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Summary. DNA methylation has emerged as an important hallmark of epigenetics. Numerous platforms including tiling
arrays and next generation sequencing, and experimental protocols are available for profiling DNA methylation. Similar
to other tiling array data, DNA methylation data shares the characteristics of inherent correlation structure among nearby
probes. However, unlike gene expression or protein DNA binding data, the varying CpG density which gives rise to CpG island,
shore and shelf definition provides exogenous information in detecting differential methylation. This article aims to introduce
a robust testing and probe ranking procedure based on a nonhomogeneous hidden Markov model that incorporates the
above-mentioned features for detecting differential methylation. We revisit the seminal work of Sun and Cai (2009, Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 71, 393–424) and propose modeling the nonnull using a
nonparametric symmetric distribution in two-sided hypothesis testing. We show that this model improves probe ranking and
is robust to model misspecification based on extensive simulation studies. We further illustrate that our proposed framework
achieves good operating characteristics as compared to commonly used methods in real DNA methylation data that aims to
detect differential methylation sites.

Key words: CpG island; False discovery rate; Kernel density estimation; Microarray; Nonhomogeneous hidden Markov
model; Semiparametric model.

1. Introduction
The field of epigenetics is an emerging area of research and
has reshaped a new genetics paradigm. One of the best known
epigenetic marks is DNA methylation which plays a criti-
cal role in regulating gene expression in various cellular pro-
cesses, including embryonic development, genomic imprint-
ing, X-chromosome inactivation, and chromosome stability
(Robertson, 2005; Esteller, 2008). DNA methylation occurs at
the cytosine bases and involves the addition of a methyl group
by DNA methyltransferase (DNMT) enzymes. The modified
cytosine bases are usually immediately adjacent to a guanine
base (i.e., the CpG dinucleotides) and result in the inacces-
sibility of transcription factors to these regions. An increas-
ing number of diseases has been shown to be associated with
aberrant DNA methylation (Robertson, 2005). The CpG is-
land hypermethylation of tumor suppressor genes has been
established as a common mechanism of gene inactivation in
cancer. In contrast, global hypomethylation which leads to
genomic instability has also been recognized as an important
contributor to tumorigenesis (Esteller, 2008).

In the last few years, there is a great interest in genome-
wide DNA methylation profiling. Several platforms are avail-
able for DNA methylation profiling, including the high-
throughput arrays and more recently, the next generation
sequencing instruments. Before hybridization or sequencing,
a variety of experimental techniques is available for treating

methylated DNA. The three main categories are bisulfite
conversion-based methods, restriction enzyme-based methods
and immunoprecipitation-based methods (see Laird, 2010, for
complete review). As the technology improves, a common
characteristic shared by these platforms is the high resolu-
tion genome-wide coverage of the CpG loci. For example, the
new Illumina Infinium HumanMethylation450 BeadChip for
typing the bisulfite converted DNA interrogates more than
450,000 CpG loci which encompasses >96% of RefSeq genes
(Sandoval et al., 2011). On the other hand, the CHARM array
(Irizarry et al., 2008) based on restriction enzyme digestion
covers approximately 2.1 M probes genome-wide.

DNA methylation analysis is usually carried out to iden-
tify differential methylated probes or regions. As thousands
to millions of probes are involved, this falls within the context
of large-scale multiple testing. In this article, we introduce an
inference framework that incorporates exogenous information
including array design and genomic annotation for improv-
ing detection of differential methylation sites. Our work can
be viewed as a more flexible version of the seminal work by
Sun and Cai (2009). We extend the modeling framework of
Sun and Cai (2009) to allow for exogenous information to
be incorporated systematically and address several practical
issues such as the choice of nonnull distribution. We begin
by describing several distinct features of DNA methylation
data, which motivates the choice of our modeling framework
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in Section 2. Section 3 describes our proposed framework. We
show that the proposed framework improves the detection
and outperforms other existing methods in extensive simula-
tions (Section 4) and case studies (Section 5) which include
two different platforms (the CHARM array (Irizarry et al.,
2008) based on restriction enzyme digestion and Infinium Hu-
manMethylation450 Array based on bisulfite conversion). Al-
though our model is developed using DNA methylation as
our motivating dataset, the proposed framework is general
and readily applicable to other datasets involving large-scale
testing under dependence. We conclude with a discussion in
Section 6.

