
Published in Transactions on Machine Learning Research (11/2022)

Extracting Local Reasoning Chains of Deep Neural Networks

Haiyan Zhao Haiyan.Zhao-2@student.uts.edu.au
University of Technology Sydney

Tianyi Zhou zhou@umiacs.umd.edu
University of Maryland

Guodong Long guodong.long@uts.edu.au
University of Technology Sydney

Jing Jiang jing.jiang@uts.edu.au
University of Technology Sydney

Chengqi Zhang Chengqi.Zhang@uts.edu.au
University of Technology Sydney

Reviewed on OpenReview: https: // openreview. net/ forum? id= RP6G787uD8

Abstract

We study how to explain the main steps of inference that a pre-trained deep neural net
(DNN) relies on to produce predictions for a (sub)task and its data. This problem is related
to network pruning and interpretable machine learning with the following highlighted differ-
ences: (1) fine-tuning of any neurons/filters is forbidden; (2) we target a very high pruning
rate, e.g., ≥ 95%, for better interpretability; (3) the interpretation is for the whole inference
process on a few data of a task rather than for individual neurons/filters or a single sample.
In this paper, we introduce NeuroChains to extract the local inference chains by optimiz-
ing differentiable sparse scores for the filters and layers, which reflects their importance in
preserving the outputs on a few data drawn from a given (sub)task. Thereby, NeuroChains
can extract an extremely small sub-network composed of critical filters exactly copied from
the original pre-trained DNN by removing the filters/layers with small scores. For sam-
ples from the same class, we can then visualize the inference pathway in the pre-trained
DNN by applying existing interpretation techniques to the retained filters and layers. It
reveals how the inference process stitches and integrates the information layer by layer and
filter by filter. We provide detailed and insightful case studies together with several quan-
titative analyses over thousands of trials to demonstrate the quality, sparsity, fidelity and
accuracy of the interpretation. In extensive empirical studies on VGG, ResNet, and ViT,
NeuroChains significantly enriches the interpretation and makes the inner mechanism of
DNNs more transparent.

1 Introduction

Deep neural networks (DNNs) greatly reshape a variety of tasks — object classification, semantic segmenta-
tion, natural language processing, speech recognition, robotics, etc. Despite theirs success on a vast majority
of clean data, DNNs are also well-known to be sensitive to small amounts of adversarial noises. The lack
of sufficient interpretability about their success or failure is one major bottleneck of applying DNNs to
important areas such as medical diagnosis, public health, transportation systems, financial analysis, etc.

Interpretable machine learning has attracted growing interest in a variety of areas. The forms of interpre-
tation vary across different methods. For example, attribution methods (Bach et al., 2015; Sundararajan
et al., 2017; Shrikumar et al., 2017; Montavon et al., 2017; Kindermans et al., 2017; Smilkov et al., 2017)

1

https://openreview.net/forum?id=RP6G787uD8

Published in Transactions on Machine Learning Research (11/2022)

produce the importance score of each input feature to the output prediction for a given sample, while some
other methods (Zeiler & Fergus, 2014; Simonyan et al., 2013; Erhan et al., 2009) aim to explain the general
functionality of each neuron/�lter or an individual layer regardless of the input sample. Another line of
works (Ribeiro et al., 2016; Wu et al., 2018; Hou & Zhou, 2018) explain DNNs in a local region of data space
by training a shallow (e.g., linear) and easily interpretable model to approximate the original pre-trained
DNN on some locally similar samples. Thereby, they reduce the problem to explaining the shallow model.
These methods essentially reveal the neuron to neuron correlations (e.g., input to output, intermediate
layer/neuron to output, etc), but they cannot provide an overview of the whole inference process occurring
inside the complicated structure of DNNs.

In this paper, we study a more challenging problem:Can we unveil the major hidden steps of inference in
DNNs and present them in a succinct and human-readable form?Solving this problem helps to answer many
signi�cant questions, e.g., which layer(s)/neuron(s) plays the most/least important role in the inference
process? Can two similar samples share most inference steps? Do all samples need the same number
of neurons to locate the key information leading to their correct predictions? Do DNNs rely on entirely
di�erent neurons or �lters for di�erent (sub)tasks? Some of them are related to other problems such as
network pruning (Han et al., 2015; Li et al., 2016) and neural architecture search (NAS) (Zoph & Le, 2017).
For example, are winning tickets (Frankle & Carbin, 2018; Liu et al., 2018) universal over di�erent tasks or
classes? Does the weight sharing scheme in recent NAS methods (Pham et al., 2018; Liu et al., 2019a; Ying
et al., 2019) limit the searching space or quality?

