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Abstract

Individual brains exhibit striking structural and
physiological heterogeneity, yet neural circuits
can generate remarkably consistent functional
properties across individuals, an apparent para-
dox in neuroscience. While recent studies have
observed preserved neural representations in mo-
tor cortex through manual alignment across sub-
jects, the zero-shot validation of such preservation
and its generalization to more cortices remain un-
explored. Here we present PNBA (Probabilistic
Neural-Behavioral Representation Alignment), a
new framework that leverages probabilistic model-
ing to address hierarchical variability across trials,
sessions, and subjects, with generative constraints
preventing representation degeneration. By es-
tablishing reliable cross-modal representational
alignment, PNBA reveals robust preserved neural
representations in monkey primary motor cortex
(M1) and dorsal premotor cortex (PMd) through
zero-shot validation. We further establish similar
representational preservation in mouse primary
visual cortex (V1), reflecting a general neural ba-
sis. These findings resolve the paradox of neu-
ral heterogeneity by establishing zero-shot pre-
served neural representations across cortices and
species, enriching neural coding insights and en-
abling zero-shot behavior decoding.

1. Introduction

Individual brains exhibit striking structural and physiologi-
cal heterogeneity in neuronal responses (Churchland et al.,
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2010) and connectivity patterns (Kasthuri et al., 2015). Yet,
neural circuits consistently generate similar functional prop-
erties across individuals, from orientation selectivity in vi-
sual cortex (Hubel et al., 1959) to movement encoding in
motor areas (Churchland et al., 2012). This functional sta-
bility persists both within individual brains (Gallego et al.,
2020; Stringer et al., 2021) and across different individuals
during matched behaviors (Safaie et al., 2023), presenting
an apparent paradox with the observed physiological hetero-
geneity (Averbeck et al., 2006). Understanding this robust
preservation despite biological variability is crucial for ad-
vancing neural coding theories (DiCarlo et al., 2012) and
developing generalizable brain-computer interfaces (BClIs)
(Chaudhary et al., 2016; Sussillo et al., 2016).

Recent advances in large-scale neural recording technolo-
gies (Stringer et al., 2019; Siegle et al., 2021) have enabled
systematic investigation of functional invariance within di-
verse cortices. Significant progress has been made in motor
cortices, observing preserved low-dimensional neural pop-
ulation representations (Rubin et al., 2019; Gallego et al.,
2020; Safaie et al., 2023). However, rigorous validation
and broader verification of such representation preserva-
tion faces three fundamental challenges. First, and most
critically, biological neural systems exhibit hierarchical vari-
ability spanning multiple scales, from trial-to-trial fluctua-
tions (Churchland et al., 2010; Renart et al., 2010) to inter-
individual differences in population activity (Russo et al.,
2018; Gallego et al., 2020). This fundamental variability
poses a significant barrier for systematic neural analysis.
Second, cortical regions serve fundamentally distinct func-
tions. Visual cortex transforms sensory inputs into struc-
tured representations (Walker et al., 2019), while motor cor-
tex converts movement goals into coordinated population
dynamics (Churchland et al., 2012). Third, these functional
differences require distinct analytical frameworks. Sensory
systems utilize encoding models mapping stimuli to neural
responses (Yamins & DiCarlo, 2016; Walker et al., 2019),
while motor systems employ decoding models predicting
movements from neural activity (Sussillo et al., 2016; Pan-
darinath et al., 2018). These interrelated challenges make
rigorous and generalizable validation of preserved neural
representations particularly challenging.
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Neural population activity has been consistently shown to
operate in low-dimensional latent spaces (Churchland et al.,
2012; Russo et al., 2018; Stringer et al., 2019). Leverag-
ing this intrinsic low-dimensional structure, we identify
three key principles for addressing these challenges. First,
explicit neural-behavioral' modeling in low-dimensional
spaces serves as the foundation to capture functionally rele-
vant representations with biological interpretability (Yamins
& DiCarlo, 2016; Walker et al., 2019). Second, neural
representations analysis should be anchored in this neural-
behavioral framework to preserve functional interpretabil-
ity. Third, and most crucially, the framework should ad-
dress the hierarchical neural response variability that en-
ables zero-shot cross-subject validation. Current methods in
low-dimensional analysis, including behavior-guided neural
activity dimensionality reduction (e.g., CEBRA (Schneider
et al., 2023; Chen et al., 2024)) and neural-behavioral fusion
strategies (e.g., pi-VAE (Zhou & Wei, 2020; Gondur et al.,
2023)), do not fully address these requirements. They either
lack explicit neural-behavioral modeling or yield entangled
representations that complicate the validation of preserved
neural representations. Moreover, their reliance on post-hoc
alignment (Safaie et al., 2023; Schneider et al., 2023) fails
to address the fundamental challenge of neural variability,
precluding direct validation of representation preservation
across individuals.

Here we present PNBA (Probabilistic Neural-Behavioral
Representation Alignment), a unified framework for learn-
ing aligned neural-behavioral representations that enables
zero-shot generalization. PNBA introduces probabilis-
tic representation modeling to address neural variabil-
ity, explicit neural-behavioral correspondence through
dual-modal representation alignment, and generative con-
straints to prevent degenerate representations. These prin-
cipled considerations enable PNBA to achieve robust align-
ment between neural activity and behavior, laying the foun-
dation for further investigating neural representations.

We first validated PNBA’s alignment capability using neural
recordings from motor and sensory cortices across differ-
ent species (Safaie et al., 2023; Turishcheva et al., 2024).
The framework achieved robust neural-behavioral corre-
spondence in both primate motor areas (M1/PMd) during
reaching tasks and mouse visual cortex (V1) during visual
stimulation. Building on this reliable alignment, we focused
on analyzing neural representations. In motor cortices, zero-
shot validation revealed consistent neural representations
across trials, sessions, and subjects, extending beyond pre-
vious findings requiring manual alignment (Safaie et al.,
2023). Furthermore, our analysis of mouse V1 revealed
preserved neural representations despite fundamentally dif-

'We use “neural-behavioral” to refer to neuronal population
activity and its associated behavioral variables (e.g., visual stimuli,
movement kinematics).

ferent recording modalities (calcium imaging) and behav-
ioral contexts. These emerged observations from multiple
cortical regions and species reflect fundamental properties
of the neural basis. We finally showcase its practicality
through zero-shot V1-guided motion decoding, showing the
potential for sensory-guided movement BClIs.

We highlight the main contributions of this work below:

* A new probabilistic representation alignment framework,
PNBA, that handles cross-scale neural heterogeneity while
preventing degenerated representations.

* Robust neural-behavioral representation alignment within
multiple cortical regions (M1, PMd, V1) from different
species (primates, mice).

* Demonstration of preserved neural representations across
trials, sessions, and subjects in distinct cortical regions and
species through zero-shot verification, with practical appli-
cations in zero-shot behavior decoding.

Codes are availiable at
zhuyu-cs/PNBA.

https://github.com/

2. Preliminaries

To investigate the consistency of neural representations in
different cortices and species, we here introduce key ex-
perimental paradigms, fundamental challenges, and recent
breakthroughs in neuroscience.

Experimental Paradigms. Understanding neural process-
ing requires investigating how neural populations trans-
form sensory information into behavioral output (Musall
et al., 2019; Bahl & Engert, 2020). Driven by different
sub-questions in neuroscience, researchers have focused
on studying individual cortical regions, e.g., primary vi-
sual cortex (V1) for sensory processing and motor areas
including primary motor cortex (M1) and dorsal premotor
cortex (PMd) for movement planning and control. Visual
cortices studies have extensively utilized mouse models,
leveraging their genetic tractability (Madisen et al., 2015)
to enable large-scale two-photon calcium imaging in head-
fixed preparations (Billeh et al., 2020; Stringer et al., 2021)
(Figure 1a). Motor cortices investigations have spanned both
mice and non-human primates, combining high-density elec-
trophysiology with well-controlled behavioral paradigms
(Churchland et al., 2012; Peters et al., 2014) (e.g., center-out
task, Figure 1b). These experimental approaches in different
model systems provide rich opportunities for investigating
neural coding.

Hierarchical Neural Variability. Neural activity exhibits
remarkable variability across multiple temporal and spa-
tial scales (Fig. 1c). At the finest scale, trial-to-trial vari-
ability (eqin) reflects both intrinsic noise and moment-to-
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Figure I. Neural Foundations. (a) Two-photon calcium imaging
in mouse V1 during visual stimulation. (b) Electrophysiological
recordings from primate motor cortices during center-out reach-
ing. (c) Hierarchical neural variability across trial (€yial), session
(Esession), and subject (esupject) scales. (d) Cross-subject alignment
pipeline combining PCA-based dimensionality reduction and CCA-
based alignment (Safaie et al., 2023).

moment fluctuations in neural responses (Churchland et al.,
2010; Ponce-Alvarez et al., 2013). At an intermediate scale,
session-to-session variability (€gession) €merges from changes
in behavioral state and task-specific adaptation (Peters et al.,
2014). The most prominent source of variation occurs at
the broadest scale, inter-subject variability (€gpject), stem-
ming from individual differences in neural responses and
connectivity patterns. These hierarchical variations lead to
a fundamental neuroscience question: how can neural popu-
lations maintain reliable function despite such multi-scale
variations? Recent advances in population analysis have
provided initial insights into this fundamental question.

Preserved Neural Representations in Motor Cortex. De-
spite these complex sources of variability, recent studies
have revealed remarkable consistency in neural population
activity patterns. At the individual level, reliable trial-to-trial
patterns suggest robust underlying mechanisms (Peters et al.,
2014; Russo et al., 2018), while across sessions, preserved
representations demonstrate stable neural dynamics despite
daily variations (Gallego et al., 2020). Most strikingly, in
motor cortex, these preservations extend beyond individual
subjects (Safaie et al., 2023). Through appropriate dimen-

sionality reduction and alignment, low-dimensional neural
activity patterns from different subjects performing identical
reaching movements show remarkable similarities (Fig. 1d).

