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Abstract

Unsupervised anomaly detection (UAD) alleviates large labeling efforts by training exclu-
sively on unlabeled in-distribution data and detecting outliers as anomalies. Generally, the
assumption prevails that large training datasets allow the training of higher-performing UAD
models. However, in this work, we show that UAD with extremely few training samples
can already match — and in some cases even surpass — the performance of training with the
whole training dataset. Building upon this finding, we propose an unsupervised method to
reliably identify prototypical samples to further boost UAD performance. We demonstrate
the utility of our method on seven different established UAD benchmarks from computer
vision, industrial defect detection, and medicine. With just 25 selected samples, we even ex-
ceed the performance of full training in 25/67 categories in these benchmarks. Additionally,
we show that the prototypical in-distribution samples identified by our proposed method
generalize well across models and datasets and that observing their sample selection criteria
allows for a successful manual selection of small subsets of high-performing samples. Our
code is available at https://anonymous.4open.science/r/uad_prototypical_samples/

1 Introduction

Unsupervised anomaly detection (UAD) or out-of-distribution (OOD) detection aims to distinguish samples
from an in-distribution (ID) from any sample that stems from another distribution. To address this task,
typically, machine-learning models are employed to represent the in-distribution by exclusively using samples
from that distribution for training. The converged model detects OOD samples via their distance to the
in-distribution. Compared to supervised training, this setup alleviates the need for large labeled datasets,
is not susceptible to class imbalance, and is not restricted to anomalies seen during training. Due to these
advantages, UAD has several vital applications in computer vision: It is used to detect pathological samples
in medical images (Schlegl et all 2019} Lagogiannis et al., [2023} [Bercea et al., [2022; [Meissen et al., 2023),
to spot defects in industrial manufacturing (Bergmann et al., 2019; [Roth et al.| [2022; Deng & Li, [2022; Bae
et al.| [2023)), or as safeguards to filter unsuitable input data for supervised downstream models, for example,
in autonomous driving.

In deep learning, the prevailing assumption is that more data leads to better models. However, training with
only very few samples would, have numerous advantages. Small datasets are cheap, easy to obtain, and also
available for a wider variety of tasks. Additionally, it also makes more tasks feasible to solve where data may
be very difficult or expensive to acquire. Moreover, small training datasets lead to better explainability since
output scores can directly be related to (dis-)similarities to the training data. This improved explainability,
in turn, lowers the entry bar for designing performant algorithms, especially for actors with few resources,
thus contributing to the democratization of AI. While overfitting with very few training samples diminishes
the utility of supervised machine learning algorithms, UAD models are not impacted in the same way. In
fact, they rely on overfitting to the ID data and, as a result, not generalizing to OOD data. This makes
UAD suitable for training with extremely small datasets.

In this paper, we present findings showing that only very few training samples are required to achieve similar
or even better anomaly detection performance compared to training with 100% of the available training data
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Figure 1: Selecting only a few prototypical in-distribution samples (identified by our method) for training can
result in higher anomaly detection performance than training with 100% of the available data. Results for
anomaly detection on the cat class from CIFAR10. Black dashed: full training. Yellow: randomly selected

samples, including standard deviations over different random selections. Green: Best-performing samples
identified with our method.

(which we denote as “full training” in the remainder of the manuscript). Through the unification of concepts
from anomaly detection and core-set selection, we additionally propose an unsupervised method for selecting
a high-performing subset of samples from the initial training dataset, as depicted in Figure [T} and evaluate
the effectiveness of this approach on a multitude of different models, datasets, and tasks. We further propose
two weakly supervised selection strategies that serve as weak upper bounds for the introduced unsupervised
sample selection and provide additional insights into the method’s selection process. In summary, the main
contributions of this paper are:

e We show for the first time that an exceedingly small number of training samples can suffice for
performant, robust, and interpretable UAD, achieving state-of-the-art performance on a multitude
of established benchmarks.

e We propose an unsupervised method to reliably find well-performing subsets prototypical in-
distribution samples and describe their common characteristics.

o We further demonstrate that the prototypical samples identified by our method and their charac-
teristics translate to equally good performance for other models, datasets, and even tasks.

o Lastly, we provide a theoretical justification explaining the increase in performance through training
with very few samples.

2 Related Work

Our work combines ideas from both the fields of anomaly detection and core-set selection. Here, we give a
brief overview of these concepts and related research work.

2.1 Anomaly Detection

Anomaly detection is deeply rooted in computer vision, with many influential works benchmarking their
models on natural-image datasets, such as CIFAR10 and CIFAR100 (Krizhevsky et all 2009), MNIST
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(LeCun et al., [1998), or Fashion-MNIST (Xiao et al.,2017). Early works attempting to solve UAD on these
benchmarks were mostly based on (variational) autoencoders (Zhou & Paffenrothl [2017; Kim et al. 2019;
let all |2020; |Abati et al. [2019)) or GANs (Perera et al., [2019; [Deecke et al., 2019; |Akcay et al.,[2019) trying
to restrict the learned manifold of the generative model. The model is expected to faithfully reconstruct
in-distribution samples, whereas OOD samples can be detected due to their large reconstruction errors. Also,
one-class classification models or ones that learn surrogate tasks (Golan & El-Yaniv, [2018}
[Bergman & Hoshen| [2020)) have been successfully used. More recently, works based on pre-trained neural
networks (such as ResNets [He et al| (2016)) have become popular and still are the best-performing models
for the aforementioned datasets (Bergman et al.l [2020)).

The release of MVTec-AD (Bergmann et al), 2019) for industrial defect detection sparked several works
focusing on this dataset as it was the first to contain a variety of useful, real-world anomaly detection
tasks. After early attempts to solve these with various techniques, including autoencoders
and knowledge distillation methods (Bergmann et all [2020)), research converged on self-supervised
approaches (Zavrtanik et al., 2021; [Li et al., 2021), ResNets pre-trained on ImageNet (Defard et all [2021}

Deng & Lil 2022} [Roth et al., 2022), or combinations thereof (Bae et all [2023).

Anomaly detection was also successfully applied in medical computer vision, where it is used to discriminate
samples from healthy subjects (in-distribution) from diseased ones (outliers). [Schlegl et al| (2019) have
successfully discovered biomarkers in retinal OCT images using a GAN. To detect tumors and lesions in
brain MRI, numerous autoencoder-based approaches (You et al., [2019; Baur et al., 2021} |Zimmerer et all
2019) and diffusion models (Wyatt et al., [2022)) have been proposed. Furthermore, anomaly detection has
been successfully applied in chest X-ray images to detect COVID-19 (Zhang et al.,[2020) or other malignancies
(Lagogiannis et al.l {2023} Mao et al., [2020).

However, without exception, the existing works have followed the established paradigm of using the largest
available training dataset, a notion we aim to challenge in this study.

