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Abstract

Federated learning (FL) is a prominent dis-
tributed learning approach that addresses two ma-
jor challenges: statistical heterogeneity (i.e., non-
identically distributed data) and system heterogene-
ity (i.e., variability in communication and compu-
tation on each client). As FL is commonly applied
in sectors such as commercial and financial, group
disparities can emerge and cause harm. However,
current fairness algorithms assume homogeneous
data, which do not align with the FL context. The
main challenge is estimating global fairness mea-
sures (e.g., Rényi or Pearson correlation) in an
asynchronous, heterogeneous system. To address
this, we propose the FedRényi algorithm, which
regularizes fairness by Rényi correlation. For statis-
tical heterogeneity, FedRényi aggregates local fair-
ness statistics to estimate the global Rényi correla-
tion with an estimation error bound of O(1/

√
n),

where n is the total number of data samples. This
theoretical result improves significantly over the
previous result O(1/

√
K) with K clients. We fur-

ther prove that FedRényi converges at the same
rate as in the homogeneous setting. For system het-
erogeneity, FedRényi approximates missing client
updates through weighted averaging over a near-
est neighbor region, ensuring a non-expansive ap-
proximation error under non-convex conditions.
Extensive experiments demonstrate that FedRényi
achieves a promising fairness-accuracy trade-off,
with at least 2% improvement over baselines.

1 INTRODUCTION

Federated learning (FL) is an effective paradigm for de-
centralized learning in large-scale datasets McMahan et al.
[2017], Kairouz et al. [2021], allowing models to be trained

on multiple clients without sharing raw data, thus preserving
privacy Zhang et al. [2023]. Many FL works Karimireddy
et al. [2020], Li et al. [2020b], Xu et al. [2023], Zhu et al.
[2021a] have been proposed to address challenges in FL,
such as statistical heterogeneity, where locally distributed
data are non-identically distributed (non-IID), and system
heterogeneity, which involves variability in communication
and computational capabilities between clients, such as un-
participating clients Li et al. [2020a,b]. These methods make
FL attractive and suitable for many real-world sectors, such
as commercial Jain and Jerripothula [2023] and finance
Long et al. [2020], Mammen [2021], where large institu-
tions (e.g., banks) seek to mitigate predictor bias caused by
group disparities Barocas et al. [2023].

Group fairness Barocas et al. [2023] is a commonly used
approach to mitigate prediction bias against certain demo-
graphic groups Kleinberg et al. [2018], divided by sensi-
tive attributes such as race or gender Dwork et al. [2012],
Mehrabi et al. [2021]. Many methods have been proposed to
promote group fairness Baharlouei et al. [2020], Woodworth
et al. [2017] , but they are mostly designed for a centralized
and homogeneous setting.

Some works have been proposed to improve group fairness
in FL Zeng et al. [2021], Abay et al. [2020], Du et al. [2020],
Zhang et al. [2020], Chu et al. [2021], all of which require
empirical estimation of fairness measures (e.g., group dispar-
ities). Although the previously established estimation error
of the fairness measure is in O(1/

√
K) with K clients Chu

et al. [2021] under non-IID conditions, it is worse than the
standard estimation error of O(1/

√
n) with n data samples

in the centralized setting Mohri et al. [2018].

In addition, it is unclear how to adapt these methods to the
system heterogeneity (e.g., with dropping clients or “strag-
glers” Li et al. [2020b]). Specifically, the empirical fairness
measure based on partially participating clients can deviate
significantly from the true fairness measure based on fully
participating clients. The above two challenges raise a ques-
tion: How can we develop a federated fairness-enhanced al-
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gorithm with theoretical guarantees for fairness and conver-
gence in both statistically and systemically heterogeneous
settings?

To this end, we propose Federated Rényi Fair Inference (Fe-
dRényi) algorithm to promote group fairness in FL. We use
the general and tractable Rényi correlation Rényi [2007],
Baharlouei et al. [2020] as regularization to induce fair-
ness globally across all clients. Specifically, to estimate
the global Rényi correlation, we first compute the neces-
sary local group-wise statistics (see Eq. (5) later) on each
client, and then aggregate these local statistics following
two federated weighting schemes (see Eq. (2) later) from
clients into a global measure Mansour et al. [2020]. For any
nonparticipating client in each communication round, Fe-
dRényi approximates its local statistics/model by weighted
averaging over its neighbor clients based on their similarity
measures.

We theoretically show that FedRényi guarantees the estima-
tion error bound in O(1/

√
n) order, which improves signifi-

cantly over the previous established one in O(1/
√
K) Chu

et al. [2021] (K ≪ n usually in FL Kairouz et al. [2021]).
Furthermore, we derive a convergence rate of FedRényi in
O(1/ϵ4) iteration complexity, matching the same order as
the standard FL result Karimireddy et al. [2020]. Moreover,
we show that the proposed approximation is non-expansive
for certain non-convex loss functions Liu et al. [2021] with
pre-trained model Tan et al. [2022], Weller et al. [2022],
Tian et al. [2022], i.e., the non-increasing distance between
the approximated and true local statistics/models within
a communication round. Finally, we empirically evaluate
our method on benchmark datasets, showing that FedRényi
provides a promising trade-off performance between global
accuracy and group fairness with at least 2% improvement
of the harmonic mean of accuracy and fairness over base-
lines in most cases.