While these findings in motor cortices are compelling,
whether such preserved representations exist in other corti-
cal regions like visual cortex remains an open question.

3. Method

In this section, we propose a framework for neural-behavior
alignment, guided by three principles detailed in Section 1,
laying the foundation for neural representation analyses.

3.1. Probabilistic Representation Alignment

Given paired observations of neural activities x € X C
RN*T and behavioral variables y € Y ¢ RPXT where N
and D denote the number of recorded neural units and be-
havioral dimensions respectively, we aim to identify aligned
representations that captures neural-behavioral connections.
Neural responses exhibit substantial variability across re-
peated observations while maintaining complex many-to-
one mappings with behavior (Marder & Goaillard, 2006;
Churchland et al., 2010). This intrinsic variability pre-
cludes deterministic point-wise alignments, necessitating a
distribution-level framework.

To address this challenge, we formulate our approach
through probabilistic representation alignment in a shared
latent space Z. Specifically, we construct two encoders:
fo : X = P(Z) for neural activities and g4 : Y — P(Z)
for behavioral variables, mapping inputs to probability dis-
tributions (Fig.2a). These distributions are aligned using a
probabilistic matching objective (Chun, 2023):

LprobMatch = —m-sigmoid(—a . d(, ) + b)
— (1 —=m) - sigmoid(a - d(-,-) — b)
ey
where m € {0, 1} indicates matched or unmatched pairs,
with learnable parameters a and b controlling the alignment
sensitivity. d(-,-) measures the distributional difference
between two multivariate Gaussians:

d(fo(x),96(¥)) = [ £, gy (y) |‘§+||0-3"9(x)+0-3¢(y()2”)1

where p and o2 denote the mean and variance of the en-
coded distributions, respectively.

However, directly optimizing the matching objective leads
to degenerate solutions where encoders map diverse inputs
into nearly identical representations (analysis in Supplemen-
tary Material A.2):

fG(X) ~ gqb(y) ~ Zconsts Vx € Xay S y (3)

Such degeneration, while achieving alignment, fails to main-
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Figure 2. Generative-Informed Probabilistic Framework for
Neural-Behavioral Representation Alignment. The framework
comprises (a) a probabilistic matching module with modality-
specific encoders fs and g, that project neural activities x and
behavioral variables y into a shared latent space, and (b) a gener-
ative constraint module with decoders fJ and gi that preserves
modality-specific structure through reconstruction, facilitating ro-
bust cross-scale alignment of neural-behavioral representations.

tain meaningful representations, motivating our generative-
informed approach to constrain the alignment.

3.2. Generative-Informed Representation Alignment
3.2.1. CONSTRAINED OPTIMIZATION FRAMEWORK

To prevent degenerate solutions while maintaining effective
alignment, we propose a unified framework that simultane-
ously ensures distribution matching and structural preserva-
tion across modalities. Our key insight is that meaningful
alignment requires both distributional matching and genera-
tive modeling of each modality (Fig.2b).

Motivated by dimensionality reduction principles in neural
data analysis (Stringer & Pachitariu, 2024), we assume that
neural-behavioral correlations primarily reside in a shared
low-dimensional latent space. This leads to a bidirectional
Markov chain (x < z <> y), where neural-behavioral
connections are bridged through z. The joint distribution
p(x,y) and conditional distributions p(y|x) and p(x|y) to-
gether ensure bidirectional mapping preservation.

We formalize this as a constrained optimization problem:

min »CProbMa[ch
st. —logp(x,y) <1, —logp(ylx) <cay (4
—logp(xly) < cs

where ¢1, co, and c3 specify upper bounds for negative log-
likelihood of joint and conditional distributions. Applying
the method of Lagrangian multipliers under the KKT con-
ditions (Karush, 1939), with A\; > 0, ¢; > 0 (Higgins et al.,

2017), we obtain:

Etotal = LProbMatch + M (_ Ing(Xv Y)) =+ /\2(_ Ing(Xb’))

+ As(—log p(y[x))

&)

where \; controls the strength of each generative constraint.
Detailed derivations are in Supplementary Material B.1.

Building on the bidirectional Markov chain structure, we
factorize the joint distribution in two equivalent forms:

{p(XZ)p(ZIy)p(y)

p(x,y,2z) = (6)

p(y|2)p(z[x)p(x)

This symmetric factorization, combined with the conditional
independence assumptions inherent in the Markov structure,
leads to a fundamental decomposition of the conditional
distributions:

@)

p(x,2zly) = p(x[z)p(zly)
p(y,zlx) = p(y|z)p(z|x)

3.2.2. END-TO-END OPTIMIZATION VIA ELBOS

To optimize the intractable generative constraints in Eq.5,
we employ variational inference (Kingma & Welling, 2014),
approximating the true posteriors p(z|x) and p(z|y) with
variational distributions ¢(z|x) and ¢(z|y). The negative
log-likelihood terms are optimized by minimizing their re-
spective negative Evidence Lower Bounds (ELBOs):

A1(=logp(x,y)) + A2 (—log p(x]y)) + A3(—log p(y[x))
3
<) " Mi(-ELBO;)

= — A1 (Eq(alx.y) [log p(x|2)] — K L{q(z[x, y)l|p(z|y)]
+ Ey(alx.y) log p(y|2)] — K L[g(z[x, y)||p(z|x)])
— A2(Ey(z)y)[log p(x|2)] — K Lig(z[x)|p(z]y)])
— A3(Eq(apx) [log p(y|2)] — K Lg(z]y)l|p(z[x)])

Following (Johnson et al., 2016), we model the variational
posteriors as conditionally independent Gaussian distribu-
tions and define the joint approximate posterior as:

q(z|x,y) o a0(z[x)py(zly),  for x o
7 44 (2ly)po(z|x), for y

where neural networks with parameters ¢ and ¢ parameter-
ize the neural activity encoder fy and behavioral encoder g
respectively.

The reconstruction terms in these ELBOs employ modality-
specific likelihood functions. Specifically, Poisson negative
log-likelihood for neural spikes x and Gaussian negative
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log-likelihood, simplified with mean squared error, for con-
tinuous behavioral variables y. These reconstruction objec-
tives are crucial for preventing degenerate representations,
as established in the following theorem:

Theorem 3.1. Let fo : X — Zand g4 : Y — Z denote the
neural and behavioral encoders. The following properties
hold:

(i) [Non-degeneracy] The optimization objective Ly pre-
vents representation degeneration by ensuring:

lim »Ctm‘al = 400, Vzconst €z (10)

fo (%)= Zconst

(ii) [Information Preservation] The generative constraints
ensure enhanced mutual information between input and
representation spaces:

](fﬁmml (X); X) > I(fL"Pmme(h (X); X) +n, n>0 (1)
(iii) [Representation Stability] For neural responses X;, X
corresponding to the same behavioral variable y, the
learned representations maintain bounded distances:

0 <a<|fo(xi) = fo(xj)ll2 < B (12)

These theoretical guarantees demonstrate that our frame-
work learns representations with non-degenerate mappings
of distinct neural patterns, enhanced feature preservation
beyond naive distributional matching, and bounded neural
variability that maintains behaviorally-relevant structure.

3.2.3. CROSS-SUBJECT NETWORK FOR VAIRABLE
NEURAL ACTIVTIY

Our approach employs a single shared network across all
subjects, despite variations in neural population sizes be-
tween recording sessions. This cross-subject architecture
processes neural activity matrices (N x T') using shared
learnable projection heads at both network endpoints. The
input projection transforms data through 2D convolution
operations followed by AdaptiveAveragePooling, standard-
izing the neuron dimension to a fixed size D (32 x 8 x T'
for M1 data and 128 x 256 x T for V1 data).

This standardization strategy enables the network’s encoder,
latent representation, and decoder components to be entirely
shared across subjects. The output projection mirrors this
design symmetrically, employing bilinear interpolation to
restore dimensions back to each subject’s original neuron
count (N x T'). By maintaining consistent internal dimen-
sionality while accommodating variable input/output sizes,
our architecture achieves true cross-subject sharing of all
network parameters, facilitating direct comparison of neural
representations across subjects. For detailed implementa-
tion specifications, please refer to Supplementary Material
C4.

Table 1. Cross-subject Neural-Behavioral Alignment Perfor-
mance. Quantitative evaluation using single-trial Pearson correla-
tion coefficients (R) between neural and behavioral representations
across three cortical regions. Higher values indicate better align-
ment. PNBA demonstrates superior performance across both train-
ing and held-out test subjects. Methods marked with (*) require in-
dependent training for each modality, while () denotes approaches
necessitating per-trial optimization for individual subjects. Addi-
tionally, methods designated with (*) require session-specific or
subject-specific training procedures.

Cortical Area ‘ Method ‘ Correlation (R)

‘ Training Subjects

New Subjects

VAE$ 0.0197 0.0016

FA+Procrustest 0.3334 0.2009

PCA+CCAT 0.3520 0.2160

MO“();ACI?“"X FA+amLDS? 0.5807 0.3627
Neuroformer™ 0.5214 -

MEME 0.7756 0.7060

PNBA (Ours) 0.9465 0.9302

VAE$ 0.0063 0.0028

FA+Procrustes 0.3605 0.2877

PCA+CCAT 0.3916 0.3397

MO‘(‘I’II\E’)“CX FA+amLDS? 0.4733 0.4366
Neuroformer™ 0.3283 -

MEME 0.5279 0.5255

PNBA (Ours) 0.9248 0.9176

VAE$ 0.0029 -0.0009

FA+Procrustes 0.1221 0.1207

Visual Cortex PCA+CCA¥ 0.1210 0.1209

V1) FA+amLDS+ 0.1509 0.1501
Neuroformer™ 0.4116 -

MEME 0.6357 0.5980

PNBA (Ours) 0.8830 0.8705

Notably, our PNBA is inherently modality-agnostic, en-
abling straightforward extension to neural recordings from
diverse experimental paradigms, as introduced in Section 2.
We validate these theoretical properties through comprehen-
sive experiments with multiple neural recording modalities
in the following section.

