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ABSTRACT

Large-scale multimodal contrastive pretraining has demonstrated great utility to
support high performance in a range of downstream tasks by mapping multiple
modalities into a shared embedding space. Typically, this has employed sepa-
rate encoders for each modality. However, recent work suggest that transform-
ers can support learning across multiple modalities and allow knowledge shar-
ing. Inspired by this, we investigate how to build a modality-shared Contrastive
Language-Image Pre-training framework (MS-CLIP). More specifically, we ques-
tion how many parameters of a transformer model can be shared across modalities
during contrastive pre-training, and rigorously study architectural design choices
that position the proportion of parameters shared along a spectrum. We observe
that a mostly unified encoder for vision and language signals outperforms all other
variations that separate more parameters. Additionally, we find that light-weight
modality-specific parallel adapter modules further improve performance. Exper-
imental results show that the proposed MS-CLIP outperforms vanilla CLIP by
13% relatively in zero-shot ImageNet classification (pre-trained on YFCC100M),
while simultaneously supporting a reduction of parameters. In addition, our ap-
proach outperforms vanilla CLIP by 1.6 points on a collection of 24 downstream
vision tasks. Furthermore, we discover that sharing parameters leads to semantic
concepts from different modalities being encoded more closely in the embedding
space, facilitating the learning of common semantic structures (e.g., attention pat-
terns) across modalities.

1 INTRODUCTION

Contrastive Language-Image Pre-training (CLIP) has drawn much attention recently in the field of
Computer Vision and Natural Language Processing (Jia et al., 2021; Radford et al., 2021), where
large-scale image-caption data are leveraged to learn generic vision and language representations
through contrastive loss. This allows the learning of open-set visual concepts and imbues the learned
visual feature with a robust capability to transfer to diverse vision tasks.

Prior work in this topic often employs separate language and image encoders, despite architectural
similarities between the encoders for both modalities. For instance, the original CLIP work (Radford
et al., 2021) uses a ViT (Dosovitskiy et al., 2020) based image encoder, and a separate transformer
(Vaswani et al., 2017) based language encoder. However, Lu et al. (2021) recently discovered that

transformer models pre-trained on language data could generalize well to visual tasks without alter-
ing the majority of parameters, suggesting useful patterns and structures may exist across modalities.
In addition, shared architectures have been used to achieve state-of-art performance on a variety of
vision-language tasks (Zellers et al., 2021; Li et al., 2019; Chen et al., 2019). These observations
suggest that a unified encoder for CLIP may potentially be leveraged to realize performance and
efficiency gains.

In this paper, we consequently investigate the feasibility of building a modality-shared CLIP (MS-
CLIP) architecture, where parameters in vision encoder and text encoder can be shared. Through
this framework, we seek answers to the following three questions: (i) In the CLIP training set-
ting, which layers of the encoders for the two modalities should be shared, and which should be
modality-specific? (ii) Within each layer, which sub-module should be shared and which should
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Figure 1: Overview of the original CLIP (left) and our proposed MS-CLIP (right).

not? (iii) Lastly, what is the impact to performance and efficiency when including lightweight
modality-specific auxiliary modules to accommodate specializations in each modality?

In order to answer these questions, we first perform a comprehensive analysis on the impact of vary-
ing the degree of sharing of components across different layers. Our results show that in order to
maximize performance, the input embedding, layer normalization (LN) (Ba et al., 2016), and out-
put projection should be modality-specific. However, all the remaining components can be shared
across vision and text transformers, including the weights in self-attention and feed-forward mod-
ules. Sharing all these layers even outperforms more complex strategies where we employ greedy
selection of layers or use Neural Architecture Search (NAS) (Dong & Yang, 2019) to search for the
optimal weight sharing policy.

