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Abstract

Wearable devices offer continuous monitoring of biomarkers, presenting an op-
portunity to diagnose cardiovascular diseases earlier, potentially reducing their
fatality rate. While machine learning holds promise for predicting cardiovascular
biomarkers from sensor data, its use often depends on the availability of labeled
datasets, which are limited due to technical and ethical constraints. On the other
hand, biophysical simulations present a solution to data scarcity but face challenges
in model transfer from simulation to reality due to inherent model simplifications
and misspecifications. Building on advancements in hybrid learning, we introduce
a method that combines a pulse-wave propagation model, rooted in biophysical
simulations, with a correction model trained with unlabeled real-world data. This
generative model transforms cardiovascular parameters into real-world sensor
measurements and, when trained as an auto-encoder, also provides the inverse
transformation, mapping measurements to cardiovascular biomarkers. Notably,
when assessed using real pulse-wave data, our hybrid method appears to outperform
models based solely on simulations in inferring cardiovascular biomarkers, opening
new avenues for inferring physiological biomarkers in data-limited scenarios.

1 Introduction

Cardiovascular (CV) diseases are the leading cause of mortality worldwide [1, 2]. Arterial pulse
waves (PW) propagate from the heart to peripheral locations through the arterial network and hold
valuable information regarding the underlying cardiac health. The development of wearable devices,
which continuously measure arterial PWs at peripheral locations, holds several promises for the early
diagnostic of CV diseases and drastic reduction of their fatality rates [3, 4]. Nevertheless, inferring
important cardiac biomarkers, e.g., stroke volume or left ventricular ejection time, from these
measurements has remained a challenge, owing to the complex nature of this inverse problem [5].

Machine learning (ML) has emerged as a promising approach for predicting biomarkers from
wearables’ measurements [6, 7]. Typically, the labeled data in this domain come from specialized
medical tests, primarily involving individuals with health concerns. As a result, labeled data are
scarce and not representative of the general population, hindering the scaling of ML solutions beyond
proof-of-concept. Moreover, the usual strategies to address data scarcity, e.g., data augmentations
or self-supervised learning, are not directly applicable, as the nature of symmetries in the inverse
problem remains unclear.

Alternatively, biophysical models, such as whole-body 1D hemodynamics simulators [8, 9], can
describe the forward process that generates PWs based on a set of physiological parameters for the CV
system. These models implicitly offer an inverse mapping from peripheral PW measurements to CV
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biomarkers. Owing to this, they have recently gained attention as a solution to real-world data scarcity.
Specifically, they are used to train models that learn the inverse mapping using simulated samples [5,
10, 11, 12, 13]. However, the simulation-to-reality gap of hemodynamics models challenge the
success of these approaches. Inspired by recent advances in hybrid learning [14, 15, 16, 17], we
jointly address labelled-data scarcity and biophysical models’ misspecification by learning, and
inverting, a conditional generative model, mapping biomarkers to PWs.

More specifically, we develop a biophysics-inspired neural surrogate of the 1D hemodynamics
simulations from [9]. Then, we jointly solve the inference and misspecification’s modelling problems
by learning a hybrid auto-encoder. Finally, we provide a preliminary empirical validation of the
hybrid learning method’s ability to model the PWs generative process. Our approach holds potential
in enhancing biomarker inference on real-world data by bridging the gap between simulation-based
and data-driven inference.

2 Method

Inference of CV parameters from PWs represents a classic inverse problem, where the objective is to
deduce the underlying system parameters given measurements. Consider gp(zp, zt) = x, where gp is
the forward generative model describing the relationship between cardiac parameters of interest (POI)
zp, the nuisance parameters zt and the measured PW, x. The objective of the inverse problem lies in
determining zp, zt, such that the model’s output matches the observed data as closely as possible. We
use the L2 norm to compare reconstructed and original PWs, leading to the following optimization
problem:

ẑp, ẑt = arg min
zp,zt

||gp(zp, zt)− x||2.