2. Motivation
The study of DNA methylation has previously been focused
and restricted to CpG islands, i.e., genomic regions that con-
tain high frequency of CG dinucleotides. However, recent work
has demonstrated that most tissue and cancer specific methy-
lation alterations occur in sequences up to 2 kb distant from
CpG islands known as the CpG island shores (Doi et al., 2009;
Irizarry et al., 2009). Several array platforms have been de-
signed to provide unbiased whole genome coverage of DNA
methylation profiles. For instance, both the CHARM array
(Irizarry et al., 2008) and Infinium HumanMethylation450
BeadChip interrogate not only CpG islands but also CpG
island shores (within 2 kb from CpG islands), shelves (>2 kb
from CpG islands) and flanking regions, thus offering a com-
prehensive view of methylation on all designable RefSeq genes.
An additional feature of the Infinium HumanMethylation450
BeadChip is the utilization of two different assay chemistry
technologies, namely Infinium I and Infinium II primer ex-
tension assays (Sandoval et al., 2011). A major difference be-
tween these two assays is in the number of bead types used
to probe each CpG locus. In Infinium I assays, two separate
bead types are used to measure methylated and unmethy-
lated states whereas Infinium II assays rely on one bead type
and distinguish methylated from unmethylated states based
on single base extension. Infinium I assays cover one third of
the total number of CpG loci and is designed for regions with
more CG dinucleotides. More than 70% of Infinium I probes
lie in CpG islands. On the other hand, approximately 35%,
45%, and 20% of Infinium II probes belong to CpG islands,
shores and shelves, respectively. This suggests inherent differ-
ence in the quality of DNA methylation measured by the two
assays.

A common goal of DNA methylation profiling is in identi-
fying differential methylated sites (Doi et al., 2009; Irizarry
et al., 2009). Without loss of generality, suppose that we are in
the setting of testing for differential methylation between con-
ditions 1 and 2. Similar to gene expression analysis, popular
test statistics for summarizing the methylation difference be-
tween the two conditions at each CpG locus/probe include the
t-statistic or the nonparametric Mann–Whitney U statistic.
The most commonly used method usually proceeds to iden-
tify significantly differential methylated loci by controlling
for the Benjamini Hochberg False Discovery Rate (BH-FDR;
Benjamini and Hochberg, 1995) under the assumption that
the CpG loci are independent. However, in array based methy-
lation platforms, the location of the CpG loci along the
genome induce a natural dependence structure. The spacing

between two consecutive CpG loci in Infinium HumanMethy-
lation450 BeadChip varies with median distance of approxi-
mately 300 bps. As a comparison, the CHARM array (Irizarry
et al., 2008) covers 2.1 M probes genome-wide with median
distance of 37 bps between two probes. Figure 1 shows the
autocorrelation plots of the probe-wise t-statistic on Chro-
mosome 1 for both the CHARM and Infinium platform,
which demonstrate the presence of substantial spatial corre-
lations among nearby CpG loci. In addition, the correlation
is stronger in the CHARM array consistent with the smaller
probe spacing in this platform. It is therefore imperative to
incorporate the observed correlation structure in the hypoth-
esis testing framework for declaring significantly differential
methylated CpG loci. In the next section, we described our
proposed framework that accounts for probe dependence.

3. A Nonhomogeneous HMM-Based FDR Control
We briefly review some definitions in multiple testing frame-
work. We follow the notations of Genovese and Wasserman
(2002). Suppose that we have m tests (here each test
corresponds to a CpG locus), where m0 of them are are null
(not differential methylated) and m1 are nonnull (differential
methylated). The possible outcomes of a multiple testing
framework is summarized in Web Table 1. The FDR is defined
as E(N1|0/R|R > 0)P (R > 0), whereas the false nondiscovery
rate FNR is defined as E(N0|1/S|S > 0)P (S > 0) (Genovese
and Wasserman, 2002; Sun and Cai, 2009), where R (S) is
the number of rejected (not rejected) tests and N1|0 (N0|1)
is the number of false rejection (nonrejection). A multiple
hypothesis procedure is said to be valid if it controls the
FDR at the pre-specified nominal α level, and optimal if it
has the smallest FNR among all FDR procedures at level
α. Although BH-FDR procedure controls the FDR at the
nominal level under various dependence structure, it has
been shown to be suboptimal and inefficient (Sun and Cai,
2009). Recently, Sun and Cai (2009) introduced a Hidden
Markov Model (HMM) based approach that incorporates
the dependence structure in the multiple testing framework.
They showed that the HMM based method is optimal when
the HMM parameters are known. In the case where the
parameters are unknown, this procedure is asymptotically
optimal by plugging in the consistent estimates. We extend
the work of Sun and Cai (2009) to allow for a more flexible
model structure and introduce an inference procedure for
DNA methylation data based on a nonhomogeneous HMM
(NHMM) framework, which utilizes informative features
observed in the methylation array platforms.

3.1 Incorporating Informative Features in Transition
Probabilities

Without loss of generality, we consider a z-score transfor-
mation to the differential methylation test statistics. Let
Zj = Φ−1(Fdfj

[tj ]), where Fdfj
is the cumulative distribu-

tion function (cdf) of a standard t variable with dfj degrees
of freedom, and Φ is the standard Gaussian cdf. Following
the notations of Sun and Cai (2009), let θj be the unob-
served state of CpG locus j, where θj = 1 if CpG locus j
is nonnull, i.e., differential methylation between conditions 1
and 2 and θj = 0 otherwise. The testing framework of Sun
and Cai (2009) was based on a homogeneous HMM with
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Figure 1. Autocorrelation plots on CHARM array and Infinium HumanMethylation450 BeadChip in Chromosome 1. The
t-statistics for the CHARM array correspond to the comparison between normal brain versus liver, normal liver versus spleen,
and colon tumor versus normal, respectively. The plot for normal brain versus spleen exhibits similar patterns and is not
shown. The t-statistics for the Infinium array correspond to the comparison between mutant versus wildtype tumors.

