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Abstract

Real-world systems often involve some pool of users choos-
ing between a set of services. Extensive prior research has
been conducted on the effects of strategic users in single-
service settings, with strategic behavior manifesting in the
manipulation of observable features to achieve a desired clas-
sification; however, this can often be costly or unattainable for
users and fails to capture the full behavior of multi-service dy-
namic systems. We analyze a setting in which strategic users
choose among several available services in order to pursue
positive classifications, while services seek to minimize loss
functions on their observations. We show that naive retraining
can lead to oscillation even if all users are observed at differ-
ent times; however, we show necessary and sufficient condi-
tions to guarantee convergent behavior if this retraining uses
memory. We provide results obtained from synthetic and real-
world data to empirically validate our theoretical findings.

Introduction
Machine learning (ML) predictions are widely used in to-
day’s world, playing an intermediary role between individu-
als and services in numerous applications. In these settings,
predictions rarely come from a single entity—instead, mul-
tiple service providers collect data on users and train mod-
els. While this is happening, individuals choose among these
services, making selections according to their own incen-
tives and impacting the data available to each service.

An example of this can be found in platforms learning
feed recommendation algorithms while content creators try
to get recognition and views. While the recommendation
systems optimize for content that improves metrics such
as advertisement revenue, creators reluctant to change their
style of content could jump between platforms to avoid pe-
nalization through content suppression.

A large body of work on strategic classification (Hardt
et al. 2016) studies a model of behavior in which individ-
uals modify their data to achieve positive classifications;
however, this model of data manipulation fails to capture a
straightforward way in which individuals can express their
preferences: simply choosing amongst alternative providers.

In this work, we formalize the problem of strategic usage,
where individuals vary their participation in various services
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according to a strategic objective. We study a realizable bi-
nary classification setting where individuals seek a positive
prediction and services only obtain data from users who se-
lect them. While the usage decision is relatively straightfor-
ward, the differential access to data present in this setting
and the resulting multi-learner dynamics are complex. We
show that when services naively update their models with re-
training updates, strategic behavior by individuals can cause
non-converging oscillations. Following this realization, we
introduce a novel class of retraining updates that make use
of memory, which when used can guarantee the convergence
of the learning dynamics to an invariant set regardless of ini-
tialization. These invariant sets exhibit favorable conditions:
services experience zero loss across users, correctly classi-
fying all users who choose to use them, and users whose true
label is negative will elect to leave the system entirely.

Problem Setting
We study the interactions between n ∈ N+ individuals,
which we refer to as users, and m ∈ N+ machine learning-
based services. Each user i ∈ {1, . . . , n} is represented by
features xi ∈ X , which encode the information about user i
that is available at decision time. Also associated with each
user i is a label yi ∈ {+1,−1} indicating an outcome of
interest. We refer to +1 as a positive label, which is gener-
ally seen as desirable, and −1 as a negative label, which is
generally seen as undesirable. Unlike the features, the label
is not visible at decision time. In the content creator exam-
ple, features could be metrics such as video length statistics
or closed-caption transcripts from creators’ videos used to
determine what maximizes advertisement revenue for a plat-
form with labels being profitable or unprofitable.

Users interact with services. Each service j ∈ {1, . . . ,m}
selects a classifier hj : X → {+1,−1} from some model
class H. This classifier predicts the unseen label of a user,
given their features; as with labels, a positive prediction of
+1 is seen as desirable, while a negative prediction of −1 is
seen as undesirable.
Example 1. For a given feature transformation φ : X →
Rd, the linear model class is defined as

H =
{
h(x) =

{
+1 θ⊤φ(x) > 0

−1 θ⊤φ(x) ≤ 0
s.t. θ ∈ Rd

}
.

Unlike in a classical supervised machine learning setting,



or even in the usual strategic classification setting (Hardt
et al. 2016; Zrnic et al. 2021), we do not assume that services
have immediate access to data about the users. Instead, the
data observed by services depends on the strategic choices of
the users. The following sections describe the user behavior
and the learning updates of the services.

Strategic Users
Strategic users seek positive classifications, as these corre-
spond to desirable outcomes. Unlike prior work on strategic
classification, in our setting, users cannot manipulate their
data, but can select between different services and vary their
level of usage, denoted by Aij ∈ R+ for user i and service j.
Each user i selects m usage values Ai1, . . . , Aim. These val-
ues are non-negative and real-valued, meaning that the user
can modulate the total amount of usage. Usage for content
creators could correspond to the number of videos a creator
releases on a platform.

The benefit that a user receives from a service is propor-
tional to both their usage of the service and the utility the
service provides. This utility u : X × H → R depends on
the user features and the classifier. We make the following
assumption about the utility:

Assumption 1 (User utility). For any h1, h2 ∈ H and x ∈
X such that h1(x) = −1 and h2(x) = 1, we have that
u(h1, x) ≤ 0 < u(h2, x).

Example 2. For a linear model class where classifiers are
represented by their weights θ, the 0-1 utility is given by
u(x, θ) = 1{θ⊤φ(x) > 0}. This models users who care
only about whether their classification is positive. The linear
utility is given by u(x, θ) = θ⊤φ(x). This models users who
care about their margin.

The second component of the user objective depends only
on their total usage:

∑m
j=1 Aij . In particular, higher total us-

age corresponds to lower overall objective value. This mod-
els an opportunity cost or a penalty for large usages on a
per-user basis, such as the effort expended to create content.

Putting these components together, the overall strategic
objective for a user i is to maximize

m∑
j=1

Aiju(xi, hj)−
1

q

( m∑
j=1

Aij

)q

(1)

where the power q > 1 sets the opportunity cost to in-
crease superlinearly, so the marginal utility of usage is non-
increasing. To understand this objective, consider the best
response of a user i for fixed services h1, . . . , hm. If no ser-
vice offers a positive classification, then by Assumption 1,
no utility will be positive, and thus the best response will be
zero usage. If there is a service j offering uniquely maxi-
mum utility u(xi, hj) > 0, then the best response is to ig-
nore any other service, i.e., Aik = 0 for all k ̸= j.