4. Results

Our experimental results first show the robustness of cross-
modal representation alignment, then especially reveal pre-
served neural representations with zero-shot validations, and
finally a showcase in V1-driven movement BCIs.

4.1. Experimental Settings

Datasets. We evaluated our framework on two distinct neu-
ral recording datasets to examine cross-modal representa-
tion alignment within different neural systems. The primary
dataset consists of neural recordings from non-human pri-
mates during center-out reaching tasks (Safaie et al., 2023),
with recordings from primary motor cortex (M1) and dorsal
premotor cortex (PMd). For M1 evaluation, we utilized
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Figure 3. Neural-stimulus representation alignment in mouse
V1. a, Histogram distributions demonstrating aligned representa-
tional structure between neural activity and visual stimuli in latent
space across two held-out mice. b, Trial-wise correlation from
the held-out Mouse 9 demonstrating meaningful neural-stimulus
correspondence (t =25.99, p=1.76 x 107148),

neural data from 12 training sessions per subject for two
subjects (C, M), two validation sessions per subject, and
three test sessions each from two held-out subjects (J, T).
Neural spiking activities were recorded concurrently with
kinematic trajectories. More details, including PMd, are
provided in Supplementary Materials C.1.

To examine the framework’s applicability beyond motor
cortices, we conducted analyses on calcium imaging data
from mouse V1 (Turishcheva et al., 2024). The V1 dataset
contains recordings from 10 mice presented with identi-
cal dynamic visual stimuli within paired experiments (5
pairs total). We used 8 mice (4 pairs) for training and val-
idation, with 2 mice (1 pair) for held-out testing to assess
cross-subject generalization. More details are provided in
Supplementary Materials C.1.

Evaluation Metrics and Baselines. We employed single-
trial Pearson correlation coefficient (R) as the primary evalu-
ation metric, as detailed in SI C.3. This provides a standard-
ized measure of representational similarity within the range
[-1, 1]. Given the inherent variability across trials, sessions,
and subjects, as well as modality-specific characteristics,
correlation values necessarily deviate from the theoretical
maximum. We evaluated PNBA against three established
baselines, i.e., conventional VAE (Kingma & Welling, 2014)
with independent modality training, session-specific Neu-
roformer (Antoniades et al., 2024) implementing InfoNCE
loss (Oord et al., 2018), and MEME (Joy et al., 2021) uti-
lizing mutual distribution supervision. All models were
evaluated under consistent training protocols, provided in
Supplementary Materials C.2. To assess the statistical signif-
icance of the alignment, we conducted independent samples
t-tests between matched and mismatched pairs to distinguish
task-related neural correspondences from chance-level cor-
relations.
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Figure 4. Component analysis and parameter optimization of
PNBA framework. a, Incremental component evaluation starting
from baseline probabilistic matching (Naive), incorporating cross-
modal VAE (Cross), multi-modal VAE (MM), two VAE-based
modeling without matching (only VAE), to the complete PNBA
framework. b, Neural-behavioral correlation versus latent dimen-
sionality, with optimal performance at d = 32.

4.2. Neural-Behavioral Representation Alignment

Cross-Modal Alignment Performance. Quantitative anal-
yses demonstrate that PNBA achieves superior neural-
behavioral representation alignment across multiple cor-
tical areas and subjects (Table 1). Using the mouse V1
calcium imaging dataset, we performed systematic valida-
tion of alignment quality through distribution-level analyses
in new subjects (Figure 3a). The observed distribution over-
lap between neural activity and behavioral measurements
indicates successful encoding of a shared representational
space that generalizes across subjects.

Trial-level correlation analyses (Figure 3b) reveal distinct
discriminative patterns (t =25.99, p = 1.76 x 10~ 14®), where
neural representations exhibit maximal correlation with their
corresponding behavioral counterparts while maintaining
minimal correlation with non-corresponding pairs. This
high-performance alignment result is consistently observed
in the monkey motor cortices (Supplementary Figure 9),
demonstrating that PNBA effectively captures modality-
specific neural-behavioral relationships while maintaining
cross-subject generalization. This robust alignment provides
a reliable foundation for exploring zero-shot preserved neu-
ral representations within different cortices.

Ablation Studies. We conducted systematic analyses to
evaluate the architectural design of PNBA. Through pro-
gressive model comparisons (Figure 4a), we first assessed
the contribution of each framework component. Initial ex-
periments with naive probabilistic representation match-
ing yielded suboptimal solutions. Similarly, implementing
cross-modal VAE modeling in isolation resulted in degraded
representations due to insufficient constraints. The incor-
poration of multi-modal VAE constraints enabled effective
representation alignment (R = 0.71), while exclusive VAE
modeling without probabilistic matching achieved R = 0.77.
The complete framework, integrating both VAE modeling
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and probabilistic matching constraints, demonstrated opti-
mal alignment (R = 0.87), validating the PNBA framework.

We further examined the impact of latent space dimension-
ality on representation quality. For the V1 dataset, our anal-
yses indicate that a 32-dimensional latent space achieves
optimal performance (R = 0.87), as illustrated in Figure
4b. Lower dimensionality proves insufficient for captur-
ing neural-behavioral complexity, while higher dimensions
increase computational cost without performance improve-
ment. Following analogous procedures, we determined that
4-dimensional latent representations adequately capture neu-
ral dynamics in motor cortical areas (M1 and PMd).

4.3. Zero-shot Cross-subject Validation Reveals
Hierarchical Preservation in Motor Cortex

Our systematic analysis reveals a hierarchical preservation
of neural representations in motor cortex (Fig. 5). Through
zero-shot validation on independent held-out subjects, we
demonstrate robust preservation across multiple analytical
dimensions. The preservation strength exhibits a system-
atic gradient with increasing temporal and individual vari-
ability. Trial-wise patterns demonstrated high consistency
(mean R =0.960 + 0.011, t-test, p < 0.001), while across-
session comparisons revealed substantial stability (R = 0.946
+ 0.008, t-test, p < 0.001). Most importantly, the represen-
tations maintained high correlation even across different
subjects (R = 0.939 + 0.033, t-test, p < 0.001), indicating
consistent representational organization beyond individual
variability (Safaie et al., 2023). Similar preservation pat-
terns were observed in monkey PMd, a region associated
with motor planning (see Supplementary Materials D.2).

The robust preservation of neural representations across
sessions and subjects reveals a consistent representational
structure in motor cortex, despite inherent neural variability.
This observation raises a fundamental question regarding
whether such preserved representations exist in other corti-
cal areas. To address this question, we next examined the
visual cortex, especially V1.

4.4. Zero-shot Preserved Neural Representations
Extend to Visual Cortex

Zero-shot validation in mouse V1 calcium imaging data
revealed that neural representation preservation extends be-
yond motor cortex. Analysis demonstrated a preservation
pattern similar to M1 (Fig. 6). V1 exhibited substantial
trial-wise consistency (mean R = 0.912 £ 0.017) (Fig. 11
in Supplementary Material D.3) and, critically, maintained
robust cross-subject preservation under zero-shot testing (R
=0.892+0.014, t=25.38, p=9.25 x 10~ *2, Fig. 6.c). The
preserved representations in V1 remained highly significant
across trials and subject.

Preserved Neural Representations in M1 Across Scales
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Figure 5. Hierarchical preservation of neural representations
in monkey primary motor cortex (M1). Correlation analysis
demonstrates systematic preservation across trial, session and sub-
ject dimensions. a, Within-session trial-wise correlations exhibit
high consistency (mean R = 0.960 + 0.011, ny, =196, n;,=198,
nrt, =135, nr,=208 trials). b, Neural representations maintain sta-
bility across recording sessions (R = 0.946 + 0.008). ¢, Zero-shot
validation across held-out subjects confirms cross-subject represen-
tational similarity (R = 0.939 + 0.033). Error bars denote standard
deviation.

The observation of preserved neural representations across
both motor and visual cortices, despite their distinct func-
tion, suggests a broader preservation of neural coding struc-
ture. This finding has important implications for calibration-
free BClIs. In the next section, we demonstrate the practical
utility of these preserved representations through a zero-shot
V1-guided movement decoding example.

4.5. Zero-shot V1-guided Movement Decoding

We leveraged the V1 neural representations to decode mouse
movement kinematics, specifically regressing running speed
(R?). The neural representations demonstrated robust cross-
subject generalization capabilities across multiple BCI de-
coders. Using a GRU-based decoder achieved the highest
performance (R? = 0.888, p = 4.44 x 10~'?), while linear
decoders (R? = 0.866, p = 1.7 x 10~?) and feedforward neu-
ral networks (R? = 0.880, p = 1.24 x 10~'!) also showed
promising generalization. These results validate the practi-
cality of the preserved neural representations.

This decoding capability aligns with current understand-
ing of distributed behavioral information in neural circuits,
where V1 participates in early sensorimotor integration
(Stringer et al., 2019) and shows modulation by behavioral
states (Niell & Stryker, 2010). Motor-related signals propa-
gate through various brain regions (Laboratory et al., 2023;
Khilkevich et al., 2024), with behavioral information dis-
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Preserved Neural Representations Existed in Mouse V1
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Figure 6. Hierarchical preservation of neural representations in
mouse primary visual cortex (V1). Correlation analysis demon-
strates systematic preservation across trial and subject dimensions.
a, Trial-wise correlations demonstrate high consistency (mean R =
0.912 £ 0.017, nmy= 412, nm, =413 trials). b, Cross-subject sta-
bility analysis between mice presented with identical visual stimuli.
¢, Zero-shot validation confirms cross-subject preservation (R =
0.892 + 0.014). Error bars denote standard deviation.

tributed across neural populations (Musall et al., 2019). Our
demonstration of movement decoding provides one exam-
ple of how V1 preserved neural representations might be
leveraged in behavioral decodings, suggesting potential ro-
bust motor BClIs that integrate information from multiple
cortical regions based on their preserved representations and
distributed motor encoding characteristics.

