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Abstract

To fully understand the behavior of a large language model (LLM)
requires our understanding of its input space. If this input space dif-
fers from our assumption, our understanding of and conclusions about
the LLM is likely flawed, regardless of its architecture. Here, we eluci-
date the structure of the token embeddings, the input domain for LLMs,
both empirically and theoretically. We present a generalized and statis-
tically testable model where the neighborhood of each token splits into
well-defined signal and noise dimensions. This model is based on a gener-
alization of a manifold called a fiber bundle, so we denote our hypothesis
test as the “fiber bundle null.” Failing to reject the null is uninformative,
but rejecting it at a specific token indicates that token has a statistically
significant local structure, and so is of interest to us. By running our
test over several open-source LLMs, each with unique token embeddings,
we find that the null is frequently rejected, and so the token subspace is
provably not a fiber bundle and hence also not a manifold. As a conse-
quence of our findings, when an LLM is presented with two semantically
equivalent prompts, and if one prompt contains a token implicated by our
test, that prompt will likely exhibit more output variability proportional
to the local signal dimension of the token.

1 Introduction

Large language models (LLMs) produce a response to a given query, by using a
deep neural network to predict the next token given a window of previous tokens.
How interchangeable are these tokens? From a linguistic perspective, those
tokens that can be exchanged without impacting the meaning of a statement
should be considered synonyms. Some tokens have more synonyms, whereas
others have fewer. Those with fewer synonyms tend to be syntactically essential:
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if you swap such a token for another, the resulting sentence is not likely to
occur. Conversely, tokens with many synonyms are likely to be viewed as being
interchangeable.

Logically prior to understanding the syntax learned by an LLM is the under-
standing of its token subspace, the internal representation of individual tokens
(not sequences of tokens in context). Numerous papers have pointed to unex-
pected behaviors exhibited by LLMs that hinge on subtle changes in wording
and text layout between apparently similar prompts, suggesting that certain—
apparently semantically similar—tokens have dramatically different neighbor-
hoods in the token subspace (for instance, see [1]). These differences in neigh-
borhoods correspond to places where the token subspace is not a manifold;
it is singular at such a token. Linguistically, singularities may correspond to
polysemy or homonyms—tokens with multiple distinct meanings [2].

If the token subspace is singular, then these singularities can persist into
the output of the LLM, perhaps unavoidably and regardless of its architecture.
Not accounting for singularities in the token subspace may thereby impede the
understanding of the LLM’s behavior. Suppose the LLM is presented with two
similar prompts, but one prompt has a token that is near the singularity. The
prompt with a token near the singularity will likely exhibit more variability if
both prompts are changed in the same way, depending on how well the trans-
former can resolve the singularity.

We present a test that determines whether the neighborhood of a given
token contains a singularity. The test works by identifying changes in subspace
dimension that are inconsistent with the token subspace being a fiber bundle,
which is a strict generalization of a manifold. When our model finds a singularity
at a token, this implies that the token has far fewer synonyms than its neighbors.
In a context where such a token is used, its use in that role is syntactically
essential, indicating that it plays an outsized role in the LLM.

We applied our test to four open source LLMs’ token subspaces (GPT2 [3],
Llemma7B [4], Mistral7B [5], and Pythia6.9B [6]). In each LLM we tested,
we found that the token subspace is not a manifold, because it is also not a

fiber bundle. Moreover, we observe highly statistically significant differences in
the singular tokens between LLMs—even for those with identical sets of tokens
overall—which indicates that their respective training methodologies have a
strong impact on the token subspace. Under this situation, none of these LLMs
should be expected to have similar responses to a prompt involving any of these
singular tokens [7].

