art methods
The results of different methods on the NLReID benchmark are
reported in Table 1 and Table 2 under different ratios of random and

Figure 3: The results of seen domain knowledge consolida-
tion capacity under 30% random noise.

patterned noise respectively. The best results under each scenario
are highlighted in Bold.

Compared to LReID Methods: As is shown in Table 1 and
Table 2, our model achieves significantly superior performance
on the average performance of both seen and unseen domains
compared to LReID methods since they are vulnerable to label
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Figure 4: The results of unseen domain generalization capac-
ity under 30% random noise.

noise. Specifically, when the random noise ratio increases from
10% to 30%, these methods exhibit degradation in average mAP
and R@1 performance ranging from 12%-21% under both seen and
unseen domains. In contrast, our model experiences no more than
a 6.1% degradation, attributed to the effectiveness of the new data
purification and erroneous old knowledge filtering designs.

Compared to LNL Methods: As is shown in Table 1 and Ta-
ble 2, the state-of-the-art LNL methods CORE and DICS achieve
comparable results with LReID methods. But our CKP outperforms
the better competitor CORE by a large margin. In particular, we
achieve the average mAP/R@1 improvement of 12.9%/14.2% and
10.0%/8.9% under seen and unseen domains when learning under
30% random noise, and 12.4%/9.1% and 10.0%/5.7% improvement
when learning under 30% patterned noise is obtained. The results
arise because LNL methods are designed for stationary scenarios,
neglecting the problems of catastrophic forgetting of correct knowl-
edge and catastrophic remembering of erroneous knowledge.

Compared to Noisy LReID Methods:We incorporate the anti-
forgetting strategy of the state-of-the-art LReID method LSTKC,
into LNL methods, obtaining the Noisy LReID approaches DICS†,
CORE†, and LCNL†. Among them, CORE† exhibits the highest aver-
age performance across seen and unseen domains under both kinds
of noises. As is shown in Table 1, compared to CORE† under random
noise, we achieve the improvement of 1.3%/0.9%, 5.0%/5.9%, and
11.3%/13.3% on average mAP/R@1 performance in seen domains
under noise ratios of 10%, 20%, and 30%, respectively. Addition-
ally, we also obtain the improvement of 3.1%/3.5%, 4.2%/3.7%, and
9.7%/8.1% in the average mAP/R@1 performance of unseen do-
mains under noise ratios of 10%, 20%, and 30%, separately. As is
shown in Table 2, under the challenging patterned noise, our CKP
consistently obtains 0.7%/0.2%, 3.2%/5.0%, and 4.6%/5.4% improve-
ment on the average mAP/R@1 of seen domains under 10%, 20%,
and 30% noise. The increasing improvement under higher noise
ratios highlights the superiority of our method in mining correct
knowledge and reducing the remembering of erroneous knowledge
in noisy scenarios.

Seen Domain Performance Curves. To show the new knowl-
edge acquisition and anti-forgetting capacity of our model, We
conduct experiments on the 30% random noise data in comparison

Table 3: Ablation study of different components in CKR un-
der 30% random noise.

Seen-Avg Unseen-Avg
Baseline CDP ILR EKF mAP R@1 mAP R@1

✓ 30.9 41.8 40.7 35.3
✓ ✓ 38.8 51.6 47.3 40.2
✓ ✓ 34.5 45.7 43.5 37.4
✓ ✓ 34.8 46.1 43.8 37.3
✓ ✓ ✓ 41.9 54.7 49.2 43.1
✓ ✓ ✓ ✓ 42.2 55.1 50.4 43.4

with existing LReID and LNL methods. The results are shown in
Figure 3. Compared to the competitors, our method outperforms
them in the first dataset and maintains superiority throughout the
training process. These results show that our proposed method
could consistently consolidate correct knowledge by learning from
the noise data of various domains.

Unseen Domain Generalization Curves.We further visualize
the average performance on the unseen domains along the lifelong
training steps, as depicted in Figure 4. The results demonstrate that
our proposed model outperforms existing methods in capturing
more generalizable knowledge when learning from non-stationary
noisy data. This result is attributed to the knowledge purification
mechanism of our model that ensures correct knowledge mining
and erroneous knowledge filtering.

4.5 Ablation Studies
In this section, we evaluate and discuss the effectiveness of our pro-
posed components. All experiments are conducted on 30% random
noise data in the NLReID benchmark.