5. Related Work

Neural Representation Learning. A fundamental analysis
strategy in systems neuroscience relies on dimensionality
reduction principles to study high-dimensional neural ac-
tivity, where hidden regularities may emerge despite hier-
archical heterogeneity (Stringer & Pachitariu, 2024). Clas-
sical dimensionality reduction methods like PCA, jPCA
(Churchland et al., 2012), t-SNE (Van der Maaten & Hinton,
2008), and UMAP (Mclnnes et al., 2018) have revealed
such structures but struggle with temporal dynamics. While
Transformer models (Ye & Pandarinath, 2021; Liu et al.,
2022; Le & Shlizerman, 2022; Ye et al., 2024; Zhang et al.,

Preserved Neural Representations Enables Zero-shot BCI
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Figure 7. Zero-shot movement decoding from V1 neural activ-
ity. As an application of preserved neural representations, we
examined cross-subject movement decoding from V1 recordings.
The explained variance (R?) between predicted and actual move-
ment trajectories quantifies decoding performance. Multiple decod-
ing architectures showed significant zero-shot generalization (Lin-
ear: t=6.02,p=1.78 x 107, GLM: t=6.73,p=1.72 x 10~ *%;
GRU: t=7.24,p=4.44x 10713, MLP: t =6.78, p=1.24 x 10~ 1).

2024) enhance temporal modeling, their high-dimensional
projections conflict with low-dimensional principles and
interpretability. Existing solutions using behavior-guided
dimensional reduction (Schneider et al., 2023; Chen et al.,
2024) and neural-behavioral fusion (Pandarinath et al., 2018;
Zhou & Wei, 2020; Keshtkaran et al., 2022; Zhu et al.,
2022; Gondur et al., 2023) face fundamental challenges in
validating preserved neural representations. Specifically,
fusion methods bias representations toward behavioral vari-
ables, behavior-guided dimensional reduction approaches
fail to establish direct neural-behavioral correspondence,
and the required post-hoc alignment may further introduce
potential ambiguity. Our PNBA framework addresses these
limitations through probabilistic representation alignment,
enabling robust low-dimensional representations while nat-
urally bridging neural and behavioral domains.

Cross-modal Alignment. Cross-modal representation
learning has emerged as a powerful paradigm in machine
learning, represented by CLIP (Radford et al., 2021) which
demonstrated that dual-encoder architectures with con-
trastive learning can effectively align image and text repre-
sentations. This success has inspired numerous advances
(Zhai et al., 2023; Chun, 2023; Lavoie et al., 2024). How-
ever, aligning neural and behavioral representations presents
distinct challenges due to intrinsic neural variability and
recording heterogeneity (Fig. 1a,b). Traditional approaches
have focused on disentangling behavior-relevant compo-
nents from neural activity (Sani et al., 2021; Hurwitz et al.,
2021; Wang et al., 2024; Sani et al., 2024), but overlooked
the importance of behavioral representation learning. Re-
cent methods like Neuroformer (Antoniades et al., 2024)
attempt to bridge this gap through contrastive learning, yet



Neural Representational Consistency Emerges from Probabilistic Neural-Behavioral Representation Alignment

they require subject-specific optimization and assume de-
terministic neural-behavioral correspondences, failing to
account for inherent neural variability. Our probabilistic
alignment framework overcomes these limitations by jointly
modeling neural variability and behavioral correlation, en-
abling robust validation of preserved neural representations.

Neural-Behavioral Modeling. Neural-behavioral relation-
ships are studied through encoding models mapping stimuli
to neural responses and decoding models predicting behav-
ior from neural activity (Mathis et al., 2024). Deep neural
networks have enhanced encoding models that mimics the
cortices, mapping external stimuli and cognitive variables to
neural activity patterns (Yamins & DiCarlo, 2016; Kell et al.,
2018; Walker et al., 2019; Bashivan et al., 2019; Marks &
Goard, 2021; Vargas et al., 2024), while decoding models
extract encoded information (e.g., kinematic variables, vi-
sual features) from complex neural activities (Gallego et al.,
2017; Yoshida & Ohki, 2020; Stringer et al., 2021). How-
ever, these methods assume local neural recordings contain
complete behavioral information or require subject-specific
fine-tuning. Our PNBA framework addresses these limita-
tions by learning aligned latent representations that capture
intrinsic neural-behavioral correlations, maintaining mecha-
nistic interpretability while avoiding direct modeling con-
straints (Melbaum et al., 2022). The learned representations
naturally bridge neural activity and behavioral variables,
establishing foundations for BClIs.

6. Discussions and Conclusions

While PNBA demonstrates robust implicit cross-subject
neural representation alignment for observable behaviors,
extending the framework to covert neural processes remains
challenging, such as cognitive processes like evidence in-
tegration during decision-making or attentional regulation
that lack direct behavioral observations. Our PMd analysis
provides an intermediate solution by leveraging temporally
delayed behavioral readouts, where preparatory neural ac-
tivity patterns are mapped to subsequent movement kine-
matics. A promising future direction involves incorporating
temporal dynamics modeling (Pandarinath et al., 2018) into
the PNBA framework. By explicitly accounting for the
dynamical systems properties of neural circuits, such exten-
sions could significantly enhance the current representation
alignment approach. We expect that these dynamical en-
hancements, combined with new experimental paradigms
integrated with PNBA, will further advance our understand-
ing of these covert processes.

In this work, we established PNBA as a new framework for
robust multimodal representation alignment. Through prob-
abilistic modeling with generative constraints, our approach
effectively addresses hierarchical variability across trials,
sessions, and subjects while preventing degenerate repre-

sentations. We validated PNBA through comprehensive
zero-shot experiments across multiple cortical regions (M1,
PMd, V1) and species (primate, mouse), revealing preserved
neural representations that generalize across sessions and
individuals. These findings provide new insights into the ap-
parent paradox between neural heterogeneity and functional
stability, demonstrating how robust neural representations
can emerge and persist despite biological variability, with
practical implications demonstrated through zero-shot de-
coding. In general, we hope PNBA could advance broader
neuroscience investigations via multimodal representation
alignment, while the discovered zero-shot preserved repre-
sentations may bring opportunities for stable BCI paradigms,
particularly in multi-region BClIs.

Impact Statement

Our work establishes a computational framework that ad-
vances both fundamental neuroscience and neural interface
technologies. PNBA’s primary contribution is a robust ap-
proach for aligning neural and behavioral representations
through learned latent spaces. When combined with attri-
bution analysis (Achtibat et al., 2023), this enables precise
characterization of neuron-specific encoding mechanisms
within neural populations. Beyond single-region analysis,
this approach can be extended to broader systems neuro-
science investigations, from multi-region to whole-brain
analyses, enabling quantitative assessment of area-specific
contributions and inter-regional coordination in behavior
generation (Steinmetz et al., 2019; Khilkevich et al., 2024).

Furthermore, given that neuroscience inherently relies on
multimodal data integration, PNBA’s extensible architec-
ture facilitates integration across biological scales, from
molecular profiles (Bugeon et al., 2022) to cellular dynam-
ics (Stringer et al., 2019), neural circuit mechanisms (Pa-
triarchi et al., 2020), and ultimately whole-brain analyses
(Laboratory et al., 2023).

The preserved neural representations discovered through
PNBA present significant potential for advancing
calibration-free neural decoding systems, particularly
for acute conditions like spinal cord injury (Ahuja et al.,
2017) where collecting paired neural-behavioral training
data is impractical. Additionally, this framework holds
promise for enhancing broader brain-computer interface
applications, including speech synthesis (Anumanchipalli
et al.,, 2019; Moses et al., 2021) and motor function
restoration (Hochberg et al., 2012).

Collectively, this framework advances our understanding
of neural coding while offering promising directions for
BClIs, with potential impacts spanning from fundamental
neuroscience research to clinical applications.
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Supplementary Materials

In the following sections, we provide a comprehensive analysis of cross-modal representation learning approaches for
neural-behavioral data integration:

* Section A. Analysis of Cross-modal Representation Alignment Methods.

¢ Section B: Generatively Informed Neural-Behavior Alignment Framework. Our novel framework with theoretical
guarantees for representation stability and information preservation, including detailed ELBO derivations.

¢ Section C: Practical implementation across three neurophysiological datasets (M1, PMd, V1), covering dataset
organization, network architecture, and training specifications.

* Section D: Potential related works, including SwapVAE(Liu et al., 2021), amLDS (Herrero-Vidal et al., 2021) and
MARBLE(Gosztolai et al., 2025).

A. Analysis of Cross-modal Representation Alignment Methods for Neural-Behavioral Alignment

In this section, we analyze cross-modal alignment methods from artificial intelligence that are adapted to neural-behavioral
representation alignment. We examine contrastive learning approaches (CLIP (Radford et al., 2021), SigLIP (Zhai et al.,
2023) and probabilistic matching (Chun, 2023; Chun et al., 2024)), evaluating their capabilities in handling the inherent
variability structure in neural data.