1.1 Background

At an abstract but precise level, an LLM consists of several interacting pro-
cesses, as outlined in Figure 1. An LLM implements a transformation of a
sequence of tokens (the query) into a new sequence of tokens (the response).
Formally, if each input token is an element of a metric space T , then the LLM
is a transformation T n → Tm, where n is the number of tokens in the query
and m is the number of tokens in the response. This transformation is typically
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Figure 1: Data flow in a typical LLM. A sequence of tokens forming the query
is converted via the token input embedding en into the initial context window,
as a point in the latent space Xn. Each of these windows in the latent space are
converted, token-by-token, into probability distributions via f into the single
token latent space X . From these, each token presented in the output (in the
set Y ) is obtained via a random draw. These output tokens are then used for
subsequent windows.

not a function because it is stochastic—it involves random draws.
To operate upon tokens using numerical models, such as could be imple-

mented using neural networks, we must transform the finite set of tokens T

into numerical data. This is typically done by way of a pair of latent spaces

X = R
d and Y = R

q. The dimension q of Y is chosen to be equal to the
number of elements in T , so that elements of Y have the interpretation of being
(unnormalized) probability distributions over T .

The transformation T n → Tm is constructed in several stages.

Input tokenization : Each token is embedded individually via the token input

embedding function e : T → X . As a whole, Xn is called a latent window.

Transformer blocks : The probability distribution for the next token is con-
structed by a continuous function f : Xn → Y . This is usually imple-
mented by one or more transformer blocks.

Output tokenization : Given the output of one of the transformer blocks
f , one can obtain an output token in T by a random draw. Specifically,
if (x1, x2, . . . , xn) is the current window in Xn, then the next token t is
drawn from the distribution given by f(x1, x2, . . . , xn).

Next window prediction : Given that token t was drawn from the distri-
bution, the next latent window itself is constructed by a transformation
F : Xn → Xn, which advances the window as follows:

F (x1, x2, . . . , xn) := (x2, . . . , xn, t).
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The focus of this paper is specifically upon the structure of the token input

embedding e : T → X = R
d. Since the token set T is finite, e can be stored as a

matrix. In this matrix, each column corresponds to an element of T , and thereby
ascribes a vector of numerical coordinates to each token. By replacing the last
layer of the deep neural network f : Xn → Y , a vector of probabilities for the
next token is obtained from the activations of the last layer. One can therefore
interpret the probabilities as specifying a token output embedding. Both the
tokenization and the transformer stages are learned during training, and many
strategies for this learning process are discussed extensively in the literature.
Although their training is usually performed separately, these two stages interact
when they produce the LLM output, so it is important to understand the lineage
of a given tokenization as being from a particular LLM. We emphasize that only
the input tokenization is discussed in this article.

The token input embedding matrix itself is interesting, as it defines “where”
the tokens are located. It is reasonable to consider the tokens as being sampled
from a larger latent subspace within the space of all possible activations. Such
a space is quite unconstrained. There is no a priori reason to suspect it is a
manifold, for instance. It has already been shown that local neighborhoods of
each token have salient topological structure [8]. One of the most basic param-
eters is the dimension near any given token in this space. Higher dimension at
a token means that the token has more near-neighbors—more synonyms—while
lower dimensional tokens are less interchangeable [2].

Dimension is a manifestly local property. However, for manifolds, dimension
is locally constant, hence global. It is for this reason that manifold learning
is popular. If one computes PCA locally for a random sampling of a manifold
embedded within Euclidean space, most of the variance in the data is captured
within a few principal directions, namely those tangent to the manifold. In
essence, these represent the signal within the data. The number of these di-
rections is the dimension of the manifold, and this is a constant over (each
connected component of) the manifold. The remaining directions, which are
not tangent to the manifold, represent noise. The basic assumption is that
transformers act on the entire input space, and that (clearly) is a manifold,
because it is Euclidean space. But the truth is that a transformer in the context

of an LLM really only acts on the token subspace, the image of the token input
embedding e : T → X , which is a subspace of that Euclidean space. That
the token subspace is not a linear subspace is widely acknowledged, but more
problematic is that it is not a manifold [9].

Assuming that word embeddings yield manifolds, some researchers have used
global dimension estimators on token input embeddings and word embeddings
[10, 11]. A priori one should not suspect that a set of tokens (or other samples)
lies on a manifold. Although there are rigorous statistical tests for manifolds
[12], they are arduous to apply in practice.