Contributions: Our key contributions are summarized:

• We propose FedRényi to promote group fairness in FL
by using Rényi correlation as a regularization term. We
develop an aggregation method to estimate the global
Rényi statistics from local clients, and an approximation
scheme to approximate local statistics/models based on
similarity measures between clients.

• We theoretically prove that our FedRényi effectively pro-
vides a tight estimation error bound of O(1/

√
n). Based

on the improved results, we further derive the same con-
vergence rate O(1/ϵ4) of FedRényi with the standard
FL result Karimireddy et al. [2020]. In addition, the
similarity-based approximation scheme is non-expansive
(the distance between the approximated and true statis-
tics/models is non-increasing) under mild conditions.

• Extensive experimental results verify the improved trade-
off ability of FedRényi (at least 2% improvement in the

harmonic mean of accuracy and fairness over baselines
in most cases).

2 RELATED WORK

Fairness in FL. Gajane and Pechenizkiy [2017] system-
atically divides machine learning fairness into five types:
group fairness, individual fairness, unconscious fairness,
counterfactual fairness, and preference-based fairness. Many
studies have examined the impact of group fairness in FL
using metrics such as demographic parity and/or equality
of opportunity Shi et al. [2021]. To mitigate group bias
in heterogeneous settings, MWR Selialia et al. [2024] em-
ploys a heuristic approach that enhances fairness by using
importance weighting and regularization to optimize the
accuracy of the worst-performing group. As data statistics
are allowed to be shared in FL (e.g., Shao et al. [2023], Zhu
et al. [2021b], Jeong et al. [2018], Seo et al. [2016]), FairFed
Ezzeldin et al. [2023] increases the aggregated weights of
clients with small deviations between local and global fair-
ness metrics or accuracy. Based on FairBatch Roh et al.
[2021], FedFB Zeng et al. [2021] relies on statistical in-
formation about the performance of the client to adjust the
minibatch sizes of each client in local update process to
optimize the group-specific losses, thus imposing group fair-
ness. FedFair Chu et al. [2021] estimates model fairness and
incorporates this estimation as a loss function constraint. Its
estimation bound is O(1/

√
K), which is especially large

compared to centralized results (e.g., Mohri et al. [2018]) as
K ≪ n. However, both FedFB and FairFed lack theoretical
analysis of estimation errors to justify their validity.

Heterogeneity in FL. In FL, heterogeneity is categorized
into statistical and system heterogeneity. Statistical het-
erogeneity refers to variability in data distributions across
clients, which impacts performance and convergence of FL
algorithms. Methods like control variates to reduce vari-
ance Karimireddy et al. [2020] or proximal terms to sta-
bilize training Li et al. [2020b] address these issues but
lack theoretical guarantees. System heterogeneity refers to
disparities in communication and computational capacities
among clients, leading to inefficient training and potential
client dropout. Studies analyze estimation errors due to these
disparities. Sefidgaran et al. [2024] investigates the partial
estimation error caused by inter-client estimation discrepan-
cies. In this framework, Sefidgaran et al. [2024] investigates
the impact of communication rounds on the estimation error
in federated learning, finding that increased communication
does not always improve performance. Hu et al. [2023] intro-
duces a two-level distribution framework to analyze the full
estimation error caused by inter- and intra-client estimation
errors in FL. It establishes learning bounds for participat-
ing and nonparticipating clients (stragglers), respectively.
However, a comprehensive evaluation of the total estimation
error remains limited.



3 BACKGROUND AND MOTIVATION

Notations. Let (x, y, s) ∈ X × Y × S be a data sample,
where X ⊆ Rd, Y = {1, ..., C} and S = {1, ..., P} repre-
sent the feature, classification label, and protected attribute
spaces, respectively. Let P be the underlying distribution
defined on X ×Y ×S . Let X,Y, S be the random variables
drawn from their respective distributions and x, y, s be the
realization. K denotes the number of clients, and the set of
all client indices is [K]. Let Ik be the index set for data on
client k, nk denote the number of data samples on k-th client,
the total number of data is n and n =

∑K
k=1 nk. Denote

nmin := mink nk as the minimum number of data samples
across all clients. We define the distribution on client k by
Pk and refer the data heterogeneity as Pk1

̸= Pk2
where

k1 ̸= k2. Let Xk and Sk be feature and attribute variables
on client k, respectively. Define fθ(x, s) as the prediction
function parameterized by θ on (x, s) and ℓ(ŷ, y) as a loss
function measured on the predicted label ŷ and true label
y. Define Pc = P [fθ(X,S) = c] as the probability of the
model predicting class c and ρ = minc∈C Pc as the smallest
model prediction probability over all classes. Let ⊮[·] be an
indicator function and A ∽ B means that A and B are in the
same order. Define τ as the total number of communication
round and e as the index of communication round, respec-
tively. Denote M as the number of local update iterations
in one communication round e and m as the index of local
iteration. Define the total number of iterations as T , where
T = τM . Notations are summarized in Table 3.

Federated Learning. In FL, given K distributions
P1, ...,PK with sizes {nk}Kk=1 from client k ∈ [K], one
aims to learn a model that minimizes the overall loss L(θ):

min
θ

L(θ) =

K∑
k=1

γk · E(x,s,y)∼Pk
[ℓ(fθ(x, s), y)], (1)

where γk is the weights of client k. Two target weighting
schemes are commonly considered, i.e., uniform over sam-
ple and uniform over client:

γk =

{
nk/n, uniform over sample,
1/K, uniform over client.

