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ABSTRACT

Spiking Neural Networks (SNNs) are brain-inspired computing models with
event-driven based low-power operations and unique temporal dynamics. How-
ever, spatial and temporal dynamics in SNNs pose a significant overhead in accel-
erating neural computations and limit the computing capabilities of neuromorphic
accelerators. Especially, unstructured sparsity emergent in both space and time,
i.e., across neurons and time points, and iterative computations across time points
cause a primary bottleneck in data movement.
In this work, we propose a novel technique and architecture that allow the exploita-
tion of temporal information compression with structured sparsity and parallelism
across time, and significantly improves data movement on a systolic array. We
split a full range of temporal domain into several time windows (TWs) where a
TW packs multiple time points, and encode the temporal information in each TW
with Split-Time Temporal coding (STT) by limiting the number of spikes within
a TW up to one. STT enables sparsification and structurization of irregular firing
activities and dramatically reduces computational overhead while delivering com-
petitive classification accuracy without a huge drop. To further improve the data
reuse, we propose an Integration Through Time (ITT) technique that processes
integration steps across different TWs in parallel with a systolic array. The pro-
posed architecture with STT and ITT offers an application-independent solution
for spike-based models across various types of layers and networks. The proposed
architecture delivers 77X and 60X latency and energy efficiency improvements for
different benchmarks on average over a conventional SNN baseline.

1 INTRODUCTION

Non-spiking artificial neural networks (ANNs) process information with continuous-valued signals
representing averaged firing rates of neurons resulting from activation functions such as rectified lin-
ear unit (ReLU) and sigmoid Agarap (2018); Li & Yuan (2017). In contrast, spiking neural networks
(SNNs) handles unraveled information in space and time, i.e., across different neurons (space) and
different time points (time), with explicitly modeled all-or-none firing spikes. As reported in recent
studies, spatial and temporal dynamics with biologically inspired Kheradpisheh et al. (2018); Hao
et al. (2020) and backpropagation based Park et al. (2020); Zhang & Li (2020); Jin et al. (2018) SNN
training algorithms have demonstrated competitive performances for various tasks.

From a hardware acceleration point of view, SNNs have considered better positioned for low-power
operations than ANNs with biologically plausible computing models including event-driven pro-
cessing and binary-valued signals. However, computations along the temporal dimension and un-
structured sparsity in both space and time complicate the hardware acceleration of spike-based
models. The unique temporal dimension in SNNs offers an opportunity in processing complex
spatiotemporal data but introduces iterative and unstructured data movement at each time point.

The two most well-known commercial neuromorphic chips, IBM’s TrueNorth Akopyan et al. (2015)
and Intel’s Loihi Davies et al. (2018) are based on multi-core architecture and asynchronous core-
to-core communication, emulating 256 spiking neurons and 1024 spiking neural units in each core,
respectively. TrueNorth and Loihi achieved low-power and high performance where weights are

1



Under review as a conference paper at ICLR 2024

fully stored on-chip and executing the computations sequentially, time point by time point. While
both architectures show the promise of neuromorphic computing, we recognize a critical disad-
vantage: iterative and unstructured data movement. Processing the computations at each time point
involves data movement associated with the firing neurons, repeated across time points with unstruc-
tured firing sparsity in a pre-synaptic layer. Stereotypical approaches to process spiking neurons in
a time-sequential manner degrade the computational capabilities due to significant overhead in data
movement and limited data reuse across time points. As networks are becoming deeper and larger,
hardware acceleration of spiking neural computations is even more memory-bounded and the above
issue significantly degrades the achievable accelerator performance in many practical cases.

Moreover, the data movements are more complicated than the feedforward counterparts when re-
currence is added into the network as in recurrent SNNs (R-SNNs) due to more complex spatiotem-
poral dynamics and tightly coupled data dependencies. R-SNNs more closely resemble cognitive
processes in the human brain and have shown state-of-the-art performances in various sequential
learning tasks with temporal memory to store past information. However, recurrence in network
connectivity requires the information of the previous time point, which establishes a strong causal
chain and introduces challenges in hardware acceleration of R-SNNs. Furthermore, accelerating R-
SNNs requires alternating access to two different types of weight matrices for every time point, i.e.,
feedforward and recurrent weight matrix, introducing more difficulties in data reuse and minimizing
the data movement.

This work aims to develop a systolic array-based architecture to tap the full potential of SNN accel-
eration with key techniques below:

Split-Time Temporal coding (STT) : We propose a novel, universally applicable solution for spar-
sification and structurization of any rate-based spiking activities and explore the impact of temporal
granularity defined by the time window (TW) size. STT significantly improves accelerator perfor-
mance by reducing the spike redundancy on a TW basis and handling the TW as the basic unit of
operation with structured firing activities across TWs.

Integration Through Time (ITT) : ITT enables parallel acceleration in time based on simultaneous
processing of multiple TWs across columns of the systolic array. ITT enables the data reuse across
TWs with uniform processing times for TWs, leading to further improved performance on top of
STT.

Systolic array-based Architecture : We develop a systolic array-based architecture supporting STT
and ITT. The proposed architecture is capable of accelerating various types of layers. We overcome
the causality and tightly coupled dependencies by using the prefix sum without additional resources.

We evaluate the proposed architecture and techniques with an architecture simulator based on the
actual spiking activities of well-trained networks on various networks including fully-connected,
convolutional and recurrent. The proposed architecture delivers 97X latency and 78X energy effi-
ciency improvements on average over a conventional SNN baseline on different benchmarks.