Finally, we explore whether introducing lightweight modality-specific components to the shared
backbone may yield a better balance between cross-modality modeling and specializations within
each modality. Studied designs include: (i) Early Specialization. The first layers in vision Trans-
former and text Transformer are replaced by extra modules that are specialized for each modality,
respectively. This includes a set of lightweight cascaded residual convolutional neural networks
(CNNs) for vision, and an additional Transformer layer for language. These early layers allow the
representations in each modality to lift to higher level patterns before merging, and introduce shift
invariance early in the visual branch. (ii) Efficient Parallel Branch. For the visual modality, we
explore a lightweight multi-scale CNN network, parallel to the main modality-shared branch, and
incorporate its multi-scale features to the main branch through depth-wise convolutional adaptors.
This parallel branch enables augmenting the main branch with the benefits convolutions can instill
from better modeling of spatial relationships.

We pre-train our MS-CLIP on the major public image-caption dataset YFCC100M (Thomee et al.,
2016), and rigorously evaluate on 25 downstream datasets that encompass a broad variety of vi-
sion tasks. The experimental results demonstrate that MS-CLIP can out-perform original CLIP
with fewer parameters on the majority of tasks, including zero-shot recognition, zero-shot retrieval,
and linear probing. Moreover, in order to better understand the success of MS-CLIP, we conduct
studies on the learned embedding space, namely with a measurement on multi-modal feature fu-
sion degree (Cao et al., 2020) and quantitatively assess to what degree semantic structures (e.g.,
attention patterns) are shared across modalities.Our results reveal that sharing parameters can pull
semantically-similar concepts from different modalities closer and facilitate the learning of common
semantic structures (e.g., attention patterns).

The paper is subsequently organized as follows: in Section 2, we cover datasets and describe the
shareable modules and modality-specific designs. In Section 3, we first present a rigorous study
varying amount of parameters shared across modalities and measure the impact to downstream per-
formance and efficiency. Then, we measure the impact of modality-specific designs to performance,
and compare to model architectures with the adapters absent. Section 4 covers related work, and
Section 5 concludes.

2 METHODS

2.1 SHARABLE MODULES

Following Radford et al. (2021), we use ViT-B/32 as the basic vision encoder, and the transformer
encoder as the basic text encoder, as shown in Fig.1, left. We adjust the hidden dimension of text
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Figure 2: Overview of MS-CLIP-S.

transformer from 512 to 768 to match that in the vision transformer. The resulted additional baseline
method is noted as CLIP (ViT-B/32, T768). After the adjustment, the vast majority of parameters
between the two encoders can be shared, such as the attention modules, feedforward modules, and
LayerNorm (LN) layers. Modules that cannot be shared include the input embedding layer (where
the vision encoder deploys a projection layer to embed image patches, while the text encoder encodes
word tokens), and the output projection layer. Both encoders have 12 transformer layers. We dub
this Naı̈ve modality sharing model MS-CLIP (see Fig. 1, right).

2.2 MODALITY-SPECIFIC AUXILIARY MODULE

In this section we describe the two variations of lightweight modality-specific auxiliary modules
used in our study.

Early Specialization In the field of multi-modal learning, it is found beneficial to employ different
specialized feature extractors for different modalities and unify them together with the same module
in latter layers (Castrejon et al., 2016; Hu & Singh, 2021). Motivated by above, we begin the
modality-specific design with making only the first layer specialized for visual and text, leaving
other layers shared. Concretely, on vision side, we employ a series of convolutional networks with
residual connection as our specialization layer, in which the feature resolution is down-sampled and
the channel dimension is increased. The detailed configuration is shown in Tab.1, inspired by a (Xiao
et al., 2021). We further add residual connections between convolutional layers, which is empirically
more stable for large-scale training. On the language side, we reuse the de-facto Transformer layer
for language modeling

Efficient Parallel Branch In image representation, multi-scale information has always been es-
sential (Cai et al., 2016; Szegedy et al., 2015). Earlier work in vanilla vision Transformer (Doso-
vitskiy et al., 2020), however, operate on a fixed scale. In recent works that introduce multi-scale
into ViT (Liu et al., 2021a; Wu et al., 2021), they gradually reduce the patch size and increase the
dimension of channel stage by stage. Nevertheless, directly sharing weights between multi-scale
ViT and the language Transformer is non-trivial, due to the discrepancy in their channel dimensions.
Motivated by Feichtenhofer et al. (2019), we propose to have an auxiliary parallel branch alongside
the shared vision Transformer. It consists of one convolution layer and four residual convolution
layers, to lower the resolution and widen the channel. Different from plain residual convolution in
Early Specialization, here we utilize the bottleneck design in ResNet (He et al., 2016) to save pa-
rameters. The main function of parallel branch is to supplement the main branch with multi-scale
feature when an image is taken as the input. Therefore, we also employ one adapter after each
parallel layer to integrate feature in different scales into different layer of shared Transformer. For
efficiency, we adopt depth-wise convolutions (DWConv) and point-wise convolution (PWConv) in
adapters to adjust the feature map size and depth. The adapter can be formulated as:

H
′

p = bn(PWConv(DWConv(Hp)))

H
′
= ln(bn(DWConv(H)) +H

′

p)
(1)
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where Hp is the multi-scale feature in parallel branch and H
′

is the adapter’s output. bn and ln
denote batch normalization and layer normalization. It’s noted the CLS token is not fused with
parallel branch and keeps unchanged. The detailed configuration is provided in Tab.2.

We name the full model with both modality-specific designs as MS-CLIP-S, where “S” indicates
supreme (see Fig. 2).

Table 1: Setting of Early Specialization,
N*N means 2D kernel size of convs.

Module Dim Resolution

3*3 Conv 3→48 224→112
Residual 3*3 Conv 48→96 112→56
Residual 3*3 Conv 96→192 56→28
Residual 3*3 Conv 192→384 28→14
Residual 3*3 Conv 384→768 14→7

1*1 Conv 768→768 7→7

Total # Parameters 4.1M

Table 2: Setting of Efficient Parallel Branch. Fusion Layer
means fusing with which modality-shared layer.

Parallel Adapter Fusion Resol-
Module Module Layer ution

3*3 Conv 16*16 DWConv 2 224→112
Bottleneck 3*3 Conv 8*8 DWConv 4 112→56
Bottleneck 3*3 Conv 4*4 DWConv 6 56→28
Bottleneck 3*3 Conv 2*2 DWConv 8 28→14
Bottleneck 3*3 Conv 1*1 DWConv 10 14→7

Total # Parameters 3.9M

3 EXPERIMENTS

We start this section by introducing the pre-training and evaluation setup. Then we systematically
explore how varying the degree of sharing weights across modalities impacts performance, using
the models mentioned in Sec. 2.1 for initial investigation. Further, we validate whether lightweight
modality-specific components introduced in Sec. 2.2 could yield a better balance between knowledge
sharing and specializations. Comprehensive zero-shot and linear probing evaluations are conducted
on a variety of downstream datasets. We conclude this section with probing studies and qualitative
results.

3.1 SETUP

Training Details: Similar to the original CLIP paper (Radford et al., 2021), we maintain separate
attention masks for image and text: vision transformer allows upper layers to attend to all tokens
from lower layers with a bi-directional mask, while the mask in text transformer is auto-regressive.
The optimizer is AdamW (Loshchilov & Hutter, 2017). The learning rate is decayed from 1.6e-3 to
1.6e-4, with a cosine scheduler and a warm up at first 5 epochs. We train our models on 16 NVIDIA
V100 GPUs with the batch size per GPU set to be 256. For MS-CLIP and MS-CLIP-S, the weight
decay for non-shared parameters and shared parameters are separately set to 0.05 and 0.2. We found
that a higher weight decay for shared parameters works better, simply because shared parameters
are updated twice in each iteration, and a higher weight decay can mitigate over-fitting.

Pretraining Dataset: We use YFCC100M (Thomee et al., 2016) as the pre-training dataset. Fol-
lowing the filtering process in (Radford et al., 2021), we only keep image-text pairs where caption
is in English. This leaves us around 22 million data pairs1.