If several services offer equal and maximal utility to the
user, then the best response is not unique. It includes any
configuration of usage distributed over these equivalent ser-
vices, with fixed total usage.

Learning Updates for Services
Services deploy classifiers trained on data that they have ob-
served. We take the number of services to be much smaller
than the number of users m ≪ n. To each service, the large
and fluid user pool is represented as a distribution over fea-
tures and labels. The distribution observed by a service de-
pends on the usages so that the weight on data point (xi, yi)
for service j is proportional to the usage Aij . Importantly,
this means that when the usage is zero, the service has no
information about the user.

We model the process of training a classifier by expected
loss minimization. The loss ℓ : H×X × Y → R quantifies
the error of a given classifier on a given data point, and we
make the following assumption about the loss function.
Assumption 2 (Loss-utility relationship). For all h ∈ H,
the loss is non-negative, −yℓ(h, x, y) strictly monotonically
increases with u(x, h), and there exists v > 0 such that
u(x, h) = 0 =⇒ ℓ(h, x, y) = v.
Example 3. For a linear model class where classifiers are
represented by their weights θ, the 0-1 loss is ℓ(θ, x, y) =
1{θ⊤φ(x) ·y > 0}, which corresponds to the 0-1 utility. The
hinge loss is defined as ℓ(θ, x, y) = max{1−θ⊤φ(x)·y, 0},
which corresponds to the linear utility.

In this paper, we focus on the realizable setting.
Assumption 3 (Realizability). There exists a classifier h ∈
H such that ℓ(h, xi, yi) = 0 for all i = 1, . . . n.
Example 4. For the linear model class and either the 0-1
loss or the hinge loss, the realizability assumption is satis-
fied as long as the features {φ(x1), . . . , φ(xn)} are linearly
separable with a strictly positive margin.

For a given user distribution D, the expected loss of a
classifier h is Ex,y∼D[ℓ(h, x, y)]. When this distribution is
defined for a service j based on usages A1j , . . . , Anj , it can
be simplified1 to∑n

i=1
Aij∑n

k=1 Akj
ℓ(h, xi, yi) . (2)

In our setting, the realizability assumption implies that
good outcomes are possible; however, since services only
observe data depending on strategic usage, arriving at such
an equilibrium through interactions requires a nontrivial
analysis of dynamical and transient behavior.

Interaction Dynamics
We index classifiers and usage by time and denote the state
of the dynamics as

Ht = (ht
1, . . . h

t
m), At ∈ Rn×m

We consider user best response dynamics, so at time t,
user i selects a usage to maximize (1) given models Ht. We
allow users to employ any tie-breaking scheme (even a non-
deterministic one) when there is not a unique maximizing
model. Consider the following joint update:

At ∈ argmax
A∈Rn×m

+

n∑
i=1

 m∑
j=1

Aiju(xi, h
t
j)−

1

q

[ m∑
j=1

Aij

]q (3)

1If
∑n

k=1 Akj = 0 for some service, we adopt the convention
that for all users i, the fraction Aij/(

∑n
k=1 Akj) = 0.



We consider this joint update for simplicity of exposition,
noting that it is equivalent to any order of independent user
updates, due to the separability of the objective.

Naive repeated retraining minimizing expected loss (2)
given observed usages At has been studied in the traditional
strategic classification setting (Zrnic et al. 2021; Perdomo
et al. 2020); however, in the theoretical results we will show
that this memoryless retraining is a poor fit for the strategic
usage setting.

We therefore consider retraining updates which minimize
the weighted sum of prior expected losses; that is, the update
to models Ht+1 considers the expected loss (2) induced by
At, At−1, . . . . By the linearity of expectation, this is equiva-
lent to minimizing the expected loss over a distribution with
memory M t ∈ Rn×m

+ . We define memory as follows, using
a discount factor p ≥ 0:

M t =
At

1 + p
+

pM t−1

1 + p
(4)

By convention, M0 = 0.
The simultaneous joint update for services is

Ht+1 ∈ argmin
H∈Hm

m∑
j=1

n∑
i=1

M t
ij∑n

k=1 M
t
kj

ℓ(hj , xi, yi) . (5)

Due to the separability of the objective over services, this
joint update is equivalent to any order of independent service
updates.

We allow classifiers to employ many types of tie-breaking
schemes when there is not a uniquely optimal classifier;
however, we introduce a requirement of sticky tie-breaking.

Definition 1. Let there be an update schema where some
f t+1 is selected to minimize an expected loss as given by
f t+1 ∈ argminf∈F Lt(f). The update is called sticky when
if for a given f t, Lt−1(f t) = Lt(f t), then it holds that
f t+1 = f t.

For example, when there is a norm defined on F , the
minimum-norm update rule is

f t+1 = argmin
f∈F

∥f∥F s.t. f ∈ argmin
g∈F

Lt(g).

This update rule satisfies the stickiness property.
We consider alternating updates between services and

users, where the memory evolves according to (4).

Assumption 4. Given state (Ht, At) at time t, the classifier
update to Ht+1 is sticky and satisfies (5), and the usage
update to At+1 satisfies (3).

This means that first the services update Ht → Ht+1

based on current usage At, and then the users best-respond
At → At+1 based on the updated services Ht+1. We remark
that our analysis techniques could extend to a round-robin
of updates involving varied sequences of service and user
updates. We include a further discussion in the appendix and
focus on the joint updates here for simplicity of exposition
and notation.

Figure 1: Five datapoint example described in the proof of
Proposition 1. Negative points are represented by − and
positive points by +. The dashed and solid lines represent
the oscillating classifiers, with the dotted line representing a
zero-loss classifier.

Theoretical Results
In this section, we formally introduce our theoretical results
concerning the dynamics and convergence of the interaction
defined by Assumption 4. We will show that under mild as-
sumptions and when the memory is non-zero, the system
will reach the following state within a finite number of steps.
Definition 2. A state (H,A) is zero-loss if all services j
satisfy: 1) Aijℓ(hj , xi, yi) = 0 for all i and 2) u(xi, hj) ≤ 0
for all i with yi = −1.