2 SPLIT-TIME TEMPORAL CODING (STT)

The essence of STT is to split-and-structurize the spiking activities by imposing regularity in terms
of the number of spikes per synchronized TW and to enable a tunable tradeoff between machine
learning and accelerator performance. By creating regularized spike trains throughout the network,
STT offers multiple benefits including reduced computational/data movement overhead, uniform
processing time across TWs, and avoiding the processing of redundant spikes.

2.1 PROPOSED STT

We propose a novel technique to locally employ coding and sparisification by dividing the time stride
(TS) with a temporal granularity defined by the time window (TW) size, dubbed Split-Time Temporal
coding (STT). The key idea here is to employ local structurization and sparsification and improve
the computational/data movement overhead by reducing the redundancy in locally rate-coded firing
activities on a TW basis while retaining local rate information by using prefix sum. Importantly, STT
is universally applicable for accelerating spiking models, with flexibility in choosing the TW size.
The spike timing of the single spike coded for each TW carries firing rate information with time-

2



Under review as a conference paper at ICLR 2024

TW 

Time-to-first-spike 

TTFS = 1 

Time-left-from-first-spike 

TFFS = 4 

(TW size = 5) 

Original Firing Activity 

STT-based Firing Activity 

Time 

Time 

TW size + = 

# of spikes = 4 = TFFS 

(a) Time-left-from-first-spike (TFFS)

Time 

N
e
u

ro
n

s
 

N
e
u

ro
n

s
 

(a) 

(b) 

(b) a) Original firing activities without using
STT and b) STT-based firing activities with
TW size = 10.

Figure 1: (a) Local structurization and sparsification with the proposed STT. Time-left-from-first-
spike (TFFS) presents the firing rate of the corresponding TW. (b) Spike raster plot of 20 neurons
from the recurrent layer for accelerating NTIDIGITS.

left-from-first-spike (TFFS), as shown in Fig. 1(a). All layers in the network operate on TW-based
local coding based on the proposed STT, with the following rules:

Rule 1. We limit the maximum firing count of each neuron in a TW to one. In all TWs, each neuron
is allowed to fire up to once where the only spike represents rate information.

Rule 2. The spike count within a TW is represented by the timing of a single spike. As such for the
input layer, the spike information of original input firing activity is converted with STT based on the
number of spikes in each TW.

Rule 3. At the output layer, STT-based firing activities are decoded to firing rate. The firing rate of
each neuron is decided by integrating its firing rates from all TWs, i.e., summing up all TFFS in the
time domain.

As shown in Fig. 2(a), we first convert the rate-coded original firing activities into STT-based firing
activities at the input layer. For example, as in Fig. 1(a), if the TW size is 5 and the number of spikes
in a TW is 4, the time-left-from-first-spike (TFFS) in the corresponding TW is determined by: TFFS
= (TW size) - TTFS = 5 - 1 = 4, representing the firing rate of the TW. If a neuron does not fire in a
specific TW in original firing activities, the STT-based firing activity of the corresponding TW of the
neuron also remains silent. In all layers in the network, each neuron follows Rule 1 and fires at most
once for a TW. For each TW throughout the layers, the timing of a single spike represent the spike
information of a TW similar to Park et al. (2020). The earlier the spike, the stronger the stimulus.
At the output layer, STT-based firing activities are decoded to firing rate for the decision making.
For example, the spike train in Fig. 2(c) is decoded by integrating rates across TWs:

∑
(TFFS) =

∑
(TW size)-(TFFS) = 2 + 4 + 1 = 7, following Rule 3.

2.2 STT-BASED ACCELERATION

STT-based hardware acceleration significantly simplifies the synaptic input integration step, the
dominant computational complexity in spiking neural computations, with structured, high sparsity
as shown in Fig. 1(b). First, STT reduces the repeated weight access across multiple time points to
a single weight access per input neuron for a given TW. Since an input neuron fires up to once in a
TW, the corresponding weight is used only once for the synaptic input integration.

Second, to retain the local and also global information, we use the prefix sum of the STT-based
integrated synaptic inputs in a TW while this efficient process is still based on a single spike per
TW, following Rule 2. As will be shown in Fig. 4 and discussed in Section 3, the prefix sum of
STT-based integrated inputs is equivalent to the Psums using a left-aligned rate code where the firing
rate corresponds to TFFS.

Finally, STT allows parallel acceleration through time via using a small amount of memory for each
time point of a TW. For the case in Fig. 2(b), conventionally, the input integration step requires
accessing weight data WA and WC at time point tk, and WA, WB and WC at the next time point
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Figure 2: Schematic representations of STT-based network operations. (a): STT-encoder at the input
layer (b): Comparison between the operations in conventional approaches and the proposed STT-
based approach (c): STT-decoder at the output layer

tk+1 sequentially. These unstructured firing patterns across different neurons and time points render
repeated weight access without data reuse. Differently, with STT, WA is integrated to the partial
sums (Psums) at tk+1, WB is integrated to the Psums at tk+3, and WC is integrated to the Psums at
tkin parallel. Additionally, regularized spike trains, i.e., single spike per TW, makes the processing
time of TWs uniform. Each weight is used only once in a TW, and multiple TWs are mapped on a
systolic array simultaneously to maximize weight reuse across TWs.

3 PROPOSED ARCHITECTURE

We present a systolic array-based SNN accelerator architecture that supports the proposed STT and
exploits parallelism in both space and time. The proposed architecture addresses existing inefficien-
cies via structured sparse firing patterns and parallel computations across TWs based upon the STT.
In the rest of the paper, we primarily focus on synaptic input integration, the dominant computa-
tional complexity. Also, detailed overview of the proposed architecture is described in Appendix B,
advantages of the proposed techniques will be discussed in Section 4 and Appendix C.