2.2 Core-set Selection

To this end, we utilize methods from the field of core-set selection. Core-set selection aims to create a
small informative dataset such that the models trained on it show a similar test performance compared to
those trained on the original dataset. Core-set selection techniques for deep learning include minimizing
the feature-space distance or the distance of gradients with respect to a neural network
(Mirzasoleiman et al., [2020)) between the selected subset and the original dataset. In anomaly detection,
core-set selection has been used by Roth et al.|(2022)). Here, however, the selection is done on patch features
instead of images. In MemAE, |Gong et al.| (2019)) restricted the latent space of an autoencoder to a set of
learned in-distribution feature vectors to perform anomaly detection. While this work also finds prototypical
feature vectors, they again cannot be linked back to training samples and, consequently, cannot be used for
core-set selection.

3 Surfacing Prototypical In-Distribution Samples Through Core-Set Selection

In unsupervised anomaly detection, the task is to train a model that can determine the binary label y € Y
(ID: y = —1 or OOD: y = 1) of a sample 2 € X. In this setting, it is commonly assumed that the training
dataset Xirain contains only ID samples (y = —1,Vz € Xyain), alleviating large labeling efforts for anomaly
detection models. Without loss of generality, a typical neural network used for anomaly detection can be
divided into two parts: The feature-extractor v transforms a sample x to its latent representation z € Z, and
a predictor ¢ that computes the anomaly score s from z. The anomaly score s € R is a potentially unbounded
continuous value that represents the “outlierness” of a sample x. Combined, the anomaly detection model 6
computes the anomaly score of a sample:

O0(x) = ¢p(¢P(z)) = 5. (1)
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Such anomaly detection models are usually trained on large datasets. When performing core-set selection,
we want to determine a subset Xg,, with M € N samples from the original training dataset X¢;.i, with
N € N samples denoted as z; € RP with i =1,2,..., N, such that:

minimize E(Xqup,0) subject to
Xsub C Xtrain7 (2)
‘Xsub| = Ma

where E(Xgup, 0) is the detection error produced by a model 6 trained on Xgyp.

Previous work by |Defard et al.| (2021) has shown that the latent space Ziai, represents a semantically
meaningful compression of the training distribution Xi;.i, that can be modeled as a multivariate Gaussian.
Due to the limited representational power of unimodal Gaussian distributions, we extend this idea by instead
fitting a Gaussian Mixture Model (GMM) with M components to this latent space. Let G = {1, pa, . .., iar}
represent the set of means (centroids) of the M components of the GMM, where ; denotes the mean of the
j-th component. This allows us to choose the samples corresponding to the latent codes that are closest to
the centroids as core-set samples.

Xoub = {2 | Vi € G, argmin |[)h(x;) — pjll2} - (3)

T3 € Xtrain

The use of a GMM ensures that multiple different modes of normality are represented in Xg,p.

3.1 Weakly-Supervised Baselines

In addition to the unsupervised core-set selection, we are interested in finding the optimal training subsets
when labeled data is available. Finding these subsets would offer additional insights into “normality” in
anomaly detection and enable us to put the performance achieved by our core-set selection strategy into
perspective, establishing an upper bound. However, the problem is N"P-hard. For a subset size of M, there
exist C(N, M) = (ﬁ) = WLM)' possibilities. We therefore propose two approximate solutions to this
problem, where we make use of the following simplification: By evaluating the detection error obtained from
training with individual samples, we aim to identify small yet high-performing training datasets.

3.1.1 Greedy Selection

Since it is possible to train UAD models with only one sample, we can heuristically estimate the quality of
each sample individually as E({x;}, 0, Xya1) for ¢ = 1,2,..., N. From this information, we construct Xy, as:

M
KXeub = arg min ZE({xj}voaXval) . (4)
{Ij|xj € Xtrain, 1§J§M} j=1

In our work, we select the AUROC as the optimization target E. Note that the set of samples that produce
the smallest errors is not necessarily equal to the set of samples that together produce the lowest error.

3.1.2 Evolutionary Algorithm

While the greedy approach above is intuitive, fast, and easy to implement, it prefers subsets of visually similar
samples, as we will later show. This is desirable in some cases; however, there are also scenarios in which
multiple modes of normality should be covered by the selected subset. To get a better coverage of the normal
variations in a dataset, we propose a second approach, as described in the following. For each combination
of a training sample x; € Xiain and a validation sample xp, € Xya1, we compute an anomaly score s(x;, z)
by training the anomaly detection model on x; only and running inference on xj. The objective is to find a
subset Xgup = {i|T; € Xirain, 1 <@ < M} that maximizes a fitness function f described as:
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FXaw) = Y max g s a). o)
Ty €Xval sub

Maximizing f allows for finding M training samples x; that achieve the best performance in classifying
validation samples z;, as ID or OOD. Since this problem is also N'P-hard, we approximate the solution using
an evolutionary algorithm:

Algorithm 1: Evolutionary Algorithm

Data: Training dataset Xi;ain, validation dataset X,a1, population size P, anomaly scores
s(xi, xk) Vr; € Xirain, Tk € Xval, fitness function f, number of generations G
Result: Approximately optimal subset X7
Initialize a random population P = { X p|1 < p < P},
for gen < 1 to G do
Evaluate the fitness function f for each individual X, € P;
Remove the least-fit g individuals Xqup,, € P from P to determine the best subset P’;
Randomly apply either a crossover (combine two individuals) or mutation (replace one sample)
operation to each individual in P’ to create a modified population P”;
Generate a new population P = P’ U P”;
end
return Best individual found in the final population;

In the crossover operation, random subsets of two individuals Xgup,1, Xsub2 € P’ (called parents) are merged
to produce a new individual X! ., such that | X/ | = M. In the mutation operation, one sample z1 € Xgyp,
of an individual X, € P’ is randomly replaced with another sample zo € D \ Xgu1, to produce a new

individual X/

sub = Xsub \ {1} U {2} . (6)

In contrast to the greedy selection strategy that favors visually similar samples, the subsets found by the
evolutionary algorithm have better coverage of the different notions of normality contained in the training
dataset (c.f. Figure . However, note that this enhanced coverage could also be harmful when the normal
dataset is noisy and contains samples that should be considered abnormal. In such cases, greedy selection is
more effective at filtering out these samples.