The first condition means all services will make accurate
classifications on the populations they observe, with the sec-
ond condition implying that all negative users will receive
no utility and will thus choose not to engage in any service.

Beyond desirability from the perspective of utility and
loss, zero-loss points play an important role in understanding
the convergence of the interaction dynamics. In the impor-
tance of memory section, we show that for memory param-
eter p > 0, when a state is zero-loss, so are all future states.
Thus the zero-loss property defines a set which is invariant
under the service retraining and user best response updates.
In the convergence section, we further show that the dynam-
ics will reach a zero-loss state in finite time.

All results are presented under Assumptions 1, 2 3, and 4.

Importance of Memory
Proposition 1. In the memoryless p = 0 setting, there exist
settings in which the state (A,H) never converges.
Proof Sketch. We consider a setting of five users and two
classifiers, illustrated in Figure 1 and described in detail in
the appendix. We show that for p = 0, there are initial condi-
tions that lead to perpendicular oscillating classifiers (dashed
and solid in the figure) rather than zero-loss (for example,
dotted).

We will show that in our setting, nonzero memory is
enough to guarantee convergence to a zero-loss state. To-
wards that goal, we first make precise the ability of a service
to accumulate knowledge.
Lemma 2. For every user service pair i, j such that M t

ij >

0, ℓ(ht+1
j , xi, yi) = 0. Therefore, when p > 0, if At

ij > 0 for
any timestep t, then for all further timesteps τ > t it must
hold that ℓ(hτ

j , xi, yi) = 0.



The proof of this result, and the missing proofs of all re-
maining results, are presented in the appendix.

Characterizing Invariance
Undefined tiebreaking during user best response updates
means that it is plausible for users to vary their usage among
several different services indefinitely, so long as those users
are positive and the services classify them correctly. As a re-
sult, some care is required to define the appropriate notion
of “convergence.” Instead of arguing about fixed points, we
turn our attention to an invariant set defined by the zero-loss
property.

Proposition 3. If a state (Ht, At) is zero-loss at time t, then
all future states are zero-loss for all times τ ≥ t.

Convergence
Finally, we turn to convergence: regardless of the initial state
of classifiers and users, we show that the interaction dynam-
ics will lead to a zero-loss point within finite time.

Over the course of interactions between services and
users, the services collect data. Each time a new user se-
lects a service, the service may respond by updating its
classifier— in particular, a change must occur if the new user
is incorrectly classified.

Lemma 4. For any timestep t if there exists no values
M t−1

i,j = 0 such that At
i,j > 0, then (Ht, At) is zero-loss.

With this lemma in hand, we are ready to prove the main
result, which shows that services and users will converge to
a zero-loss equilibrium in finitely many steps.

Theorem 5. Given nonzero memory p > 0, there is a finite
time t ∈ N after which for all τ > t, (Hτ , Aτ ) is zero-loss.

Proof Sketch. We first argue that there are only finitely
many timesteps in which the condition in Lemma 4 can oc-
cur. Therefore, the system must reach a zero-loss point, and
by Proposition 3, the classifiers and usages must continue to
be zero-loss.

Experiments
To illustrate our results with experiments of simulated strate-
gic usage behavior, we instantiate a semi-synthetic simula-
tion with real-world data coming from the Banknote Au-
thentication dataset (Lohweg 2013). This dataset involves
a binary classification problem to detect whether a ban-
knote is genuine or forged. Banks are services and update
their forgery-detection classifiers in order to reject forged
banknotes while accepting genuine ones. Users are indi-
viduals who seek, for practical purposes, banks that allow
them to cash in their notes. At the same time, banks update
their forgery detection models to keep up with trends in the
forgery industry. We remark that this authentication task is
similar to the spam and copyright filtering tasks contended
with by recommender systems. Further details on the dataset
or the experimental setup can be found in the appendix.

Figure 2 presents simulation results for m = 5 services,
plotting the total usage of the positive and negative class over
time (i.e., of genuine and forged banknotes in circulation).

Figure 2: Banknote Authentication dataset; each graph gives
the positive and negative usages of each of the five mod-
els; triangle markers above the lines indicate positive usage
while below the lines indicate negative, with colors giving
which model the line refers to. The left graph gives the no-
memory p = 0 setting, while the graph on the right gives
the p > 0 setting. Model order, and hence their colors, are
meaningless due to the random initialization.

Generally, we observe oscillation in the p = 0 case; how-
ever, the p > 0 case converges to a zero-loss point after four
timesteps.

Conclusion & Discussion
This work focuses on interaction dynamics between strate-
gic users and multiple learners in an interactive setting. We
formalize strategic usage, in which users strategically use
services in pursuit of a positive classification. Our work is
both an extension of and in contrast to the strategic feature
modification of the strategic classification setting. Mean-
while, services respond by observing usages and optimiz-
ing the average loss over their observations. To this, we pro-
vide conditions under which we can guarantee a finite-time
equilibrium. We remark that while several works have raised
concern as to the adverse social outcomes entailed by strate-
gic classification (Milli et al. 2019; Chen, Wang, and Liu
2020; Hu, Immorlica, and Vaughan 2019) our setting en-
sures that all true positives may receive positive utility at
equilibrium.