3.1 INTEGRATION THROUGH-TIME (ITT)

2-D systolic arrays naturally exploit parallelism and data reuse in both vertical and horizontal direc-
tions. To fully utilize such advantages, we propose an Integration Through-Time (ITT) technique on
top of STT, which defines a spiking activity in a TW as a basic unit of workload and maps spiking
activities in multiple TWs onto the systolic array, concurrently. As shown in Fig. 3(c), ITT assigns
entire spike trains in a TW to a single PE and accelerates multiple TWs in different PEs simultane-
ously. ITT allows for accelerating multiple time points in several TWs in parallel based on the fact
that the synaptic input integration step (Step 1) only depends on the spike inputs from the previous
layer (2). Integration of synaptic inputs across multiple time points with ITT can be expressed by
modifying (2) as:

Step 1 - ITT: Synaptic input integration in TWn ∼ TWn+m:

pPost[TWn, TWn+1, ..., TWn+m]

= pPost[(tk(n−1)+1, ..., tkn), ..., (tk(n+m−1)+1, ..., tk(n+m))]

= WPost,Pre × sPre[TWn, TWn+1, ..., TWn+m]

= WPost,Pre × sPre[(tk(n−1)+1, ..., tkn), ..., (..., tk(n+m))]

(1)

where k is the size of the TW, pPost and sPre are now matrices, and synaptic input integration is
processed across TW s. TWn denotes the n-th time window which contains k different time points,
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Figure 3: (a): Overall architecture of the proposed accelerator (b): STT-encoder and decoder at the
input and output layer, respectively (c): Mapping of the inputs and outputs into the systolic array
with the proposed ITT

i.e., TWn = (tk(n−1)+1, ..., tkn). Remaining steps remains the same as in (3) ∼ (5) and all the other
expressions follows the definition described in (2) ∼ (5). Importantly, ITT directly maps the TW to
a PE which contains multiple time points which is different from Lee & Li (2020).

3.2 MAPPING TO SYSTOLIC ARRAY

We structurize the irregular sparse firing activities with uniformity across TWs based on STT and
accelerate input integration steps of multiple TWs in different output neurons in parallel using ITT.
With STT and ITT, our mapping strategy enables parallel processing in both 1) time: across mul-
tiple time point and 2) space: across different output neurons, which significantly improves data
movement and processing time.

The proposed architecture accelerates partitioned matrix-matrix multiplication of the weight and
spike input matrices on the systolic array and employs parallelism both across different neurons
and different TWs. As shown in Fig. 3(c), PEs in a specific row performs the computations for a
particular output neuron across different TWs. In each column, PEs process spike inputs of a given
TW for different output neurons. Data are only fed from the edges of the systolic array providing
high data distribution bandwidth. In each PE, the PE receives spike input and weight from its upper
and left neighbors and passes spike input and weight to its lower and right neighbors.

3.3 STT-BASED LAYER ACCELERATION

Each PE accelerates the fundamental operations of a spiking neuron where hardware resources are
reused across different steps. Below, we first discuss the processing of feedforward layers followed
by that of recurrent layers, for which PE operates with a simple additional step to incorporate recur-
rent synaptic inputs.

The operations in a single PE follow the three steps (2) ∼ (5) with an AC unit and a small scratch-
pad shared through the steps, as shown in Fig. 4(a). In Step 1, the synaptic input integration step, the
PE determines the address based on the spike timing in a given TW and accumulates the associated
weight into a corresponding memory. A single spike in a TW can be interpreted as a one-hot encoded
address for the integration. The small scratch-pad memory first stores the integrated synaptic inputs
(ISI) of multiple time points in a given TW. In the above operation, a simple combinational logic,
one-hot to binary, converts the spike trains of a TW into an address to the small scratch-pad. As
shown in Fig. 4(a), for example, if the spike input is 01000 with TW size 5, the associated weight
is properly integrated into ISI[TFFS] = ISI[4], which is the integrated synaptic input of the second
time point in the TW.

Next, the actual Psum is calculated using the ISI in the previous step. As discussed in Section 2 and
shown in Fig. 4(b), we utilize the prefix sum of ISI which restores the rate and temporal information
equivalent to a left-aligned rate code counterpart, while sustaining the advantages of using STT with
a single spike. As shown in Fig. 4(b), the use of prefix sum yields the same Psum results as using
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Figure 4: Schematic representations of (a): Operations in a PE for accelerating feedforward and
recurrent layer (b): Calculating partial sums (Psums) using a prefix sum of the integrated synaptic
inputs (ISI)

left-aligned, rate codes where the rate equals TFFS. Note that, the number of operations to calculate
the prefix sum equals to (TW size - 1) which is negligible compared to input integration steps.

For the rest of the operation, PE processes Step 2 and Step 3 with the integrated Psums, time point
by time point, in a sequential manner. At a given time point tk, the PE updates the membrane
potential with Psum[tk] and the membrane potential of the previous time point tk−1. If the updated
membrane potential exceeds the pre-defined threshold, the PE generates an output spike and resets
the membrane potential.

In case of recurrent layers, the synaptic input integration step is almost the same as that for feedfor-
ward acceleration except for one additional step for integrating recurrent synaptic inputs, denoted
as Step 1-R in Fig. 4(a). To simplify the recurrent layer processing, we adopt the self-recurrent
structure in Zhang & Li (2021) which only requires a single additional integration operation. The
proposed PE is capable of accelerating both feedforward and recurrent layers based on the proposed
techniques. As will be discussed in Section 4, STT with the use of prefix sum approach delivers
competitive accuracy for various networks and significantly improves the accelerator performance.