4 Experiments

4.1 Datasets and Models

To evaluate our methods, we use datasets from the natural- and medical-image domains, showing the ap-
plicability of our method in diverse tasks. CIFAR10, CIFAR100 (Krizhevsky et al., [2009), MNIST (LeCun
et all [1998)), and Fashion-MNIST (Xiao et al., 2017) are trained in a one-vs-rest setting, where one class
is used as the in-distribution, and all other classes are combined as outliers. MVTec-AD (Bergmann et al.|
2019) is an industrial defect detection dataset and a frequently used benchmark for UAD models. In the
chest X-ray images of the RSNA Pneumonia Detection dataset (Stein et al., 2018]), the in-distribution consti-
tutes images of healthy patients, while anomalous samples show signs of pneumonia or other lung opacities.
In addition, we use CheXpert (Irvin et al., 2019) to test if the samples found by our method generalize to
other datasets. Similarly to RSNA, the in-distribution samples here are images labeled with “No Finding”,
while OOD samples either display pneumonia or other lung opacities. Lastly, we detect MRI slices with
glioma in the BraTS dataset (Menze et al.,|2014; Bakas et al.,[2017). For each dataset, we chose a respective
state-of-the-art model: PANDA (Reiss et al.| [2021)) is used for CIFAR10, CIFAR100, MNIST, and Fashion-
MNIST, PatchCore (Roth et al. [2022) for MVTec-AD, and FAE (Meissen et all [2023; [Lagogiannis et al.,
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Table 1: AUROC scores of training with the full dataset and training with 1, 5, 10, and 25 best-performing
(with greedy search, the evolutionary algorithm, and core-set selection) or random samples. Since the
performance of randomly selected subgroups can vary strongly, we repeated these experiments over ten
different subsets. Bold numbers show the best performance per dataset, and underlined numbers are the
best per sample size. Numbers marked with * surpass training with 100% of the data. This table shows the
averaged results over each class in the respective datasets. Detailed results for all classes can be found in
the Appendix.

Method CIFAR10 CIFAR100 F-MNIST MNIST MVTec-AD BraTS RSNA

< Random 84.96 +1.2 77.05 £1.4 83.51 £3.3 76.11 +2.2 83.61 +1.2 93.85 £5.3  61.86 £5.2
E‘ Greedy 95.02 89.94 94.00 90.15 89.70 95.25 70.64
} Evo 87.68 79.99 86.82 74.82 85.55 94.00 65.62
= Core-set 90.08 79.62 91.47 82.29 82.80 96.25 67.36
§ Random 91.95 +0.7 86.40 +0.8 91.86 +1.1 89.36 +1.1 90.43 +0.9 97.83 £1.1  73.14 £3.5
g Greedy 96.36 92.49 95.31 93.62 91.52 97.25 74.19
S Evo 94.30 90.40 93.42 92.96 94.12 99.06* 76.45
10 Core-set 93.85 89.74 93.89 92.55 92.13 96.88 75.06
kS Random 93.59 +0.4 89.05 +0.5 93.24 +0.3  93.00 +0.6 92.80 +0.6 97.96 +1.0 75.43 £3.0
g Greedy 96.37 92.59 95.38 94.91 92.94 97.06 77.80
S Evo 95.51 91.78 94.28 95.37 96.37 98.81%* 76.61
S Core-set 94.28 91.03 94.47 94.94 96.77 98.19 76.78
8 Random 94.68 +0.2 91.52 +0.2 94.16 +0.2  96.24 +0.3 95.29 +0.3 98.09 +0.6  77.08 +£0.9
g Greedy 96.29 92.60 95.52 96.06 93.53 97.94 78.60*
s Evo 95.51 91.88 95.07 97.30 98.52* 98.87* 80.59*
2 Core-set 94.85 92.88 95.13 97.33 98.37 99.12* 79.18*
Full training 96.58 94.92 95.79 98.41 98.48 98.75 77.97

2023) for RSNA, CheXpert and BraTS. We additionally used Reverse Distillation (RD) by Deng & Li| (2022)
for RSNA to test the generalizability of identified samples across models. Details about the datasets and
models can be found in the supplementary material.

4.2 Experimental Setup

We carefully tune all baselines and methods using established protocols where applicable. Details are in
Appendix [C] We restricted the maximum subset size to M = 25 samples in our experiments as we did not
experience substantial increases in performance beyond this point. Multiplied by the number of experiments
and selection strategies, this decision saved significant amounts of our limited resources and allowed for more
extensive experimentation in other dimensions.

5 Results and Discussion

In the following, we first present our main findings in Section [5.1] Section [5.2} and Section [5.3] Then, we
provide theoretical justification for these findings (Sections and [5.5) and dive deeper into the specific
characteristics of the different datasets and how they impact the core-set selection performance in Section|5.6|

5.1 A Few Selected Samples Can Outperform Training With the Whole Dataset

As shown in Table [I, UAD models achieve high performance even when trained with only a few samples.
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Figure 2: Performance in RSNA does not increase with Appendix@[). Our proposed core-set selection strat-
more training samples. egy substantially outperforms random selection on

all datasets and even performs better than full train-
ing on BraTS and RSNA. Notably, for the latter, it uses as little as 0.3% of the available training data. In
addition to this, the evolutionary algorithm and especially the greedy selection strategy also demonstrate
good performance. Moreover, our core-set selection strategy is not far behind and outperforms the other two
with 25 samples on CIFAR100 and MNIST despite not using any labels. Overall, our selection strategies
outperform full training in 25/67 categories tested in this study (see Tables t0|§| in Appendix@. Further-
more, the gap between random and informed selection becomes even more pronounced in the very-low data
regime (1-10 samples).

5.2 What Characterizes Normal Samples?

Our method not only allows training strong UAD models with only a few samples, but it also provides insights
into what constitutes a prototypical in-distribution image. Figure [3] shows the best- and worst-performing
samples for each class in CIFARI10 on the left. The “best” images display well-lit prototypical objects that
are well-centered, have good contrast, and have mostly uniform backgrounds. In contrast, the “worst” in-
distribution images include drawings (bird and horse), toys (frog, truck), historical objects (plane, car), or
images with bad contrast (dog). In noisy, less well-curated datasets like RSNA, our method can effectively
detect and filter low-quality samples. Figure [3] reveals severe deformations, foreign objects such as access
tubes or implants, low tissue contrast, or dislocations in the worst-performing samples. The best-performing
ones, on the other side, are well-centered and detailed, contain male and female samples, and clearly show
the lungs, a prerequisite for detecting pneumonia.

CIFARI10

Figure 3: Best- and worst-performing samples in CIFAR10 and RSNA. Identified using our proposed core-set
selection strategy.

Motivated by the insights we gained about the characteristics of in-distribution samples, we manually selected
a training subset. We chose the RSNA dataset for this experiment because, unlike MVTec-AD, it contains
atypical samples in the “normal” data and because the images are large enough to be visually inspected,
in contrast to the other natural image datasets. We selected samples that had similar characteristics as
displayed in Figure [3|and covered the distribution of ID samples well. We only started the evaluation of the
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manually selected samples once their selection was complete. No information other than the characteristics
described above was used for the manual selection, and the author selecting the samples is not a trained
radiologist or other medical expert. When training with these manually selected samples, we achieved
AUROCs of 67.88, 76.61, 79.73, and 81.04 for 1, 5, 10, and 25 samples, respectively. The manual selection
strategy, therefore, outperformed all automatic selection strategies and even full training, giving the best
results on RSNA in this work.