(2)

The choices of γk represent different schemes, which are
both used in fairness-aware FL studies Mohri et al. [2019],
Li et al. [2019], Lyu et al. [2020], Chu et al. [2021], Fan
et al. [2021]. Since L(θ) is defined on population and is not
accessible, an empirical FL objective is defined as:

min
θ

L̂(θ) :=

K∑
k=1

γk

nk∑
i=1

1

nk
ℓ(fθ(xki, ski), yki)︸ ︷︷ ︸

L̂k(θ)

, (3)

where (xki, ski, yki) is i-th data sample on client k.

In fairness-aware FL, minimizing L̂(θ) alone can lead to
group disparities across sensitive attributes S. To mitigate
this, many fairness-aware FL studies Li et al. [2021], Chu
et al. [2021] incorporate a fairness regularization term R̂(θ)
with parameter λ into the objective function:

min
θ

L̂(θ) + λR̂(θ).

In this paper, we consider using Rényi correlation as the
fairness regularization term.

Rényi Fair Inference. Rényi correlation measures the cor-
relation between two random variables, ranging from 0 (in-
dependent) to 1 (strictly dependent). Unlike Pearson correla-
tion, which captures linear relationships Zafar et al. [2017],
Rényi correlation indicates high order dependencies Ba-
harlouei et al. [2020]. It is also computationally tractable,
compared to very expensive mutual information Song et al.
[2019]. Rényi correlation between two random variables
A ∈ {A1, · · ·Aa} and B ∈ {B1, · · ·Bb} is defined as:

ρR(A,B) = sup
f,g

E[f(A)g(B)]

s.t. E[f(A)] = E[g(B)] = 0,E[f2(A)] = E[g2(B)] = 1.

Following Witsenhausen [1975], Baharlouei et al. [2020],
Rényi correlation ρR(a, b) is the second largest singu-
lar value of the matrix Q, where each element qij =

P[A=Ai,B=Bj ]√
P[A=Ai]P[B=Bj ]

for 1 ≤ i ≤ a and 1 ≤ j ≤ b. The

main idea of Rényi fair inference Baharlouei et al. [2020] is
to minimize the correlation between predictions and sensi-
tive attributes. Following Baharlouei et al. [2020], we can
also re-formulate the squared term ρ2(A,B) as follows:

ρ2(A,B) = max
v⊥v1,∥v∥2≤1

v⊤Q⊤Qv, (4)

where v1 = (
√

P[B = B1], ...,
√
P[B = Bb]) ∈ Rb is the

right singular vector associated with the largest singular
value of Q.

In centralized machine learning, where samples are i.i.d.
and accessible, the estimation error for statistics (e.g., the
Rényi correlation) is bounded by O(1/

√
n) with high prob-

ability Mohri et al. [2018]. However, it remains unclear
how accurately these statistics can be estimated in FL under
decentralized and heterogeneous settings. Specifically, the
following challenges arise: First, server is not allowed to
access attribute data to calculate Rényi correlation in FL.
This restriction complicates the global estimation of fairness
measures; Second, clients often have vastly different data
distributions due to statistical heterogeneity. This variation
makes it difficult to precisely estimate the Rényi correla-
tion across all devices. Third, due to varying computational
capabilities and communication resources, the server may
not receive updates from some clients (i.e., stragglers). This
variability complicates the aggregation of local statistics
and model updates. To address these challenges, we propose
FedRényi algorithm.



4 FEDERATED RÉNYI-REGULARIZED
LEARNING

In this section, we detail the design and theoretical analysis
of the FedRényi algorithm. We begin by formulating the
federated Rényi-regularized objective function. Next, we in-
troduce the synchronous variant of FedRényi and present its
theoretical analysis, highlighting improved estimation error
bounds and convergence guarantees. Finally, we propose
the asynchronous variant and analyze its approximation and
estimation errors.

4.1 FEDERATED RÉNYI-REGULARIZED
OBJECTIVE

We use the squared Rényi correlation as a regularization
term combined with the federated loss L̂(θ) aforementioned
in (3). Since all elements of the matrix Q in (4) are defined
in population and unavailable to compute, instead, we ag-
gregate the local statistics to estimate Q based on a fixed
model θ. We denote this empirically aggregated estimation
as Q̂θ ∈ RC×P (recall we have C classes and P attributes).
For 1 ≤ c ≤ C, 1 ≤ p ≤ P , the each entry in Q̂θ is defined
as q̂cp := ĵ(c,p)·r̂(p)√

û(c)·r̂(p)
, where:

ĵ(c, p) =

K∑
k=1

γk P̂[fθk(Xk, Sk) = c|Sk = p]︸ ︷︷ ︸
=j̄k(c,p)

,

r̂(p) =

K∑
k=1

γk P̂[Sk = p]︸ ︷︷ ︸
=r̄k(p)

,

û(c) =

K∑
k=1

γk P̂[fθk(Xk, Sk) = c]︸ ︷︷ ︸
=ūk(c)

, (5)

where P̂[Xk ∈ D] := 1
nk

∑
i∈Ik

⊮[xki ∈ D] represents the
empirical probability that Xk in any measurable set D.