4 RESULTS

We perform comprehensive evaluations of the proposed architecture with various layer types, i.e.,
fully-connected (FC), convolutional (CONV) and recurrent, focusing on the impact of the proposed
STT and ITT following the setups described in Section D. We first examine how the data reuse
and computational complexity change upon the proposed techniques with critical architectural pa-
rameter, i.e., time window (TW) size. Then, we explore joint optimization of machine learning
performance and SNN hardware accelerator performance with application-independent split-time
temporal coding. We adopt the state-of-the-art training algorithm proposed in Zhang & Li (2020) as
our ML performance baseline, and compare it with our accuracy achieved using the proposed STT
over various TW sizes. Since this is the first work of temporal information compression (STT) with
time-domain parallel processing (ITT), we set our hardware baseline as the one that has been trained
with Zhang & Li (2020) and optimizes data reuse and storage efficiency for each time-point (time-
serial approach) without incorporating proposed STT and ITT, as in Khodamoradi et al. (2021); Neil
& Liu (2014); Shen et al. (2016).

4.1 STT: TEMPORAL INFORMATION COMPRESSION

STT reconstructs the spike information with higher, but structured sparsity by dividing the time
stride into multiple TWs, squeezing the entire spike information in each TW to the timing of a
single spike. While local spike counts are directly related to the performance of the accelerator,
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Figure 5: (a) Normalized number of total spikes and maximum number of spikes in a neuron with
different time window sizes. (b) Normalized energy dissipation and energy breakdown with and
without the proposed techniques.

having fewer spikes reduces not only the number of accumulate operations but also data movement.
As introduced in Section 2, STT applies to all layer types including FC, CONV and recurrent layers.
Furthermore, flexibility in TW size selection for STT enables the proposed architecture to accelerate
individual applications with different optimizations.

Computational Overhead: The number of spikes required for layer acceleration decreases with
the TW size, so does the computational overheads by STT. Given the actual spiking activities, the
overhead reduction and compression of the spike information differ across layers and networks.
Approximately, the number of required AC operations is inversely proportional to the TW size, as
shown in Fig. 5(a).

Data Movement: STT enables fewer weight data movements associated with active pre-synaptic
neurons across the different levels of the memory hierarchy. In conventional approaches, iterative
weight access based on the active pre-synaptic neurons at each time point is inevitable due to the
sequential processing. However, STT reduces temporal resolution, and more sparsely populated
spikes mitigate read and write memory access at each level of memory. For example, the spiking
activity of a bursting neuron, which fires across five consecutive time points, forces the integration
of the corresponding weight in those five time points repeatedly. This may incur data movements
from higher-level caches depending on spiking activities of the pre-synaptic layer and the memory
size. In contrast, STT only requires the weight once throughout all the time points in a TW. Data
movement and reuse are further improved by the proposed ITT.

4.2 ITT: DATA REUSE

ITT significantly improves data reuse by providing data sharing opportunities across TWs and post-
synaptic neurons, and minimizes the memory access and stall cycles originating from additional
latency for iterative memory access. ITT maps spike inputs in multiple TWs into different columns
and enables weight reuse across the PEs in the same row.

We use the recurrent layer trained for the NTIDIGITs as a representative layer to analyze the impact
of the proposed techniques in data movements, as shown in Fig. 5(b). Clearly, larger TW sizes
reduce access to the higher-level caches and improve energy dissipation. Compared to the conven-
tional approach without the proposed ideas, we observe a huge improvement in memory access to
the L1 cache and global buffer. In general, such impact varies from layer to layer based on the
actual firing activity, data movements in and between the array and memory hierarchy as a result
of the dataflow determined by given memory sizes and layer specifications. Without using the pro-
posed ITT and STT, iterative operations through 300-time points may markedly degrade the overall
performance of the accelerator.

4.3 COMPREHENSIVE EVALUATIONS

We examine how the proposed STT and ITT with the key architectural parameter TW size improve
the overall accelerator performance. Also, we evaluate the tunable tradeoffs between machine learn-
ing and accelerator performance in terms of the TW size.
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Figure 6: Normalized energy dissipation and latency of layers with different TW sizes for (a):
NMNIST, (b): DVS-Gesture, (c): NTIDIGITS, (d): Machine learning performance (inference) -
Accelerator performance (normalized EDP) tradeoffs on various datasets.

Latency: We observe a huge improvement in latency by using STT and ITT in all three networks,
as shown in Figs. 6(a)to 6(c). As discussed in Sections 4.1 and 4.2, 1) STT reduces latency of the
computations in the array proportionally to the TW size by processing a TW instead of a time-point,
and 2) ITT minimizes the additional delay due to stall cycles resulted from waiting for the required
data, by reusing the weight data horizontally. In general, a larger TW size compresses the temporal
information with a greater stride in the time domain and further reduces computational overheads
and data movements, hence the latency.

However, after a certain TW size, the additional improvement with a much larger TW size decreases.
This is due to the fact that spikes are often clustered in a certain range in the time domain as shown
in Fig. 1(b), and the number of TWs is the reciprocal of TW size. Also, the impact on latency may
vary with the spiking activity depending on how uniformly the spikes spread out through neurons
and time points. For example, STT does not reduce the complexity of processing five spikes which
are generated by five different neurons. On the other hand, if the five spikes are from a single neuron
while other neurons are silent, STT may significantly reduce the computations and weight access.
The proposed techniques improved the latency by 97X on average, across the three networks.