We repeated a similar experiment for the — arbitrarily selected — “8” class on MNIST. This time, however,
we did not look at the best- or worst-performing samples from this class but simply selected samples that are
visually close to a prototypical 8. We discarded samples that had non-closed lines, where the curves of the
8 were excessively slim, and those with irregular or wavy lines. With these samples, we achieved AUROCs
of 76.69, 92.42, 94.59, and 96.37 for 1, 5, 10, and 25 samples, respectively, outperforming both random
selection and the evolutionary strategy, while also only falling 1.45 points below full training performance.

5.3 Prototypical Samples Are Transferrable to Other Models and Datasets

Selected with: RD (Hp Training on: RSNA
@& Used by: FAE @ Inference on: CheXpert
) )
I 0.74
0.800 -

0.775

0.750

8 0.725 Full 8 0.66 Full
S 0.700 === Greedy (RD) 5 = = Full (with CXP)
< = = Greedy < oot == Random
0675 —— Evo (RD) 0.62 —— Greedy
0.650 === Evo 0.60 e FvO
e Core-set (RD) == Core-set
0.625 == = (Core-set 0.58 e Manual

Figure 4: Prototypical samples transfer well to other datasets and models. Left: Surfaced samples with
the RD model achieve high performance when used with FAE. Test performance of FAE on RSNA when
samples are selected using RD (full lines) or FAE (dashed lines). Right: Training with 25 carefully selected
samples from RSNA can exceed full training performance with CheXpert (8443 samples) when evaluated on
the latter. Test performance on CheXpert after training on CheXpert samples (black, dashed line) or RSNA
(other lines).

We also trained a second type of UAD model, Reverse Distillation (RD), on RSNA. This model matches
encoder and decoder representations at different levels. The left side of Figure [] shows how the best-
performing samples selected with our proposed core-set selection and the two weakly-supervised baselines
on RD perform when applied to the FAE model. Although RD generally performs worse than FAE, its best-
performing set of samples works well on FAE, performing almost on par with the ones found with FAE itself
and even exceeding full performance. We conclude from this result that there are commonalities between
the best samples that are independent of the model. This means that samples found using one model can
be transferred to another.
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Similarly, high performance for sample combinations on RSNA translates well to the CheXpert dataset. As
expected, training with RSNA samples gives a slightly lower performance on CheXpert than training on
CheXpert itself (red and black dashed lines in Figure 4} right). This gap, however, can be closed by training
with only 25 high-performing samples from RSNA. Even more impressive, we reached higher performance
on CheXpert when training with the 25 manually selected RSNA samples than when training on the full
CheXpert dataset itself.

5.4 Long-Tail In-Distribution Samples Can Degrade Anomaly Detection Performance

Airplane Automobile Bird Cat Deer
100 e --ﬁﬂ--ﬂ
Bouw HHA——HI| | || T Fo====t 1
& /[
2 0.80 e Random
Greedy
0.71
1 5 10 25 1 5 10 25 1 5 10 25 1 5 10 25 1 5 10 25
Dog Frog Horse Ship Truck
LOO ] ] Ll T e [ a—r—
8 0.90 ﬁ r—— F — p—
&
=)
< 080

1 5 10 25 1 5 10 25 1 5 10 25 1 5 10 25 1 5 10 25

Figure 5: Only 10 representative training samples are needed to surpass the performance of training with the
whole dataset on five out of the ten classes in CIFAR10. AUROC for training with 1, 5, 10, and 25 random
or best (greedy selection) samples on CIFAR10. For random samples, the experiments were repeated ten
times with different samples. The dashed black line represents training with all 4000 ID samples.

In Table [I] and figs. 2] and [4] we have seen that very small datasets can exceed the performance of full
training. Figure [5] even shows that peak performance for the “cat” class of CIFAR10 is achieved with only
five samples. These results suggest that there exist samples in many datasets whose inclusion degrades
performance. We hypothesize that the reason for this is due to the nature of the in-distributions, which
often have long tails, as shown by [Feldman| (2020) and [Zhu et al| (2014). The long-tail hypothesis states
that the majority of the in-distribution samples have only low inter-sample variance, with the exception
of a few rare samples that differ a lot from the rest (while still being part of the in-distribution). While
these samples can be actively contrasted to other classes and memorized by supervised machine learning
models (Feldman & Zhang, |2020)), such mechanisms are not available for UAD models, where the long-tail
in-distribution samples are treated as any other training sample. This can shift the decision boundary in
an unfortunate way (Figure @, left). Training with carefully selected samples effectively ignores these data
points and can lead to better performance despite using fewer samples (Figure @ right). Figure 7| reveals
that the datasets used in our study also follow a long-tail distribution and that the samples at the tails
perform worse. Additionally, the worst-performing samples in Figure [3| are clearly atypical and, thus, likely
also lay at the tail of the in-distribution.

5.5 Should Samples From the Long Tails of the In-Distribution Be Considered Outliers?

Our experiments suggest that there are samples in the training datasets that lie at the tails of the in-
distribution and lower the performance of the UAD model. Our subset-selection strategies are effective
at filtering out these data points. Of course, ignoring such long-tail samples during training will declare
them as outliers, which, at first sight, is false given the labels. We argue, however, that these data points
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Figure 6: Training with only a few selected sam-
ples helps to ignore training samples that lie at
the tails of the in-distribution. Illustration of our
hypothesis of how long-tail in-distribution samples
can skew the decision boundary. Left: Some ID
samples might be closer to the OOD data and shift
the decision boundary. Right: Training with a few
carefully selected samples creates a better decision
boundary.
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Figure 7: RSNA follows a long-tail distribution in
the FAE feature-space, and the samples at the tails
perform worse. Histogram of distances of all train-
ing samples from RSNA to the center of an FAE
model and two example images from the center and
the tail. The bins of the histogram are colored-
coded according to the AUROCS of each single sam-
ple as described in Section [3.1.1]

should be considered as such because they warrant special consideration in downstream tasks. For example,
a subsequent supervised classification algorithm is more likely to misclassify these, and in such a scenario,
flagging long tail samples as OOD is desired. Atypical X-ray images, as shown on the bottom right of
Figure can pose difficulties (even for manual diagnosis) and should also receive special attention. Further,
as we have shown, including these samples during training can lower the classification performance for other
samples that are then falsely flagged as ID. The selection methods presented in this study can, therefore, not
only be used to identify the most prototypical in-distribution samples but can also be used to automatically

filter a dataset from noisy or corrupted images.