We develop an e�cient tool called NeuroChains to extract the underlying inference chains of a DNN only
for a subtask. A subtask of a classi�cation task can be de�ned as classi�cation on a small subset of classes,
which in this paper refers to a few data drawn from a subset of1000 classes in ImageNet. NeuroChains
aims to extract a much smaller sub-network composed of a subset of neurons/�lters exactly copied from the
original pre-trained DNN and whose output for data from the subtask is consistent with that of the original
pre-trained DNN. While the selected �lters explain the key information captured by the original pre-trained
DNN when applied to data from the same task/class, the architecture of the sub-network stitches these
information sequentially, i.e., step by step and layer by layer, and recover the major steps of inference that
lead to the �nal outputs. We parameterize the sub-network as the original DNN with an additional score
multiplied to each �lter/layer's output featuremap. Thereby, we formulate the above problem of sub-network
extraction as optimizing di�erentiable sparse scores of all the �lters and layers to preserve the outputs on
all given samples.

The above problem can be solved by an e�cient back-propagation that only updates the scores with �xed �lter
parameters. The objective is built upon the Kullback�Leibler (KL) divergence between the sub-network's
output distribution and that of the original pre-trained DNN, along with an `1 regularization for sparse
scores over �lters. We further use a sigmoid gate per layer to choose whether to remove the entire layer or
block. The gate plays an important role in reducing the sub-network size since many data and subtasks do
not rely on all the layers. We extract chains from the sub-network and visualize their �lters and featuremaps
of the original network by existing methods (Zeiler & Fergus, 2014; Erhan et al., 2009).

NeuroChains is a novel technique speci�cally designed for interpreting the local inference chains of DNNs. As
aforementioned, it potentially provides an e�cient tool to study other problems in related tasks. However, it
has severalfundamental di�erences to network pruning and existing interpretation tasks , which
deter methods developed for these two problems from addressing our problem.Comparing to network
pruning : (1) �ne-tuning is not allowed in NeuroChains; (2) it targets a much larger pruning rate for succinct
visualization, e.g., � 95%for VGG-19 (Simonyan & Zisserman, 2014),� 99%for ResNet-50 (He et al., 2016)
and � 92% for ViT (Dosovitskiy et al., 2021; Touvron et al., 2021) on ImageNet with � 200 �lters or
patches remained; (3) it is for a few samples drawn from a task instead of the whole data distribution.
Comparing to mainstream interpretation tasks : (1) NeuroChains produces an interpretation of the
entire inference process for a speci�ed task (e.g., a subset of classes) rather than of one neuron/�lter or
output on/around a single sample; (2) NeuroChains provides complementary information to the importance
of individual neurons/�lters for a task.

2

Published in Transactions on Machine Learning Research (11/2022)

2 Related Works

Interpretable machine learning methods can be mainly categorized into the ones aiming to evaluate
the importance of each input feature of a single sample and the ones explaining individual neurons/�lters.
Approaches in the �rst category usually rely on certain back-propagation from the DNN's output to derive
an importance score for each input feature or hidden node. Earlier works are based on the back-propagated
gradients, e.g., deconvolution (Zeiler & Fergus, 2014), back-propagation (Simonyan et al., 2013) and guided
back-propagation (Springenberg et al., 2014). Sundararajan et al. (2017) proposed to (approximately) calcu-
late the integral of the gradients along a path between a baseline point and the input sample, which ensures
the sensitivity and implementation invariance lacking in some previous methods. More recent methods pro-
pose novel back-propagation rules to directly derive the attribution scores of neurons from output to input,
e.g., DeepLIFT (Shrikumar et al., 2017), deep Taylor decomposition (Montavon et al., 2017), and layer-wise
relevance propagation (LRP) (Bach et al., 2015).