By using a local (not global) dimension estimator, [9] presented the first
(to our knowledge) direct test of whether the token subspace is a manifold
for the token input embeddings for several LLMs. A strongly negative result
was obtained: the subspace of tokens is apparently never a manifold, so global
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Figure 2: The distribution of local dimensions estimated near tokens in GPT2,
from [9].

dimension estimators are not reliable. Figure 2 shows the distribution of di-
mensions they obtained for GPT2 (March 11, 2024 version) [3]. Recall that
dimension correlates with the number of free parameters one can perturb a
point and still stay within the space, and that for manifolds this number is a
constant. The highly multi-modal nature of the distribution is a reflection of
the inherent non-manifold structure of the token subspace.

There are several clusters of low dimensional tokens, which accord with the
low dimensions obtained by others using global estimators [10, 11]. However,
the high dimensional mode indicates that there are many tokens that can be
perturbed more substantially. Intuitively, the token subspace is dimensionally
“thicker” near these tokens with higher dimensional neighborhoods. This yields
a striking interpretation: the high dimensional modes correspond to tokens
with a much higher variance, while the lower dimensional modes have a lower
variance. Therefore, an immediate consequence of Figure 2 is that the noise
near a token is strongly and unavoidably dependent upon that token.

1.2 Contributions

The dependence of variability near a token upon that token is a form of het-
eroscedasticity. In order to construct a manifold hypothesis testing framework,
we formalize the notion of heteroscedasticity by making a very general model of
non-heteroscedastic noise: it is a probability distribution supported on a fiber

bundle. Roughly speaking, instead of having one local dimension (as a man-
ifold does), a fiber bundle has two local dimensions. These two dimensions
correspond to a clean split between “signal” and “noise” dimensions. The fiber
bundle hypothesis asserts that the noise dimension is valid near a given point,
while the signal dimension is valid further away from that point. While this
hypothesis may not be true, if it is true then the noise model is quite benign.
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According to Theorem 1, which we call the “fiber bundle hypothesis,” proven
in the supplementary material, it is easy to test for a fiber bundle using the
volume-versus-radius plots of [9] by finding places where the slope is discon-
tinuous and increases at this discontinuity. The present paper explains that
the token subspaces for LLMs mostly, but not entirely, look like fiber bundles.
The places where the token subspace has singularities (violates the fiber bundle
hypothesis) are likely to be at interesting tokens.

In Section 2, we explain how to test and interpret the fiber bundle hypoth-
esis. As a benefit, Theorem 1 yields two new dimension estimators that aid in
performing the test. Rejection of the fiber bundle hypothesis therefore implies
a very strong heteroscedasticity. We rebuilt the dimension estimator in [9] to
automatically find the stratification boundaries.

In Section 3, we exhibit results from our new estimator on GPT2 [3], Llemma7B
[4], Mistral7B [5], and Pythia6.9B [6]. Tokens near violations of the fiber bun-
dle hypothesis are near places where the noise distribution is guaranteed to
change abruptly. Furthermore, the two dimension estimators from Theorem 1
also identify sets of tokens with interesting structure.

2 Methods

Our method assumes that the set of tokens T is a random sample of a proba-
bility distribution m on a topological space (not necessarily a manifold) E that
represents all possible tokens (including those that have not been seen before).
We can safely assume that the token input embedding e : T → X = R

d is a
continuous function.

Supposing that t is a token of interest, our method estimates the probability
distribution m in the neighborhood of x = e(t), and uses this estimate to infer
properties about the structure of E. Since we assumed that T was randomly
sampled from m, the number of tokens within radius r of x,

Nx(r) := {y ∈ T : ‖x− y‖2 < r},

will converge in expectation to

E(Nx(r)) = m(e−1(Br(x)))#T, (1)

as the number of tokens grows large, provided e is continuous.
Theorem 1, provides an asymptotic estimate of Equation (1) under addi-

tional assumptions about E. Specifically, Theorem 1 asserts that if E is a
manifold and e is smooth, then logE(Nx(r)) depends linearly upon log r, in
which the slope of this linear relationship is the dimension of E. Moreover,
Theorem 1 asserts that if E is a fibered manifold, a generalization of a manifold
that is a type of fiber bundle (as discussed in Section 2.1), then the relationship
is piecewise linear, and the slopes must decrease as the radius increases.