5.6 The Distributions of Normality and Abnormality Differ Between Datasets

Greedy selection

BET TR
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Core-set selection
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Figure 8: Greedy selection favors visually similar samples, while the core-set selection achieves a better
coverage of the normal variations in the training dataset. Best five training samples for the screw category
in MVTec-AD, found using greedy selection (left) and the unsupervised core-set selection (right). Bottom:
normal (green) and defective (red) samples in the test set.
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Despite all being used for anomaly detection and showing similar behavior regarding training with few
samples, the datasets considered in our study vary greatly with respect to their in and out distribution, as
well as the relationships between the two. While for some datasets, the variability between ID samples is
comparably low; other datasets contain multiple modes of normality. The objects within each class of the
MVTec-AD dataset are very similar and often only oriented differently, and the chest X-ray images all show
the same anatomical region. The brain MR images in BraT§S are registered to an atlas and, consequently,
have even lower anatomical variance. This is in contrast to CIFAR10, CIFAR100, and Fashion-MNIST, where
the in-distribution training class can exhibit various shapes, poses, and colors. Similarly, OOD samples can
be local and subtle, as in MVTec-AD, BraTS, and RSNA, or global, as in CIFAR10, CIFAR100, MNIST,
Fashion-MNIST. A good subset of prototypical samples should cover the different modes of normality but
exclude the samples that are atypical and semantically too close to the out-distribution. When looking at
examples of the different types of in- and out-distributions described above, we can identify the strengths and
weaknesses of the different selection strategies. An example of a dataset with different ID modes and subtle
anomalies is the “screw” category of MVTec-AD. Figure [§ shows that greedy selection favors combinations
of similarly oriented images and fails to cover the whole space of differently-oriented, normal samples. Our
proposed unsupervised core-set selection strategy, on the other hand, (and also the evolutionary algorithm)
better covers the different orientations that should all be considered normal (see also Tablein Appendix@.

6 Conclusion

In many domains of Deep Learning, the prevailing assumption is that more training data leads to better
models. Our work challenges this practice for UAD and highlights the importance of data quality over data
quantity. Specifically, we have shown that it is a common phenomenon of UAD models to achieve state-of-
the-art performance with extremely few training samples. Our proposed core-set selection strategy is a fast
and easy-to-implement, unsupervised approach to automatically extract such high-performing, prototypical
training samples. We have further shown that these prototypical in-distribution samples are transferrable
across models, datasets, and even modalities and tasks and that the characteristics derived from them allow
for manual selection. This understanding of the well-performing training samples can help in designing
better UAD models in the future. Our findings further make UAD models much more attractive in practice
despite their performance still lacking behind that of their supervised counterparts.
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A Appendix: Datasets

A.0.1 CIFAR10, CIFAR100, MNIST, and FashionMNIST

We follow the widely used training setup from Reiss et al| (2021) for these datasets. CIFAR10 contains
6000 images per class. For each class ¢ € C, we create a training dataset Xt;ain, ¢ using 4000 samples from
said class. The remaining samples are split equally into a validation and a test set and combined with the
same amount of samples from every other class as outliers. Training, validation, and test sets for CIFAR100,
MNIST, and Fashion-MNIST are created analogously. For CIFAR100, we used the 20 superclasses instead
of the 100 detailed classes.

A.0.2 MVTec-AD

MVTec-AD is a dataset for defect detection in industrial production. Here, we used the original splits as
outlined by Bergmann et al.| (2019).

A.0.3 BraTS

The multimodal brain tumor image segmentation benchmark (BraTS) contains 369 MRI from patients with
glioma. We extract 5 slices around the center line and use 101 slices without glioma for training. The
remaining 80 normal slices are split 50:50 into a validation and a test set and are complemented with
40 pathological slices each. Following Meissen et al.| (2023)), we use the T2-weighted sequences, perform
histogram equalization on the slices, and resize them to 128 x 128.

A.0.4 RSNA and CheXpert

The RSNA Pneumonia Detection dataset (Stein et all 2018]) is a subset of 30000 frontal view chest ra-
diographs from the National Institutes of Health (NIH) CXR8 dataset that was manually labeled by 18
radiologists for one of the following labels: “Normal”, “Lung Opacity”, or “No Lung Opacity / Not Normal”.
The CheXpert database contains 224 316 chest-radiographs of 65 240 patients, acquired at Stanford Hospital
with 13 structured diagnostic labels. To make the CheXpert compatible with RSNA, we only considered
frontal-view images without support devices and further excluded those where any of the labels were marked
as uncertain. In addition to the image data and labels, demographic information about the patients’ gender
and age was available for both datasets.

For RSNA, we used the “Normal” label as in-distribution images and combined the “pneumonia” and “No
Opacity/Not Normal” (has lung opacities, but not suspicious for pneumonia) as OOD. Similarly, for CheX-
pert, the “No Finding” label was used as in-distribution, and “pneumonia” and “lung opacity” as OOD. For
both datasets, we created a validation- and a test set that are balanced w.r.t. gender (male and female), age
(young and old), the presence of anomalies, and contain 800 samples each. The remaining in-distribution
samples were used for training. As part of preprocessing, all Chest X-ray images were center cropped and
resized to 128 x 128 pixels. Note that we treated both datasets individually and did not combine them for
training or evaluation.

B Appendix: Models

B.0.1 PANDA

PANDA (Reiss et al.l [2021) is a model built upon DeepSVDD by [Ruff et al.| (2018). Like the latter, it relies
on training a one-class classifier by using the compactness loss. Given a feature-extractor 1) and a center
vector ¢, the compactness loss is defined as:

Ecompact = Z ||Z/J(~T) - CH2 . (7)

xzeD
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The center vector ¢ is computed as the mean feature vector of the training dataset D on the untrained model

Yo:

c:ﬁzwo(x). (8)

xzeD

Instead of training a specialized architecture from scratch, PANDA benefits from useful features of pre-trained
models. Specifically, it extracts features from the penultimate layer of a ResNet152 (He et al., |2016) and
categorizes samples into ID / OOD by the L1-distance to the k nearest neighbors (kNN), with £ = 2. PANDA
only fine-tunes layer3 and layer4 and uses early stopping to determine the optimal distance between ID
and OOD samples. Training has no effect when using only one sample as the feature representation of the
only sample is always identical to c. We used the original configuration from their paper for our experiments.

B.0.2 PatchCore

PatchCore (Roth et all 2022) follows a similar concept as PANDA. However, instead of performing a kNN
search on pooled, global features, PatchCore achieves localized anomaly detection by using a memory bank
of locally-aware patch features M instead. To make the kNN search computationally feasible, PatchCore
performs core-set selection on the memory bank to retain only a subset of representative features Mgyp:

My = i i —nllz. 9
b = argmin max win |jm—nllz (9)

Compared to PANDA, PatchCore does not require fine-tuning of the feature extractor. We used the same
hyperparameters for PatchCore as in the original publication.

B.0.3 FAE

The Structural Feature-Autoencoder (FAE) (Meissen et al., |2023|) extracts spatial feature maps from a pre-
trained and frozen feature extractor ¢ (a ResNet18 |He et al.| (2016) in practice). The feature maps a resized
and concatenated and fed into a convolutional autoencoder fy that is trained via the structural similarity
(SSIM) loss for reconstruction:

L = SSIM(¢(x), fo(¥(2))) - (10)

Anomalies are detected using the residual between the feature maps and their reconstruction like in popular
image-reconstruction models. It was found to perform best for UAD in Chest X-ray images in a study
by [Lagogiannis et al.| (2023). We use a smaller model in our experiments since it still gave us the same
performance on the RSNA full dataset as the larger model and is more resource-efficient. Specifically, we set
the fae_hidden_dims parameter to [60, 100]. The other parameters were kept the same as in the original
publication.