Methods in the second class treat DNNs as black boxes and seek simple models to explain how the DNN's
output changes in a local region. For example, Ancona et al. (2017) add perturbations to di�erent parts
of the input to evaluate how the perturbations change the output, which re�ect the importance of di�erent
parts. Zeiler & Fergus (2014) covered di�erent parts of the input with a gray square, which led to di�erent
prediction probabilities on the true class. Instead, Zintgraf et al. (2017) replaced each patch in the input
image with the surrounding patch and tracked the induced changes in the output. In LIME, Ribeiro et al.
(2016) trained a sparse linear model on noisy input-output pairs as a local surrogate approximating the
original pre-trained DNNs, where the sparse weights are used to explain the importance of input features.
As mentioned before, our main di�erence to the above methods are we explain DNNs for a (sub)task and its
data and we further explain how DNNs step by step integrate the information of important �lters/neurons.

Network pruning Han et al. (2015) and Li et al. (2016) remove redundant neurons/nodes or connec-
tions/weights from a pre-trained DNN and �ne-tune the sub-network. Structural pruning removes whole
layers/channels/�lters/neurons according to a certain norm of the associated weights (Li et al., 2016) or
sparsity (Hu et al., 2016). In contrast, Frankle & Carbin (2018) and Liu et al. (2018) prune a DNN during
its training. Luo et al. (2017) apply pruning to two adjacent convolution layers at each time to take the
dependency between the two layers into account. Liu et al. (2019b) and Guo et al. (2020) train sub-networks
of di�erent sizes in a large DNN at the same time to satisfy various constraints. Several recent works (Su
et al., 2020; Evci et al., 2020) empirically verify �lottery ticket hypothesis�, i.e., there exists sub-networks
(i.e., winning tickets) that can reach comparable generalization performance as the original pre-trained DNN
if re-trained. In contrast, the sub-network extracted by NeuroChains cannot be fully re-trained since it has
to preserve the original pre-trained DNN's �lters, and our goal is to retain the generalization performance
only for a task with few data.

3 NeuroChains

3.1 Problem: Extract Sub-networks

Although the DNNs widely used nowadays are usually composed of hundreds of layers and millions to billions
of hidden nodes.When applied to samples from a subtask (e.g., composed of two classes), it is plausible that
its inference process mainly relies on a small subset of layers and �lters.In this paper, we verify this
conjecture by developing an e�cient and practical algorithm, i.e., NeuroChains, to extract the subset and
its underlying architecture as a sub-network whose �lters are selected and exactly copied from the original
pre-trained DNN while its outputs for a given subset of data or classes retain the ones produced by the
original pre-trained DNN. Although DNNs are usually non-smooth in de�nition if using a non-smooth piece-
wise activation such as ReLU, when trained with the commonly used techniques, e.g., data augmentation,
mix-up, dropout, the resulted DNNs are relatively smooth in a su�ciently small local region.

In order to preserve the original inference chains, we do not allow any �ne-tuning or re-training on any
�lter or the weight vector corresponding to any neuron: they can only be exactly copied from the original
pre-trained DNN. Let F (�; f W ` g` =1: L) (a mapping from input to output) denote the original pre-trained
DNN, W ` represents the set of �lters/weight vectors in layer-`, and W ` [i] represents the ith �lter/weight

3

Published in Transactions on Machine Learning Research (11/2022)

vector in layer-`. Any sub-network ful�lling our above requirement can be de�ned and parameterized by an
indicator vector M ` per layer, whose each entry is af 0; 1g value indicating whether retaining the associated
�lter/neuron in W ` . We further de�ne operator � as

(W ` � M `)[i] ,

�
W ` [i]; M ` [i] = 1;

~0; M ` [i] = 0 :
(1)

Thereby, f M ` g` =1: L de�nes a quali�ed sub-network for inference chain and its weights aref W ` � M ` g` =1: L ,
where we extend the operator� to make W � M = f W ` � M ` g` =1: L given the original pre-trained DNN's
weights W = f W ` g` =1: L . Given a set of samplesX drawn from a speci�c subtask, we can formulate the
problem of �nding an inference chain as the following combinatorial optimization, which aims to �nd the
most sparse indicator M (i.e., the sub-network with the fewest �lters retained) that does not change the
outputs of the original pre-trained DNN for 8x 2 X , i.e.,

min
f M ` g` =1: L

LX

` =1

kM ` k1 s:t : F (x; W) = F (x; W � M); 8x 2 X : (2)

However, it is impractical to directly solve this combinatorial optimization since the possible choices forM `

is of exponential number. We relax the 0-1 indicator vectorM ` to a nonnegative-valued score vectorS` of
the same size. We de�ne an operator� applied to W ` and its associated scoresS` as