Therefore, following (4), we define Ĥ(θ,v) := v⊤Q̂⊤
θ Q̂θv,

and we formulate the federated Rényi-regularized objective:

min
θ

{
L̂(θ) + max

v⊥v̂1,∥v∥2≤1
λĤ(θ,v)

}
, (6)

where v̂1 =
(√

r̂(1), ...,
√
r̂(P )

)
∈ RP . The counterpart

of Ĥ(θ,v) defined in population instead of empirical level
is denoted by H(θ,v), as L̂(θ) in (3) and L(θ) in (1)

4.2 SYNCHRONOUS FEDRÉNYI

4.2.1 Algorithm Design.

To solve problem (6) without violating privacy constraints
in FL, We propose the FedRényi algorithm (summarized in

Algorithm 1 FedRényi Algorithm

1: Initialize θ00 , v0 and hyperparameter λ, M , J and η on
server and clients

2: Each client k ∈ K compute r̄k(p) following Eq. (5)
and upload r̄k(p) and nk

3: Server aggregate r̂(p) =
∑K

k=1 γkr̄k(p) and v̂1 =

[
√
r̂(1), ...,

√
r̂(P )]

4: for e = 0, . . . , τ − 1 do
5: for m ∈ {0, · · · ,M − 1} do
6: Each client k compute Qθe

k,m

7: θek,m+1 = θek,m − η∂θ(L̂k(θ
e
k,m) + λĤ(θek,m,v))

8: end for
9: for c ∈ {1, . . . , C} do

10: for p ∈ {1, . . . , P} do
11: Compute {j̄ek(c, p), ūe

k(c)} following Eq. (5)
12: end for
13: end for
14: Upload {j̄ek(c, p), ūe

k(c)} and θek,M
15: Option I Synchronous FedRényi:
16: θe+1

0 =
∑K

k=1 γkθ
e
k,M

17: ĵe+1(c, p) =
∑K

k=1 γk j̄
e
k(c, p)

18: ûe+1(c) =
∑K

k=1 γkū
e
k(c)

19: Option II Asynchronous FedRényi:
20: Find stragglers sets Ie+1, where |Ie+1| = K̃e+1

21: Find neighbor set Robζ(k̃) for stragglers k̃∈Ie+1

22: Approximate the θ̃e
k̃,M

, j̃e
k̃
(c, p), ũe

k̃
(c) for all

stragglers k̃ ∈ Ie+1 by Algorithm 2
23: θe+1 =

∑K−K̃e+1

k=1 γkθ
e
k,M +

∑K̃e+1

k̃=1 γk̃θ̃
e
k̃,M

24: ĵe+1(c, p)=
∑K−K̃e+1

k=1 γk j̄
e
k(c, p)+

∑K̃e+1

k̃=1
γk̃ j̃

e
k̃
(c, p)

25: ûe+1(c)=
∑K−K̃e+1

k=1 γkū
e
k(c) +

∑K̃e+1

k̃=1
γk̃ũ

e
k̃
(c)

26: Compute Q̂e+1
θ where each entry q̂e+1c,p = ĵe+1(c,p)·r̂(p)√

ûe+1(c)·r̂(p)

27: ve+1 ← argmaxv⊥v̂1
[L̂(θe+1) + λĤ(θe+1,v)]

28: Broadcast θe+1 and ve+1 to all clients k ∈ K
29: end for

Algorithm 1). Specifically, we first initialize θ00 , v0. Then
we compute r̄k(p) and aggregate r̂(p) (see Line 1 to Line 3).
During each communication round e, clients update the lo-
cal model θek,m+1 for m ∈ 0, · · · ,M − 1(see Line 6 to Line
7). After completing local updates, each client calculates
j̄ek(c, p) and ūe

k(c) (see Line 9 to Line 13), and then uploads
these statistics and local model θek,M to server (see Line
14 ). For synchronous FedRényi (Option I), the server ag-
gregates the global model θe+1, global statistics ĵe+1(c, p),
and ûe+1(c) (see Line 16 to 18). Next, we compute matrix
Q̂e+1

θ and then apply SVD method to calculate ve+1 (see
Line 26 and 27). Finally, the server broadcasts the global
model θe+1 and the fairness component ve+1 to each client
(see Line 28).



4.2.2 Theoretical analysis

In this part, we first study the estimation error for syn-
chronous FedRényi from empirically aggregated Ĥ(θ,v) to
population H(θ,v) under two weighting schemes in The-
orem 1. Then, we discuss the convergence guarantee of
synchronous FedRényi in Proposition 1. Particularly, we
show how the estimation error bound derived in Theorem 1
benefits the convergence guarantee.

We first prove that, under mild conditions, the estimation
error is bounded by O(1/

√
n), which significantly im-

proves upon the prior result O(1/
√
K) reported in Chu

et al. [2021], leading to improved accuracy and stability in
fairness estimation.

Theorem 1. (Estimation error of Rényi regularization for
synchronous FedRényi) Suppose jmin ∽ umin ∽ rmin = O(1)
and nmin ∽ n

K log(K) . When γk = nk

n or 1
K , for any global

model θ and δ ∈ (0, 1), the following inequality holds:

P
[
Ĥ(θ,v)−H(θ,v) ≤ O

(
1/
√
n
)∣∣θ] ≥ 1− δ.