B.0.4 Reverse Distillation

The Reverse Distillation (RD) model by [Deng & Lil (2022) utilizes a frozen encoder model and a decoder that
mirrors the former, similar to an Autoencoder. Instead of reconstructing the image, however, RD minimizes
the cosine distance between feature maps in the encoder and decoder. The same measure is also used during
inference to detect anomalies. RD was the second-best performing UAD model for Chest X-ray images in
Lagogiannis et al.[(2023). We used the same hyperparameters for RD as in [Lagogiannis et al.| (2023]).

C Appendix: Implementation details

As suggested by Reiss et al.| (2021)), we train PANDA for a constant number of 2355 steps (corresponding to
15 epochs on CIFAR10) using the SGD optimizer with a learning rate of 0.01 and weight decay of 0.00005.
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Table 2: Detailed training results for CIFAR10. AUROC scores of full training and training with 1, 5, 10,
and 25 best-performing (with greedy search, the evolutionary algorithm, and core-set selection) or random
samples. Since the performance of randomly selected subgroups can vary strongly, we repeated these exper-
iments over ten different subsets. Best performances are marked in bold, and underlined numbers are the
best per sample size.

Method Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Average
< Random 88.14 +6.3 91.59 +4.1 75.81 +6.2  T79.75 +5.5  90.55 +4.7 76.47 +7.6 88.38 +5.1 82.34 +15.1  87.19 +6.6 89.32 +7.6 84.96 +1.2
g“ Greedy 96.18 98.50 88.04 91.59 95.92 90.13 96.87 96.94 98.14 97.88 95.02
3 Evo 86.15 97.08 88.04 78.61 93.27 79.83 67.29 94.21 96.64 95.73 87.68
- Core-set 94.54 96.86 79.14 81.56 92.75 84.63 92.84 92.28 92.09 94.15 90.08
3 Random 94.88 +1.3 97.00 +1.2 82.88 +2.4  86.92 +2.7  94.06 £2.0 84.61 +45 94.30 £1.5  93.68 +2.0  95.57 +£1.1  95.58 +1.0 91.95 +0.7
E Greedy 97.22 99.05 90.36 93.06 96.86 94.32 98.31 97.39 98.37 98.61 96.36
g Evo 95.85 96.60 89.19 87.44 96.12 92.23 93.89 97.11 96.72 97.88 94.30
0 Core-set 94.14 97.23 88.70 87.88 95.91 90.36 95.24 96.39 96.22 96.46 93.85
8 Random 95.42 +1.2 97.65 +0.8 86.70 1.2  88.02 +1.6 94.94 05 89.00 +2.0 95.82 +0.8  95.57 £1.3  96.05 £0.7 96.74 +0.5  93.59 +0.4
g“ Greedy 97.19 99.08 91.45 92.39 96.97 93.94 98.79 97.01 98.14 98.79 96.37
E Evo 96.47 97.98 90.64 89.32 96.62 93.61 97.72 96.93 97.62 98.23 95.51
=1 Core-set 94.90 97.79 88.56 88.09 95.91 91.50 96.31 96.46 96.45 96.81 94.28
3 Random 96.19 +0.7 98.30 +0.3 89.26 +1.2  88.26 +1.7 95.77 +0.5 91.16 +1.9  96.95 +0.6  96.59 +0.5  96.77 £0.2  97.50 £0.3  94.68 +0.2
g“ Greedy 97.11 99.17 90.22 92.46 96.61 95.00 98.87 96.93 97.87 98.65 96.29
a Evo 96.56 98.18 91.38 89.16 96.68 92.11 97.87 97.42 97.64 98.08 95.51
2 Core-set 96.88 98.67 89.06 86.26 95.98 92.98 97.40 96.99 96.68 97.56 94.85

Full training 97.92 98.76 94.12 90.43 97.53 94.36 98.44 97.83 98.21 98.23 96.58

Table 3: Detailed training results for MNIST. AUROC scores of full training and training with 1, 5, 10, and 25
best-performing (with greedy search, the evolutionary algorithm, and core-set selection) or random samples.
Since the performance of randomly selected subgroups can vary strongly, we repeated these experiments
over ten different subsets. Best performances are marked in bold, and underlined numbers are the best per
sample size.

Method 0 1 2 3 4 5 6 7 8 9 Average
< Random 91.11 +2.4  90.34 +6.0 65.18 +10.6  77.02 +4.4 69.79 +11.2  69.69 +9.7 69.43 +6.9 70.37 +7.6 76.91 +3.6 81.26 +5.4 76.11 +2.2
g‘ Greedy 98.14 97.09 82.74 89.92 92.94 88.69 85.01 87.87 89.59 89.53 90.15
g Evo 82.31 83.30 69.87 75.18 78.13 82.36 78.57 59.38 62.56 76.56 74.82
- Core-set 94.71 92.27 71.53 86.66 80.33 78.28 75.39 76.65 82.48 84.61 82.29
38 Random 98.52 +0.9 97.79 +2.2 7740 +7.3  89.79 £1.9  90.25 +1.9  85.58 +4.9 88.90 +4.3 86.97 +2.6 87.92 £35 90.42 +2.1  89.36 +1.1
& Greedy 99.21 98.29 85.59 93.13 95.65 90.90 93.00 92.52 94.31 93.56 93.62
= Evo 98.76 96.96 85.06 94.82 95.78 91.44 95.57 89.28 87.35 94.59 92.96
w0 Core-set 99.29 99.58 86.83 92.32 89.07 91.30 94.72 91.68 91.88 88.82 92.55
8 Random 98.86 +0.6  99.18 +04  83.04 £4.0  92.39 +2.0  93.82 +23  90.84 +1.3 92.81 +2.8 93.28 £1.2 92.34 +1.8 93.40 £1.1  93.00 +0.6
E‘ Greedy 99.43 98.83 89.00 93.99 96.89 91.39 95.62 93.97 96.28 93.75 94.91
E] Evo 99.40 99.30 88.08 94.42 97.97 92.40 97.59 97.28 92.17 95.09 95.37
S Core-set 99.38 99.66 90.60 94.23 96.27 91.46 95.65 93.56 93.45 95.16 94.94
3 Random 99.38 £0.2  99.70 £0.1  90.26 £2.1  95.36 +1.5  96.66 £1.0  93.37 £1.0 97.55 £1.3  97.49 £05 95.83 £0.6 96.79 £0.5 96.24 +0.3
é“ Greedy 99.67 99.30 89.85 96.63 97.67 90.84 98.32 94.88 97.86 95.60 96.06
1 Evo 99.44 99.72 91.65 97.09 99.01 95.10 99.23 98.70 95.43 97.60 97.30
3 Core-set 99.76 99.71 92.42 96.22 97.04 95.96 98.89 98.66 97.37 97.23 97.33

Full training 99.84 99.93 96.58 98.02 98.63 96.45 99.13 99.14 97.82 98.53 98.41

FAE converges very fast on BraTS, RSNA, and CheXpert, so it was trained for 500 steps using the Adam
optimizer with a learning rate of 0.0002. In our experiments, the evolutionary algorithm was robust to
the population size P and the number of generations G. In all experiments, we therefore empirically set
P =1000 and G = 500. For all models, we used the official PyTorch implementations by the authors.