Evaluation Datasets: In total, we choose 25 public datasets for evaluation: ImageNet (Deng
et al., 2009), Food-101 (Bossard et al., 2014), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), SUN397 (Xiao et al., 2010), Stanford Cars (Krause et al., 2013), FGVC
Aircraft (Maji et al., 2013), Pascal Voc 2007 Classification (Everingham et al.), Describable Texture
(dtd) (Cimpoi et al., 2014), Oxford-IIIT Pets (Parkhi et al., 2012), Caltech-101 (Fei-Fei et al., 2004),
Oxford Flowers 102 (Nilsback & Zisserman, 2008), MNIST (LeCun et al., 1998), Facial Emotion
Recognition (Pantic et al., 2005), STL-10 (Coates et al., 2011), GTSRB (Stallkamp et al., 2012),
PatchCamelyon (Veeling et al., 2018), UCF101 (Soomro et al., 2012), Hateful Memes (Kiela et al.,
2020), Country211 (Radford et al., 2021), EuroSAT (Helber et al., 2019), Kitti-distance (Geiger
et al., 2012), Rendered-SST2 (Socher et al., 2013), Resisc45 (Cheng et al., 2017), MSCOCO (Lin

1Note that this is more than the 15 million from (Radford et al., 2021) as we use a slightly different En-
glish dictionary to exclude non-English words. All our results are reported on this data version, including the
baseline (Radford et al., 2021).
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Table 3: Experimental results of sharing different components in Transformer layer. LN1 denotes
the LN before Attn. LN2 denotes the LN before FFN.

Text # Params Shared Non-Shared Zero-shot
Width Module Module Acc(%)

512 150M - Attn, FFN, LN1, LN2 32.15
768 209M - Attn, FFN, LN1, LN2 31.85
768 125M Attn, FFN, LN1, LN2 - 28.40
768 125M Attn, FFN, LN1 LN2 27.57
768 125M Attn, FFN, LN2 LN1 32.16
768 125M Attn, FFN LN1, LN2 32.99

Table 4: Results of sharing different layers in Transformer.

Share Last X layers 12 11 10 8 6 4 2 0 NAS-Search

Zero-shot Acc(%) 32.99 31.25 32.21 32.39 32.85 30.91 nan 31.85 30.97
# Parameters 125M 132M 139M 153M 167M 181M 195M 209M 174M

et al., 2014). These datasets cover various visual scenarios, including generic objects, memes, scenes
and etc. We perform linear probing with logistic regression on top of extracted image features, ex-
actly following the protocol in the original CLIP paper (Radford et al., 2021). For zero-shot recogni-
tion, we report zero-shot accuracy on ImageNet (Deng et al., 2009) validation set. Following CLIP,
we use an ensemble of multiple prompts to extract text features as category features. For zero-shot
image-text retrieval, we report recall on MSCOCO (Lin et al., 2014)

3.2 INITIAL INVESTIGATION ON MS-CLIP

For validation purposes, we report zero-shot accuracy on ImageNet validation set in our initial study.

1. LNs need to be modality-specific. We mainly examine the shareable modules within each
Transformer layer, as the input and output projection layers could not be shared. As shown in Tab.3,
the first model variant shares all components, including two LN layers and transformation weights
in self-attention module and feedforward module, which results in worse performance compared to
CLIP (ViT-B/32) and CLIP (ViT-B/32, T768). Then we make the two LN layers modality-specific,
which yields better performance and even surpasses the non-shared version in both zero-shot ac-
curacy and parameter efficiency. Noted that the number of parameters in LNs is almost negligible
compared with the transformation weights. The sharing is applied in all 12 layers for simplicity.
Our observation echos the finding in FPT (Lu et al., 2021) that only tuning LNs in a mostly-frozen
pretrained language model yield satisfactory performance on vision tasks.

2. Less is more: Sharing all layers is better than some. We further study which layer should be
modality-specific and which should be modality-shared. We conduct experiments on sharing last
N layers where N is ranging from 12 to 0. N = 12 indicates all layers are shared and N = 0
indicates the non-shared baseline CLIP (ViT-B/32, T768). Tab. 4 suggests that sharing all 12 layers
performs the best while requires the least number of parameters. This sharing-all model is defined
as MS-CLIP earlier. Additionally, inspired by recent work on Neural Architecture Search (NAS)
(Zheng et al., 2021; Dong & Yang, 2019), we train a model that learns a policy to control which
layer to (not) share via Gumbel Softmax (Dong & Yang, 2019). Despite its sophistication, it still
underperforms MS-CLIP.