As the first to study the setting of strategic usage, our work
raises several areas for future extension. A natural extension
is to consider explicit competition between services, rather
than retraining blindly, unaware of the existence of models
being deployed by other services in the system. Similarly,
we study un-coordinated and short-term user objectives, but
an exploration of long-term strategic planning and optimiza-
tion might give insight towards additional real-world phe-
nomena. Finally, it would be interesting to consider the rela-
tionship between a finite user pool and an underlying popu-
lation level distribution.
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Related Work

Strategic Classification Our work is inspired by the setting of strategic classification, first proposed by (Hardt et al. 2016),
in which strategic users manipulate their features in order to receive a positive classification, and a learner or decision maker
is tasked with designing a classifier robust to these manipulations. Many works in this setting study complexities like the
distinction between gaming and improvement (Kleinberg and Raghavan 2020), connections to causal inference (Miller, Milli,
and Hardt 2020), and the social burden (Milli et al. 2019). As this form of gaming is distinct from the one we study, we do
not attempt a comprehensive review of this vast body of work; instead, we highlight work that considers phenomena relevant
to our usage setting. One such phenomenon is decision-dependent access to data, which in our setting arises due to user
choices between services. (Harris, Podimata, and Wu 2023) studies an online variant of the strategic classification problem
in the presence of “apple tasting” or one-sided feedback, in which labels are only collected for data points that are positively
classified. (Chien, Roberts, and Ustun 2023) refer to this phenomenon as algorithmic censoring and explore its implications. In
contrast to these works, in the strategic usage setting, both features and labels are unavailable to services that a user does not
select. Another phenomenon of interest is repeated interaction between learning algorithms and strategic agents. (Dong et al.
2018) present algorithms for an online variant of strategic classification in which data arrives sequentially, each point responding
to the currently deployed classifier. (Zrnic et al. 2021) study the dynamics of repeated interactions between a decision-maker
and a strategic population, and show convergence to a unique equilibrium depending on their relative update frequencies.
Interestingly, they show that repeated retraining is sufficient to counteract manipulations when their update frequencies are high
enough. Though we study similar repeated retraining dynamics, our analysis differs in that equilibria are not unique.

Endogeneous Distribution Shift The dynamics of repeated interactions between learning algorithms and endogenously
shifting populations have also been studied more generally. Performative prediction, first introduced by Perdomo et al. (2020),
generalizes the setting of strategic classification, modeling a single learner seeking to maximize accuracy subject to an underly-
ing decision-dependent data distribution. They also study the convergence of repeated retraining. (Narang et al. 2022; Piliouras
and Yu 2022; Wood and Dall’Anese 2022) study a multi-player scenario, where the data distribution depends on the decisions
of multiple learners. We also consider decision-dependent distributions to model the varying usage of strategic individuals;
however, the mechanics of the dependence violate assumptions necessary to apply previous work in the performative setting.
The framework of performative power introduced by Hardt, Jagadeesan, and Mendler-Dünner (2022) studies the ability of
services to influence data distributions. Interestingly, they show that in the presence of a choice between competing providers,
individuals have no incentive to perform costly manipulations to their features.

Usage Choices A largely separate body of work has investigated the impacts of ML by studying user participation choices.
(Hashimoto et al. 2018; Zhang et al. 2019) consider sub-populations choosing whether or not to use a single ML model on
the basis of accuracy or performance, showing that retention dynamics can lead to the exacerbation of disparate representation
found in the population. (Ginart et al. 2021; Kwon, Ginart, and Zou 2022; Dean et al. 2022) consider users selecting among
various services, also on the basis of model accuracy. For such non-strategic usage, these works characterize the convergence
of a simple repeated retraining dynamic. We show that when usage decisions are made strategically, naive repeated retraining
may fail to converge. Another line of work considers explicit competition for market share between multiple providers, where
the market share is determined by users selecting based on performance or accuracy. (Gradwohl and Tennenholtz 2022; Aridor
et al. 2020; Jagadeesan, Jordan, and Haghtalab 2022; Ben-Porat and Tennenholtz 2017, 2019). While these works investigate
strategic behavior on the part of services, our focus is on strategic behaviors by users. Our setting departs from all works
mentioned in this subsection in that we model users who seek positive classifications, rather than merely high accuracy.

Missing Proofs

In this section, we restate the main theoretical results, include their full proofs, and introduce a handful of auxiliary results.

Oscillations and Counter-Examples

In this section, we present examples of dynamics that do not converge or that are not zero-loss invariant.

Proposition 1. In the memoryless p = 0 setting, there exist settings in which the state (A,H) never converges.

Proof of Proposition 1. Let there exist a set of users with features X = {(1, 1), (1, 1), (−1, 1), (1,−1), (−1,−1)} and labels
Y = {1, 1,−1,−1,−1}, selecting between two services where both services choose models from the linear model class
(Example 1) using feature transformation ϕ(x) = (x, 1), using linear utility (Example 2) and hinge loss (Examples 3). Suppose
that the initial models are defined through parameters θ1 = [1, 0, 0]⊤ and θ2 = [0, 1, 0]⊤, that retraining updates tie-break by
choosing the minimum norm classifier, and that users tie-break by dividing usage equally between services.

Optimal updates may be calculated by analyzing stable points of repeated gradient updates on the best-response updates
found in Equations 3 and 5noting that with p = 0, M t = At for any timestep t. This algebra gives us the following update



steps:

θ0 =

[
1 0 0
0 1 0

]⊤
A0 =

[
0.5 0.5 1 0 0
0.5 0.5 0 1 0

]⊤
θ1 =

[
0 1 0
1 0 0

]⊤
A1 =

[
0.5 0.5 0 1 0
0.5 0.5 1 0 0

]⊤
θ2 =

[
1 0 0
0 1 0

]⊤
A2 =

[
0.5 0.5 1 0 0
0.5 0.5 0 1 0

]⊤
It may be observed that θ2 = θ0 ̸= θ1, and A2 = A0 ̸= A1. Given the memoryless setting in which (Ht+1, At+1) depend

only on the previous (Ht, At), we may conclude that this system will oscillate for all further timesteps and will not reach a
fixed state.

Proposition 6. Without sticky tie-breaking (Definition 1, regardless of the value of p, the existence of a zero-loss equilibrium
(Ht, At) at a timestep t does not guarantee the existence of zero-loss equilibria for further timesteps τ > t.

Proof of Proposition 6. Let there exist a set of users with features X = {(5), (−5), (0)} and labels Y = {1,−1, 1}, making
usage decisions in a system with one service choosing models from the linear model class (Example 1) using feature transfor-
mation ϕ(x) = (x, 1), using linear utility (Example 2) and hinge loss (Examples 3). Suppose that the model is defined through
parameters θ = [1,−1]⊤, with retraining updates tie-breaking stochastically.