stationary transition probabilities. However, in DNA methy-
lation arrays, there are several factors that could potentially
give rise to nonstationary transition probabilities. For exam-
ple, given the varying spacing between two adjacent loci, we
expect the dependence to decrease with larger distances. In
addition, as mentioned in Section 2, Infinium HumanMethy-
lation450 BeadChip utilizes two different primer extension as-
says (Infinium I and II) for probing methylation levels. The
inherent difference in the chemistry of Infinium I and II assays
and the genomic regions covered by these assays, i.e., Infinium
I mostly in CpG islands, could play a role in the hidden state
transition. Irizarry et al. (2009) showed that stronger pattern
of methylation perturbation in colon cancer occur in CpG
island shores compared to CpG islands. Taken together, all
these observations implies that we might benefit from consid-
ering possible factors arising from array design and genomic
annotations that affect the transition probabilities to improve
the multiple testing framework.

To address the potential nonstationary transition proba-
bilities, we model the hidden state transition via a logistic
regression:

πs (x) = P (θ1 = s|X1 = x) =
exp(λs + ρt

sx)
1∑

s = 0

exp(λs + ρt
sx)

,

ar s (x) = P (θj = s|θj−1 = r, X j = x)

=
exp(σrs + ρt

sx)
1∑

s = 0

exp(σrs + ρt
sx)

, for j ≥ 2,

where λs , σrs ∈ R and ρs ∈ R
D . Here X j denotes a matrix of

D columns with candidate covariates including probe spacing,
assay type and genomic annotations. When X j includes probe
spacing, certain restriction is imposed on the coefficient ρs to
ensure that probabilities of self transition decrease with probe
spacing. Details are given in Web Appendix A.2.

We assume that Zj ’s are conditionally independent given
θj , where Zj |θj = s ∼ fs (Zj ). Since Zj ’s are z-score trans-
formed test statistics, f0(Zj ) ∼ N (0, 1). We defer the discus-
sion on the choice of nonnull distribution f1 to Section 3.2.
This gives rise to a nonhomogeneous HMM (NHMM). NHMM
with the logistic regression transition has been shown to be
a useful framework in climate research (Robertson, Kirshner,
and Smyth, 2004).

Inference for significantly differential methylated CpG loci
is based on the local index of significance, LIS introduced in
Sun and Cai (2009),

LISj = P (θj = 0|Z , X),

where Z is the vector of Zj ’s. Let LIS(1), . . . , LIS(J )

be the ranked LIS values and H(1), . . . , H(J ) be the correspond-
ing hypotheses. We reject all H(i), i = 1, . . . , k, where k =
max

{
i : 1/i

∑i

j=1 LIS(j )(z) ≤ α
}
. Sun and Cai (2009) showed

that the testing procedure based on LIS produces more effi-
cient rankings of the hypotheses than the traditional p values
and results in optimal testing procedure.

For computational efficiency, the model is trained on
individual chromosomes in estimating the unknown pa-
rameters and computing the LIS statistics. One possible
approach for combining the analyses from different chromo-
somes is to apply the LIS procedure to each chromosome at
a pre-specified FDR level, followed by aggregating the list of
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significant LIS from each chromosome. This is also known
as the separate analysis proposed by Efron (2008). How-
ever, Wei et al. (2009) showed that the separate analysis is
suboptimal, i.e., this procedure does not yield the smallest
FNR. Instead of first declaring significant tests at chromo-
somal level, they suggested pooling the LIS statistics across
all chromosomes and apply the FDR control to these pooled
LIS statistics. Therefore, in our proposed NHMM-FDR ap-
proach, we aggregate the LIS statistics from all chromo-
somes and rank them genome-wide in declaring statistically
significant CpG loci. The estimation of the unknown pa-
rameters in the NHMM-FDR procedure is given in Web
Appendix A.1.

3.2 Choice of Nonnull Model f1

The HMM framework of Sun and Cai (2009) and our pro-
posed NHMM model require the specification of the non-
null distribution f1. Sun and Cai (2009) modeled f1 us-
ing Gaussian mixtures, i.e., f1 =

∑L

l=1 clN (μl , σ
2
l ). Although

Gaussian mixtures is flexible for various functions approxi-
mation, the number of mixture components L is unknown.
Sun and Cai (2009) suggested choosing appropriate L based
on Bayesian Information Criterion (BIC). This requires one
to run the HMM for each possible L which can be com-
putationally intensive. We propose approximating the non-
null f1 using nonparametric Gaussian kernel density esti-
mation, i.e., f1 = 1/n

∑n

j=1 Kh (Z − Zj ) where Kh (.) is the
kernel and h is the bandwidth. One could argue that ker-
nel density estimation also requires the tuning of the band-
width h, analog to L in Gaussian mixtures. However, as
we illustrate in simulation studies in Section 4, the rule-of-
thumb method of Silverman (1986) for setting the bandwidth
as h = 0.9 min(σ, IQR/1.34)n−1/5 is generally sufficient and
works well in practice. Here n is the total number of loci, σ
is the sample standard deviation and IQR is the interquartile
range.