Remark 1. The above theorem shows that for any fixed
global model θ, the estimation error between population
H(θ,v) and empirically aggregated Ĥ(θ,v) is bounded by
O(1/

√
n) with high probability in two schemes. Compared

with previous results on the order of O(1/K), FedRényi sig-
nificantly reduces estimation error, achieving a bound that is
comparable to the standard estimation error in centralized
settings Mohri et al. [2018].

Then, we analyze the convergence guarantee of synchronous
FedRényi to achieve ϵ-stationary solution. We first denote
F (θ) = L(θ) + maxv⊥v1,∥v∥2≤1 λH(θ), and F̂ (θ) =

L̂(θ) + maxv⊥v1,∥v∥2≤1 λĤ(θ). Then, we consider the
uniform-over-client weighting scheme following Karim-
ireddy et al. [2020], i.e., γk = 1/K. We highlight
that the convergence analysis for the empirical measure
E[∥∇F̂ (θ)∥2] computed on infinite samples follows the
same framework of previous work Karimireddy et al. [2020],
Li et al. [2020b]. Our main target of the convergence analy-
sis for the population measure E[∥∇F (θ)∥2] is more diffi-
cult to achieve while considering the impact of the estima-
tion error between H(θ,v) and Ĥ(θ,v).

Proposition 1. (Convergence of synchronous Fe-
dRényi) Suppose η ≤ O(1/M) and Lk(θ) sat-
isfies (GL, BL)-bounded gradient dissimilarity,
where 1

K

∑K
k=1 ∥

∂Lk(θ)
∂θ ∥

2 ≤ G2
L + B2

L∥
∂L(θ)
∂θ ∥

2.

If ∥∂L(θ)
∂θ ∥

2, ∥∂Qθ

∂θ ∥
2, ∥∂Q̂θ

∂θ ∥
2, ∥∂vθ

∂θ ∥
2 are bounded

by Ḡ for all θ, Then, H(θ,v) satisfies (GH , BH)-
bounded gradient dissimilarity, where GH is CḠ(ρ+C)

ρ2

and BH is 1. F (θ) also satisfies (GF , BF )-bounded
gradient dissimilarity, where BF = 2B2

L and

GF = 2G2
L+(4λ−2B2

Lλ
2)CḠ(ρ+C)

ρ2 +4B2
Lλ·
√

CḠ2(ρ+C)
ρ2 .

Thus, FedRényi algorithm achieves E[∥∇F̂ (θT )∥2] ≤ ϵ

and E[∥∇F (θT )∥2] ≤ ϵ+O
(

1
n +maxθ

∥∥∂Q̂θ

∂θ −
∂Qθ

∂θ

∥∥2))
when T ≥ O(1/ϵ2).

Remark 2. The above proposition shows that the empiri-
cal version of synchronous FedRényi algorithm could con-
verge to ϵ-stationary solution and the population version
could converge to approximate ϵ-stationary solution with
gap O

(
1
n +maxθ

∥∥∂Q̂θ

∂θ −
∂Qθ

∂θ

∥∥2)), while the former is at
the same order of previous work Karimireddy et al. [2020],
Li et al. [2020b]. From Theorem 1, we know that the esti-
mation error is bounded by O(1/

√
n), which is explicitly

present in the above result. Thus, the improved estimation
can benefit not only the fairness guarantee but also the
convergence.

4.3 ASYNCHRONOUS FEDRÉNYI

4.3.1 Algorithm Design

In asynchronous FL, stragglers may fail to provide timely up-
dates, which can compromise accurate estimation of global
Rényi correlation. To overcome this challenge, following
Zhang et al. [2021], Wang et al. [2021], we assume that
clients with similar empirical prediction distributions also
have comparable data distributions, making the nearest-
neighbor approximation a reasonable strategy for estimating
missing updates. Consequently, even if a client fails to up-
load its model and local statistics within the communication
threshold, its contribution to the global fairness measure can
still be estimated reliably using its robust neighbors.

Specifically, we first identify a robust neighbor set for each
straggler. Define Robζ(k̃) is the neighbor set of straggler
k̃, where Robζ(k̃) := {k′ : ∥ωūk′(c) − ūk̃(c)∥ ≤ ζ, k′ ∈
[K],∀c and ∀ω ∈ (0, 1)}. Next, we compute the similarity
between clients. Let dist(·, ·) denote the Euclidean distance,
which represents the dissimilarity. The similarity between
the k-th and k′-th client is then quantified by weights Wk,k′ ,
where larger weights indicate greater similarity. Based on
the local statistics uploaded in the first communication
round, for a straggler k̃, we define:

W k̃,k′

θ = exp
(−dist(θ0

k̃,M
, θ0k′,M )

ρ

)
, , k′∈ [K] (7)

W k̃,k′

j =exp
(−dist(j̄0

k̃,M
(c,p), j̄0k′,M (c,p))

ρ

)
, k′∈Robζ(k̃),

W k̃,k′

u = exp
(−dist(ū0

k̃,M
(c), ū0

k′,M (c)

ρ

)
, k′ ∈ Robζ(k̃),

where ρ is the temperature parameter.

Then the server approximates the model parameter θ̃e
k̃,M

and statistics j̃e
k̃,M

(c, p) and ũe
k̃,M

(c) for each straggler k̃.
We summarize the approximation method in Algorithm 2.



Algorithm 2 Localized Approximation

1: Input: {j̄ek,M (c, p), ūe
k,M (c), θek,M} for all non-

straggler clients k ∈ [K]\Ie+1, and temperature
parameter ρ.