Optimal updates may be calculated by analyzing stable points of repeated gradient updates on the best-response updates
found in Equations 3 and 5. The first update step can be seen as follows:

θ0 = [1 −1]
⊤

A0 = [1 0 0]
⊤

It may be noted that this constitutes a zero-loss equilibrium, as for all users i, A0
i ℓ(h

0, xi, yi) = 0, and for the negative point,
ℓ(h0, xi, yi) < a = 1. Despite this, it is feasible for the following second update step to occur due to H not being constrained
by sticky tie-breaking:

θ1 = [1 −0.5]
⊤

A1 = [1 0 0.5]
⊤

Here, it can been that for the point (0), A1
i ℓ(h

1, xi, yi) = 0.25. As such, state (H1, A1) does not constitute a zero-loss equilib-
rium, proving the claim.

Invariance
We next turn to our results about the invariance of zero-loss points. We begin with lemmas characterizing important properties
of the service retraining update.

Lemma 2. For every user service pair i, j such that M t
ij > 0, ℓ(ht+1

j , xi, yi) = 0. Therefore, when p > 0, if At
ij > 0 for any

timestep t, then for all further timesteps τ > t it must hold that ℓ(hτ
j , xi, yi) = 0.

Proof of Lemma 2. By the separability of Equation 5 on services, we may analyze the best-response update of a particular
service j. Let us call Ht+1

j the set of models such that the best-response update ht+1
j ∈ Ht+1

j .

Ht+1
j := argmin

h∈H

n∑
i=1

M t
ij∑n

k=1 M
t
kj

ℓ(hj , xi, yi)

Since terms of the sum where M t
i,j = 0 will simply be zero, we may simplify the sum, and furthermore in the interest of brevity

let us represent
Mt

ij∑n
k=1 Mt

kj
as ri,j(M t).

=

n∑
i∈{i|Mt

i,j>0}

ri,j(M
t)ℓ(hj , xi, yi) (6)

By Assumption 3, we have that there exists an h∗ ∈ H such that ∀i ∈ {1, ..., n}, ℓ(h∗, xi, yi) = 0. By the non-negativity of ℓ
and M it must hold that ri,j(M t)ℓ(hj , xi, yi) ≥ 0 for all i, j pairs, and since substituting h∗ into expression 6 would return a
sum of 0, it must be that 0 is the minimum value of the sum. For all h ∈ H such that ℓ(h, xi, yi) > 0 for some user i where



M t
i,j > 0, the value of the sum would be greater than 0 and therefore h wouldn’t minimize the sum so h ̸∈ Ht+1

j . Finally, we
may conclude that for all hj ∈ Ht+1

j , ℓ(h, xi, yi) ≤ 0 for all i such that M t
i,j > 0.

For the second statement, We may first observe that at any timestep t, if At
i,j > 0 then by Equation 4 and the non-negativity

of M , M t
i,j > 0. For the p > 0 case, if at some timestep t we have that for some user i and service j, M t

i,j > 0, then it will
hold that Mτ−1

i,j > 0 for all timesteps τ > t. This may be trivially observed through the non-negativity of A and the memory
update given by Equation 4.

By the conclusions drawn above, since Mτ−1
i,j > 0 we may conclude that ℓ(hτ

j , xi, yi) ≤ 0.
Next, we introduce an auxiliary lemma that formalizes the best response behavior of users. This lemma makes rigorous the

informal discussion at the end of Section .

Lemma 7. For a given user i, let there be a set of services J such that u0 = u(xi, h
t
j) > u(xi, h

t
k) for all services j ∈ J and

other services k ̸∈ J . The user best response at time t must satisfy u
1/(q−1)
0 =

∑
j∈J At

i,j >
∑

k ̸∈J At
i,k = 0.

Proof of Lemma 7. Analyzing the strategic objective for a user i (1) and denoting it as Lu
i for convenience, we can begin by

seeing that given some set of services J such that u(xi, hj1) = u(xi, hj2) = C0, if we hold
∑

j∈J Ai,j = C1 constant and
Ai,k constant for all k ̸∈ J such that

∑
k ̸∈J Ai,k = C2 and

∑
k ̸∈J Ai,ku(xi, hk) = C3, then any distribution of usages between

services in J doesn’t affect the value of the strategic objective.

Lu
i (A,H) =

m∑
j=1

Ai,ju(xi, hj)−
1

q

 m∑
j=1

Ai,j

q

=
∑
j∈J

Ai,ju(xi, hj) +
∑
k ̸∈J

Ai,ku(xi, hk)−
1

q

∑
j∈J

Ai,j +
∑
k ̸∈J

Ai,k

q

= C0

∑
j∈J

Ai,j + C3 −
1

q

∑
j∈J

Ai,j + C2

q

= C0C1 + C3 −
1

q
(C1 + C2)

q

Therefore, without loss of generality, let us say all usage in J is concentrated into a service j ∈ J ; since Ai,j′ = 0 for all
j′ ∈ J , j′ ̸= j we can drop them from the strategic objective and consider only a service j and services k ̸= j.

Taking the derivative of Lu
i (A,H) with respect to some Ai,j , we get gradient d

dAi,j
Lu
i (A,H) = u(xi, hj) −(

Ai,j +
∑

k ̸=j Ai,k

)q−1

. Let us take two services j and k, such that u(xi, hj) > u(xi, hl) for all l ̸= j. Service k is cho-
sen arbitrarily such that j ̸= k. We shall now enumerate options in a case analysis focusing on the total usage of user i. We shall
show that as total usage increases, the model is incentivized to concentrate all usage on the service that provides the highest
utility as the derivative of the objective function with respect to other services becomes negative.

Let us say that
∑m

l=1 Ai,l = 0. For service j, we have that d
dAi,j

Lu
i = u(xi, hj) > 0; therefore Ai,j is below the optimum.