3. Shared model exhibits higher multi-modal fusion degree. To probe the multi-modal fusion
degree, following (Cao et al., 2020), we measure the Normalized Mutual Information (NMI) be-
tween visual features and text features at each layer. For each image-caption pair, we use K-means
algorithm (K=2) to group all feature vectors from the forward pass of visual input and text input
into 2 clusters. Then, NMI is applied to measure the difference between the generated clusters and
ground-truth clusters. The higher the NMI score is, the easier the visual features and text features
can be separated, and the lower the multi-modal fusion degree is.
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Table 5: Layer-wise NMI scores of models.

Layer 0 1 2 3 4 5 6 7 8 9 10 11 Avg.

CLIP (ViT-B/32, T768) 0.586 0.387 0.265 0.252 0.255 0.241 0.239 0.243 0.235 0.23 0.227 0.185 0.278
MS-CLIP (B/32) 0.589 0.332 0.235 0.211 0.2 0.21 0.2 0.202 0.214 0.197 0.192 0.173 0.246

w/ Early Specialization 0.471 0.348 0.215 0.21 0.218 0.221 0.22 0.213 0.19 0.183 0.179 0.161 0.235
MS-CLIP-S (B/32) 0.519 0.536 0.243 0.216 0.199 0.221 0.19 0.247 0.216 0.215 0.224 0.217 0.270

Table 6: Experimental results of zero-shot recognition on ImageNet validation.

Module # Parameters Zero-shot
Name Acc(%)

CLIP (ViT-B/32) 150M 32.15
CLIP (ViT-B/32, T768) 209M 31.85
MS-CLIP (B/32) 125M 32.99

w/ Early Specialization 129M 35.18
w/ Parallel Branch 129M 34.18

MS-CLIP-S (B/32) 133M 36.66

NMI scores are then used to probe the multi-modal fusion degree of the shared model (MS-CLIP
(B/32)) vs. non-shared model (CLIP (ViT-B/32, T768)). Here we choose CLIP (ViT-B/32, T768)
instead of CLIP (ViT-B/32) in that the feature dimensions of two modalities have to be the same
for clustering. NMI scores of all 12 layers and the average are listed in the first two rows of Tab.5.
Shared model has lower NMI scores than original CLIP on almost all the layers and the average,
indicating a higher degree of multi-modal fusion.

3.3 EXPERIMENTAL RESULTS

Compared Models: We conduct comprehensive experiments with following settings. (1) CLIP
(ViT-B/32): The same as Radford et al. (2021), this uses ViT-B32 as visual encoder and Text Trans-
former as text encoder with width to be 512. (2) CLIP (ViT-B/32, T768): This model sets the width
of Text Transformer as 768 to unify the dimension of both encoders. (3) MS-CLIP (B/32): Com-
pared with CLIP (ViT-B/32, T768), this model utilizes the modality-shared transformer blocks to
substitute non-shared transformer blocks in visual and text encoders. We use the best setting found
in Sec. 3.2: sharing all except for two layer normalizations. (4) MS-CLIP (B/32) + Early Specializa-
tion: Based on (3), we specialize the first layer of shared visual&text encoders following Sec. 2. (5)
MS-CLIP (B/32) + Parallel Branch: Based on (3), we add a parallel branch to shared visual encoder.
(6) MS-CLIP-S (B/32): Based on (3), we apply both early specialization and parallel branch to our
shared visual&text encoders.

Zero-Shot ImageNet: The experimental results are reported in Tab.6. In the first row, we re-
produce the CLIP (ViT-B/32) pre-trained on YFCC, following the officially released code. On
YFCC, Radford et al. (2021) only reported the result of CLIP (ResNet50), which is 31.3% on zero-
shot recognition of ImageNet. It proves that our re-implementation can basically re-produce the
results reported. By comparing 1-st row and last row, we find MS-CLIP-S (B/32) can outperform
CLIP (ViT-B/32) by 4.5% absolutely and 13.9% relatively in zero-shot recognition accuracy on
ImageNet, with less parameters.