2: Compute Wk̃,k′ for all stragglers following Eq. (7).

3: For each straggler k̃, θ̃e
k̃,M

=
∑K−K̃e+1

k′=1
W k̃,k′

θ θe
k′,M∑K−K̃e+1

k′=1
W k̃,k′

θ

.

4: j̃e
k̃,M

(c, p) =
∑k′∈Robζ(k̃)

k′=1
Wk,k′

j j̄ek,M (c,p)∑k′∈Robζ(k̃)

k′=1
Wk,k′

j

.

5: ũe
k̃,M

(c) =
∑k′∈Robζ(k̃)

k′=1
Wk,k′

u ūe
k,M (c)∑k′∈Robζ(k̃)

k′=1
Wk,k′

u

.

After approximating local models and statistics for strag-
glers, we integrate these approximations into an asyn-
chronous FedRényi algorithm to compute the global Rényi
correlation (see Option II in Algorithm 1). In each round
e+ 1, the server identifies the set of stragglers Ie+1 (with
|Ie+1| = K̃e+1) as those clients that either fail to return
their local model and statistics within the communication
threshold or have a local update timestamp below M (see
Line 20). For each straggler k̃, the server selects its robust
neighbor set Robζ(k̃) (see Line 21). Next, the server ap-
proximates the missing statistics j̃e

k̃,M
(c, p) and ũe

k̃,M
(c), ,

as well as the model θ̃e
k̃,M

for each straggler k̃ by Algorithm
2 (see Line 20 and 22). Finally, global Rényi regularization
statistics je+1(c, p), ue+1(c), and the global model θe+1 are
aggregated (see Line 23 to 25).

4.3.2 Theoretical Analysis

In this part, we first analyze the approximation error of each
straggler from actual local statistics j̄e

k̃,M
(c, p), ūe

k̃,M
(c) and

model θe
k̃,M

to approximated statistics j̃e
k̃,M

(c, p), ũe
k̃,M

(c)

and model θ̃e
k̃,M

in Proposition 2. Then, in Theorem 2, we
analyze the estimation error of the asynchronous FedRényi
algorithm, explicitly accounting for the approximation error.

Before analyzing the approximation error, we first assume
the following assumptions:

Assumption 1. (β-co-coercive condition of ∇F (θ)) For
all clients and any model θ, the gradient of F (θ) satisfies
β-co-coercive condition with β ≥ η

2 if:

⟨∇F (θ1)−∇F (θ2), θ1 − θ2⟩ ≥ β∥∇F (θ1)−∇F (θ2)∥2.

Assumption 2. (L-Lipschitz) P̂[fθ(Xk, Sk) = c] is L-
lipschitz on model θ such that |P[fθ(Xk, Sk) = c] −
P[fθ′(Xk, Sk) = c]| ≤ L∥θ − θ′∥.

With the two above assumptions, we can bound the approxi-
mation error of each straggler by the following proposition:

Proposition 2. (Approximation error of each straggler
in asynchronous FedRényi) Define maxk,k′∈[K] ∥θek,0 −
θek′,0∥ = εe0. Suppose that Assumption 1 and 2 hold. Then,
for each communication round e, the approximation er-
rors of model and local statistics on stragglers k̃ are upper
bounded as follows:

∥θ̃e
k̃,M
− θe

k̃,M
∥ ≤ εe0,

|̃je
k̃,M

(c, p)− j̄e
k̃,M

(c, p)| ≤ Lεe0 + ζ,

|ũe
k̃,M

(c)− ūe
k̃,M

(c)| ≤ Lεe0 + ζ. (8)

Remark 3. In the above result, the localized approximation
for the stragglers shows non-expansion behavior (1st line),
i.e., the error after running s stages is not larger than the
error at the 1st iteration. In practice, we could set a smaller
learning rate η (due to Assumption 1) and use pre-trained
model to decrease the approximation error ε0. Besides, us-
ing the pre-trained model, which is common in FL Tan et al.
[2022], Weller et al. [2022], Tian et al. [2022], could make
the Assumption 1 easy to hold.

Then, we study how approximation error influences the esti-
mation error of the asynchronous FedRényi algorithm. To
explicitly investigate this impact, we define Q̃e+1

θ ∈ RC×P

as the global empirical matrix at communication round
e+ 1, and ṽe+1 is its corresponding second largest singular
vector. Therefore, the empirical objective function in asyn-
chronous setting could be rewritten as Ĥ(θe+1, ṽe+1) =

(ṽe+1)⊤(Q̃e+1
θ )⊤Q̃e+1

θ ṽe+1. Our goal is to study the esti-
mation between Ĥ(θe+1, ṽe+1) and H(θe+1,ve+1).

Theorem 2. (Estimation error of Rényi regularization for
asynchronous FedRényi) Suppose jmin ∽ umin ∽ rmin =
O(1) and nmin ∽ n

K log(K) . When γk = nk

n or 1
K , for any

communication round e, any global model θe+1 and δ ∈
(0, 1), we have the following inequality holds:

P
[
Ĥ(θe+1, ṽe+1)−H(θe+1,ve+1)

≤ O
(
1/
√
n+ (Lεe0 + ζ)2

)∣∣∣θe+1
]
≥ 1− δ.