Let us say
∑m

l=1 Ai,l < u(xi, hk)
1

q−1 . For service j, we have that d
dAi,j

Lu
i = u(xi, hj) − (

∑m
l=1 Ai,l)

q−1
> u(xi, hj) −

u(xi, hk) > 0; therefore Ai,j is below the optimum. For service k, we have that d
dAi,k

Lu
i = u(xi, hk) − (

∑m
l=1 Ai,l)

q−1
>

u(xi, hk)− u(xi, hk) = 0; therefore Ai,k is below the optimum.
Let us say

∑m
l=1 Ai,l = u(xi, hk)

1
q−1 . For service j, we have that d

dAi,j
Lu
i = u(xi, hj) − (

∑m
l=1 Ai,l)

q−1
= u(xi, hj) −

u(xi, hk) > 0; therefore Ai,j is below the optimum. For service k, we have that d
dAi,k

Lu
i = u(xi, hk) − (

∑m
l=1 Ai,l)

q−1
=

u(xi, hk)− u(xi, hk) = 0; therefore Ai,k at an optimum.
Let us say u(xi, hk)

1
q−1 <

∑m
l=1 Ai,l < u(xi, hj)

1
q−1 . For service j, we have that d

dAi,j
Lu
i = u(xi, hj)− (

∑m
l=1 Ai,l)

q−1
>

u(xi, hj) − u(xi, hj) = 0; therefore Ai,j is below the optimum. For service k, we have that d
dAi,k

Lu
i = u(xi, hk) −

(
∑m

l=1 Ai,l)
q−1

< u(xi, hk)− u(xi, hk) = 0; therefore Ai,k is above the optimum.
Let us say

∑m
l=1 Ai,l = u(xi, hj)

1
q−1 . For service j, we have that d

dAi,j
Lu
i = u(xi, hj) − (

∑m
l=1 Ai,l)

q−1
= u(xi, hj) −

u(xi, hj) = 0; therefore Ai,j is at an optimum. For service k, we have that d
dAi,k

Lu
i = u(xi, hk) − (

∑m
l=1 Ai,l)

q−1
=

u(xi, hk)− u(xi, hj) < 0; therefore Ai,k is above the optimum.



Let us say
∑m

l=1 Ai,l > u(xi, hj)
1

q−1 . For service j, we have that d
dAi,j

Lu
i = u(xi, hj) − (

∑m
l=1 Ai,l)

q−1
< u(xi, hj) −

u(xi, hj) = 0; therefore Ai,j is above the optimum. For service k, we have that d
dAi,k

Lu
i = u(xi, hk) − (

∑m
l=1 Ai,l)

q−1
<

u(xi, hk)− u(xi, hj) < 0; therefore Ai,k is above the optimum.
From all of this, we can see that the stable equilibrium holds that Ai,j = u(xi, hj)

1
q−1 , and that for all services k ̸= j,

Ai,k = 0 because of the non-negativity of A.

Corollary 8. For any user i and service j pair such that at timestep t, u(xi, h
t
j) ≤ 0, then At

i,j = 0.

Proof of Corollary 8. By Lemma 7, we have that if there exists some service k such that u(xi, h
t
k) > u(xi, h

t
j) then At

i,j = 0.
Let us analyze the case where for all users k, u(xi, h

t
j) = 0 ≥ u(xi, h

t
k). Once again taking the derivative of the strategic objec-

tive for a user i (1) with respect to At
i,j and denoting it as d

dAt
i,j
Lu
i (A

t, Ht) for convenience, we can see that if
∑m

k=1 A
t
i,k > 0

then d
dAt

i,j
Lu
i (A

t, Ht) < 0. This indicates that the optimum value of At
i,j is 0.

Finally, we prove the main invariance result.

Proposition 3. If a state (Ht, At) is zero-loss at time t, then all future states are zero-loss for all times τ ≥ t.

Proof of Proposition 3. We prove the proposition by showing that if a state (Ht, At) is a zero-loss equilibrium, then
(Ht+1, At+1) is also a zero-loss equilibrium.

We begin by arguing that Ht+1 = Ht. Consider the retraining objective for service j at t:
∑n

i=1

Mt
i,j∑n

k=1 Mt
k,j

ℓ(ht
j , xi, yi) By

Lemma 2, we know that ℓ(ht
j , xi, yi) = 0 for all users i and services j such that M t−1

i,j > 0. By zero-loss condition 1 we
have that ℓ(ht

j , xi, yi) = 0 for all users i and services j such that At
i,j > 0. Thus by the definition of memory (4), it must be

that ℓ(ht
j , xi, yi) = 0 for all users i and services j such that M t

i,j > 0. We conclude that ht
j achieves zero retraining loss, and

therefore by the definition of sticky tie-breaking (1), ht+1
j = ht

j for all services j. This implies that the zero-loss condition 2
holds: 0 ≥ u(xi, h

t
j) = u(xi, h

t+1
j ).

We next argue that if At is zero loss, so is At+1. First, consider negative users i with yi = −1. By the zero-loss condition
2 shown in the previous paragraph u(xi, h

t
j) ≤ 0. Therefore, by Corollary 8 the best response is At+1

ij = 0 for all j and all
negative users i, thus ensuring that zero-loss condition 1 holds for negative users i.

Now, consider positive users i with yi = +1. Because Ht+1 = Ht the user best-response objective remains the same.
By monotonicity of ℓ, we have that there exists some value v′ such that if ℓ(h, x,+1) = 0, u(x, h) = v′. As we know that
ℓ(ht

j , xi, yi) = 0 for all At
i,j > 0, we have that for all At

i,j > 0, u(xi, h
t
j) = v′. Let us say that there exists some positive user

i and service j such that ℓ(ht+1
j , xi, yi) > 0, meaning u(xi, h

t+1
j ) < v′. By Lemma 7, this implies that At+1

i,j = 0. As such,
for all i, j, if ℓ(ht+1

j , xi, yi) > 0 then At+1
i,j = 0; therefore, At+1ℓ(ht+1

j , xi, yi) = 0 for all users i and services j. This satisfies
zero-loss condition 1 for positive users.