(W ` � S`)[i] , S` [i] � W ` [i]: (3)

Note we limit entries in S` within [0; 1] due to the possible redundancy among �lters in the original pre-
trained DNN, i.e., there might be �lters of similar functionality for the given samples and a preferred pruning
should be able to only preserve one of them and multiply it by the number of those redundant �lters in the
sub-network. In addition, less constraints are easier to handle in optimization and helpful to �nd sub-
network whose outputs are closer to that of the original pre-trained DNN, since the class of sub-networks
with parameters W � S includes all the sub-networks with parametersW � M . Hence, we relax the challenging
combinatorial optimization to the following optimization, i.e.,

min
f S ` g` =1: L

1
jX j

X

x 2X

l (F (x; W); F (x; W � S)) + �
X L

` =1
kS` k1 ; (4)

where l(�; �) is a loss function aiming to minimize the distance between the original pre-trained DNN's
output F (x; W) and the sub-network's output F (x; W � S). In our experiments, for classi�cation, we
use KL-divergence between the output distributions over classes, where the two output distributions are
computed by applying softmax to F (x; W) and F (x; W � S) respectively, i.e.,

l (F (x; W); F (x; W � S)) = D KL (softmax(F (x; W)) jj softmax(F (x; W � S))) : (5)

In addition, empirical evidence (Krueger et al., 2017; Singh et al., 2016) show that for most samples there
exist some layers that can be entirely removed without changing the �nal prediction. Hence, only a few
hard and confusing samples need more delicate features, while most other samples can be correctly classi�ed
based on simple patterns from shallower layers. Therefore, in NeuroChains, we apply a sigmoid function
with input score � ` as a gateG` determining whether to remove the entire layer-̀ during pruning, i.e.,

G` = 1 =
�
1 + exp(� � ` =T

�
]; (6)

whereT is a temperature parameter. With a gateG` applied after each layer-̀ whose input and output has
the same size (which is common in many DNNs), we can recursively de�ne the inputH ` +1 (�) to the next
layer-(` + 1), i.e., H ` +1 (x; f W ` 0

� S` 0
; � ` 0

g` 0=1: `) =
8
<

:

G` � F ` (H ` ; W ` � S`) + (1 � G`) � H ` (x;

f W ` 0
� S` 0

; � ` 0
g` 0=1: ` � 1) if input size = output size

F ` (H ` ; W ` � S`) otherwise

(7)

where F ` (H ` ; W ` � S`) denotes the output of layer-̀ . The reason to use a gate here is that we expect to
either remove the whole layer or retain it without adding an extra shortcut (which will change the original
pre-trained DNN's architecture). Since we prefer to remove non-informative layers, in the objective, we add

4

Published in Transactions on Machine Learning Research (11/2022)

another regularization � ` to encourage the removal of entire layers (because decreasing� reducesG` and
thus increase the chance of layer removal). Therefore, the �nal optimization for NeuroChains is

min f S ` ;� ` g` =1: L

1
jX j

X

x 2X
l (F (x; W); H L +1 (x; (8)

f W ` 0
� S` 0

; � ` 0
g` 0=1: L)) + �

X L

` =1
kS` k1 + � g

X L

` =1
� ` ;

Our objective above is similar to the one used in Network Slimming (Liu et al., 2017) but we optimize it
for a subtask (so we can consider to remove layers) and we do not allow �ne tuning on weightsW .

3.2 Algorithm

Our algorithm is simply a standard back-propagation for the optimization problem in Eq. (8), which produces
sparse scores for �lters and gate values for layers. Note the weights inW are �xed and the backpropagation
only updates S. We initialize the �lter scores S = ~1 so W � S = W at the beginning of optimization. We
initialize the gate score� ` = 0 for all ` = 1 : L so G` = 0 :5 at the beginning, i.e., the probabilities to remove
or to retain a layer is equal. For classi�cation, we set lossl(�; �) to be the KL-divergence between the output
distributions of the original pre-trained DNN and the sub-network. After convergence of the optimization,
we then apply a simple thresholding to these scores to further remove more �lters and layers: (1) we remove
the �lters with score under a threshold � ; (2) we remove layer-̀ if G` < 0:5. This yields a su�ciently small
sub-network architecture. Given a sub-network produced by NeuroChains, we then visualize its architecture
and scores as the structure of the inference chains. Moreover, for samples from the same region, we visualize
their inference pathway from the original pre-trained DNN by their activation patterns and featuremaps,
respectively, using existing interpretation methods (Zeiler & Fergus, 2014; Erhan et al., 2009).