A.1. Hierarchical Variability in Neural Responses

Neural population recordings exhibit systematic variability at multiple scales (Stringer et al., 2019; Musall et al., 2019),
characterized by:
0< 6i/rti‘al < 6;Ession < 6s):ibject (13)

At the trial level, variability manifests through firing rate fluctuations within sessions (Churchland et al., 2010; Cohen &
Kohn, 2011):

Et/‘r\;al = Suth,lz [Hxll - Xl2||2] (14)
Yy

The session level exhibits broader spike count variability patterns (Stringer et al., 2019; 2021):

6s)gssion = SupESl,Sz [dX(P(X|y’ Slvi)ap(X|Ya 327’0)] (15)
Yy

The largest variation occurs at the subject level through inter-individual differences (Russo et al., 2018; Gallego et al.,
2020):

6s‘;Ebject = sup ]Ei17i2 [dX (P(X|ya Z‘1)7 P(X|Ya Z2))] (16)
Y

This hierarchical structure indicates that neural representations maintain relative consistency within trials and sessions while
exhibiting substantial variations across subjects, requiring alignment methods capable of handling multi-scale variability.

A.2. Analysis of Existing Methods for Neural-Behavior Representation Alignment

We analyze how existing cross-modal alignment methods handle the inherent hierarchical variability in neural data. Neural
populations exhibit substantial trial-to-trial variability while maintaining task selectivity (Churchland et al., 2010; Cohen &
Kohn, 2011), posing unique challenges for representation alignment.

Existing approaches differ in their treatment of neural variability. CLIP (Radford et al., 2021) employs temperature-scaled
contrastive learning:

B B
Loim = — exp (sim(f (%), 9(y4))/ exp (sim(f(x;),9(y:))/7) (17
‘ g -y exp(sim(f (x >7g<y3 ) g Ty exp(sim(f(x;). 9(v:))/7)
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SigLIP (Zhai et al., 2023) improved CLIP with sigmoid function:

= 1 1

Lo — = |1 . 1 .
= 2 °g1+exp<rsm(f(xi),g(yimb)*],E[BZM % T exp(rsim(7(x:). 9(v,)) — )

(18)

Both methods assume direct one-to-one mappings between neural activities and behavioral variables. For neural responses
{xF} f\i 1K —1 associated with behavioral variable yy, this creates competing objectives:

—lIFG) —g(yu)3 20 vs. Fij: [If () = F)I3 >0 (19)

Representation Collapse in the Point-to-Point Alignment

a. b.

®  Neural Representation
A Stimulus Representation

T: trial

Neural Representation
€. A Stimulus Representation f.

& T:trial

Visual Stimulus Representation

Figure 8. Representation degeneration in naive neural-behavioral alignment methods. Three-dimensional PCA projections in a
demonstrate the learned embedding distributions under SigLIP-based alignment, where neural activity encodings f(x) (circles) exhibit
severe convergence to a degenerate point-mass distribution while behavioral variable encodings ¢(y) (triangles) maintain their distributed
structure. The trial-wise cosine similarity matrix in b shows each entry (4, j) represents sim(f(x;), g(y;)) for trials T, with statistical
analysis (N=825 trials, two mice) revealing no significant discriminative structure (independent samples t-test: t=0.01, p=0.987> 0.05).
Under probabilistic matching, PCA visualization in ¢ reveals the distributed structure of both neural and behavioral embeddings, with
trial-wise similarity matrix in d showing consistently high correlation scores (sim(f(x;),¢(y;)) =~ 1) and no statistical difference
between matched and mismatched pairs (t=0.02, p=0.981> 0.05). When incorporating information bottleneck regularization (A = 10™%),
the PCA projection in e demonstrates maintained distributional structure but altered geometric relationships, while the corresponding
similarity matrix in f exhibits systematic negative correlations without achieving significant discrimination (t=0.03, p=0.997> 0.05).

Our analysis (Figure 8a-b) reveals this tension leads to representation degeneration, where neural encoders map different
activities to nearly identical embeddings. Such point-to-point correspondence assumptions pose unique challenges for neural
datasets, fundamentally distinct from computer vision tasks due to the inherent variability of neural recordings.
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Probabilistic matching (Chun, 2023; Chun et al., 2024) attempts to address this by modeling distribution-level alignment:

B
1 1
EProbMa ch = T IOg + log (20)
t B ; 1+ exp(—7 - d(f(x:), g(yi)) +b) je%;{i} 1+ exp(7 - d(f(xi), 9(y;)) = b)
where d(f(x),9(y)) = [[1rp) — Bl + ||o'?(x) + O'Z(y) |l1 However, this formulation admits degenerate solutions
where both encoders map to constant values:
['(x) =g (y) ® Zeonst, VXEX,yeEY 21)

Our experiments (Figure 8c-f) confirm that even with information bottleneck regularization (Alemi et al., 2016), simple
probabilistic matching remains prone to degenerate solutions, where neural representations become overly similar across
distinct behaviors. The analyses demonstrate existing approaches face a fundamental limitation in their inability to
simultaneously maintain effective alignment while preserving behavior-wise discriminability. This inherent trade-off
between structural preservation and discriminability motivates our development of a generative-informed framework.

B. Generatively Informed Neural-Behavior Alignment Framework

Neural-behavior alignment requires simultaneously preserving trial-specific neural information and maintaining behavioral
consistency. Here, we present a theoretical framework that addresses this challenge through a generative modeling approach.
Our framework not only establishes rigorous mathematical guarantees for the alignment process but also reveals key
characteristics of preserved neural representations that mirror the hierarchical organization of neural systems.

B.1. Derivation of the Constrained Optimization Framework

To formalize our neural-behavioral model, we propose a constrained optimization approach that balances probabilistic
matching with generative consistency. This appendix provides a detailed derivation of our objective function.

We begin by formalizing our approach as a constrained optimization problem:

min LprobMatch

s.t. —logp(x,y) < ¢
—log p(y[x) < c2
—logp(x]y) <3

(22)

Here, LprobMatch TEpresents our primary objective function that optimizes the probabilistic matching between neural activity
x and behavior y. The constraints enforce generative consistency by placing upper bounds ¢1, ¢2, and c3 on the negative
log-likelihood of the joint distribution p(x,y) and the conditional distributions p(y|x) and p(x|y), respectively.

To solve this constrained optimization problem, we apply the method of Lagrangian multipliers under the Karush-Kuhn-
Tucker (KKT) conditions (Karush, 1939). For inequality constraints of the form g;(#) < ¢;, the KKT conditions require:

1. Stationarity: VyL(6,A) =0
2. Primal feasibility: g;(0) < ¢; for all ¢
3. Dual feasibility: A\; > 0 for all ¢

4. Complementary slackness: \;(g;(¢) —¢;) = 0 for all

In our case, the constraints are:

<
g2(0) = —logp(y[x) < c2 (23)
<
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The Lagrangian function is defined as:

3
L(6,\) = LprobMatch + Z Ai(9i(0) — ¢) 24

i=1

Following the approach in (Higgins et al., 2017), we consider the case where A; > 0 and ¢; > 0. When the constraints are
active (i.e., g;(0) = ¢;), the Lagrangian becomes:

Liotat = LprobMatch + A191(6) + X2g2(0) + A3g3(6)

25
— Lo + At (— 108 (%, ¥)) + Ao (— log p(y[x)) + As (— log p(x[y)) )

The Lagrangian multipliers \; effectively control the strength of each generative constraint, allowing us to balance the
probabilistic matching objective with generative requirements.
B.2. Properties and Guarantees

The framework achieves robust neural-behavior alignment through carefully designed optimization objectives that balance
representation similarity with information preservation. We establish the following theoretical guarantees:

Theorem B.1. Let fog : X — Z and gy : Y — Z denote the neural and behavioral encoders. The following theoretical
guarantees hold:

(i) [Non-degeneracy] The optimization objective L, prevents representation degeneration by ensuring:

lim Lzotal = 400, Vzconsz €z (26)

fo (x)—)zwm,

(ii) [Information Preservation] The generative constraints ensure enhanced mutual information between input and represen-
tation spaces:

I(fﬁmmz (X); X) > I(fEPmbMurch (X); X) +n, n>0 27

(iii) [Representation Stability | For neural responses X;,X; corresponding to the same behavioral variable 'y, the learned
representations maintain bounded distances:

0 <a<|foxi) = fo(x))ll2 < B (28)
Proof of (i): [Non-degeneracy]

Proof. We will proceed by contradiction to establish that any encoder mapping that collapses to a constant representation
must yield an unbounded loss value.

Assume there exists a degenerate solution where fy(x) = zconst for all x € X. Since X is a compact metric space and f6
is continuous by construction, this degenerate mapping collapses an uncountable set of distinct neural activities to a single
point Zons in the latent space.