A subtle issue that we would like to raise here is in the
context of two-sided hypothesis testing. For instance, suppose
that H0 : μ = 0 and H1 : μ �= 0, and our test statistics is the
z-score Zj . Common methods based on p-values ranking such
as BH-FDR control provide equal statistical significance to
both Zj = z and Zj = −z. However, in the HMM framework
of Sun and Cai (2009), the LIS values P (θj = 0|Z = z, X)
is not necessary equal to P (θj = 0|Z = −z, X) depending on
f1. In the ideal scenario where the underlying data is gen-
erated from a Markov model, approximating f1 as Gaussian
mixtures or Gaussian kernel density estimates performs well.
However, when the correlation structure among the tests is
non-Markovian, we show that restricting the nonnull f1 to
be a symmetric distribution is more robust and improves the
probe ranking in both simulations and case studies. In some
extreme cases where we have skewed nonnull f1 with fewer
negative valued test statistics, the unrestricted estimated non-
null f1 from Gaussian mixtures may only be capturing pos-
itive mean values. In such cases, probes with large negative
test statistics could be ranked lower among the list of probes.
Therefore, using a symmetric nonnull may be preferred as it
yields a more straightforward interpretation by allowing for
positive or negative deviation from H0 to carry comparable
statistical significance.

In the next section, we first evaluate the performance of
our proposed NHMM-FDR control as compared to HMM and
other commonly procedures in simulation studies. We then as-
sess the performance of HMM based methods for the different
choices of nonnull f1 under both the Markov data generator
as well as under model misspecification. Subsequently, we re-
visit these issues and implement our proposed method in real
DNA methylation data in Section 5.

4. Simulation Studies
4.1 HMM with Nonstationary Transition Probabilities
In this section, we carry out simulation studies to investigate
the numerical performance of our proposed NHMM-FDR pro-
cedure in DNA methylation data. In Infinium HumanMethy-
lation450 BeadChip, the median number of probes per chro-
mosome is approximately 21,000. To mimic the real data, we
use CpG annotation (Island, Shore, Shelf, None) and inter-
probe distance information from 20,000 consecutive probes
in our simulation. We vary the parameters λs , σrs ∈ R, and
ρs ∈ R

D in the nonhomogeneous transition probabilities to
obtain overall nonnull proportions of 0.05, 0.10, and 0.2. The
observations Zj ’s are generated from Gaussian distribution,
i.e., Zj |θj ∼ (1 − θj )N (0, 1) + θj N (μk , 1). Similar to Sun and
Cai (2009); Wei et al. (2009), we vary μk from 1 to 4 in in-
crements of 0.5. We compare the performance of Benjamini
Hochberg (BH) FDR (Benjamini and Hochberg, 1995) and
Efron’s local FDR (locfdr) (Efron, 2004) to our proposed
NHMM-FDR. “locfdr” is a special case of LIS when all the
tests are independent. However, “locfdr” estimates the mix-
ture emission distribution using either a natural spline or a
polynomial. The proportion of null is then estimated from
the central histogram counts of the empirical mixture density
under the assumption that the central peak of the empirical
density consists mainly of null cases. Therefore, we also in-
clude the results where the parameters in the emission distri-
bution are estimated from the EM algorithm as a comparison
to the spline/polynomial version of “locfdr.” We denote this
procedure as “Indep.” To assess the extent of nonstationarity
in the transition probabilities in affecting the multiple testing
procedure, we also compare the performance of the original
LIS procedure of Sun and Cai (2009). We denote this pro-
cedure as “HMM.” Each simulation scenario is repeated 100
times and we consider nominal FDR level of 0.10.

Figure 2 compares the average empirical FDR, FNR and
average number of true positives ATP for the different meth-
ods at nominal FDR of 0.10, respectively. The “BH,” “In-
dep,” and “locfdr” procedures are controlled at the nominal
FDR (top row of Figure 2). Our proposed method “NHMM”
attains the nominal FDR except for the case where μk = 1
and the nonnull proportion p1 is 0.05, i.e., low signal to noise
ratio. In this particular case, we see inflated empirical FDR
because in some iterations, “NHMM” only declares 1 CpG to
be significant which happens to be false positive and resulting
in empirical FDR of 1.00. On the other hand, “HMM” proce-
dure generally yields inflated empirical FDR in most scenarios
because the nonstationarity results in inaccurate estimation
of the transition probabilities.