Ablations on different components. In Table 3, we start with
a CORE† baseline and progressively integrate the proposed CDP,
ILR, and EKF modules. The results illustrate that each module im-
proves the model performance when utilized independently, and
their combined utilization further boosts performance. Particularly
noteworthy is the significant improvement yielded by CDP, under-
scoring the critical importance of ensuring training data clarity in
mitigating label noise impact.

Ablations on hyperparameters. We analyze the effects of the
hyperparameters 𝑇𝑐 , 𝑇𝑜 ,𝑤𝑙 , and 𝑒0, on the model in Figure 5. The
results in Figure 5 (a) show that a relatively high 𝑇𝑐 helps improve
the overall performance of the model, highlighting the importance
of training data purity. In Figure 5 (b), we observe that an opti-
mal 𝑇𝑜 tends to be relatively small, as some features may contain
both correct and erroneous knowledge simultaneously. And 𝑇𝑜=0.2
shows the best balance. The results in Figure 5(c) suggest that a
relatively low𝑤𝑙 is optimal for label rectification, indicating that
the model prediction is more reliable than the annotated label, yet
the annotated label still contains some crucial clues that could rem-
edy the imperfect predictions of the model. The results Figure 5
(d) show that frequently rectifying the label is not necessary and a
rectification interval of 5 epochs is enough to guarantee the perfor-
mance of the model. In practice, we set 𝑇𝑐 , 𝑇𝑜 ,𝑤𝑙 , 𝑒0 to 0.8, 0.2, 0.1,
5 respectively.
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Figure 5: Ablation studies on hyperparameters under 30% random noise. Dashed green lines highlight our default values.

Figure 6: The proposed CKR can be readily integrated with
existing LReID and LNL methods to significantly improve
their Noisy LReID performance.

Combination with other methods. As is shown in Figure 6,
when our method is combined with existing methods, considerably
within 8.6%-17.7% improvement is achieved. CORE† and CORE‡
represent integrating CORE with the anti-forgetting strategy of
LSTKC and DKP, respectively. Note that LSTKC and DKP are inter-
instance relation-based knowledge distillation methods and LwF is
logits-based knowledge distillation method. These results demon-
strate the compatibility of our method with different anti-forgetting
strategies and our method can improve the Noisy LReID perfor-
mance of existing methods consistently.

Effectiveness of Cluster-aware Label Scoring. To evaluate
the confidence estimation capability of our CLS strategy which
plays an important role in our CDP and EKF, we experimentally
replace CLS with the widely-used Gaussian Mixture Model (GMM)
in our approach. Figure 7 (a) illustrates the tendency of label scor-
ing AUC across training epochs. Initially, GMM performs slightly
better, but as the model begins to overfit the label noise, its label
scoring capacity diminishes after the 10th epoch. In contrast, our
CLS consistently improves its AUC performance and surpasses
GMM after the 20th epoch. This shows the superiority of our CLS
in guiding the algorithms to collect clean data. Furthermore, we

(a) Label scoring AUC tendency. (b) Model prediction ROC curve.

Figure 7: Effectiveness of proposed CLS compared to GMM
under 30% random noise.

visualize the ROC curves of the predicted identities generated by
the final models in Figure 7 (b). It is evident that our CLS effectively
guides the model to learn the correct knowledge.

5 CONCLUSION
In this paper, we initially investigate a practical task Noisy Lifelong
Person Re-Identification (Noisy LReID), which suffers exacerbated
correct knowledge catastrophic forgetting and additional erroneous
knowledge catastrophic remembering problems. To facilitate re-
search in Noisy LReID, we introduce a benchmark named NLReID.
In addition, we propose a novel and effective Continual Knowledge
Purification (CKP) framework. To reduce the erroneous knowl-
edge acquisition, an Iterative Label Rectification pipeline and a
Cluster-aware Data Purification module are designed to rectify the
noise labels and collect clean data along the training procedure to
mitigate the influence of noisy data on new knowledge learning.
Besides, to handle the catastrophic remembering and forgetting
issues, an Erroneous Knowledge Filtering algorithm is proposed
to reduce erroneous old knowledge accumulation and ensure cor-
rect knowledge consolidation. Extensive experiments show our
method is robust to different kinds of label noise and achieves sig-
nificant Noisy LReID performance improvement, especially under
high-ratio noise compared to existing methods.
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