Thus we have shown that if a state (Ht, At) is a zero-loss equilibrium, then (Ht+1, At+1) is also a zero-loss equilibrium.
Through induction, this guarantees that the state (Hτ , Aτ ) is a zero-loss equilibrium for all timesteps τ > t.

Convergence
With invariance results in hand, we can now prove the main convergence result.

Lemma 4. For any timestep t if there exists no values M t−1
i,j = 0 such that At

i,j > 0, then (Ht, At) is zero-loss.

Proof of Lemma 4. Lets say that there exists some timestep t such that there exists no values M t−1
i,j = 0 such that At

i,j > 0.
By Lemma 2 and by the non-negativity of ℓ, this means that ℓ(ht

j , xi, yi) = 0 for all users i and services j such that M t−1
i,j > 0.

This gives us that for all users i and services j,
Mt−1

i,j∑n
k=1 Mt−1

k,j

ℓ(ht
j , xi, yi) = 0 as either M t−1

i,j = 0 or ℓ(ht
j , xi, yi) = 0. Since

At
i,j = 0 when M t−1

i,j = 0 and when M t−1
i,j > 0 it holds that ℓ(ht

j , xi, yi) = 0, we can similarly conclude that for all i, j,
At

i,jℓ(h
t
j , xi, yi) = 0. This satisfies the first condition of zero-equilibrium states.

Let us define an Lu
i as follows:

Lu
i (A,H) =

1

q

 m∑
j=1

Ai,j

q

−
m∑
j=1

Ai,ju(xi, hj)

We know that for all M t−1
i,j > 0, ℓ(ht

j , xi, yi) = 0 by Lemma 2 and the non-negativity of ℓ. This indicates that for all i such
that yi = −1, if M t−1

i,j > 0 then u(xi, h
t
j) ≤ 0. By Corollary 8, this gives that At

i,j = 0. Since At
i,j = 0 if M t−1

i,j = 0 as well,
this indicates that for all services j, for all users i such that yi = −1, At

i,j = 0.



Let us say for contradiction that for some user i such that yi = −1, for service j = argmaxj u(xi, h
t
j) it holds that

u(xi, h
t
j) > 0. By Lemma 7, it must hold that At

i,j > 0. This poses a contradiction, and therefore we may state that for all i
such that yi = −1, for all j, u(xi, h

t
j) ≤ 0.

Theorem 5. Given nonzero memory p > 0, there is a finite time t ∈ N after which for all τ > t, (Hτ , Aτ ) is zero-loss.
Proof of Theorem 5. We may analyze each timestep t as either a timestep in which there exists some user-service pair i, j such
that At

i,j > 0 and M t−1
i,j = 0, or in which no such pair exists. There are only n×m such i, j pairs and as such a maximum of

nm timesteps where the first condition is satisfied. In the contrary, at any step t where the condition isn’t satisfied, by Lemma 4,
we have shown that we have reached a fixed point. Therefore, there is a maximum of nm timesteps before the conditions are
reached to reach a zero-loss equilibrium. By Proposition 3, this indicates that for all timesteps τ ≥ nm, (Hτ , Aτ ) constitutes a
zero-loss equilibrium.

We construct examples to indicate the linear dependence of convergence time on n and m. Let us define the model class as
h(x) = sign(x+ θ), with utility as u(x, h) = min{x+ θ, 1} and loss as ℓ(h, x, y) = max{0, 1− y(x+ θ)}. We set q = 2 and
p > 0. User tie-breaking is done by stochastically selecting one service to use, and services tie-break by choosing the minimum
change classifier between timesteps.
Example 5. Let there be n evenly spaced positive users, with features:

{(0), (−0.7), (−1.4), ..., (−0.7)(2− n), (−0.7)(1− n)}
If m = 1 service is instantiated with model θ0 = 0.5, at every timestep t, user t will receive positive utility and elect for positive
usage, pushing the classifier to θt = 1− xt. This will result in nm = n total timesteps before convergence.
Example 6. Let there be n = 1 user such that X = {(0)} and Y = {−1}. If m services are instantiated with models
θ0j = j + 1, at every timestep t, some service j will receive usage from the user, pushing the classifier to θtj = −1, at which
point it’ll never receive positive usage again. This will result in nm = m total timesteps before convergence.

Round Robin Updates
It might not be realistic that users and services update on the same schedule: while prior proofs assume that services conduct
one synchronous update based on current usage and users synchronously best respond once based on the updated services at
every timestep, it could be that services only update every several years while users may reallocate usage yearly. Additionally,
users and services don’t necessarily update synchronously, and one might conduct several updates at a time while others only
do one. In this setting, a timestep stops being a feasible metric of progression; instead, we generalize to the concept of a round.

Instead of there being one joint user and one joint service update as in a timestep, we generalize rounds to users and services
updating asynchronously and differing numbers of times. We maintain three constraints on this system. First, rounds are divided
into alternating user update periods and service update periods, such that only users or services are updating at a time. Second,
each round must contain at least one user period and one service period. Finally, each user and each service undergoes at least
one best response update in each period.
Proposition 9. Given nonzero memory p > 0, there there are a finite number of rounds r ∈ N after which for all ρ > r,
(Hρ, Aρ) is zero-loss.
Proof of Proposition 9. We shall prove this by showing that a round is functionally equivalent to a set of timesteps that assume
stochastic user tie-breaking. Since we have that a zero-loss point will be reached after a finite number of timesteps by Theorem 5,
this will imply the existence of a zero-loss point after a finite number of rounds.

As we have already analyzed the result of a service best responding to a set of users, and a user best responding to a set of
services, let us analyze the change when services and users undergo multiple consecutive updates.