D Appendix: Detailed results

We show the detailed per-class results for CIFAR10, CIFAR100, MNIST, Fashion-MNIST, and MVTec-AD
in Tables [2] to [5] respectively.
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Table 4: Detailed training results for Fashion-MNIST. AUROC scores of full training and training with
1, 5, 10, and 25 best-performing (with greedy search, the evolutionary algorithm, and core-set selection) or
random samples. Since the performance of randomly selected subgroups can vary strongly, we repeated these
experiments over ten different subsets. Best performances are marked in bold, and underlined numbers are
the best per sample size.

Method 0 1 2 3 4 5 6 7 8 9 Average

2 Random 7724 £11.0  96.45 0.8 8247 +175 73.80 £7.5 75.09 £12.5 91.63 £4.1  69.29 +12.4 94.71 £6.2  79.04 £8.4 95.37 +4.6 83.51 +3.3
) Greedy 93.85 98.12 93.03 88.8 90.46 97.14 84.55 98.84 95.99 99.16 94.00
g Evo 89.28 83.19 88.71 83.60 79.98 94.35 71.09 96.53 84.16 97.30 86.82
- Core-set 90.94 97.12 91.63 83.53 88.62 95.75 76.01 98.67 94.42 98.00 91.47

8 Random 90.58 £3.7  97.90 +0.5 9213 +1.8 8524 +5.4  88.77 +1.3 9538 £1.9  80.89 24  98.34 0.8 91.01 6.7 98.41 £12 91.86 +1.1
é“ Greedy 94.64 98.98 94.27 92.38 92.95 97.98 86.42 99.18 96.84 99.42 95.31
] Evo 92.74 98.85 93.94 89.42 88.10 94.19 83.62 98.59 96.30 98.43 93.42
w0 Core-set 92.05 97.95 92.91 91.24 89.85 97.32 84.05 98.61 96.10 98.87 93.89

3 Random 91.78 +2.1 98.31 +0.5  93.22 +0.9  89.62 +2.4  89.87 +0.7  96.24 +1.3  81.83 £1.9  98.57 0.7 94.31 1.6 98.62 £0.7 93.24 +0.3
g“ Greedy 94.79 98.98 94.53 93.38 92.00 98.55 86.74 99.27 96.02 99.50 95.38
] Evo 91.41 99.31 94.57 94.72 90.11 95.62 82.86 98.93 96.90 98.37 94.28
=1 Core-set 93.77 98.85 94.14 92.82 91.40 96.13 84.14 98.72 95.98 98.70 94.47

3 Random 93.28 +1.2 98.62 +0.3  93.74 +0.7  93.37 +1.6  91.48 +0.9  95.86 +1.0 8245 +1.4  98.89 +0.2 95.31 £1.0 98.62 £0.5 94.16 +0.2
g“ Greedy 95.06 99.03 94.64 94.49 92.97 98.54 86.76 99.26 94.86 99.60 95.52
] Evo 94.10 99.24 94.12 95.15 92.97 95.70 84.11 98.94 97.32 99.00 95.07
2 Core-set 94.40 99.18 94.16 94.70 91.64 97.07 84.80 99.13 97.37 98.87 95.13
Full training 95.09 99.52 94.44 96.28 93.66 96.58 85.33 99.28 98.88 98.86 95.79
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Table 5: Detailed training results for MVTec-AD. AUROC scores of full training and training with 1, 5,
10, and 25 best-performing (with greedy search and evolutionary algorithm) or random samples. Since
the performance of randomly selected subgroups can vary strongly, we repeated these experiments over ten
different subsets. Best performances are marked in bold, and underlined numbers are the best per sample
size.

Method Bottle Cable Capsule Carpet Grid Hazelnut Leather Metal nut
< Random 99.71 +0.1 83.74 +4.7  66.80 +5.1 97.72 +0.5 60.30 +6.9 90.67 +2.6 99.99 +0.0 71.99 +4.0
g* Greedy 99.76 88.19 72.80 98.60 71.19 93.93 100.00 72.19
] Evo 99.52 88.92 63.14 98.23 66.88 93.04 100.00 70.97
- Core-set 99.52 89.81 61.55 99.08 65.99 88.68 100.00 71.07
8 Random 99.84 +0.2  91.40 +3.6 84.11 £7.2 97.98 +0.3 72.64 £71  96.29 2.2 100.00 +0.0  94.93 £35
E‘ Greedy 100.00 96.27 84.96 98.64 73.52 98.29 100.00 97.75
S Evo 99.52 93.22 90.91 98.19 86.04 99.14 100.00 98.34
0 Core-set 99.68 92.82 87.36 98.72 69.40 98.64 100.00 96.82
8 Random 99.90 +0.2 93.49 +1.8  90.29 +2.3 98.04 +0.3 80.91 +5.7  98.99 +0.7 100.00 +0.0  97.72 +1.6
g* Greedy 100.00 97.58 93.06 98.15 78.86 99.64 100.00 98.92
s Evo 100.00 96.42 91.26 98.39 94.40 100.00 100.00 99.07
S Core-set 99.60 92.75 90.75 98.52 76.38 99.68 100.00 98.19
8 Random 100.00 +0.0 96.59 +£1.0 93.61 +1.5 98.14 +0.3 90.23 +2.9 99.81 +0.3  100.00 +0.0  99.20 +0.4
g* Greedy 100.00 96.74 93.94 98.27 83.88 99.71 100.00 99.41
kS Evo 100.00 98.29 94.34 98.56 99.11 100.00 100.00 99.76
3 Core-set 99.68 97.49 91.58 98.88 92.86 100.00 100.00 99.46