If the conclusion of Theorem 1 does not hold, namely the relationship be-
tween logE(Nx(r)) and log r is not piecewise linear or the slopes do not decrease
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with increasing r, then we reject the fiber bundle hypothesis. In particular, re-
jecting implies that the neighborhood of x is inconsistent with a fiber bundle, and

as a consequence, it is also inconsistent with a manifold.

2.1 Interpretation as signal and noise

It is usual to describe measurements as exhibiting the combined effect of signal
and noise. If we were to know both of these quantities, we could express each
measurement as being an ordered pair (signal, noise). Therefore, if the space of
all possible signals is B and the space of all noise values is V , we could represent
the space of all possible measurements as the cartesian product E = B × V .
In what follows, we will call B the base space and V the fiber space. The
product E = B×V describes the situation when the set of possible noise values
does not depend on the signal value, and is called a homoscedastic noise model.
In contrast, in a heteroscedastic noise model, the set of possible noise values
depends on the signal value.
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Figure 3: Our method applied to a fiber bundle in R
2. The vertical direction

is the base space (signal), while the horizontal direction represents the fibers
space (noise). Gray points on the right frame show estimates from a random
sampling of points in the strip; the solid line shows the theoretical area versus
radius curve.

Figure 3 shows an example of this situation. It consists of a 1-dimensional
base space (the signal) and 1-dimensional fibers (the noise), which in this case
forms a narrow strip in the plane. Volumes (areas, in this case) of balls of small
radius scale quadratically (slope 2 in a log-log plot), but scale asymptotically
linearly (slope 1 in a log-log plot) for large radii. The transition between these
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two behaviors is detectable by way of a corner in the plot. This situation is
easily and robustly estimated from the data; the gray points in Figure 3 (right)
are derived from a random sampling of points drawn from the strip.

To test for heteroscedastic noise, we propose a substantial nonlinear gener-
alization of homoscedastic noise. While the strength of noise can depend on the
signal value, the number of dimensions necessary to describe it does not. This
situation is modeled mathematically by a fiber bundle. In a fiber bundle, the
signal is still modeled by a space B, but the possible measurements are modeled
by a function p : E → B. The idea is that fibers p−1(b) are still cartesian prod-
ucts: pairs of signal and noise, and these are all identical up to diffeomorphism.
Our method relies upon a particular geometric property of fiber bundles: we
can identify if the fibers are not all identical according to when the conclusion
of Theorem 1 is violated.

Figure 4 shows a situation that is not a fiber bundle, since there is a change in
the dimension of the fiber. In the upper portion of the figure, the fiber dimension
is 0 while in the lower portion the fiber dimension is 1. This is detectable by
looking at the volume versus radius plots for two samples. While both samples
show corners in their volume versus radius plots, Theorem 1 establishes that
the slopes always decrease with increasing radius for a fiber bundle. This is
violated for the sample marked (a), so we conclude that the space is not a fiber
bundle. On the other hand, because the sample marked (b) does not exhibit
this violation, it is important to note that if a sample yields data consistent
with Theorem 1, we cannot conclude that the space is a fiber bundle.

The statement of Theorem 1 is rather technical, but can be summarized in a
simple way. Consider a token x, and count as a function of radius r, the number
of tokens within radius r of the token x. If we plot this function on a log-log scale,
it will be roughly linear for small radii anywhere where the space has the local
structure of a manifold near the token x. The manifold hypothesis prohibits
discontinuities in the derivative of this function for small radii, but according to
Theorem 1, fiber bundles permit the slope to decrease through a discontinuity.
Therefore, anywhere the slope increases through a discontinuity will cause us to
conclude that the vicinity of that token cannot be a fiber bundle. Rejecting the
fiber bundle hypothesis implies that the token x has far fewer synonyms than its
neighbors, and might be a token corresponding to multiple distinct meanings.

2.2 Testing framework for the fiber bundle hypothesis

Our method is summarized by Figure 5. The first three blocks of Figure 5
compute Nx(r) directly, while the last three blocks perform the test to see
whether the conclusion of Theorem 1 holds.

Note that the test itself—the final block—is rather straightforward. Theo-
rem 1 asserts that logNx(r) as a function of log r is a piecewise linear function,
in which the slopes decrease as r increases. If there is a statistically significant
increase in the slope estimates, then we reject.