Column 2 of Figure 2 also shows that “NHMM” proce-
dure results smallest FNR among all methods. In addition,
“NHMM” also yields the largest ATP compared to other
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Figure 2. Average empirical FDR, FNR, ATP and AUROC for various signal levels μk at nominal FDR of 0.10. Column 1
compares the empirical FDR versus μk . Column 2 compares the empirical FNR versus μk . Column 3 compares the ATP
versus μk . Column 4 compares the AUROC versus μk . Rows 1, 2, and 3 correspond to nonnull proportion of 0.05, 0.1, and
0.2, respectively. NHMM (©), HMM (	), Indep (+), BH (×), and locfdr (♦).

methods as given in Column 3 of Figure 2. Finally, we also
compare the sensitivity and specificity of the different proce-
dures. In Column 4 of Figure 2, we compare the average area
under Receiver Operating Characteristics curves (AUROC).
As evident from this figure, “NHMM” outperforms all other
methods especially in cases when the signals μk is small with
more efficient probe ranking.

4.2 Gaussian Mixtures Versus Kernel Density Estimates
4.2.1 HMM with Gaussian mixtures f1. Sun and Cai

(2009) showed that the LIS procedure is robust against mis-
specified number of mixture components. In this simulation,
we follow the simulation setting in Section 4.3.1 of Sun and
Cai (2009) for 20,000 probes to evaluate the performance of
approximating f1 with a kernel density estimate (with rule-of-
thumb bandwidth described in Section 3.2) which is computa-
tionally more efficient than fitting f1 with a Gaussian mixture
that requires one to run the algorithm multiple times with
varying L.

Following Sun and Cai (2009), we simulate from a two-state
HMM with null N (0, 1) and nonnull from a three-component

normal mixture 0.4N (μ, 1) + 0.3N (1, 1) + 0.3N (3, 1) but mis-
specify f1 with a two-component model. The transition prob-
ability matrix is taken to be a00 = 0.95 and a11, where we
vary a11 between 0.2 and 0.8. In addition, we also vary μk

from –4 to –1 in increments of 0.5. We also fit a HMM model
with f1 approximated using Gaussian kernel density estimate
described above. In top (middle) row of Web Figure 2, we
choose μ = −2 (a11 = 0.8) and compare the empirical FDR,
FNR, ATP and AUROC as a function of a11 (μ). We report
the average run time in Web Table 2, which demonstrates
the computational savings of using kernel density estimate.
The performance of HMM using either misspecified Gaussian
mixtures or kernel density estimate with rule-of-thumb band-
width is comparable and outperforms “BH” and “locfdr”.

4.2.2 HMM with nonparametric empirical f1 . Next, we
consider simulating the data using a nonparametric f1 es-
timated from the CHARM colon tumor versus normal of
Irizarry et al. (2009). Specifically, we utilize the locfdr pack-
age of Efron (2004) to obtain the estimated f1 as shown in
Web Figure 3. Similar to above, we compare the empirical
FDR, FNR, ATP, and AUROC as a function of a11 in the
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bottom row of Web Figure 2 at nominal FDR of 0.10. For
the HMM method where we assume f1 is a Gaussian mix-
ture, we vary L from 1 to 5 and use BIC to select the best
L. The empirical FDR levels for all methods are still accept-
able, although they appear to be more variable. It is interest-
ing to note that at small a11 values, the HMM method with
f1 estimated from kernel density estimate outperforms the
HMM method with Gaussian mixtures f1 in terms of AUROC,
i.e., more efficient probe ranking in this particular simulation
setup.

4.2.3 Autoregressive model. In this section, we consider an
autoregressive (AR) model instead of a HMM to induce de-
pendence among the probes. We first simulate an AR pro-
cess of order 3, Zj = 0.3Zj−1 − 0.1Zj−2 + 0.1Zj−3 + εj . Since
nearby or consecutive probes generally exhibit similar differ-
ential methylation patterns, we mimic this observation by ran-
domly choosing segments of probes with size generated from
Poisson(5)+1 to be nonnull. For each segment of nonnull (dif-
ferential methylated probes), we consider a loaded coin toss
with probability 0.6 of getting a head. If the toss shows a head
(tail), we add μ (−μ) to all the Zj ’s within this segment. We
vary the proportion of nonnull p1 from 0.05 to 0.2, and μk

from 1 to 4. We evaluate the performance of HMM method
under this misspecified correlation structure. In addition, we
also fit HMM with symmetric kernel density f1 to the simu-
lated data. Similar to Section 4.2.2, we vary L from 1 to 5 for
the HMM method where we assume f1 is a Gaussian mixture
and select the best L using BIC. We compare the empirical
FDR, FNR, ATP, and AUROC as a function of μk in Figure 3.

For small μk values, i.e., low signal, the FDR control for
the HMM methods is inflated under the underlying true AR
model. However, the degree of inflation is reduced when we
model the nonnull f1 using a symmetric kernel density esti-
mate, despite simulating from an asymmetric true nonnull as
described above. It is also interesting to note that for this sim-
ulation setup, the HMM model with symmetric kernel density
estimate results in the most efficient probe ranking as given by
the highest AUROC across the range of μk and p1. This illus-
trates that in cases where the underlying dependence struc-
ture is non-Markovian, the FDR control using HMM models
can be inaccurate when the signal is weak. However, the HMM
models still result in more efficient probe ranking compared to
the model under independence assumption, as the Markovian
structure attempts to account for the observed correlation
among the probes.