The generative component L., of our total loss involves a probability normalization constraint:
/ D(X|Zeonst)dx = 1 (29)
X

For this normalization constraint to hold while mapping all points in X’ to Zns, the conditional probability density
P(X;|Zconst) for any specific neural activity x; must necessarily approach zero:

p(xi ‘zconst) — 0 (30)

This follows from the fact that the probability mass must be distributed across the entire domain X while maintaining the
normalization constraint. Consequently, the log-likelihood term becomes:

log p(Xi|Zconst) — —00 31
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Since our total loss L, includes the negative log-likelihood term with weight Ay > 0:

Liotal > —A2 Ing(Xlz) =—A2 10gp<xlzconst) — +00 (32)

This directly contradicts our objective of minimizing Ltotal. Therefore, for any constant representation zgonst € Z:

lim  Ligar = 400 (33)

Jo (x)—Zconst

Proof of (ii): [Information Preservation]|

Proof. We will establish that the encoder optimized with our complete objective Lo preserves strictly more information
than an encoder optimized solely with LpiobMatch-

Let us decompose the mutual information difference using the entropy formulation:

I(fﬂmml (X); X) - I(fLPmmech (X); X) - [H(X) - H(X|fﬁmml (X))] - [H(X) - H(x|f£thMulch (X))]

34
— H e (%)) — H (x| f e (%) Gd

The baseline encoder fr,, ... 15 Optimized solely by the probabilistic matching 10ss Lprobmatch, Which enforces distributional
alignment between neural and behavioral representations. Critically, this objective imposes no explicit constraints on the
conditional entropy. The encoder is free to discard information about x as long as the resulting distribution matches that of
the behavioral representations. Thus, there exists a lower bound on the conditional entropy:

H(X|fﬁpmbMamh (X)) > 02 (35

In contrast, the encoder f,, optimized with our complete objective Ltotal incorporates the evidence lower bound (ELBO)
through the generative loss component:

Eg(alx) [log p(x|2)] — K Llg(z[x)|[p(z)] = —01 (36)

The reconstruction term Eq(z|x)[log p(x|z)] directly imposes an upper bound on the conditional entropy:

H(x[fr.(x)) < 61 (37)
Since the ELBO constraint explicitly encourages accurate reconstruction through its log-likelihood term, while Lp;obMatch

lacks such reconstruction incentives, we necessarily have:

01 < 09 (38)

This establishes the existence of a positive constant = J» — J; > 0 such that:

I(fﬁmml (X)§ X) - I(fﬁpmbMamh (X); X) >n>0 (39

Proof of (iii): [Representation Stability]

Proof. We will establish both upper and lower bounds on the distance between representations of neural activities that
correspond to the same behavioral variable.

First, for the upper bound: Since X is compact and fy is continuous, the image fy(XX') is also compact and thus bounded in
Z. Let M = sup,¢y | fo(x)|2 denote the maximum norm of any representation. Then, by the triangle inequality, for any
Xi,Xj € X:

|fo(xi) = fo(x))]2 < [fo(xi)|2 + | fo(x))]2 <2M =3 (40)

18
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For the lower bound, we proceed by contradiction. Suppose no positive lower bound exists, i.e.:

Va > 0,3x;,x; € X withx; # x; : |fo(x;) — fo(x;)]2 < a 41)

This implies the existence of a sequence (xgn)7 x§n)

variable y, such that:

)ZO: L of distinct neural activity pairs corresponding to the same behavioral
li MY — fo(x!™) ]y = 0 42
Jim [ fo(x;™) = fo ()2 (42)

As n — oo, the representations become arbitrarily close. For any probability model satisfying the normalization constraint:

| plxifoi)ax =1 #3)
x
The conditional probabilities must satisfy:
I 1 (n) (n) ] (n) KON 44
Jim (log p(x; [ fo(x; 7)) +log p(x;™ | fo(x;7)) 00 (44)

This is because as the representations become identical, the probability model must distribute finite probability mass between
distinct neural patterns, forcing at least one probability to approach zero. Consequently:

Lo = =2 (logp(x(™|fo(x")) + Tog p(x{" | fo (x{")) ) = +00as n — o0 (45)

This contradicts the minimization of L. Therefore, there exists o > 0 such that for all distinct neural activities x; # x;;
corresponding to the same behavioral variable y:

0<a<|fo(xi)— fo(x))]2 < B (46)

O

Remark B.2 (Optimization Balance). The proposed framework achieves representation stability through a balance in the
optimization objective. This equilibrium emerges from two complementary mechanisms:

(1) Clustering Force: LpobMach functions as a clustering force, promoting representational similarity among neural
responses associated with the same behavioral variables. This ensures behavioral consistency and bounds the maximum
distance between related neural representations by /5.

(2) Regularizing Force: L,., serves as a regularizing force through its generative constraints. By maintaining a minimum
distinctiveness threshold «, it preserves trial-specific neural information and prevents representation degeneration.
Remark B.3 (Key Properties). The theoretical guarantees in Theorem 2 establish three fundamental properties:

(1) Robustness: The framework systematically accommodates neural variability while preserving behavior-specific
representation structure.

(2) Information Preservation: Essential neural response characteristics are retained through rigorous mutual information
bounds.

(3) Representation Stability: Related neural responses maintain consistent yet distinct representations through provable
distance constraints.

Remark B.4 (Characteristics of Preserved Neural Representations). Property (iii) reveals the intrinsic characteristics
of preserved neural representations: while maintaining maximal similarity (< f3), these representations retain inherent
distinctiveness (> «). This mathematical characterization aligns with the hierarchical variability in biological systems,
where neural responses exhibit both consistency and inherent variations across different experimental conditions.
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B.3. ELBO Derivation in the Generative modeling.

Building upon the theoretical foundations established above, we now detail the optimization framework that realizes these
properties. Our approach leverages a bidirectional generative model structured around two key Markov chains: x =z — y
and y — z — x, where x, y, and z represent neural activities, behavioral variables, and latent representations respectively.
This bidirectional structure ensures both neural information preservation and behavioral consistency.

Behavioral Variable to Neural Activity. We first derive the ELBO for the forward path, examining how behavioral
variables generate corresponding neural activities. This derivation provides two key bounds: one for the joint probability
p(x,y) and another for the conditional probability p(x|y).

log p(x,y) = log / p(x,y,2z)dz

:]og/ (x|2)p(zly)p(y)dz

> By llog ""jzjfj”) 2y),
= Eyapes 108 DX12)] + o | L0 ] + logply)
= Eq(a/x,y) [log p(x[2)] — K L[q(z|x, y)l[p(z]y)] + log p(y)

where log p(y) is treated as a constant during optimization since it represents the prior distribution of behavioral variables
that is intractable.

Furthermore, we can also have another generation constrain from the conditional probability p(x|y):

logp(xly) =log [ plx,zly)dz = log [ p(xlap(aly)dz
~ log /p(x|z)p(z|x)dz (Since p(z|x) and p(z]y) are expected to be highly similar)

~ 1o [ p<x|z>p<z|x>;1§j’;§dz (48)

. Pl

> Eq(aly) [log p(x|2)] — K L[g(z]y)||p(z[x)]

Neural Activity to Behavioral Variable The reverse path analysis considers how neural activities encode behavioral
variables, completing our bidirectional framework. Similar to the forward path, we derive bounds for both the joint
probability p(x,y) and the conditional probability p(y|x).

log p(x,y) = log/p(x,y,Z)dZ
~log / p(y|2)p(alx)p(x)da
:log/p(.VIZ) p(z[x)p(x) ozl y)dz
)

q(z[x,y) (49)
p(y|2)p(z[x)p(x )]
q(z[x,y)

> Eq(afx,y)[log

p(zlx) —
) wry) y)]+1 gp(x)
)

= Eq(alx.y) log p(y|2)] = KL[g(z|x,y)|[p(z[x)] + log p(x)

= IEq(z|x,y) [logp(Y|Z ] |X:Y)[
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Table 2. Monkey M1 Dataset Organization and Recording Sessions. The dataset comprises recordings from 4 monkeys performing a
center-out (CO) reaching task. Sessions are split into training (24 sessions), validation (4 sessions), and test sets (6 sessions), reflecting the
consistent nature of neural responses in this well-established behavioral paradigm.

Split Subject Session Identifiers

C-C0O-20131003, C-CO-20131101, C-CO-20131219, C-CO-20150312,
Training Monkey C ~ C-CO-20150703, C-CO-20150715, C-CO-20151106, C-CO-20151117,
C-C0O-20151201, C-CO-20160912, C-CO-20160929, C-CO-20161013

M-CO-20140203, M-CO-20140307, M-CO-20140626, M-CO-20140929,
Monkey M M-CO-20141203, M-CO-20150512, M-CO-20150610, M-CO-20150615,
M-CO-20150617, M-CO-20150623, M-CO-20150625, M-CO-20150626

Monkey C  C-CO-20131203, C-CO-20160921
Monkey M M-CO-20140218, M-C0O-20150616

Monkey T  T-CO-20130819, T-CO-20130909
Monkey ] J-CO-20160405, J-CO-20160407

Validation

Test

Similarly, in the backward path derivation, log p(x) represents the prior distribution of neural activities and is also treated as
a constant during optimization.

And for the conditional probability p(y|x):
logp(y[x) =log [ ply.alx)dz = log [ plyia)p(alx)dz

~ log /p(y|z)p(z|y)dz (Since p(z|x) and p(z|y) are expected to be highly similar)

—1og [ p<y|z>p<z|y>ggj:§§ dz (50)

p(Z|Y)]
q(z[x)
> Eqapo [log p(y|2)] — K L[g(2[x)||p(z]y)]

= IOg IEq(z\x) [p(Y|Z)

Note that a fundamental assumption underlying our derivation is the convergence of latent distributions p(z|x) and p(z|y)
in the learned representation space. This alignment is enforced through probabilistic matching objectives, ensuring that
paired neural activities and behavioral variables share similar distributional properties in the latent space. Such alignment is
crucial for establishing stable bidirectional mappings between neural and behavioral spaces while preserving their respective
information content.

C. Implementation Details
C.1. Dataset Description

To comprehensively validate our approach, we conducted experiments on three representative neurophysiological datasets
that capture distinct neural encoding paradigms: motor cortex datasets (M1 and PMd) for movement encoding, and a visual
cortex dataset (V1) for sensory processing.

Motor Cortex Datasets (M1 and PMd). We analyzed neural recordings from primary motor cortex (M1) and dorsal
premotor cortex (PMd) of rhesus macaques performing a center-out reaching task, examining how these distinct motor
areas encode planned movements. The M1 dataset comprises recordings from 4 monkeys (~64 neurons/session), while
the PMd dataset includes 3 monkeys (~96 neurons/session), both collected using chronic multielectrode arrays. Neural
activity was paired with continuous 2D hand kinematics (R*: position and velocity). As detailed in Tables 2 and 3, we
structured these datasets to enable rigorous evaluation of cross-subject generalization. For M1, we used 24 training sessions
and 4 validation sessions from two monkeys (C and M), with 6 test sessions from two held-out monkeys (J and T). The
PMd dataset is organized similarly with 20 training sessions and 4 validation sessions from monkeys C and M, and 4 test
sessions from monkeys M and T, maintaining parallel evaluation structures across both motor areas while accommodating
the available recordings.
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Table 3. Monkey PMd Dataset Organization and Recording Sessions. The dataset comprises recordings from 3 monkeys (C, M, and
T) performing a center-out (CO) reaching task. To align with the M1 experimental setup (which uses 4 monkeys), we treat two sessions
from Monkey M in the training set as if they were from a separate monkey for zero-shot evaluation purposes. Sessions are split into
training (20 sessions), validation (4 sessions), and test sets (4 sessions), maintaining consistency with the M1 experimental paradigm
while accommodating the available PMd recordings.