Remark 4. The above theorem shows that, with high prob-
ability, the estimation error for asynchronous FedRényi be-
tween population H(θe+1,ve+1) and empirically aggre-
gated Ĥ(θe+1, ṽe+1) in two consecutive communication
rounds is bounded by O(1/

√
n+ (Lεe0 + ζ)2) and follows

a stage-wise recurrence. For each communication round
e, the dynamic estimation error is bounded by fixed term
O(1/

√
n) and the largest distance of model at the beginning

of each stage εe0. During communication, εe+1
0 ≤ εeM ≤ εe0

(see Section B.2.3 and Equation (24) in Appendix). Thus, the
estimation error decreases as the communication progress.
Unlike previous works Sefidgaran et al. [2024], Hu et al.
[2023], our global estimation error studies the inter-client
and intra-client estimation error of all clients, including
stragglers and participating clients.



Table 1: Experimental results of all methods with the heterogeneous setting (Dir = 0.5) on four datasets. For ACC, FR, and
HM, higher values indicate better performance. Accuracy, fairness, and harmonic mean are denoted by ACC, FR, and HM,
respectively. The best results are in bold. The mean and standard deviation of 20 results with better HM for each method
under different hyperparameter settings are presented. Comparing FedRényi with other baselines, there exist at least 2%
improvements of ACC, FR and HM over three datasets (ADULT, DRUG, DUTCH).

FedAvg FedProx Scaffold FedFair FL-
FairBatch FedFB FairFed FedRényi

(1/K)
FedRényi
(nk/n)

ADULT
ACC 0.62±0.12 0.61±0.12 0.56±0.20 0.51±0.07 0.64±0.00 0.65±0.00 0.62±0.17 0.67±0.03 0.65±0.04
FR 0.87±0.1 0.88±0.11 0.88±0.13 0.84±0.17 0.91±0.02 0.92±0.03 0.77±0.16 0.94±0.04 0.94±0.04
HM 0.72±0.11 0.72±0.11 0.68±0.16 0.63±0.10 0.75±0.00 0.76±0.00 0.69±0.16 0.78±0.03 0.77±0.04

COMPAS
ACC 0.66±0.01 0.66±0.01 0.47±0.12 0.62±0.03 0.67±0.01 0.67±0.01 0.62±0.03 0.68±0.01 0.68±0.01
FR 0.79±0.03 0.79±0.03 0.82±0.10 0.79±0.10 0.78±0.02 0.75±0.03 0.79±0.10 0.81±0.02 0.82±0.01
HM 0.72±0.01 0.72±0.01 0.60±0.11 0.69±0.05 0.72±0.01 0.71±0.01 0.69±0.05 0.72±0.03 0.73±0.02

DRUG
ACC 0.67±0.02 0.67±0.01 0.66±0.01 0.67±0.02 0.66±0.00 0.66±0.00 0.50±0.08 0.68±0.01 0.69±0.01
FR 0.86±0.02 0.86±0.02 0.82±0.06 0.86±0.02 0.84±0.00 0.85±0.00 0.77±0.10 0.96±0.03 0.96±0.02
HM 0.75±0.02 0.75±0.01 0.73±0.02 0.75±0.02 0.74±0.00 0.74±0.00 0.61±0.09 0.80±0.01 0.80±0.01

DUTCH
ACC 0.81±0.01 0.80±0.01 0.60±0.12 0.61±0.16 0.81±0.01 0.69±0.05 0.62±0.13 0.83±0.01 0.83±0.01
FR 0.64±0.08 0.63±0.09 0.84±0.18 0.65±0.35 0.66±0.06 0.92±0.04 0.78±0.25 0.94±0.04 0.96±0.04
HM 0.72±0.02 0.7±0.02 0.7±0.14 0.63±0.22 0.73±0.02 0.79±0.04 0.69±0.17 0.88±0.02 0.89±0.02

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Hyperparameters and Dataset. In this paper, we use
several combinations of hyperparameters (λ, ρ, T&M , α,
and Dir) to train FL models. We use ADULT, COMPAS,
DRUG, and DUTCH datasets, which are widely studied
benchmarks for fairness evaluation in FL. They vary in size
and demographic attributes, allowing comprehensive fair-
ness analysis. More details are provided in Appendix C.1.

Measurement. We use the accuracy (ACC), fairness score
(FR), and harmonic mean (HM) of ACC and FR to measure
the performance. To evaluate global accuracy (ACC) in FL,
we compute the local accuracy of each client and aggregate
them using either nk/n for uniform data or 1/K uniform
client settings across clients. To measure how unfair a
model is, Donini et al. [2018] propose DEO by extending
the equal opportunity (EOD) Hardt et al. [2016] as follows:
|P(fθ(X,S)|S = 1, Y = 1)− P(fθ(X,S)|S = 0, Y = 1)|,
and the FR is extended by FR = 1−DEO(fθ). For ACC,
FR, and HM, higher values indicate better performance.

Data Distribution Setting. To simulate the IID and non-
IID data distribution setting, we build quantity skew and
control heterogeneity levels through Dir following Li et al.
[2022], Ezzeldin et al. [2023], Lee et al. [2023]. Smaller Dir
indicates a more imbalanced scenario about data quantity

across clients, and Dir = +∞ represents the uniform case.