The most subtle of the blocks in Figure 5 is the fourth block, labeled “detect
slope changes”. This block consists of estimating the slope by using the standard
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three-point centered differences method, and then uses a constant false alarm
rate detector to identify changes in these slope estimates as a function of radius.
It is worth noting that the false alarm rate is the significance level for our
test. For the results shown in Section 3, the significance level was set at 10−3.
Nevertheless, we found that our results in Section 3 were insensitive to the false
alarm rate, which means that the rejections were highly significant.

3 Results

fail to 

reject

fail to 

reject

fail to 

reject

reject!

Figure 6: Log-log plots of volume (token count) versus radius for three tokens
in GPT2 with significant slope changes marked.

Figure 6 shows the volume versus radius curves for three tokens used by
GPT2. Of these, most of the slope changes shown are not inconsistent with the
fiber bundle hypothesis posited by Theorem 1. While this does not allow one
to conclude that the vicinity of $ and # are fiber bundles, if this were to be the
case, we could use Theorem 1 to estimate the base and fiber dimension from
the slopes on either side of the marked points.

Notice that the curve for ¢ exhibits two slope changes. One slope change
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in Figure 6 represents a violation of the fiber bundle hypothesis posited by
Theorem 1, which implies that the vicinity of ¢ does not split cleanly into signal
versus noise. The rejection for ¢ is interesting: there are some sentences in
which the presence of ¢ is essential. (Note that ¢ was chosen for illustrative
purposes. The p-value for rejecting the fiber bundle hypothesis at ¢ is larger
than α = 10−3, so ¢ does not appear in Table 2.)

Given that each token subspace consists of multiple tokens, and we perform
the testing methodology in Section 2 for each token, it is important to distinguish
between two variants of the manifold and fiber bundle hypotheses: “is the token
subspace a manifold (or fiber bundle) overall?” and “is the token subspace a
manifold (or fiber bundle) near a given token?” The methodology in Section
2 performs the latter directly. Each token consists of a statistical test, the
collection of which is aggregated over the entire token space. Therefore, we
applied the Holm-Bonferroni multiple test correction to the p-values of each
token’s test. Rejections were reported using a significance level of α = 10−3. To
address the former question, the number of rejections for the two slope changes
(if they occur) are shown as two separate columns in Table 1.

Table 1: Dimensional data for and number of tokens rejecting the manifold and
fiber bundle hypotheses

Model Manifold Base Fiber
rejects dim. rejects dim. rejects

GPT2 68 14 7 389 12
n = 50257 p < 3× 10−8 p < 3× 10−8 p < 9× 10−6

Llemma7B 33 11 1 > 106 0
n = 32016 p < 5× 10−9 p < 3× 10−4 N/A
Mistral7B 40 6 2 48 1
n = 32016 p < 3× 10−7 p < 8× 10−5 p < 8× 10−4

Pythia6.9B 54 2 0 135 0
n = 50254 p < 2× 10−7 N/A N/A

Table 1 shows the results for the four models we analyzed. It is clear that
the models have quite different token input embeddings, and all of them exhibit
highly significant rejections of the manifold hypothesis. GPT2, Llemma7B and
Mistral7B also reject the fiber bundle hypothesis. The rejections of the fiber
bundle hypothesis are more frequent in the base space than the fiber space,
which is consistent with the polysemy interpretation of [2]. Table 2 shows each
of the fiber bundle violations for each model that are listed in Table 1.

While most of the tokens are not shared between the LLMs, Llemma7B and
Mistral7B do have identical token sets. The fact that Table 1 shows significant
differences between these two models indicates that the structure of the sin-
gularities for these these two models is quite different. This implies that their
response to the same prompt is expected to be markedly different, even without
considering their respective transformer stages.