Energy Dissipation: Energy dissipation is reduced as TW size increases in all layers, similar to the
latency. Generally, larger TWs provide the opportunity to reuse the same weight across more time
points. Especially, the benefit from data movement/reuse is maximized when the layer has relatively
a great amount of weight data, as in CONV2 in NMNIST. In this case, the improvements over the
baseline are more pronounced since the baseline exacerbates more data movement and access to
higher-level caches due to its iterative weight access.

As discussed, the impact of the proposed techniques on energy dissipation also depends on the tem-
poral sparsity level. For example, a single spike throughout the entire time domain from a particular
neuron cannot be reused across TWs and would result in less benefit. Importantly, however, firing
activities from a neuron are often clustered in time and in practice weights can be reused through the
TWs. Across three different networks, our methods delivered 78X energy dissipation improvement,
on average.

Machine Learning Performance: Our experimental results present a huge accelerator perfor-
mance improvement with temporal information compression using STT. However, there exists a
fundamental trade-off between accelerator performance and machine learning performance. While
STT significantly improves latency and energy dissipation by using structured and sparse spiking
activities, STT may cause a local temporal information loss in a TW.
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Nevertheless, the STT-based acceleration delivers competitive performance as summarized in Table
1, TWi denotes that the time window size is i. For example, TW5 × 60 represents that the original
spiking activity, spanned through 300-time points, is encoded to 60 consecutive TWs where each
TW contains 5-time points with at most a single spike. We adopted the training algorithm in Zhang
& Li (2020) and conducted STT-based inference test on well-trained networks with different TW
sizes. For example, Zhang & Li (2020) achieved 93.29% accuracy and the STT-based simulation
achieved 92.40% inference accuracy with TW size=5 for the NTIDIGITS dataset. We observe that
the proposed STT can deliver competitive inference performance up to a certain TW size across
various networks as in Table 1 while providing a significant improvements on hardware acceleration.

4.4 ML-HW PERFORMANCE TRADE-OFF

Table 1: Performance on fully-connected, convolutional and
recurrent networks: NMNIST, DVS-Gesture and NTIDIG-
ITS. TWS denotes the applied time window size.

Neuromorphic MNIST
Method Network Accuracy Timepoints

HM2BP Jin et al. (2018) 400-400 98.88% 400
SLAYER Shrestha & Orchard (2018) 500-500 98.95% 300
SLAYER Shrestha & Orchard (2018) CNNa 99.22% 300

TSSL-BP Zhang & Li (2020) CNNa 99.25% 30
STT (TWS=3) CNNa 99.18% TW3 × 10
STT (TWS=5) CNNa 99.12% TW5 × 6
STT (TWS=10) CNNa 98.76% TW10 × 3
STT (TWS=15) CNNa 98.10% TW15 × 2

CNNa: 12C5-P2-64C5-P2.
DVS-Gesture

Method Network Accuracy Timepoints
RNN He et al. (2020a) P4-512 52.78%

LSTM∗ He et al. (2020a) P4-512 88.19%
TSSL-BP Zhang & Li (2020) P4-512 87.15% 300

STT (TWS=2) P4-512 86.46% TW2 × 150
STT (TWS=4) P4-512 85.76% TW4 × 75
STT (TWS=8) P4-512 84.37% TW8 × 38

∗ includes much greater number of tunable parameters.
N-TIDIGITS

Method Network Accuracy Timepoints
HM2BP Jin et al. (2018) 250-250 89.69% 300

BP (GRU) Anumula et al. (2018) 200-200-100 89.92%
BP (LSTM) Anumula et al. (2018) 250-250 91.25%

TSSL-BP Zhang & Li (2020) 400a 93.29% 300
STT (TWS=5) 400a 92.40% TW5 × 60
STT (TWS=10) 400a 91.19% TW10 × 30
STT (TWS=15) 400a 89.41% TW15 × 20

400a: Recurrent layer with LISR Zhang & Li (2021)

STT significantly reduces computa-
tional overhead by introducing lo-
cal temporal resolution reduction per
TW, tunable based on TW size while
maintaining global temporal infor-
mation of the original spikes with-
out complex hyper parameter tuning.
Aggressive reduction with larger
TW sizes may exacerbate local tem-
poral information loss in TWs, lead-
ing to a non-negligible classification
accuracy drop albeit that more sub-
stantial accelerator performance im-
provement can be achieved.

We use energy-delay product (EDP)
to simultaneously consider latency
and energy dissipation for evaluation
of the proposed techniques and to
analyze the impact of the TW size
selection. As shown in Fig. 6(d), the
ML-HW performance trade off can
be flexibly adjusted depending on
application objectives where small
TW sizes with STT and ITT can
still deliver significant improvement.
Our work delivers 15,000X EDP im-
provement with the maximum TW
sizes which do not significantly drop
the accuracy, on average across dif-
ferent benchmarks, as shown in Fig. 6(d).

5 CONCLUSION

This work is motivated by the lack of efficient architecture for acceleration of irregular firing activi-
ties derived from complex spatiotemporal dynamics in SNNs.

The proposed systolic array-based architecture is built upon a novel Split-Time Temporal coding
(STT) and an Integration Through Time (ITT) technique. STT enables structurization and sparsi-
fication of the unstructured firing activities on a time window (TW) basis, and ITT further boosts
the efficiency of the accelerator with the parallel acceleration of TWs and data reuse in space and
time. Our work provides a universally applicable, application-independent solution for the efficient
acceleration of the spiking models with the flexibility in choosing TW size. Experimentally, our
work delivers 15,000X EDP improvement for various benchmarks, NMNIST, DVS-Gesture and
NTIDIGITS, on average compared to the SNN baseline.
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Figure 7: Operations in spiking neural networks (SNNs)

A BACKGROUND

A.1 SPIKING NEURAL NETWORKS (SNNS)

Despite the huge success of deep neural networks, SNNs have emerged as a promising alternative
with inherent advantages in the event-driven based spatiotemporal data processing. Compared to
non-spiking models, operations in SNNs are based on temporal data processing with binary spikes
spanning through time which comprise two key distinctions: 1) temporal data processing and 2) data
representations.