Split Subject Session Identifiers

C-C0O-20160909, C-CO-20160912, C-CO-20160914, C-CO-20160915,
Training Monkey C  C-CO-20160919, C-CO-20160921, C-C0O-20160929, C-CO-20161005,
C-C0O-20161007, C-CO-20161011

M-CO-20140203, M-CO-20140218, M-CO-20140304, M-CO-20140307,
Monkey M M-CO-20140929, M-C0O-20141203, M-CO-20150512, M-CO-20150610,
M-CO-20150611, M-CO-20150615

Monkey C  C-C0O-20161013, C-CO-20161021
Monkey M M-CO-20150616, M-CO-20150617

Monkey M M-CO-20150623, M-CO-20150625
Monkey T  T-CO-20130823, T-CO-20130903

Validation

Test

Table 4. Dataset Organization and Cross-Mouse Video Stimulus Pairings. The experimental dataset contains recordings from 10 mice
with an 8/2 train-validation split. Each mouse is assigned a unique identifier and systematically paired with another mouse that viewed
matching video sequences, enabling direct comparison of neural responses to identical visual stimuli across different subjects.

Split Mouse ID Dataset Identifier Paired Mouse
Mouse 1 dynamic29156-11-10-Video-8744edeac3b4d1cel6b680916b5267ce Mouse 5
Mouse 2 dynamic29234-6-9-Video-8744edeac3b4d1cel 6b680916b5267ce Mouse 6
Mouse 3 dynamic29513-3-5-Video-8744edeac3b4d1ce16b680916b5267ce Mouse 7
Training Mouse 4 dynamic29514-2-9-Video-8744edeac3b4d1ce16b680916b5267ce Mouse 8
Mouse 5 dynamic29515-10-12-Video-9b4f6ala067fe51e15306b9628efea20 Mouse 1
Mouse 6 dynamic29623-4-9-Video-9b4f6ala067fe51e15306b9628efea20 Mouse 2
Mouse 7 dynamic29647-19-8-Video-9b4f6ala067fe51e15306b9628efea20 Mouse 3
Mouse 8 dynamic29712-5-9-Video-9b4{f6ala067fe51e15306b9628efea20 Mouse 4
Validation Mouse 9 dynam@029228-2-10-Yideo-8744edeac3b4dlce16b680916b5267ce Mouse 10
Mouse 10 dynamic29755-2-8-Video-9b4f6ala067fe51e15306b9628efea20 Mouse 9

Visual Cortex Dataset (V1). We analyzed two-photon calcium imaging data from the primary visual cortex of 10 head-fixed
mice viewing naturalistic video stimuli, provided by the Sensorium 2023 Competition. This large-scale dataset captures the
activity of 78,853 neurons (~8,000 neurons/mouse) during passive viewing of 36x64 pixel grayscale video sequences. As
shown in Table 4, we employed an 8/2 train-validation split, with a key experimental design feature: each mouse was paired
with another subject that viewed identical video sequences. This systematic pairing enables direct comparison of neural
representations across individuals while maintaining independent test sets for unbiased evaluation.

These datasets provide complementary perspectives on neural information processing:

e M1 and PMd recordings reveal how different motor areas encode planned movements, with PMd typically showing
more complex preparatory dynamics

* V1 recordings demonstrate how sensory information is processed across a large population of neurons, with natural
variability in responses across subjects

» All datasets feature carefully structured train/validation/test splits that enable rigorous assessment of cross-subject
generalization

C.2. Training Details

The neural characteristics and computational requirements of motor cortex recordings (M1, PMd) and visual cortex data
(V1) required distinct training protocols. Motor cortex datasets feature relatively sparse neural populations paired with
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Table 5. Training configurations on three neural datasets. Our framework utilizes distinct optimization strategies for monkey motor
cortex (M1 and PMd) and mouse visual cortex (V1) tasks, with hyperparameters and computational resources tailored to each dataset’s
characteristics.

Monkey Motor Cortex (M1 and PMd)

Mouse Visual Cortex (V1)

Optimization Settings
Optimizer
Weight Decay

Optimization Settings
Optimizer
Weight Decay

AdamW (8; = 0.9, B = 0.999)
0.05

AdamW (81 = 0.9, B = 0.999)
0.05

Batch Configuration

32 samples, 16 timebins per batch

Batch Configuration

32 samples, 16 timebins per batch

Learning Rate Schedule Learning Rate Schedule

Initial Learning Rate | 1 x 1074 Initial Learning Rate | 1 x 1074

Warm-up Period First 600 iterations Warm-up Period First 600 iterations

Peak LR Duration 50 epochs Peak LR Duration 200 epochs

Decay Strategy Cosine annealing to 1 x 10~7 (last 25 epochs) Decay Strategy Cosine annealing to 1 x 107 (last 200 epochs)
Total Epochs 100 Total Epochs 400

Data & Computing Specifications

GPU Configuration | 4x NVIDIA A100 (40GB)
Training Duration ~8 hours

Inference Latency 1.4ms

Neuron Number ~8000 neurons

Visual Stimulus gray 36 x64 image (R'*36x64)

Data & Computing Specifications

GPU Configuration 1x NVIDIA A100 (40GB)

Training Duration ~1 hour

Inference Latency 0.3ms

Neuron Number ~64 neurons for M1, ~96 neurons for PMd
Behavioral Features | 2D position and 2D velocity (R%)

kinematic features, while visual cortex data comprises dense neuronal recordings coupled with high-dimensional visual
inputs. We established comprehensive training configurations to address these dataset-specific demands, with detailed
optimization parameters, learning schedules, and computational specifications presented in Table 5

C.3. Evaluation Metric

We employ Pearson correlation coefficient to evaluate representation similarity. First, we measure cross-modal representation
correlation. For neural activity representation z, and behavioral representation z,,, both having identical dimensions d x T,
the Pearson correlation coefficient is computed as follows:

Zg_xfr(%ﬂ - Zw)(zy,i - Zy)

T 2 ST (7

(S

r zl,zy

where z, ; and z, ; denote the i-th element of the flattened representations z,, and z,, respectively, and 2, and Z, represent
their respective means.

Additionally, we explore within-modality representational similarity by calculating Pearson correlation coefficients between
neural activity representations z¢, and zJ. from different trials. It is important to note that during model training, we utilized
fixed time windows across all trials, preserving complete temporal information for model input. This time-window approach
ensured that no information was lost during the training phase.

For evaluation purposes, however, we needed to address the variability in temporal dimension 7" across trials specifically in
the PMd and M1 datasets. In these cases, we aligned the time axes by uniformly subsampling the sequences to the minimum
length among the compared trials. This subsampling procedure was not necessary for the mouse V1 dataset, which exhibited
consistent temporal dimensions across trials.

After obtaining representations of matching dimensions where required, we computed the Pearson correlation coefficient
using the same formula:

dXT : Y
r( ‘ kxlmln(zi B z )(Z;’k — Z% ) (52)
\/ZdXTnL'Ln 21’/>2 AXTmin (ZJ, _ zj/)Q
T k=1 z,k T

We determined that selectively resampling at the representation level during evaluation was preferable to full sequence
truncation, as it minimized information loss and reduced potential error propagation. This selective approach to temporal
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Table 6. Network Architecture Specifications. Detailed hyperparameters for Monkey M1, PMd and Mouse V1 implementations. The
architecture maintains temporal coherence while processing different input modalities.

Hyperparameters Monkey M1/PMd  Mouse V1

Projection Head Specifications

Input Channels 1 1
Output Channels 32 128
Pooled Dimension (D) 8 256
Encoder Specifications

Base Channels (ch) 32 64
Channel Multipliers 1,2,2,4) 1,2,2,4)
Resolution Levels 4 4
Residual Blocks per Level 2 2
Attention Resolutions [2,16] [8,16]
Dropout Rate 0. 0.
Data Dimensions

Neural Activity NxT NxT
Behavior/Stimulus 4xT 36 x 64 x T
Pre-defined Low-dimensional Latent space

Latent Space 1x4xT 4x8xT
Reshaped Latent Space 4xT 32xT

alignment during evaluation, combined with complete information preservation during training, enabled robust quantification
of representational similarities across different experimental conditions.

C.4. Network Architecture

Our encoder-decoder architecture builds upon UNet, leveraging its proven capability in multi-scale feature extraction while
introducing critical modifications for temporal neural data processing. Based on the UNet ? implementation, we developed a
framework specifically optimized for multi-modal neural recordings.

The architecture processes neural activity (/N x T') as single-channel temporal sequences, where N represents the number of
neurons and 7" denotes the temporal dimension. To accommodate varying neural population sizes across recording sessions,
we implemented learnable projection heads at both network endpoints. The input projection transforms single-channel
data through 2D convolution operations (3x3 kernel, stride 1), followed by AdaptiveAveragePooling that standardizes the
neuron dimension to a fixed size D. This standardization maps the input dimensions from N x T to 32 x 8 x T' for M1 data
and 128 x 256 x T for V1 data, as detailed in Table 6. The output projection mirrors this structure but employs bilinear
interpolation for dimension restorationto 1 x N x T'.