There are many more rejections of the manifold hypothesis than can be
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Table 2: Violations of the fiber bundle hypothesis

Model Token Base/fiber p-value Comment

GPT2 Xan Base 3× 10−8 Must start a word
GPT2 aunder Base 2× 10−4

GPT2 Dri Base 2× 10−4

GPT2 ney Base 3× 10−4

GPT2 rodu Base 3× 10−4

GPT2 Insert Base 4× 10−4

GPT2 Ying Base 4× 10−4 Must start a word
GPT2 laughable Fiber 9× 10−6 Must start a word
GPT2 nuance Fiber 2× 10−4 Must start a word
GPT2 dt Fiber 2× 10−4

GPT2 Mesh Fiber 2× 10−4

GPT2 affect Fiber 3× 10−4 Must start a word
GPT2 Thankfully Fiber 3× 10−4

GPT2 swat Fiber 6× 10−4 Must start a word
GPT2 Malaysian Fiber 6× 10−4 Must start a word
GPT2 Palestinian Fiber 7× 10−4 Must start a word
GPT2 wins Fiber 8× 10−4 Must start a word
GPT2 hedon Fiber 9× 10−4

GPT2 donor Fiber 9× 10−4 Must start a word
Llemma7B pax Base 3× 10−4

Mistral7B H0 Base 5× 10−4

Mistral7B monitor Base 8× 10−5 Must start a word
Mistral7B änge Fiber 8× 10−4

conveniently listed in a table. Therefore, we list some general trends of which
tokens cause the manifold hypothesis to be rejected.

• The GPT2 tokens at singularities are tokens that can only appear at the
beginning of words.

• The Pythia6.9B tokens at singularities are nearly all word fragments or
short sequences of text that are quite meaningless on their own.

• The Llemma7B and Mistral7B tokens at singularities are a combination
of the previous two: either they can only appear at the beginning of words
or they are word fragments.

Figures 7–10 show representations of each of the models we analyzed. The
visualizations were created by first reducing the latent space dimension from
its original value to 50 via principal components analysis, then further reducing
to 2 dimensions via t-SNE. The fiber space is clearly stratified in each of the
models, but the kinds of stratifications are rather different.
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In Llemma7B, Pythia6.9B, and GPT2 (Figures 7, 8, and 10 respectively),
there are isolated regions of tokens with very small dimensional neighborhoods.
This suggests that these particular low-dimensional tokens may exhibit semantic
polysemy as anticipated in [2]. In Pythia6.9B, the “pinch point” shown in Figure
8 consists mostly of long strings of non-printing and whitespace characters.

In Lemma7B and Mistral7B (Figures 7 and 9, respectively), there are strat-
ification boundaries: on one side of the boundary the dimension of tokens is
much higher than on the other side. While the interpretation of this kind of
stratification is unclear, it suggests that there may be variability in the training
data support for the implicated tokens. Given the significant difference in the
structure of the spaces shown in Figures 7 and 9, we can conclude that the token
subspaces for these two models are quite different, even though both of these
LLMs use the same tokens.

The fiber space of GPT2 (Figure 10) also exhibits a feature not seen in the
other models, namely a large cluster of low-dimensional tokens isolated from the
others. This cluster was identified in [9], and investigation of the cluster revealed
that it mostly contains numeric tokens and date-related tokens. Clustered nu-
meric tokens likely means it is hard for GPT2 to distinguish different numbers.
This could cause GPT2 to fail to distinguish between prompts involving dates
from those involving mathematical operations.

The base space is not visibly stratified in Llemma7B, Pythia6.9B, and GPT2
(Figures 7, 8, and 10 respectively), but is visibly stratified in Mistral7B (Figure
9).
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Figure 7: Scatterplot of Llemma7B tokens colored by local base and fiber dimen-
sion, projected to 2d via principal components analysis. Because the distribution
of dimensions is very different for base and fiber, the colors are normalized via
z-scores independently for base and fiber.
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Figure 8: Scatterplot of Pythia6.9B tokens colored by local base and fiber dimen-
sion, projected to 2d via principal components analysis. Because the distribution
of dimensions is very different for base and fiber, the colors are normalized via
z-scores independently for base and fiber. The pinch point shown in the fiber
space consists mostly of strings of non-printing and whitespace characters.
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Figure 9: Scatterplot of Mistral7B tokens colored by local base and fiber dimen-
sion, projected to 2d via principal components analysis. Because the distribution
of dimensions is very different for base and fiber, the colors are normalized via
z-scores independently for base and fiber.
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Figure 10: Scatterplot of GPT2 tokens colored by local base and fiber dimension,
projected to 2d via principal components analysis. Because the distribution of
dimensions is very different for base and fiber, the colors are normalized via
z-scores independently for base and fiber.