SNNs are inspired by information processing in the human brain and process information in the
time domain over multiple time points. Dynamics in both time and space offer great opportunities
to process complex spatiotemporal data but also pose challenges as will be discussed. In this paper,
we define time stride as a full range of time points that the SNN operates on where time point is a
minimum unit of time, as shown in Fig. 7.

Another key characteristic of SNNs is data representations. SNNs communicate with binary-valued
input/output spikes while weights, membrane potentials and integrated synaptic inputs, i.e., partial
sums, are multi-bit. Multi-bit weights are required for the synaptic input integration at each time
point, and thus produce key challenges in data movement.

A.2 FEEDFORWARD SPIKING LAYERS

Conventional and the most natural approach for temporal data processing is to perform operations
time point by time point in a sequential manner, for all time points in time stride. In feedforward
spiking layers, operations in a single spiking neuron consist of three steps at each time point tk:

Step 1: Synaptic input integration at tk:

p⃗Post[tk] = WPost,Pre × s⃗Pre[tk] (2)

Step 2: Membrane potential update at tk:

v⃗Post[tk] = v⃗Post[tk−1] + p⃗Post[tk]− V Post
leak (3)

Step 3: Conditional spike output generation at tk:

s⃗Post[tk] = f(v⃗Post[tk]) (4)

f(vPost
i [tk]) =

{
1, if vPost

i [tk] ≥ V Post
th → vPost

i [tk] = 0

0else → vPost
i [tk] = vPost

i [tk]
(5)

where the Post and Pre denote the pre-synaptic layer and the post-synaptic layer, and i represents the
neuron indices in the post-synaptic layer. p⃗Post[tk], v⃗Post[tk], and s⃗Post[tk] are vectors, representing
the integrated partial sum of the spike inputs from the pre-synaptic layer, membrane potential and
spike output of the neurons in the post-synaptic layer at time tk, respectively. WPost,Pre is the

13



Under review as a conference paper at ICLR 2024

matrix of the feedforward synaptic weights between pre- and post-synaptic layers, Vth and Vleak are
the firing threshold and leaky parameter in post-synaptic layer, respectively. f is a non-linear, all-or-
non activation function with a given Vth. In the above steps, the synaptic input integration (Step 1)
incurs matrix-vector multiplication and takes place at each time point, comprising the dominant
complexity of SNN acceleration.

Importantly, the above steps are repeated at each time point, across all time points in time stride. The
above steps present fundamental operations in any feedforward layers including fully-connected and
convolutional layers.

A.3 RECURRENT SPIKING LAYERS

Processing neural computations of a recurrent layer in SNNs follow the same three steps in the
feedforward layer with additional synaptic inputs. In a recurrent layer, lateral recurrent inputs are
also considered in addition to the feedforward input integration (Step 1) in (2):

Step 1*: Feedforward synaptic input integration at tk:

p⃗Post
F [tk] = WPost,Pre × s⃗Pre[tk] (6)

p⃗Post
R [tk] = WPost,Post × s⃗Post[tk−1] (7)
p⃗Post[tk] = p⃗Post

F [tk] + p⃗Post
R [tk] (8)

where p⃗Post
F [tk], p⃗Post

R [tk] and p⃗Post[tk] are vectors, representing the partial sum of the feedforward
input integration, recurrent input integration, and fully-integrated partial sum in the post-synaptic
layer at time tk, respectively. WPost,Post is the matrix of the recurrent synaptic weights of the
post-synaptic (recurrent) layer.

A.4 CHALLENGES OF SNN ACCELERATIONS

Binary-valued spikes and temporal processing in the time domain open up the opportunities for
event-driven processing and support a wide range of spatiotemporal tasks. However, the added
temporal dimension introduces crucial challenges in accelerating SNNs: 1) unstructured sparsity in
both spatial and temporal domains and 2) iterative weight data access in every time point.

The most natural approach for SNN acceleration, or simply conventional approach in this paper, is
to process firing activities time point by time point in a sequential manner, which has been adopted
in previous works Cao et al. (2015); Khodamoradi et al. (2021); Cheung et al. (2012); Chuang et al.
(2020). Since the operations at each time point are similar to the non-spiking ANN counterpart, the
conventional approaches adopt optimized dataflow and mapping strategies for ANNs in essence.

However, sequential processing in time requires unstructured weight access according to the firing
activity at the given time point which repeats through all time points in the time stride. For exam-
ple, the weights required at time point tk are different from the weights required at the next time
point tk+1. Alternating weight matrices based on the firing activities cause a high overhead in data
movement and significantly degrade the accelerator performance.