Full training 100.00 99.53 99.20 98.43 99.08 100.00 100.00 99.90

Method Pill Screw Tile Toothbrush Transistor ‘Wood Zipper Average
< Random 78.71 £5.0 46.22 +4.8  99.59 +0.5 82.58 +3.5 83.31 +4.7  98.18 +0.7 94.58 +1.5 83.61 +1.2
g‘ Greedy 89.23 55.87 100.00 88.61 91.42 99.21 99.37 89.70
] Evo 72.64 52.96 99.13 90.00 92.12 99.04 96.61 85.55
- Core-set 74.58 38.29 98.63 85.83 82.79 99.21 95.64 82.80
8 Random 89.48 +2.0 52.86 +5.1  99.87 +o0.1 87.22 +5.2 93.77 +1.7 98.57 +0.4 97.55 +1.5 90.43 +0.9
g* Greedy 89.77 53.40 100.00 87.22 94.46 99.30 99.16 91.52
S Evo 91.41 61.47 99.49 98.33 97.58 99.30 98.90 94.12
0 Core-set 85.00 52.82 99.57 98.89 96.50 98.77 95.93 92.13
8 Random 90.95 +1.8 58.42 +4.0  99.89 +0.1 90.75 +1.1 95.86 +1.8 98.60 +0.2 98.13 +1.0 92.80 +0.6
g* Greedy 93.43 53.68 100.00 85.56 96.38 99.30 99.58 92.94
kS Evo 93.40 75.90 99.71 99.44 99.58 99.39 98.58 96.37
S Core-set 89.20 61.26 98.85 100.00 99.17 98.51 96.77 95.04
8 Random 93.73 +1.1 72.89 £4.0 99.94 +o0.1 90.06 +0.6 97.88 £0.7  98.62 +0.2 98.64 +0.6 95.29 +0.3
g“ Greedy 94.03 54.44 100.00 85.56 98.17 99.21 99.55 93.53
S Evo 95.23 95.43 98.77 99.72 99.50 99.56 99.55 98.52
2 Core-set 94.38 89.44 99.57 100.00 99.58 98.68 98.37 96.80

Full training 96.21 97.13 99.96 90.28 99.62 98.77 99.11 98.48
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Table 6: Detailed training results for CIFAR100. AUROC scores of full training and training with 1,
5, 10, and 25 best-performing (with greedy search, the evolutionary algorithm, and core-set selection) or
random samples. Since the performance of randomly selected subgroups can vary strongly, we repeated these
experiments over ten different subsets. Best performances are marked in bold, and underlined numbers are

the best per sample size.

. . Household Large

Method Aquatic Fish Flowers Fm.)d Fruit and electrical HDUS.EhUId Insects La.rge man-made

mammals containers vegetables N furniture carnivores .

devices outdoor things

< Random 7170 +14.7 75.23 +8.1 90.83 +3.9 82.25 +3.7 71.29 +12.5 71.88 +7.1 84.70 +6.1 68.09 +12.3  77.95 £11.7 86.72 +6.0
g Greedy 91.93 89.09 96.78 89.39 90.97 85.73 96.17 84.78 92.46 93.98
E Evo 89.68 78.96 80.31 76.69 84.76 80.61 92.09 63.07 85.80 90.19
- Core-set 64.34 75.71 90.52 80.05 85.14 73.08 90.44 61.80 68.79 89.97

8 Random 86.25 +3.8 81.82 +6.1 95.82 +1.4 89.31 +2.4 85.26 +5.9 78.90 +6.2 92.54 +2.0 79.26 +9.0 87.47 +1.7 92.15 +1.5
& Greedy 94.13 92.32 98.13 95.59 93.00 85.05 96.78 91.05 93.73 95.55
ﬁ Evo 93.04 89.85 97.08 85.89 92.47 89.12 95.64 86.96 90.11 93.78
w Core-set 86.53 88.90 96.48 91.79 91.29 86.67 95.75 87.01 91.77 92.95

8 Random 88.50 +1.9 85.56 +4.8 96.97 +0.7 91.31 £1.7 90.59 +3.1 80.97 +4.3 94.77 0.8 81.96 +5.0 90.22 £1.4 92.49 +1.2
E Greedy 93.84 91.92 98.60 95.97 92.88 82.56 96.81 89.68 3.33 95.57
] Evo 93.19 89.98 98.16 91.44 93.24 88.27 96.86 88.92 90.95 93.79
= Core-set 91.31 90.85 97.41 92.08 92.28 86.71 95.99 85.73 92.60 94.00

3 Random 90.04 +1.3 90.78 +1.2 97.87 +0.5 93.19 +1.5 93.63 +0.6 84.21 +4.1 96.28 +0.5 86.34 +1.7 91.82 +0.8 93.50 +0.6
g‘ Greedy 92.36 91.27 98.50 95.79 92.53 80.51 97.26 90.89 93.21 95.45
E] Evo 92.88 92.50 98.39 92.87 95.00 90.37 96.84 90.74 91.84 94.29
ES) Core-set 91.72 91.87 98.23 94.68 94.94 90.80 96.21 90.31 93.09 93.92
Full training 93.68 94.81 98.46 95.86 96.59 94.59 97.26 93.00 95.34 94.98

L tural Large Medium-sized ~ Non-insect Small
Method arge natura omnivores edium-size _on-insed People Reptiles ma Trees Vehicles 1 Vehicles 2
outdoor scenes B mammals invertebrates mammals
and herbivores

< Random 86.87 +6.3 66.79 +14.8 73.91 +7.6 60.08 +8.3 88.73 +6.4 66.99 +7.5 72.46 +9.3 92.30 +3.6 78.59 +8.2 73.74 +6.6
5 Greedy 94.13 86.01 84.57 79.51 96.20 79.39 88.86 95.92 93.20 89.81
E Evo 88.88 78.12 73.68 77.34 83.52 52.97 86.70 95.58 68.73 72.15
- Core-set 93.57 74.96 79.55 56.37 91.10 72.36 87.23 94.28 82.56 80.49

8 Random 92.30 +2.0 82.54 +3.3 84.66 +2.1 T1.37 +5.1 95.66 +1.2 79.22 +3.2 85.18 +4.6 95.67 +0.9 88.96 +3.2 83.75 +3.8
& Greedy 94.98 90.29 89.08 82.67 97.90 84.47 92.49 96.89 95.61 90.10
ﬁ Evo 95.11 87.96 83.67 81.76 97.33 81.79 90.32 96.83 92.12 87.22
w Core-set 93.92 86.92 87.56 75.77 95.14 85.19 86.94 95.48 92.46 86.36

8 Random 93.76 +1.2 85.27 +2.7 87.79 1.3 78.13 £2.9 96.39 +0.8 83.14 +3.0 87.63 2.7 96.44 +0.5 92.30 £1.8 86.80 +1.5
E Greedy 95.49 90.43 85.01 98.18 87.55 91.98 97.67 95.92 88.95
E Evo 94.95 88.72 83.32 97.69 85.42 90.41 97.48 94.83 88.14
= Core-set 95.81 87.80 79.06 96.93 86.52 89.47 96.81 93.88 89.05

8 Random 94.93 +0.7 89.69 +1.5 89.68 +0.6 83.07 £1.6 97.47 +0.5 86.95 +1.1 89.92 +0.8 97.06 +0.3 94.09 +0.4 89.90 +1.0
g Greedy 95.84 90.23 90.78 86.55 98.13 89.72 91.81 97.50 95.87 87.78
E] Evo 95.44 91.58 91.27 85.68 97.97 88.61 91.33 97.17 95.64 90.17
ES] Core-set 95.81 91.72 90.12 83.86 97.56 88.04 90.91 97.84 94.60 91.28
Full training 95.37 94.40 93.54 90.76 98.55 91.71 92.70 96.84 96.06 93.88
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