4 Discussion

None of the four LLMs we studied have token subspaces that are manifolds, and
three of the four are also not fiber bundles. Singularities—tokens that cause
rejections of the manifold hypothesis—occur in different ways across all four
LLMs. Additionally, singularities correspond to violations of the fiber bundle
hypothesis are tokens whose neighborhoods exhibit a dependency between the
large- and small-scale variability.

Singularities may arise either as artifacts of the training process or from
features of the languages being represented. Consistent with the idea that pol-
ysemy may yield singularities [2], several of the tokens in Table 2 are clear
homonyms. For instance, both “affect” and “monitor” can be used either nouns
or verbs, and their meanings are different in these two roles.

Because tokens are fragments of text, a token may correspond to homonyms
after the addition of a prefix or suffix. A token like “aunder” can be prefixed to
yield the word “launder”, which is a contranym—a word with multiple meanings
of opposite sense. Specifically, one can “launder” clothing (which has a positive
connotation) or “launder” money (which has a negative connotation). Several
other tokens in Table 2 form words with substantially different meanings or
grammatical roles upon adding a prefix or suffice. For instance, “wins” can
appear as a noun, a verb, and is also part of the adjective “winsome”.

The grammatical roles of tokens is likely a root cause for some of sensitivity
of LLMs to their prompts that has been observed in the literature, and may
explain why “explaining LLM behavior” remains difficult. Most methods for
explaining LLM behavior in terms of dynamical systems, for instance, derive
their inferential power from assuming that the token subspace is a manifold.
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Our results show that these theoretical methods simply do not apply to actual

LLMs.
The fact that the LLMs are not manifolds means that the geodesic distance

between tokens can be very unstable. As a result, while the distance along
geodesics can be defined, it may not correlate with any sense of semantic distance
between tokens. Furthermore, as [9] indicated, in most of the models, there are
tokens with dimension 0 neighborhoods. These tokens are therefore isolated,
which implies that the token subspace is disconnected. The geodesic distance
between an isolated token and any other token is therefore infinite.

The differences in how the manifold and fiber bundle hypotheses are rejected
across different LLMs suggest that the training methodology for each model
leaves an indelible fingerprint. Making general assertions about LLMs without
consideration of the details of their training is likely fraught. Even between
Llemma7B and Mistral7B, which have identical tokens, prompts likely cannot

be “ported” from one LLM to another without significant change if they contain

tokens near singularities.

A few clear patterns among tokens near singularities are nevertheless no-
ticeable. Tokens that begin a word or are a word fragment are often located at
a singularity. Additionally, in Llemma7B (but not Mistral7B) and Pythia6.9B
the tokens with unusually low fiber dimension often contain non-printing or
whitespace characters. This suggests that these models are quite sensitive to
text layout, perhaps to the exclusion of more semantically salient features in the
text. Given our findings, future experiments can be run to explore the impact
of singular tokens on the variability of responses produced by different LLMs.
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Supplementary

This section contains mathematical justification for the fiber bundle model pro-
posed earlier in the paper and the proof of Theorem 1. The central idea is the
use of a special kind of fiber bundle, namely a fibered manifold. This is done by
placing a specific structure on a manifold E that describes the data, by relating
it to another, lower dimensional, manifold B, called the base space, via a smooth
map p : E → B.

Definition 1. A fibered manifold is a surjective function p : E → B such that
the Jacobian matrix dxp at every point x ∈ E has rank equal to the dimension
of B.

By the submersion theorem [13], if the Jacobian matrix of p at every point
has rank equal to the dimension of B, then the preimages p−1(x) ⊆ E of each
point x ∈ E are all diffeomorphic to each other. These preimages form the fibers
discussed in the earlier sections of the paper.