5. Case Studies
We apply our proposed NHMM based FDR procedure to
two DNA methylation datasets. The first dataset is the
methylation data of Irizarry et al. (2009) performed on the
CHARM array (Irizarry et al., 2008) which is publicly avail-
able from the Gene Expression Omnibus under accession num-
ber GSE23841. This dataset consists of quantile normalized
normal brain, liver, and spleen tissues, as well as colon tu-
mor and normal tissues in five replicates. Following Irizarry
et al. (2009), we consider these pairwise comparisons to de-
tect differential methylated CpG loci, i.e., colon tumor ver-
sus normal, brain versus liver, brain versus spleen, and liver
versus spleen. For expository purposes, we analyze the sub-
set of colon tumor versus normal. The second dataset is the

methylation dataset (unpublished) generated by the Chiang
Lab at the University of North Carolina-Chapel Hill which
encompasses 10 mutant and 20 wildtype tumor samples per-
formed on Infinium HumanMethylation450 BeadChip. The
objective is to identify differential methylated CpG loci be-
tween mutant and wildtype samples. For both datasets, we
compute probe specific t-statistics on logit transformed per-
cent methylation values, followed by z-score transformation.

We consider both the Gaussian mixtures and nonparamet-
ric kernel density estimates for the nonnull. Since the hypoth-
esis of interest is two-sided in these case studies, i.e., detecting
both hyper- and hypo-methylated sites, we also consider fit-
ting a symmetric kernel density nonnull as described in Sec-
tion 3.2. For Gaussian mixtures nonnull, we choose appro-
priate L based on BIC. We consider L = 1, 2, and 3. For
computational efficiency, we estimate the model parameters
for “HMM” and “NHMM” by chromosomes, and allow for L
to vary within each chromosome. We then combine the es-
timated LIS and apply FDR thresholding to the pooled LIS
to obtain optimal genome-wide FDR control. Similar to Sec-
tion 4, we compare the performance of NHMM, HMM, Indep,
BH, and locfdr.

5.1 Tissue Differential Methylation in CHARM Array
We annotate each probe according to the CpG islands track
information downloaded from UCSC (Gardenia-Garden and
Frommer, 1987). We define “Shore” as regions within 2 kb
of CpG islands and “Shelf” as flanking regions within 2kb of
“Shore” (i.e., between 2 and 4 bp of CpG islands). In addi-
tion, we also compute the percentage of CpG dinucleotides
and GC content within a window of 200 bps at each probe.
For the NHMM model, we model the transition probabilities
using interprobe distance (Dist), CpG annotation (Annot),
GC content (GC), and CpG content (CpG) as covariates and
compare the goodness of fit for each model using BIC. The
interprobe distance is log transformed for numerical stability
(Web Appendix A.2). Since our aim is to assess if the inclusion
of additional covariates in the NHMM transition probabilities
improves the model fit, and there is no straightforward way
to define the effective number of parameters in kernel density
estimation, we only penalize for the number of parameters in
the transition probabilities in BIC calculation.

Table 1(A) compares the model fit via BIC scores for the
different nonnull for the comparison between colon tumor and
normal samples. “NHMM: X” and “NHMM: X+Y” refer to
NHMM models with X j = (Xj ) and X j = (Xj , Yj ) in the
transition probabilities, respectively, where X, Y = (Annot,
Dist, CpG, GC). Since Annot, CpG, and GC are correlated,
we do not include these covariates simultaneously in the model
to avoid multicollinearity. Within each nonnull type, both
HMM and NHMM improve the model fit compared to the
model by assuming probe independence. In addition, there
is also gain in the model fit for “NHMM: GC” compared to
regular HMM, suggesting that GC content is informative in
parameterizing the transition probabilities. However, inter-
probe distance does not appear to provide much improvement
to the model fit, since the vast majority of the probes (>90%)
have almost constant spacing, i.e., between 30 and 40 bps.

Irizarry et al. (2009) reported a list of significantly differen-
tial methylated regions at FDR of 0.05 as follows. First, they
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Figure 3. Average empirical FDR, FNR, ATP and AUROC for various signal levels μk at nominal FDR of 0.10. Column 1
compares the empirical FDR versus μk . Column 2 compares the empirical FNR versus μk . Column 3 compares the ATP
versus μk . Column 4 compares the AUROC versus μk . Rows 1, 2, and 3 correspond to nonnull proportion of 0.05, 0.1, and
0.2, respectively. HMM-kernel density estimate (©), HMM-Gaussian mixtures (	), HMM-symmetric kernel density estimate
(+), BH (×), and locfdr (♦).