4 Experiments

Statistics ResNet-50 VGG-19

Top-1 test accuracy 76.5% 72.9%
Test images/sub-networks 10000/1688 10000/1746
Convolutional �lters 26560 4480
Parameters of Conv-layers 23454912 20018880
Parameters of FC-layers 2048000 123633664

Statistics ViT(DeiT-small)

Top-1 test accuracy 79.9%
Test images/sub-networks 10000/1500
Patches across blocks 2364
Parameters of MHA-blocks 7096320
Parameters of FFN-blocks 14178816

Table 1: Information of pre-trained DNNs in this paper.

In experiments, we apply NeuroChains to extract the inference chains of widely-adopted VGG-19, ResNet-
50, and ViT which are all pre-trained on ImageNet. We provide the basic information of the three DNNs in
Table 1. In the following, we will present two quantitative analyses over hundreds of case studies ,
which show that (1) NeuroChains is capable to produce sub-networks retaining only< 5% of �lters and
meanwhile preserve the outputs of the original pre-trained DNN in most cases; (2) the �lters selected by
NeuroChains with high scores are important to preserving the outputs since removing one will lead to
considerable drop in performance. We also compare the capability of preserving the original neural network's
outputs between NeuroChains and magnitude-based pruning and random pruning methods. We will then
provide several detailed and insightful case studies and visualizations of extracted sub-networks for di�erent
subtasks.

4.1 Implementation Details

We implement NeuroChains by PyTorch (Paszke et al., 2017). In every case study, we �rstly randomly
sample 2 classes in ImageNet and then randomly sample10 images from each class's images. Note that
the sampled images may be wrongly classi�ed to other classes by the original DNN. We apply inference on
those20 images and their outputs are used in solving the optimization of Eq (8) in order to extract the local

5

Published in Transactions on Machine Learning Research (11/2022)

Figure 1: Size and �delity (how well the sub-networks preserve the original pre-trained DNN's outputs)of
1500sub-networks extracted by NeuroChains for VGG-19(left) and ResNet-50(right) in di�erent case studies
(tasks). The x-axis in the top plot refers to the number of retained �lters, while the x-axis in the bottom plot
is the decrease of probability on the original-DNN predicted class. It shows that NeuroChains can usually
�nd very small sub-networks and meanwhile preserve the original pre-trained DNN's outputs.

inference chain in the form of a sub-network. For models with shortcuts, e.g., ResNet-50, the sigmoid gate is
applied to prune a bottleneck block rather than a layer. A layer inside a block will be removed if the scores
of all �lters in the layer are nearly 0.

We use Adam optimizer for the optimization of Eq (8) for �lter/layer scores. We use a �xed learning rate
of 0.005. We set temperatureT = 0 :2 in sigmoid gate (Eq. (6)) to encourage the valueG` close to either
0 or 1, and the threshold � to goal scores is set to 0.1 so that the outputs of sub-networks are consistent.
We only tried a limited number of choices on tens of experiments, and chose the best combination balancing
the �delity and sub-network size, and then applied it to all other experiments without further tuning. In
particular, we tried � 2 f 0:01; 0:1; 0:5g, � 2 f 0:001; 0:005; 0:01; 0:1g, and � g 2 f 1; 2; 5g. For di�erent models,
the weights of two penalties in Eq. (8) are di�erent. For VGG-19, we use � = 0 :005 and � g = 2 . While we
choose� = 0 :005 and � g = 1 for ResNet-50. This choice performs consistently well and robust on all other
experiments. The iteration steps of training is 300 and we stop training when the loss di�erence is quite
small, i.e., less than0:05. It costs only � 90s for VGG-19 and � 55s for ResNet-50 to extract a sub-network
on a single RTX 6000 GPU since we only optimize a few number of scores.