Ablation Study: In Tab.6, we further analyze the effect of components in MS-CLIP. By com-
paring 2-nd row and 3-rd row, it is found that directly increasing the text transformer’s capacity is
useless and even a bit harmful. That is also mentioned in Radford et al. (2021). Then comparing
3-rd row and 4-th row, we find that sharing parameters in vision and text transformer improves the
performance and even can outperform CLIP (ViT-B/32) by 0.8%. It demonstrates that sharing the
parameters enables the visual and text information to benefit and complement each other. Then we
evaluate the proposed auxiliary modality-specific modules one by one. The comparison between
5-th row and 4-th row tells that early specialization can bring 2.1% improvement with only 4M pa-
rameters increased. On the other hand, from 6-th row and 5-th row, we realize that auxiliary parallel
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Table 7: Results of zero-shot image-text retrieval.

MSCOCO Val. MSCOCO Test.

I2T T2I I2T T2I

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Vanilla CLIP 23.9 48.8 14.6 34.4 16.3 37.8 14.9 35.7
MS-CLIP-S 28.9 55.1 18.7 39.8 20.0 42.5 19.3 41.7

branch on vision can also improve by 1.1%. Those two auxiliary modules can work together to
further boost the accuracy to 36.66%.

Zero-shot Image-Text Retrieval: We evaluate our MS-CLIP-S on two sub-tasks: image-to-text
retrieval and text-to-image retrieval under zero-shot setting. The dataset we used is MSCOCO vali-
dation set and test set, where each has 5,000 images. The comparison between MS-CLIP and vanilla
CLIP, both pre-trained on YFCC, is shown in Tab. 7.

Table 8: Linear probing results on 24 datasets

Datasets CLIP MS-CLIP-S ∆(ViT-B32) (B32)

Food-101 71.3 76.0 + 4.7
SUN397 68.1 71.7 + 3.6
Stanford Cars 21.8 27.5 + 5.7
FGVC Aircraft 31.8 32.9 + 1.1
Pascal Voc 2007 84.4 86.1 + 1.7
Describable Texture (dtd) 64.1 69.4 + 5.3
Oxford-IIIT Pets 61.1 62.1 + 1.0
Caltech-101 82.8 81.6 − 1.2
Oxford Flowers 102 90.7 93.8 + 3.1
MNIST 96.5 97.2 + 0.7
Facial Emotion Recognition 54.9 53.6 − 1.3
STL-10 95.4 95.1 − 0.3
GTSRB 67.1 69.9 + 2.8
PatchCamelyon 78.3 81.3 + 3.0
UCF101 72.8 74.6 + 1.8
CIFAR-10 91.0 87.2 − 3.8
CIFAR-100 71.9 66.7 − 5.2
Hateful Memes 50.6 52.4 + 1.8
ImageNet 58.5 63.7 + 5.1
Country211 19.9 21.9 + 2.0
EuroSAT 94.4 93.5 − 0.9
Kitti-distance 39.7 45.1 + 5.4
Rendered-SST2 55.2 56.0 + 0.8
Resisc45 83.3 85.1 + 1.8

Avg. 66.9 68.5 + 1.6

Linear Probing: Since we al-
ready conduct ablation study un-
der zero-shot recognition, in lin-
ear probing, we only compare
the CLIP (ViT-B/32) and MS-
CLIP-S (B/32). All the results
are listed in Tab. 8. Over-
all, MS-CLIP-S (B/32) outper-
forms CLIP (ViT-B/32) on 18
out of 24 tasks. The average
improvement of 24 tasks in to-
tal is 1.62%. The reason be-
hind the improvement of visual
encoder might be that, the inte-
gration of modality-shared mod-
ule and modality-specific mod-
ule enables the visual encoder to
benefit from useful language in-
formation.

3.4 FURTHER ANALYSIS

NMI Score In Sec. 3.2, we
already explain how to measure
NMI score and reports the NMI
scores of CLIP (ViT-B/32, T768)
and MS-CLIP (B/32). We further
measure the NMI scores of MS-

CLIP (B/32) + Early Specialization and MS-CLIP-S (B/32). The result shows that introducing early
specialization can further improve the multi-modal fusion degree. But adding parallel branch leads
to a decrease of multi-modal fusion degree. That might be due to the integration of modality-specific
multi-scale visual features. From the Tab. 6, adding parallel branch indeed improves the transferable
representation, which means NMI score may not be a direct indicator of representation quality. In
following subsection, we introduce another metric to analyze the knowledge learnt in MS-CLIPs.