computed the z-scores as ΔM/S.E.M.(ΔM ) and the corre-
sponding p-values, where ΔM is the difference of averaged
methylation values and s.e.m. is the probe specific standard
errors for ΔM . Next, contiguous regions of probes with p-
values <0.001 were grouped into regions. Significance tests
were performed on areas of each region (Bullmore et al., 1999)
and statistically significant areas were identified via permuta-
tion test and empirical Bayes approach (Efron et al., 2001).
Their strategy in identifying differential methylated regions is
another way to account for the correlation structure among
nearby probes. Using this list of differential methylated re-
gions as gold standard, we compare the sensitivities and speci-
ficities of the competing methods, i.e., NHMM, HMM, In-
dep, BH, and locfdr, and summarize the results in terms of
AUROC in Table 1(A). The models with Gaussian mixtures
and kernel density nonnull result in poor AUROC. On the
other hand, when we restrict the nonnull f1 to be a symmet-
ric kernel density, the AUROC increases drastically for HMM
and NHMM methods, and outperforms Indep, BH and locfdr.
The possible explanation for this observation is that the

underlying correlation structure may not be Markovian based
from our simulation in Section 4.2.3. However, using the
LIS obtained from HMM or NHMM framework improves the
probe rankings compared to the usual p-values ranking given
by the BH method which ignores the correlation structure.

To further validate the results obtained from the different
methods, we download an independent whole genome bisul-
fite Methyl-Seq data from the Gene Expression Omnibus un-
der accession number GSE32399 which consists of a Stage 3,
CIMP-H colon tumor and an adjacent normal colonic mucosa.
We compute the average Methyl-Seq differential methylation
between tumor and normal for the subset of CpG’s that maps
to each probe in the CHARM array. For each of the NHMM
(we use NHMM: Annot for expository purposes), HMM, In-
dep, BH, and locfdr method under symmetric kernel density
above, we obtain the top X CHARM probes ranked by each
method and compute the mean absolute Methyl-Seq differ-
ence, where X varies from 1000 to 50,000. A more reliable
method will yield larger mean absolute Methyl-Seq difference,
i.e., larger difference in magnitude between colon tumor and
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Table 1
Model comparisons based on BIC and AUROC for differential methylation between (A) colon tumor and normal, (B) mutant

and wildtype

(A) CHARM array: Tumor vs Normal

Gaussian Mix Kernel Symmetric Kernel

Model BIC ROC BIC ROC BIC ROC

Indep 6255209 0.736 6253765 0.762 6267078 0.798
HMM 6034529 0.589 6032994 0.609 6115280 0.935
NHMM: Annot 6033897 0.572 6038521 0.620 6114225 0.935
NHMM: Dist 6030418 0.585 6036719 0.620 6116526 0.923
NHMM: CpG 6033151 0.591 6031488 0.610 6113411 0.936
NHMM: GC 6031330 0.571 6027941 0.612 6111181 0.936
NHMM: Dist+Annot 6036219 0.593 6059388 0.626 6154113 0.867
NHMM: Dist+CpG 6029085 0.585 6077415 0.669 6128384 0.902
NHMM: Dist+GC 6027936 0.571 6037543 0.622 6115147 0.922
BH 0.823
locfdr 0.763

(B) Infinium 450K array: Mutant vs Wildtype

Gaussian Mix Kernel Symmetric Kernel
Model BIC BIC BIC

Indep 1711200 1709446 1837982
HMM 1633735 1632363 1778867
NHMM: Annot 1632220 1630790 1775630
NHMM: Assay 1633350 1631917 1776883
NHMM: Dist 1625176 1623628 1764338
NHMM: CpG 1632316 1630918 1774458
NHMM: GC 1633613 1632222 1777564
NHMM: Dist+Annot 1623574 1622009 1762342
NHMM: Dist+CpG 1624100 1622709 1774413
NHMM: Dist+GC 1625293 1623703 1764196

normal. Top panel of Figure 4 plots the mean absolute Methyl-
Seq difference for the top X probes ranked ordered within
each method. Both the NHMM and HMM method result in
more superior probe ranking as the mean absolute difference
between colon tumor and normal on this independent Methyl-
Seq data is uniformly larger than the other methods, followed
by locfdr, Indep, and BH. We also provide the mean absolute
difference for a randomly chosen subset of X probes (given
by the inverted triangles), which is much lower than all the
methods. This indicates that the Methyl-Seq data is compa-
rable to the CHARM array data (which supports its usage as
a validation data) and all the methods are identifying mean-
ingful set of differential methylated probes in the CHARM
array.

Based on the validation results above, both the HMM and
NHMM methods result in more efficient probe ranking com-
pared to the models under independence assumption. To elu-
cidate the subtle difference between NHMM and HMM, we
compare the annotation of the top 5% probes ranked by each
method. Middle left panel of Figure 4 displays the distribution
of probes in CpG annotation (Island, Shelf, Shore, None) iden-
tified by HMM and NHMM, as well as the subset of probes
unique to each method (labeled “HMM only” and “NHMM
only”). Most of the probes unique to NHMM map to CpG
Shore. Middle right panel of Figure 4 compares the distribu-
tion of the gene annotation of these probes, where “TSS1500”
and “Body” refer to upstream 1.5 kb of transcription start site

and transcription start to end, respectively. A higher propor-
tion of the probes unique to NHMM map to TSS1500 com-
pared to HMM.