4.2 Quantitative Analyses

Melis & Jaakkola (2018) propose some criteria to evaluate the interpretation methods for DNNs. In this
paper, we extend some of their notations and present two quantitative analyses of NeuroChains over1500case
studies for di�erent subtasks, i.e., (1) Fidelity : does the sub-network preserve the original pre-trained DNN's
outputs on the given samples? how does it change for sub-networks of di�erent sizes? (2)Faithfulness :
how well does the importance score of a �lter re�ect the degeneration on the �delity caused by removing the
�lter from the sub-network? In this paper, we evaluate the �delity and faithfulness by the decreasing amount
of probability on the original pre-trained DNN's predicted class when using the sub-network for inference.
All the above metrics are averaged over1500 sub-networks and across all the images used to extract each
sub-network.

Figure 1 shows the statistics of the �delity for sub-networks of di�erent sizes (measured by the number of
�lters) that are extracted by NeuroChains. Most sub-networks only retain � 1%(� 5%) of ResNet-50(VGG-
19) for succinct visualization but they preserve the outputs of ResNet-50(VGG-19) with high �delity.

Figure 2 reports the faithfulness of extracted sub-networks, i.e., how a sub-network's performance in preserv-
ing the original pre-trained DNN's output degrade if removing one �lter from it, and what is the relationship

6

Published in Transactions on Machine Learning Research (11/2022)

Figure 2: Barplot of the faithfulness (�lter score vs. �delity degeneration caused by removing the �lter) of
783 sub-networks, each extracted by NeuroChains on 20 uniform samples randomly drawn from two classes
for VGG-19(left) and ResNet-50(right). The x-axis refers to the interval of �lter scores, while the y-axis
denotes the decrease of the sub-network's probability on the original-DNN predicted class after removing
a �lter from the sub-network. It shows that the sub-networks su�er from more degeneration if removing a
�lter with higher score. Hence, the scores faithfully re�ect the importance of �lters in explaining the original
pre-trained DNNs.

between this degeneration and the score of the removed �lter. The statistics on1500 sub-networks in Fig-
ure 2 show that as the scores of �lters increase, the �delity degrades more. The degeneration and the score
are strongly and positively correlated, indicating that our optimized scores faithfully re�ect the importance
of �lters in explaining the original pre-trained DNN. Moreover, removing even only one highly scored �lter
from the sub-network can signi�cantly degrade the explanation performance. Hence, NeuroChains usually
�nd the smallest sub-networks without redundancy among retained �lters/layers, i.e., every critical inference
step is retained.

We also present another faithfulness study based on a quotient metric de�ned below. Letp; q 2 � c (� c is
the probability simplex for c classes) be the output probability vectors of the original neural net and the
extracted sub-network respectively for same input. We de�ne a quotient metric to measure the change of
class prediction betweenp and q, i.e.,

Q(p; q) =
q[y] � maxz2 [c];z 6= y q[z]
p[y] � maxz2 [c];z 6= y p[z]

; y 2 arg max
z2 [c]

p[z]; (9)

where y is the predicted class by the original neural net, andQ(p; q) is the quotient of two probability
di�erences computed respectively on the original neural net and the sub-network. In particular, it computes
the di�erence of probabilities for class y and the highest-rated other class. The sign ofQ(p; q) indicates
whether the predicted class changes (e.g., it changes ifQ(p; q) < 0) while the magnitude of Q(p; q) measures
the change in prediction con�dence. The result is consistent with our above observations and is given in
Figure 11 of Appendix.

We compare the capability of preserving the original neural network's outputs between NeuroChains and
magnitude-based pruning (removing the �lters whose output featuremaps' average magnitude (L2 norm)
over all considered samples is small) and random pruning (�by chance�) in Figure 3. In particular, under
the same setting of each experiment in the paper, we prune the original VGG-19 and retain the �lters with
the largest featuremap magnitude in each layer or randomly, 180 in total (more than157(mean) � 43(std)
�lters for sub-networks extracted by NeuroChains), and we then �ne-tune the �lters' scores. For Figure 3,
the percentage of cases with KL-divergence� 0:8 for NueroChians, magnitude-based pruning and random
pruning are 54.3%, 38.8%, 21.1% respectively, and9.3%, 19.4%, 38.8% cases have KL-divergence� 1:5.
Figure 3 shows the histogram of the KL divergence between the original output class distribution and the
one produced by the sub-networks. For sub-networks generated by NeuroChains, the KL-divergence in most

7

Published in Transactions on Machine Learning Research (11/2022)

Figure 3: Comparison of di�erent pruning methods on the capability of preserving the original network's
output distribution (smaller KL divergence means better preservation) over 783� 20 uniform samples.

cases stays close to 0, while the output preserving capability of simple pruning is much worse. More complete
quantitative analyses for both VGG-19 and ResNet-50 can be found in the Appendix.