B OVERVIEW OF THE PROPOSED ARCHITECTURE

B.1 SYSTOLIC ARRAY

In many prior works, a 2-D systolic array has been adopted as the main computing substrate in ac-
celerating neural networks with clear advantages in complexity, data reuse, locality, data distribution
bandwidth and compute density He et al. (2020b); Khodamoradi et al. (2021); Chuang et al. (2020);
Kung et al. (2019). While data are fed only from the edges of the array, each data from the top and
left propagates vertically and horizontally, i.e., from top to bottom, and left to right, without compli-
cated inter-PE communication. Thus, each processing element (PE) performs the computations with
the data from the upper and left neighbor, and all the PEs in the array operates in a synchronized
manner. With the advantages in data reuse in vertical and horizontal directions, in particular, we
adopt the systolic array as the main computing substrate in this work.
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B.2 PROPOSED ARCHITECTURE

Fig. 3 shows the overall architecture of the proposed architecture incorporating an STT-encoder
for the input layer, an STT-decoder for the output layer, controllers, caches, and a systolic array
composed of tiled processing elements (PEs) with unidirectional links. As shown in Fig. 3(a), the
systolic array fetches the required data through three levels of memory hierarchy: 1) off-chip RAM,
2) a global buffer and 3) double-buffered L1 caches. The received spike input and weight data
propagates vertically and horizontally with unidirectional links across the 2-D array and is reused
through multiple PEs. Each PE is composed of 1) a simple controller, 2) a small scratch-pad mem-
ory, 3) accumulate unit (AC), 4) a simple one-hot-to-binary decoder and 5) a comparator. Unlike
multiply-and-accumulate (MAC) operations in non-spiking accelerators, simpler AC units are used
to accumulate weight values with binary-valued spikes. To fully leverage STT-based acceleration,
the synaptic input is properly integrated into the corresponding time point with a simple decoder,
and the scratch-pad in each PE stores the Psums of all time points in a given TW. In the rest of the
paper, we primarily focus on synaptic input integration, the dominant computational complexity.
Also, detailed advantages of the proposed techniques will be discussed in Section 4 and Appendix
C.

C PERFORMANCE WITH STT

C.1 MACHINE LEARNING PERFORMANCE

Typically, temporally-coded spiking models limit each neuron to fire at most once in the entire time
domain. This highly restrictive type of spike coding may benefit latency and energy efficiency.
However, it does not apply to broader classes of SNNs employing rate or other types of temporal
codes or a combination of thereof, and limits model accuracy, especially for challenging learning
tasks.

On the other hand, rate-coded spiking models can support various types of spatiotemporal dynamics
of SNNs. While many recent works based on rate-coded models reported competitive performances
on various spatiotemporal tasks with bio-inspired Kheradpisheh et al. (2018); Hao et al. (2020) and
backpropagation based Park et al. (2020); Zhang & Li (2020); Jin et al. (2018) training methods,
iterative weight access due to repeated operations across time and irregular firing patterns complicate
hardware acceleration of the spike-based models.

Importantly, STT is universally applicable to any rate-coded model including fully-connected, con-
volution and recurrent layers for efficient hardware acceleration of a trained network with flexibility
in selecting the temporal granularity, i.e., TW size. STT delivers competitive accuracy without any
hyper-parameter tuning and significantly reduces computational overhead for synaptic input inte-
gration, the dominant complexity of hardware acceleration. STT is fundamentally different from
existing temporal coding schemes Park et al. (2020); Zhang et al. (2019) while the information-
carrying feature in a single TW bears a similarity. Results on various networks are discussed in
Section 4.

C.2 HARDWARE PERFORMANCE: ENERGY REDUCTION

The main bottleneck of the SNN accelerators is the data movement/access overhead of multi-bit
weight data which is addressed by the proposed techniques. First, STT minimizes the computational
overhead required for dense spiking activities with structured sparsification. STT restricts each
neuron to fire at most once in a TW and enables the same weight data associated with a presynaptic
neuron to be used only once. In general, applying a larger TW size further reduces the computational
and data movement overhead with higher sparsity in spiking activities. Data movement/access is
further improved with ITT by the improved weight data reuse. PEs in the same row in the array
perform computations of a post-synaptic neuron across different TWs, i.e., the same weight data is
reused across PEs in the same row with different spike inputs.
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Table 2: A high-level overview of the user-defined inputs.

Input Description
Array Array width/height,

configuration size of the scratch-pad in PE
Memory Size of the memory in three levels:

configuration off-chip RAM, Global buffer, L1 cache
STT Use STT-based spiking acitivities or

plain counterpart along with time window size
ITT Mapping different TWs across columns of

the systolic array with given TW size
Time Window Ranging from plain inputs (TW=1) to

(TW ) Size the size of a scratch-pad in PE, i.e., TW=50
Layer Type fully-connected, convolutional and recurrent

Network Number of layers, layer types, and
Structure number of the neurons in each layer

C.3 HARDWARE PERFORMANCE: UTILIZATION EFFICIENCY AND LATENCY

STT and ITT improve severe under-utilization which originates from iterative data access and the
irregularity of sparse firing activities at each time point in the time stride. As discussed in Section
2, each neuron fires at most once in a TW with STT, and thus the processing of any TW takes the
same amount of time. Uniformity in processing time across TWs and higher sparsity with STT
significantly improve latency and utilization efficiency. Iterative access of the required data at each
time point can cause stalls of the array, which is the source of inefficiency in addition to computation
latency, while ITT reduces memory access to higher-level caches by the improved weight data reuse
and less data movement.

D EVALUATION METHODOLOGY

We develop an analytic architecture simulator to support various types of layers, unique characteris-
tics in SNNs, and trace data access/movement for evaluating the latency and energy dissipation for
accelerating a specific task. In Table 2, the user-defined inputs for the simulator are summarized.