As a consequence, each point y in the base space B has an open neighborhood
U where the preimage p−1(U) is diffeomorphic to the product U×p−1(y), which
is precisely the base-fiber split discussed in Section 2.1. Specifically, the base
dimension is simply the dimension of B, whereas the fiber dimension is the
(dimE − dimB).

The notion of a fibered manifold p : E → B forms the intrinsic model of the
data, which is only implicit in an LLM. The tokens present in a given LLM can
be thought of as a sample from a probability distribution m on E, which can be
taken to be the Riemannian volume form on E normalized so that m(E) = 1.

Definition 2. If f : E → R
d is a smooth map and m is a volume form on E,

then the pushforward is defined by

(f∗m)(V ) := m
(

f−1(V )
)

for each measurable set V .

It is a standard fact that if f is a fibered manifold or an embedding, then
f∗m is also a volume form.

The explicit representation of the token subspace arises by embedding the
tokens within a Euclidean space Rd. On the hypothesis that the tokens lie on a
fibered manifold—recall that they may not—the token input embedding consists
of a smooth embedding e : E → R

d. If this is the correct representation of the
tokens, then the probability distribution m on E will impact the distribution of
tokens within R

d. Theorem 1 characterizes the resulting probability distribution
using parameters (the exponents in Equation (2)) that can be estimated from
the token input embedding, as described by the earlier sections of this paper.
These parameters are bounded by the dimensions of the base and fiber spaces.
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Theorem 1. Suppose that E is a compact, finite-dimensional Riemannian man-

ifold with boundary1, with a volume form m satisfying m(E) < ∞, and let

p : E → B be a fibered manifold.

If e : E → R
d is a smooth embedding with reach τ , then there is a function

ρ : e(E) → [0, τ ] such that if for x ∈ e(E),

(e∗m) (Br(x)) =

{

O(rdimE) if 0 ≤ r ≤ ρ(x),

(e∗m)
(

Bρ(x)(x)
)

+ O((r − ρ(x))dimB) if ρ(x) ≤ r,

(2)
where the asymptotic limits are valid for small r.

As a special case, m may be normalized to yield a probability measure.

Proof. Since e is assumed to be a smooth embedding, the image of e is a manifold
of dimension dimE. The pushforward of a volume form is a contravariant
functor, so this means that e∗m is the volume form for a Riemannian metric on
e(E). Using this Riemannian metric on e(E), then [14, Thm 3.1] implies that
for every x ∈ e(E), if r ≪ τ , then

(e∗m) (Br(x)) = O
(

rdimE
)

. (3)

Since E is compact, B is also compact via the surjectivity of p. This implies
that there is a maximum radius r1 for which a ball of this radius centered on a
point on x ∈ e(E) is entirely contained within e(E). Also by compactness of B,
there is a minimum radius r2 such that a ball of radius r2 centered on a point
x ∈ e(E) contains a point outside of e(E).

Since e is assumed to be an embedding, by the tubular neighborhood theorem
[13], it must be that r2 < τ . Define

ρ(x) := argmax r {Br(x) ⊆ e(E)} ,

from which it follows that 0 < r1 ≤ ρ(x) ≤ r2 < τ . As a result, Equation (3)
holds for all r < ρ(x), which is also the first case listed in Equation (2).

If r is chosen such that ρ(x) < r < τ , the volume of the ball centered on x

of radius r will be less than what is given by Equation (3), namely

(e∗m) (Br(x)) < O(rdimE).

Since m is a volume form, its pushforward (p∗m) onto B is also a volume
form. Moreover, via the surjectivity of p,

(e∗m)(Br(x)) = m(e−1(Br(x)))

≤ m(p−1(p(e−1(Br(x)))))

≤ (p∗m)(p(e−1(Br(x))))

≤ O(rdimB).

1Every point in a manifold with boundary has a neighborhood that is locally homeomorphic

to a half-space. As a consequence, manifolds are a special case of manifolds with boundary.
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From this, the second case of Equation (2) follows by recentering the asymptotic
series on ρ(x).

Notice that the second case in Equation (2) may be precluded since while
it holds for small r, it may be that ρ(x) may not be sufficiently small. As a
consequence, the second case only occurs when both r and ρ(x) are sufficiently
small. In the results shown in Section 3, both cases appear to hold frequently.
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