Multi-modal Common Semantic Structure To understand why modality-shared Transformer
blocks and proposed auxiliary modality-specific modules can improve the representation, we dig
deeper into the what our modules have learnt after training. Our hypothesis is that MS-CLIPs should
better capture the common semantic structures existing inside concepts in different modalities. To
quantitatively measure it, we probe the attention weights during inference and measure the similar-
ity between attentions in visual and attentions in text. To be more specific, the dataset we use is
Flick30K-Entity (Plummer et al., 2015), where there are multiple objects in each image grounded
to corresponding concepts in caption. Given an image, assume there are grounded objects (visual
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Table 9: Common Semantic Structure distance

Layer 0 1 2 3 4 5 6 7 8 9 10 11 Avg.

CLIP (ViT-B/32) 0.18 0.203 0.227 0.186 0.178 0.164 0.118 0.103 0.106 0.109 0.105 0.074 0.143
MS-CLIP (B/32) 0.175 0.128 0.153 0.132 0.136 0.136 0.106 0.119 0.092 0.106 0.083 0.058 0.113

+ Early Specialization - 0.107 0.142 0.16 0.12 0.12 0.103 0.103 0.096 0.111 0.11 0.058 0.111
MS-CLIP-S (B/32) - 0.085 0.162 0.105 0.102 0.103 0.105 0.114 0.093 0.094 0.093 0.061 0.101

(a) 1st head of 9th layer (b) 1st head of 3rd layer (c) 8th head of 5th layer

Figure 4: Visualized attention maps of shared attention head.

concepts) {vc1, vc2, ..., vcn} and corresponding grounded text concepts {tc1, tc2, ..., tcn}, in which
tci refers to vci. In the h-th head of l-th attention layer, we take the raw visual attention map M lh

and raw text attention map Klh. In order to get the relationship between concepts, we map the text
concept tci to its last token ti, and map the visual concept vci to its center patch vi. Through this
mapping, we can treat the attention value between tci and tcj as Klh

ij , and attention value between
vci and vcj as M lh

ij . Then for each concept pairs {i, j} in both vision and text, we normalize the
attention value over starting concept i with softmax function, and average the normalized attention
values over all heads in that attention layer. Further, we compute the l1 distance between attention
values of the same concept pair in different modalities. Finally, we sum the l1 distances of all the
concept pairs and treat it as the Common Semantic Structure (CSC) distance of that attention layer.
A lower CSC distance means more common attention patterns learnt in Transformer across two
modalities. The whole process can be formulated as:

dislij = |
H∑

h=1

1

H
softmaxi(M

lh
ij )−

H∑
h=1

1

H
softmaxi(K

lh
ij )| (2)

CSCl = disl =

n∑
i=1

n∑
j=1

(dislij) (3)

a young man wearing a 
baseball cap is posing in 
front of a hotdog stand

Distance

Between

Attentions

Visual Concept Text Concepts

Visual Attention Text Attention

Figure 3: Diagram of comput-
ing Common Semantic Struc-
ture distance

The layer-wise CSC distance of CLIP (ViT-B/32), MS-CLIP
(B/32), MS-CLIP (B/32) + Early Specialization and MS-CLIP-
S (B/32) are reported in Tab. 9. It is worth noting we use 10k
image-caption pairs from Flick30k-Entity to compute, which is
large enough for getting a stable CSC distance. Since the first
layer of MS-CLIP (B/32) + Early Specialization and MS-CLIP-
S (B/32) doesn’t contain attention module in vision branch, we
average the last 11 layers’ CSC distance to evaluate it. We can
find that both the modality-shared Transformer blocks and pro-
posed auxiliary modality-specific modules can lower the CSC dis-
tance and learn more semantic structure similarity of vision and
text. It is natural that sharing parameters can enforce the attention
to learn more common information. As for proposed modality-
specific modules, we suspect that those well designed models can
account for the discrepancy of separate modalities and make the
remaining shared modules focus more on the common patterns.