4.3 Case Studies

We present three case studies of the sub-networks extracted by NeuroChains. For Figure 4 and Figure 5, the
data points are from classes which are easy to tell apart while in Figure 6 images are sometimes mis-classi�ed.
The case study of multi-classes classi�cation task is shown in Figure 17 in Appendix. The visualization in
each case study is composed of two parts: (1) the sub-network's architecture and �lter scores; (2) original
images from each class and the visualization of the image's NeuroChains extracted from the original pre-
trained model. The true class and predicted class of the sample are shown above the image. They show
that NeuroChains considerably enrich the explanation details of DNN's inference process. By connecting
the important �lters from di�erent layers, the extracted sub-network highlights the main steps leading to
the output prediction.

On the sub-network's architecture, we use �L0� to denote the corresponding convolution layer in VGG-19
and �L0_1� to denote the �rst �lter from this layer. For ResNet-50, we further use �L1B1� to denote the �rst
sub-block in the �rst bottleneck block, �SC� for the shortcut connection and �C1� for the �rst convolution
layer in the sub-block. The redder the node in the sub-network, the larger the scaling score, conversely, the
bluer the node, the lower the score.

NeuroChains are stitched by �lters step by step and the visualization of each �lter and the corresponding
featuremap generated by the original pre-trained model are displayed in each step. The visualization of each
selected �lter is achieved by maximizing its activation w.r.t. the input. Afterward, we shows the patterns
that the �lter aims to detect which is independent of the input image. More case studies are given in
Appendix.

4.4 Detailed Analysis of Case Studies

In Figure 4 and Figure 5, the case studies of VGG-19 and Resnet-50 are shown. For each sample from the
subtask, two NeuroChains which present the inference process of the original pre-trained model are displayed.

In Figure 4, features extracted by the chains of strawberry gradually evolve from low-level to high-level,
e.g., in the �rst chain, L1B1SC_177, L2B1SC_317, and L3B1C1_23 extract the low-level patterns of red-
green color and texture, L3B1C2_18, L3B1C3_818, and L4B1C1_417 look like the abstract pattern of
strawberry, and L4B1C2_328, L4B1C3_511 and L4B1SC_511 capture the pattern of the skin of strawberry.
While the �rst chain of strawberry focus on the skin, the second chain extracts the pattern of the leaves,

8

Published in Transactions on Machine Learning Research (11/2022)

Figure 4: Inference chain by NeuroChains for ResNet-50 (pre-trained on ImageNet) when applied to 20 test
images of �strawberry� and �dalmatian�. The sub-network retains only 13/67 layers and 77/26560 �lters of
the ResNet-50. Refer to Section 4.4 for detailed analysis of extracted chains.

i.e., L3B1C1_154 and L3B1C3_5. The leaves in the featuremaps of L4B1C1_127 and L4B1C3_2004 are
highlighted. L4B3C3_1760 extract the global patterns of strawberry. Both the two chains of dalmatian
extract the global patterns of dalmatian's black and white fur. In shallow layers, L3B1C1_97, L3B1C1_238,
L3B1C2_4, and L3B1C2_119 capture a more local black spot pattern of the dalmatian while L4B1C1_289,
L4B1C2_48, L4B1C3_769 and L4B3C3_524 reveal the global patterns.

In Figure 5, the featuremaps show that the �rst chain of kangaroo extracts the pattern of eyes and noses,
while the second chain pays more attention to the fur of kangaroos. L21_296, L23_393, L32_453, and
L34_66 turn from a round pattern to an eye and nose pattern. L21_24, L32_463, and L34_188 look like

9

	Introduction
	Related Works
	NeuroChains
	Problem: Extract Sub-networks
	Algorithm

	Experiments
	Implementation Details
	Quantitative Analyses
	Case Studies
	Detailed Analysis of Case Studies
	Applying NeuroChains to Vision Transformer

	Conclusion
	Appendix
	Ablation Studies of Layer Pruning
	Effect of the Number of Classes
	Effect of the Number of Training Data
	Details of the Heatmaps of Features
	More Quantitative Analysis
	Case Studies