Given a service j at update k > 0, let us denote hk
j as the best response to memory Mk

j updating on usages A. By the memory
update (4), we have that for all users i, Mk

i,j = 0 if and only if Mk+1
i,j = 0. By Lemma 2, we have that Mk+1

i,j ℓ(hk
j , xi, yi) = 0

for all users i. As hk
j achieves a value of zero for the objective value of the service update, by the non-negativity of loss and M

we have that hk
j is a best-response to Mk+1. Sticky updating gives that hk+1

j = hk
j .

Given a user i at update k > 0, let us denote Ak
i as the best response to services H . Ak+1

i will be a user best response to H;
since no other variables are involved in the user objective function, this is equivalent to choosing a new sample Ak

i from the
equivalence class of usages that maximizes the user objective function on H .

Due to the separability of the joint user and service updates, these asynchronous updates can be reanalyzed as parts of the joint
update. As such, we can collapse all consecutive user updates and all consecutive service updates; without loss of generality,
rounds can now be seen as a series of alternating user and service updates. This can be re-indexed as a series of timesteps, each
composed of one joint user and one joint service update.

By Theorem 5, this concludes the proof.

Additional Experiments
We present additional experiments on the settings introduced in the experiments section.



Figure 3: 5-Points dataset; the top three graphs give the p = 0 case while the bottom three give p = 0.5. Service loss is
calculated after the user update but before the service update, and usages are displayed for each of the five points with the
middle graphs giving the usages for model j = 0 and the right graphs giving the usages for model j = 1.

Five Points Dataset
We begin with a synthetic example with only five points to illustrate oscillation in non-memory cases, with features:

{(1, 1), (1, 1), (−1, 1), (1,−1), (−1,−1)}

and labels {1, 1,−1,−1,−1} respectively. This dataset is clearly separable by linear classifiers with φ(x) = [x, 1] and d = 3
(Example 1). We consider users acting strategically according to the linear utility defined in Example 2 with services updating
according to the hinge loss defined in Example 3. We consider m = 2 services with initial models θ = [1, 0, 0] and θ = [0, 1, 0];
the dividing hyperplanes are perpendicular to one another, both giving positive classifications to the coincident positive points,
but while model 0 gives positive classification to (1,−1) the other gives positive classification to (−1, 1). It may be observed
that this setting is identical to that of the proof of Proposition 1 and is illustrated in Figure 1. Note that the fifth user is a negative
point who will never choose to use either classifier, and thus will not be seen by them.

For tie-breaking, services choose models by minimizing the norm of θ (subject to achieving zero loss), while users split
usage equally between models that assign equal utility to them. We run two experiments with this synthetic dataset: one being
memoryless with p = 0 and the other using p = 0.5. This demonstrates how the memoryless setting may lead to oscillations
while the inclusion of memory ensures convergence.

Results are presented in Figure 3, which plots the loss and usage of each service. In the p = 0 case, there is clear oscillation
in the usages—the users at (1,−1) and (−1, 1) alternate between the two models. In contrast, for p = 0.5, the usages converge
after the second epoch. Perhaps more illuminatingly the loss drops to zero: this indicates that the services have converged to a
zero-loss point (Defintion 2) and no longer change between updates, unlike in the p = 0 case where classifiers swap directions
each timestep. It must also be noted that the usages of the negative users specifically converge to 0 in the p > 0 case. Since the
services correctly learn to assign negative classifications to the negative users, even the unseen users at (−1,−1), there is no
incentive for nonzero usage from negative users.

In Figure 4, we show that different values of p > 0 don’t affect the convergence. The top set of plots gives service loss and
usages for p = 0.1 and the bottom set gives the same for p = 1; however, both values of p give the same usages and losses as
each other across epochs.

Banknote Authentication
We remark that our strategic usage setting corresponds to the short-term dynamics of banks becoming aware of forged bank
notes that are in circulation, while the classical feature manipulation setting corresponds to innovations in forgery techniques.

Features are derived from images of banknote-like specimens; specifically, they are extracted using a wavelet transform tool,
resulting in X = R4. Each sample additionally comes with a binary label. We apply the following preprocessing: we normalize
the mean and variance of the features, and we transform the labels {+1,−1}.

We simulate services using scikit-learn support vector classification (SVC) (Pedregosa et al. 2011) with a radial basis function
(RBF) kernel using radius γ = 1 and regularization parameter C = 1010. This setting corresponds to linear models (Example 1)
with an infinite dimensional feature function φ trained with hinge loss (Example 3). The large value of C corresponds to a
small regularization weight, which approximates simply selecting the minimum norm model among all loss minimizers. In the



Figure 4: 5-Points dataset; the top three graphs give the p = 0.1 case while the bottom three give p = 1.0.

memoryless p = 0 setting, services have no negative users in their loss objective at various points in time. This violates the
preconditions for the scikit-learn SVC fit function, so in these instances, we preserve weights from the previous timestep.

We initialize this setting by revealing one positive and one negative user at random to each service at a timestep t = −1
in order to train models h0

j for all j ∈ {1, ...,m}. Random seeds for choosing these users are held constant between runs for
consistency, and users tie-break through splitting usage evenly between services that provide equal usage to them.

Figure 5 demonstrates how varying numbers of services can affect convergence. Plots for m = 1, 2, 3, 4 are given, both in the
zero memory and nonzero memory cases. This illustrates that as the number of services increases, convergence may take longer
due to services interfering with each other and disincentivizing users to reveal themselves to other services through usage. Note
that due to the static seed, between graphs models are shown the same initial users when the model is present.

We illustrate the potential for a variety of outcomes depending on the initial seed in Figure 6. Generally, this shows that the
initial conditions can have drastic effects on both the time to convergence and the final stable state.

Hardware and Specifications
All experiments were run on an Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz.



Figure 5: Banknote Authentication dataset; ablating on m. The top four graphs give the p = 0 case while the bottom four
give p = 0.5. In each graph, triangle markers indicate positive usages while circular markers indicate negative usages; colors
indicate the different services.

Figure 6: Banknote Authentication dataset; ablating on the seed (s). The top four graphs give the p = 0 case while the bottom
four give p = 0.5. In each graph, triangle markers indicate positive usages while circular markers indicate negative usages;
colors indicate the different services.