Visualization of Shared Attention Head In order to intuitively understand how shared attention
module works, we visualize the visual attention patterns and text attention patterns of the same
shared attention head during inference. More precisely, for vision, we visualize the attention weights
between CLS token and all patches. For text, we visualize attention weights between EOS token and
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all other tokens. The reason is that both CLS token and EOS token will be used as output global
feature. The model we use is MS-CLIP-S (B/32). We surprisingly find some heads being able to
highlight the same concepts from different modalities. Some samples are visualized in Fig. 3. Take
Fig. 3(a) as an example. Given the image and caption respectively as input, the 1st head of 9-th
attention layer gives the highest attention value to the region of ”cat” in image and token ”cats” in
text. It validates that the attention heads in MS-CLIP can learn the co-reference between concepts
across vision and language.

4 RELATED WORK

4.1 VISION AND LANGUAGE MODELLING

This work is built on the recent success of learning visual representation from text supervision. Vir-
Tex (Desai & Johnson, 2021) proposes to learn visual encoder from image captioning objectives.
LocTex (Liu et al., 2021b) introduces localized textual supervision to guide visual representation
learning. Both studies are conducted on a relatively small scale. A more recent work CLIP (Rad-
ford et al., 2021) demonstrates that generic multimodal pre-training could benefit from extremely
large scale training (i.e., a private dataset with 400 million image-caption pairs) and obtain strong
zero-shot capability. It adopts a simple but effective contrastive objective that attracts paired image
and caption and repels unpaired ones. ALIGN (Jia et al., 2021) has a similar model design except
for using EfficeintNet (Tan & Le, 2019) as their visual encoder, and is pre-trained on an even larger
dataset. Our work focuses on the shareability of transformers in vision and text in large-scale con-
trastive pre-training and are orthogonal to above mentioned works. Another line of work similar
to ours is Vision-and-Language Pre-training (or VLP) (Lu et al., 2019; Tan & Bansal, 2019; Zhou
et al., 2020; Chen et al., 2019; Li et al., 2019; 2020; Wang et al., 2021a;b), where both vision and
language signal are fed into also a unified model to enable downstream multimodal tasks. Our
work focuses on learning uni-modal representation instead (i.e., learning visual representation from
text supervision) and serves visual-only downstream tasks. Our model could potentially extend to
handle multimodal scenarios (Shen et al., 2021) and compare against the VLP counterparts, but is
out-of-scope of this paper.

4.2 PARAMETER-SHARING ACROSS MODALITIES

Humans reason over various modalities simultaneously. Sharing modules for multi-modal process-
ing has attracted increasing interests recently from the community. Lee et al. (2020) proposes to
share the parameters of Transformers across both layers and modalities to extremely save parame-
ters. They focuses on video-audio multi-modal downstream task and has an additional multi-modal
Transformer for modality fusion. (Hu & Singh, 2021) introduces a shared Transformer decoder for
multi-task multi-modal learning. In terms of multimodal fusion, (Nagrani et al., 2021) utilizes a set
of shared tokens across different modalities to enable multimodal fusion. The most relevant work to
ours is VATT (Akbari et al., 2021). VATT introduces a modality-agnostic transformer that can pro-
cess video, text, and audio input and is pre-trained on a contrastive objective. The proposed model
naively reuses the entire network for all modalities and yields results worse than the non-shared
counterpart. We study more than whether we can have a shared model, but how different degrees of
sharing and design nuances behave and when we can achieve better performance than non-sharing.

5 CONCLUSION

We propose MS-CLIP, a modality-shared contrastive language-image pre-training approach, where
most parameters in vision and text encoders are shared. To explore how many parameters of a trans-
former model can be shared across modalities, we carefully investigate various architectural design
choices through plenty of experiments. In addition, we propose two modality-specific auxiliary
designs: Early Specialization and Auxiliary Parallel Branch. Experiments on both zero-shot and
linear probing demonstrate the superior of MS-CLIP over CLIP in both effectiveness and parame-
ter efficiency. Finally, we analyze the reasons behind and realize that sharing parameters can map
two modalities into a closer embedding space and promote the common semantic structure learning
across modalities.
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