5.2 Mutant vs Wildtype in Infinium HumanMethylation450
BeadChip

We described and motivated the idea of modeling the tran-
sition probabilities using potential informative features such
as CpG annotation, inter-probe distance, assay type, GC
and CpG content in Section 3.1. Similar to Section 5.1, we
evaluate the model fit of incorporating these features in our
Infinium HumanMethylation450 BeadChip dataset from an
experiment comparing 10 mutant and 20 wildtype tumor sam-
ples. In Table 1(B), we report the BIC scores for Indep, HMM
and NHMM (with different combination of covariates in the
transition probabilities).

Within each nonnull distribution, the first observation is
that accounting for the dependence structure in HMM and
NHMM improves the model fit significantly compared to
treating each CpG as independent cases. Second, the NHMM
fit is improved when probe spacing (Dist) is included in the
model. In addition, incorporating CpG annotation, GC con-
tent or CpG content improves the model fit over HMM. The
NHMM fit by incorporating the probe spacing and CpG an-
notation (“NHMM: Dist+Annot”) yields smaller BIC scores
overall. Although assay type, CpG content, GC content and
CpG annotation are associated, CpG annotation appears to
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Figure 4. Top panel compares the mean absolute differential methylation between tumor and normal in an independent
Methyl-Seq data. Probes are ranked ordered within each method. Middle left (right) panel compares the CpG annotation
(gene annotation) of the top 5% probes ranked by “HMM” and “NHMM: Annot” on the CHARM array. “HMM only” and
“NHMM only” refer to the probes unique to “HMM” and “NHMM: Annot”, respectively. Bottom panels are similar to middle
panels, which compare the results of the top 5% probes ranked by “HMM” and “NHMM: Dist+Annot” on the Infinium
HumanMethylation450 BeadChip.

be more informative in this data set. We further compare
the annotation of the top 5% probes ranked by “HMM” and
“NHMM: Dist+Annot”. Similar to Section 5.1, a higher pro-
portion of probes unique to “NHMM” map to CpG Shore and
TSS1500 regions.

6. Discussion
This article presents a flexible framework for large-scale mul-
tiple testing under dependence. We extend the HMM frame-
work of Sun and Cai (2009) to allow for incorporation of ex-
ogenous information which can improve the model fit based on
a nonhomogeneous hidden state transition. Although we use
DNA methylation as our motivating dataset, our proposed
framework is directly applicable to other types of genomic
datasets including tiling array gene expression and SNP data.
In the DNA methylation data, we study the inclusion of inter-

probe distance, assay type and CpG information in the tran-
sition probabilities as a proof of principle to demonstrate the
flexibility of a NHMM framework. We choose to model the
hidden state transition using a logistic regression because it
allows for other factors that could give rise to nonstationary
transition probabilities to be included easily in the model.
Our case studies suggest that the CpG annotation and inter-
probe distance are informative in modeling the transition
probabilities.

In both the HMM and NHMM framework, we proposed
modeling the nonnull f1 using a nonparametric kernel density
estimate with rule-of-thumb bandwidth which is at least as
flexible as Gaussian mixtures of Sun and Cai (2009) as shown
in our simulation and case studies. Using a kernel density es-
timate with pre-specified bandwidth is computationally more
efficient compared to Gaussian mixtures which requires one
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to run the algorithm multiple times with different candidate
number of mixture components. We also discuss several rea-
sons why we may want to restrict the nonnull to be a symmet-
ric distribution in two-sided hypothesis tests. Although HMM
and NHMM are versatile framework for capturing correlation
structure, the Markovian structure may not be valid in prac-
tice. We demonstrate that our proposed data driven NHMM
procedure controls FDR and is superior when the underlying
data generating mechanism is Markovian with nonstationary
transition probabilities. However, when the underlying depen-
dence structure is non-Markovian (e.g., an AR process), we
show that using a Markov model with symmetric nonnull is
still robust and yields more efficient probe ranking in both
the simulations and case studies. We acknowledge that the
FDR control may be inaccurate if the underlying correlation
structure deviates significantly from a Markov model. Other
models that control for FDR under dependence (Leek and
Storey 2008; Friguet, Kloareg, and Causeur 2009; Efron 2010)
could be explored and extended to incorporate exogenous in-
formation identified in this article to improve detection of
differential methylation.

In DNA methylation data and other types of genomic data,
interesting events such as differential methylation usually in-
volve contiguous probes which define a region. Our proposed
NHMM model arises as a natural framework for capturing
this regional effect. By integrating the genomic structure and
array design in the model, this could lead to a better under-
standing of the DNA methylation patterns. Software imple-
menting our proposed framework is available as an R package
NHMMfdr at http://www.unc.edu/∼pfkuan/softwares.htm
7. Supplementary Materials
Web Appendices, Tables, and Figures referenced in Sections 3,
4, and 5 are available with this article at the Biometrics web-
site on Wiley Online Library.
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