D.1 SYSTOLIC-ARRAY AND MEMORY MODELING

D.1.1 SYSTOLIC ARRAY

A systolic array is a central computing unit of our simulator and fetches spike inputs and weights
from the top and left edges, respectively. The received data propagate vertically and horizontally, and
thus each PE grabs the spike input from its upper neighbor and the weights from the left neighbor.
In particular, the spike input is a set of binary spikes of a TW and is used as addresses for the
accumulate operations in a PE. As in many other works, we use a 128 processing elements (PEs)
Chen et al. (2016); Narayanan et al. (2020); Yin et al. (2022) in the systolic array along with double-
buffered L1 caches to provide required data to the array. By default, we analyze the architecture
performance based on a 16×8 systolic array.

D.1.2 MEMORY HIERARCHY

Similar to many other analytic architecture evaluation models, we adopt an off-load model with a
three-level memory hierarchy. We follow the standard practice Samajdar et al. (2018); Kwon et al.
(2019) to use double-buffering to hide the latency for memory-intensive neural networks and espe-
cially separate L1 cache for each type of data, i.e., spike inputs, weights and spike output, for the
systolic array operations. The small scratch-pad in each PE stores the Psums of multiple time-points
which is similar to the output stationary in non-spiking ANN accelerators. The choice of our archi-
tecture is based on many other small-medium scale accelerator works Chen et al. (2016); Narayanan
et al. (2020); Shen et al. (2016), and all the memories inside the accelerator are scratchpads hence
coherence is not considered. Architecture specifications are summarized in Table 3.
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Table 3: Architecture specifications.

Components Proposed Architecture
Number of PEs 128

ALU in PEs Adder, Comparator - 8-bit
Global Buffer Size 54KB
L1/Scratchpad Size 2KB / 50 × 8-bit
DRAM Bandwidth 30GB/sec

Bit precisions Weight/Membrane Potential - 8-bit
Input/Output Spike - TWS × 1-bit

(TWS: TW size)

D.2 PERFORMANCE MODELING

The developed simulator produces dataflow, the procedure to map the computations onto the array,
considering the user-defined inputs such as array dimension, number of time-points in time stride
and sparsity in actual spiking activities. With the dataflow, the simulator assigns unique addresses
for each data and traces read and write in PEs and each level of the memory hierarchy. Following
the estimation methods in many previous works Samajdar et al. (2018); Kwon et al. (2019); Peng
et al. (2019); Chen et al. (2018); Lee & Li (2020), the simulator calculates latency, memory access
and energy dissipation.

D.2.1 LATENCY

The systolic array performs AC operations through PEs on the array while the required data are con-
tinuously accessed from higher- to lower-level cache for stall-free operation. Whenever the required
weight and spike input data are ready, the array works for the computation. Thus, the latency is
estimated with the worst delay between data access from higher-level cache and computations in the
array. The total latency is calculated by adding all latencies across the entire process.

D.2.2 MEMORY ACCESS

For the given user-defined inputs, the simulator generates a dataflow that pre-determines the data
loading onto the array. We use the actual spiking activities from well trained networks to consider
more realistic data movement and follow the methodology adopted in Samajdar et al. (2018) but with
consideration in distinctive characteristics of spiking models. Based on the data loading schedule, a
specific group of data is required for the computations in the array. Therefore, if the data is absent
in the lower-level memory, memory access to higher-level memories is required. With the given
memory size and data loading schedule, the simulator counts read/write in all levels of memory as
in Samajdar et al. (2018); Kwon et al. (2019). For example, when a specific data is required for the
array computation but is absent in the L1, it induces global buffer read and L1 write if the data is
present in the global buffer.

D.2.3 ENERGY DISSIPATION

As in many architecture-level evaluation models Kwon et al. (2019); Samajdar et al. (2018); Peng
et al. (2019); Chen et al. (2018); Lee & Li (2020), energy dissipation is calculated with the number
of memory access at each level of memory and the number of accumulate (AC) operations for accel-
erating a given task. With CACTI model Muralimanohar et al. (2009) configured for 32nm CMOS
technology, energy dissipation in memory is calculated by multiplying the number of memory ac-
cess and the energy per memory access. Energy dissipation for computations is evaluated by the
number of required AC operations Kwon et al. (2019) based on the actual spiking activities in the
network.

D.3 TRAINING ALGORITHM

All the reported machine learning performance are simulated on NVIDIA Titan XP GPU and the
implementation of the proposed STT is conducted on Pytorch framework Paszke et al. (2019). We
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adopt one of the the state-of-the-art SNN training method Zhang & Li (2020) for training the net-
work. We train networks with the training algorithm proposed in Zhang & Li (2020) and evaluate
the architecture performances using the actual spiking activity data with or without the proposed
STT based on different TW sizes, extracted from the well-trained models. To primarily focus on
the proposed techniques, we adopt self recurrent structures in Zhang & Li (2021) for the recurrent
layers.

D.4 BENCHMARKS

The proposed STT and ITT are evaluated on various image and speech tasks including neuromorphic
image dataset N-MNIST Orchard et al. (2015), neuromorphic video dataset DVS-Gesture Amir et al.
(2017), and neuromorphic speech dataset N-TIDIGITS Anumula et al. (2018) with various layer
types, i.e., fully connected, convolutional and recurrent, in the network.

NMNIST is a spiking version of MNIST dataset. Each sample is a spatio-temporal pattern with
34×34×2 spike sequences of 300ms.

DVS-Gesture consists of 1,463 test samples with 11 different classes of hand gestures, where ges-
tures are recorded by a dynamic vision sensor (DVS) camera and converted into neuromorphic data.

N-TIDIGITS is the neuromorphic version of the speech dataset, Tidigits speech corpus Leonard
& Doddington (1993), where the original audios are converted into spike inputs by a 64-channel
CochleaAMS1b sensor.
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