The core network comprises a 4-level hierarchical structure with distinct configurations for M1 and V1 datasets. The
M1 implementation utilizes 32 base channels, while V1 employs 64 base channels, both following identical channel
multiplier patterns. Each hierarchical level incorporates two residual blocks featuring group normalization and timestep
embeddings, with self-attention mechanisms strategically placed at specific resolutions to capture long-range dependencies
while maintaining computational efficiency.

To ensure consistent representation across modalities, we developed parallel encoders for behavioral and visual data.
The behavioral encoder processes M1 kinematic features (R'*4*T) by adapting the neural UNet architecture, removing
spatial sampling operations while preserving the essential residual blocks and attention mechanisms. For V1 visual stimuli
(R1x36x64xT "we extended the architecture with 3D convolutions (5x3x3 kernels) to effectively process spatiotemporal
data, carefully compressing the stimulus representation to match the neural encoder’s latent space.

The architecture converges all modalities into aligned feature spaces through reshaping operations, transforming the
representations from ¢ x d x T to (¢ x d) x T'. This unified approach yields compact latent representations of 4 x T" for
M1 and 32 x T for V1 data, as specified in Table 6. This design significantly reduces computational complexity while
preserving the temporal dimension throughout all processing stages, enabling robust capture of temporal dependencies and

https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/models/unet.py

24


https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/models/unet.py

Neural Representational Consistency Emerges from Probabilistic Neural-Behavioral Representation Alignment
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Figure 9. Neural-behavioral representation alignment in motor cortices. a, Distribution analysis showing aligned representational
characteristics between neural activities and behavioral measurements in PMd during center-out reaching. b, Corresponding distribution
analysis in M1 demonstrating similar alignment properties. ¢, Trial-wise correlation analysis in M1 revealing distributed similarity
structure across movement directions (t = 2.17, p = 3.4 x 10~2), characteristic of continuous reaching movements.

population dynamics for neural data analysis.

C.5. Implementation Details for Verifying Preserved Neural Representations

Verification of preserved neural representations necessitates rigorous identification of matched behavioral conditions across
recording sessions. For motor cortical regions (M1, PMd), we quantified behavioral similarity using Pearson correlations
between kinematic trajectories, with a correlation threshold of R > 0.9 defining matched trials. Visual cortical (V1) analysis
leveraged the deterministic nature of stimulus presentations, where identical visual sequences directly established matched
conditions. Statistical validation of preserved representations was performed using independent t-tests comparing neural
activity correlations between matched and non-matched behavioral conditions.

D. Extended Results of Cross-modal Alignment and Neural Representation Analysis

Neural representation analysis across scales provides deeper insights into preserved neural representations. Here we present
more analyses complementing the main results.

D.1. Neural-Behavioral Representation Alignment Results of Monkey M1 and PMd

We present comprehensive multi-modal alignment results from monkey motor cortical regions (M1 and PMd) during center-
out reaching tasks (Figure 9). Distribution analysis demonstrates that PNBA effectively captures aligned representational
properties between neural activities and behavioral measurements in both areas. The overlapping distributions in PMd and
M1 indicate successful alignment of neural population dynamics with behavioral kinematics, despite their distinct functional
roles in motor control.

The correlation structure in M1 reveals a continuous representational pattern across movement directions (t = 2.17, p =
3.4 x 1072). This distributed similarity is intrinsic to center-out reaching movements (Georgopoulos et al., 1982), where
adjacent directional movements share substantial kinematic features, particularly during movement initiation (Churchland
et al., 2012). The gradual transitions in neural and behavioral representations across movement directions align with
established findings of continuous rotational dynamics in motor cortical populations (Churchland et al., 2012; Russo et al.,
2018).

D.2. Additional Preserved Neural Representation Analyses on Monkey PMd

Following our investigation of preserved neural representations in M1, we conducted a systematic analysis of representational
stability in PMd across multiple organizational scales. This hierarchical analysis is particularly crucial for PMd given its
central role in motor planning and preparation, where stable representations are essential for consistent movement execution.

Our analysis revealed robust preservation of neural representations at three distinct levels. At the finest scale, within-session
trial-to-trial correlation analysis demonstrated high representational stability (mean R = 0.856 + 0.012, ny, =109, 1y, =95,
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Preserved Neural Representations in PMd Across Scales
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Figure 10. Hierarchical organization of preserved neural representations in monkey dorsal premotor cortex (PMd). Neural
representation similarity analysis demonstrates systematic preservation across organizational levels. a, Within-session trial-to-trial
correlations exhibit high consistency (mean R = 0.856 + 0.012, nm, =109, nm, =95, nr, =116, nr,=87 trials). b, Neural representations
maintain stability between recording sessions (R = 0.854 + 0.009). ¢, Zero-shot generalization analysis on held-out subjects validates
cross-subject representation similarity (R = 0.856 + 0.072). Error bars denote standard deviation.

nrt, =116, nt,=87 trials), indicating reliable encoding of motor plans across repeated behaviors. At the intermediate level,
cross-session analysis showed remarkable consistency (R = 0.854 + 0.009), suggesting neural representation consistency
underlying motor planning across different recording periods. Most critically, zero-shot generalization analysis on held-out
subjects revealed significant cross-subject representational similarity (R = 0.856 + 0.072), demonstrating the preservation of
fundamental representational features across different individuals.

D.3. Additional Preserved Neural Representation Analyses on Mouse V1

To validate the robustness of preserved neural representations in V1, we examined the cross-trial correlation patterns in zero-
shot mice that were entirely held out during training. Figure 11a presents the correlation matrix for Mouse 9, demonstrating
strong preservation of neural activity patterns across trials without any subject-specific fine-tuning. The distinct block-
diagonal structure indicates that PNBA successfully captures and maintains condition-specific neural representations in V1,
with high correlations observed between trials of the same condition (self-correlation R = 1.0) and low correlations between
trials of different conditions. Statistical analysis using independent samples t-tests between matched and mismatched
trial pairs yielded p = 0., providing strong evidence for the significant preservation of neural representational structure at
the single-trial level. Similar results were observed in Mouse 10 (Figure 11b), confirming PNBA’s consistent ability to
generalize to completely unseen subjects. These results complement our main findings by demonstrating that PNBA can
effectively capture neural dynamics in novel subjects without any additional training or adaptation.

E. Potential Related Works

This section addresses additional related works suggested during the review process. While these studies explore neural data
analysis, they address fundamentally different research questions than our PNBA framework.

Liu et al. (2021)(Liu et al., 2021) proposed SwapVAE, a self-supervised approach for generating neural activity through data
augmentation. SwapVAE operates only within the neural activity domain, employing augmentation, i.e., swap operation,
based on trial similarity assumption without any behavioral constraints. In contrast, our PNBA framework explicitly bridges
neural and behavioral domains through a CLIP-inspired multi-modal paradigm. PNBA directly aligns neural and behavioral
representations via generative constraints, which enables zero-shot generalization to completely unseen subjects with varying
neural population sizes—a capability that SwapVAE was not designed to address.
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Preserved Neural Representations Existed in Mouse V1
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Figure 11. Cross-trial preserved neural representations in mouse primary visual cortex (V1). a. Correlation matrix for a zero-shot
mouse (Mouse 9) reveals robust preservation of neural representational structure, with strong within-condition correlations (diagonal
blocks, self-correlation R = 1.0, t=136.715, p=0.) and weak between-condition correlations). Independent samples t-tests between
matched and mismatched trial pairs showed highly significant differences (p < 0.001), demonstrating PNBA’s ability to maintain distinct
neural patterns across experimental conditions without any training data from this subject. b. Similar preservation of condition-specific
neural representations was observed in another zero-shot mouse (Mouse 10), mean R = 1.0, t=121.494, p=0., highlighting the model’s
consistent generalization capability to entirely unseen subjects.

s

Herrero-Vidal et al. (2021) (Herrero-Vidal et al., 2021) developed an “aligned mixture of latent dynamical systems’
(amLDS) for cross-animal odor decoding. Their approach explicitly maps neural recordings from different mice into a
common latent manifold where neural trajectories are assumed to be similar across animals but distinct across odors. This
method fundamentally begins with the assumption that shared neural encoding patterns exist across subjects in response to
identical stimuli, and then builds alignment techniques based on this premise. In contrast, PNBA does not presuppose neural
encoding similarity across subjects—instead, our approach empirically tests whether such similarities exist by introducing
behavioral constraints as the bridging element. While Herrero-Vidal et al. focus on stimulus-driven neural trajectories in
olfactory processing, PNBA addresses the broader question of neural-behavioral correspondence during complex, continuous
behaviors. Interestingly, our findings provide empirical support for their underlying assumption by demonstrating that
shared neural representations do indeed exist under similar behavioral conditions, but our approach arrives at this conclusion
without requiring it as a starting assumption.

The recently published MARBLE method (Gosztolai et al., 2025) employs geometric deep learning to obtain interpretable
latent representations from neural dynamics. MARBLE decomposes neural dynamics into local flow fields and maps
them into a common latent space based on user-defined labels of experimental conditions, allowing similarities between
conditions to emerge. While MARBLE provides a similarity metric between dynamical systems and can discover consistent
representations across networks and animals, it remains fundamentally a single-modal approach that works exclusively
within neural space. In contrast, PNBA implements a distinctly multimodal strategy that directly incorporates behavioral
data as constraints in the latent space formation. This fundamental architectural difference—MARBLE’s within-neural-
domain geometric alignment versus PNBA’s cross-modal neural-behavioral alignment—results in approaches optimized for
different objectives. MARBLE excels at capturing subtle changes in high-dimensional dynamical flows and relating them to
task variables, while PNBA specifically addresses the correspondence between neural patterns and observable behaviors,
providing a framework to test whether neural representations preserve their behavioral meaning across subjects.
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