The challenge becomes particularly pronounced when the forward model gp does not fully encapsulate
the true physical process, potentially due to unaccounted parameters zc. This is a common scenario
since models are typically simplifications of the actual physics. This deviation, represented as
ϵ(zp, zt, zc), then modifies the objective of the inverse problem, from merely inferring zp,zt to doing
so while modelling ϵ. This task can be framed as:

ẑp, ẑt, ẑc = arg min
zp,zt,zc

||gp(zp, zt) + ϵ(zp, zt, zc)− x||2 (1)

2.1 Differentiable and efficient pulse-wave model

Following the approach of [5], our study employs the whole-body 1D hemodynamics simulator
presented by [9] as the forward model gp. This model simulates PW propagation across 116
significant arterial segments encompassing the thorax, limbs, and head. A balance between real-world
fidelity and manageable complexity makes this model especially relevant. It can simulate measured
arterial pressure (APWs) and photoplethysmograms (PPGs) waveforms at various body locations,
given physiological parameters representing the cardiovascular system’s bio-physical traits. Here the
POI, zp, are set to be the heart rate (HR), left-ventricular ejection time (LVET), and stroke volume
(SV), which characterize the cardiac pulse, as depicted in Fig.1A.

The simulator encompasses two key components: the cardiac pulse generation model gp1(zp) and
the pulse propagation model gp2(gp1, zt), as depicted in Fig.1A. The latter, gp2, requires solving
differential equations, making it computationally demanding. Consequently, directly using the
simulator gp for iterative tasks, such as training a neural network (NN) to solve Eq.1, becomes com-
putationally prohibitive. To navigate this, we implement gp1 in a differentiable manner, introducing
a substantial bias with respect to the role of the POI in PW dynamics. We then employ a surrogate
model g̃p(; θp) for pulse propagation modelling. This surrogate, defined as a NN with parameters
θp, serves as a lightweight, differentiable approximation of gp2, reducing computation times from
minutes (simulator) to mere seconds (surrogate). It is trained using triplets of POI parameters zp,
nuisance parameters zt, and the corresponding APW xp from the simulator, as illustrated in Fig.1B.
The cardiac pulse, generated by gp1(zp), alongside zt, becomes the surrogate input. The training
objective is to minimize the mean squared error (MSE) between the surrogate’s predicted wave x̂p

and the simulator-generated wave xp.
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2.2 End-to-End modelling and inference

We train a physics encoder, fp,e(;ϕp), parameterized by a NN with weights ϕp, to infer zp from
simulated observed APW, xp (Fig.1C). This training employs a supervised approach using triplets of
the same simulated data utilized for the surrogate training. The loss function is the MSE between the
predicted parameters ẑp, ẑt, and the actual ones that generated the simulated APW, xp.

Given a real measured wave x as input, the encoder predicts the parameters zp, zt, which are then
fed into the differentiable cardiac pulse generator and surrogate simulator g̃p(; θp) to generate a
reconstructed wave x̂. The discrepancy between reconstructed and real waves is used to measure the
accuracy of the parameters inference. To adjust for deviations between real wave x and simulated xp,
a correction module that models ϵ(zp, zt, zc), is integrated in a hybrid pipeline with the surrogate
physical model. The correction module (Fig.1D, bottom) consists of encoder fc,e(;ϕc) identifying
generative parameters zc possibly missed by the physics simulator and decoder gc(; θc) determining
how these parameters influence APW propagation and defines the residual PW, xc. The optimization
task is formulated as:

ẑp, ẑt, ϕc, θc = arg min
zp,zt,ϕc,θc

||g̃p(fp,e(x̃p)) + gc(fc,e(x;ϕc); θc)− x||2 (2)

where, x̃p = x− xc, approximates the simulated APW xp by subtracting the residual xc from the
real APW, x.

Figure 1: Hybrid model training scheme. The translucent elements denote fixed checkpoints or
models. (A) The 1D pulse wave simulator [9] generates samples {zp, zt,xp}, which are used in (B) to
train the surrogate. The cardiac pulse model gp1 is implemented explicitly and together with zt serves
as the input to the surrogate g̃p. (C) The physics encoder is trained to invert the simulator using the
same data as in A. (D) Top: Physics-only baseline (no correction model), the encoder is fine-tuned to
infer parameters from real APW. Bottom: the hybrid approach, a correction encoder-decoder,fc,e, gc,
is trained to account for the discrepancy between real and simulated APW.

3 Experiments

Simulations dataset. We train our surrogate model, g̃p(; θp), on a dataset sourced from the database
created by [9]. This database comprises 4,374 virtual healthy subjects aged between 25 and 75 years.
The dataset has 6 degrees of freedom (age, diameter, HR, LVET, SV, mean blood pressure, pulse-wave
velocity), which dictate all relevant parameters of the model. Subjects are simulated by sampling
clinically meaningful values for each degree of freedom and simulating the corresponding APW.

Real pulse-waves (PulseDB) [18]. A large dataset for benchmarking cuff-less blood pressure
estimation methods using ECG and PPG signals. It contains over 5 million waveform segments from
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Figure 2: Visual sensitivity analysis of the surrogate model with respect to LVET and SV. The shade
of the predicted APWs scales with the values of the inspected parameter

5,361 subjects. For evaluation, each APW sequence in the dataset is paired with HR and LVET labels,
obtained by analyzing the associated ECG segments. It is important to note that these labels are
utilized solely for assessment, not for training purposes.

Training & model selection process. Our study employs a multi-stage training approach, as
illustrated in Fig.1. We begin by training the surrogate model, then advance to the physics encoder
once optimal. For rigorous model selection, we use a nested cross-validation, dividing the data into 5
external folds with 3 internal subdivisions each. The surrogate model’s validation for each external
fold uses average scores from its internal folds. The chosen architecture for the surrogate model
is a masked auto-regressive neural network (MAN) [19], since it introduces an inductive bias that
facilitates time-series modeling. After finalizing the surrogate model, we qualitatively assess its
sensitivity to the POI as shown in Fig.2. By tweaking parameters and maintaining others, we evaluate
the surrogate’s alignment with the simulator’s ground truth APW for similar parameters. With the
optimal surrogate configuration identified and fixed for each external fold, we then train and validate
the physics encoder, designed as a convolutional NN, across the external 5 folds. Next, the hybrid
model is trained using PulseDB APWs, by anchoring the physics encoder and surrogate model. As
illustrated in Fig. 1.D (bottom), only the correction module undergoes training. The optimal training
checkpoint is chosen based on the lowest reconstruction MSE.

Experimental settings. The model’s efficacy is compared against a physics-only baseline (Fig. 1.D,
top) wherein solely the physics encoder, fp,e(;ϕp) is fine-tuned using actual APWs. Relative mean
absolute error (RMAE) assesses the predicted parameters accuracy with respect to the actual labels.
Two experimental settings are considered: one where HR is inferred and evaluated (HR in Table 1),
and another where given HR, LVET inference gets evaluated (¬ HR in Table 1). This distinction
arises as the model often struggles to jointly infer multiple parameters possibly due to their interplay.

Results & conclusion. As shown in Table 1, the hybrid model exhibits lower RMAE, compared to
the physics-only baseline. This is evident also when the reconstruction MSE are similar (0.072 vs.
0.057), suggesting that modelling the deviation between real and simulated waves is significant in
solving the inverse problem and inferring the cardiac biomarkers. Nonetheless, it is important to note
that these findings are preliminary, and our current approach has certain limitations. Throughout the
training process, while validation MSE decreases, there comes a stage where the error in parameter
inference grows. This suggests a need for model regularization, echoing findings from prior research
[15]. In future work, we plan to explore regularization for hybrid learning for inverse problems. Ad-
ditionally, we will examine the probabilistic approach to quantify uncertainty in parameter inference,
potentially addressing the parameters interplay issue.
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