Baselines. We include general FL methods (FedAvg McMa-
han et al. [2017], FedProx Li et al. [2020b], Scaffold
Karimireddy et al. [2020]) and fairness-aware FL base-
lines (FedFair Chu et al. [2021], FL-FairBatch Roh et al.
[2021], FedFB Zeng et al. [2021], FairFed Ezzeldin et al.
[2023]) to compare fairness trade-offs in FL settings. Fol-
lowing Baharlouei et al. [2020], Chu et al. [2021], Zeng
et al. [2021], Ezzeldin et al. [2023], we use the logistic
regression model as backbone. More details are shown in
Appendix C.1. The FedRényi code is available at https:
//github.com/AllenMa97/Federated-Renyi.

5.2 EXPERIMENT RESULT

FedRényi consistently outperforms baseline methods.
The main experimental results are summarized in Table 1.
Since hyperparameter affect the performance of algorithms,
we select top 20 results (with better HM) for each method
and report their mean and standard deviaition to ensure
reliable comparisons. In ADULT, DRUG, and DUTCH, Fe-
dRényi outperforms other algorithms. Although FedRényi
does not outperform all baselines in COMPAS, its HM rank
second with a small gap from the highest (≤ 0.1). These
results demonstrate the effectiveness of FedRényi. More de-
tailed results for all datasets are supplemented in the Table
9, 10, 11, and 12.

https://github.com/AllenMa97/Federated-Renyi
https://github.com/AllenMa97/Federated-Renyi


FedRényi effectively balances accuracy and fairness by
adjusting λ. To further examine the trade-off, we adjust the
regularization coefficient λ within {0.1, 0.5, 1, 5, 1000} and
visually present some experimental results in Figure 1. As
shown in Figure 1, the FR of FedRényi becomes larger as λ
enlarges at the heterogeneous setting and the ACC increases
as λ becomes smaller. More experimental results on four
datasets are presented in Figure 6.
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Figure 1: The accuracy and fairness trade-off adjusting via λ
of FedRényi in DUTCH with heterogeneous and isomorphic
setting. We could observe that the fairness increase and
accuracy decrease with a larger λ value.

FedRényi takes the optimal trade-off between accuracy
and fairness. A comparison of ACC and FR across different
algorithms is shown in Figure 2. Only the top 5 results
(with better HM value) of each algorithm will be plotted,
and some methods show less than 5 points are caused by
overlap. Intuitively, red and yellow scatter points (FedRényi)
are closer to the optimal corner than others in most cases.
Besides, these scatters approximately form several curves,
exhibiting the trade-off ability between ACC and FR. More
results on four datasets are presented in Figure 7.
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Figure 2: The ACC and FR trade-off on ADULT of all
methods with two distribution settings. FedRényi performs
closer to optimal and approximately forms trade-off curves
from the most accurate and least fair to the least accurate
and most fair.

FedRényi converges. To study the convergence behavior,
training loss at different communication rounds on four
datasets are illustrated in Figure 3. The training loss of syn-
chronous FedRényi decreases as communication proceeds

0 50 100 150 200 250

0.7

0.8

0.9

1.0
ADULT

FedRényi (1/K)

0 50 100 150 200 250

1.46

1.48

1.50

1.52

COMPAS
FedRényi (1/K)

0 50 100 150 200 250

0.75

0.80

0.85

DRUG
FedRényi (1/K)

0 50 100 150 200 250

0.8

0.9

1.0

1.1
DUTCH

FedRényi (1/K)

0 50 100 150 200 250

1.8

1.9

2.0

2.1

ADULT
FedRényi (nk/n)

0 50 100 150 200 250

0.68

0.70

0.72

0.74

0.76
COMPAS

FedRényi (nk/n)

0 50 100 150 200 250

0.80

0.82

0.84

0.86

0.88

DRUG
FedRényi (nk/n)

0 50 100 150 200 250

0.8

0.9

1.0

DUTCH
FedRényi (nk/n)

Heterogeneous Data (Dir = 0.5)

Tr
ai

ni
ng

 L
os

s

Communication Round

Figure 3: The training loss of FedRényi under heterogeneity
data settings, which verify that FedRényi converges to a
stable range after a certain number of rounds.

Table 2: The HM and the average approximation errors
across all stragglers of FedRényi with different α. These
approximation errors are measured by the L2 distance be-
tween the approximation values and the actual values on
stragglers.

Dir=0.5
λ=1 Drop α: 0% Drop α: 30% Drop α: 50%

(T, I)
=(100,4)

HM/j Err./
u Err./θ Err.

HM/j Err./
u Err./θ Err.

HM/j Err./
u Err./θ Err.

COMPAS
Asyn.
(nk/n)

0.77/0/
0/0

0.73/0.03/
0.01/0.92

0.71/0.01/
0.02/1.41

Asyn.
(1/K)

0.75/0/
0/0

0.76/0.04/
0.01/0.27

0.78/0.01/
0.02/0.34

Syn.
(nk/n)

0.76/0/
0/0

0.76/0/
0/0

0.76/0/
0/0

DRUG
Asyn.
(nk/n)

0.74/0/
0/0

0.74/0.01/
0.01/0.25

0.75/0.08/
0.03/0.40

Asyn.
(1/K)

0.73/0/
0/0

0.72/0.01/
0.02/0.29

0.73/0.09/
0.02/0.37

Syn.
(nk/n)

0.74/0/
0/0

0.74/0/
0/0

0.74/0/
0/0

and becomes stable at around 50 rounds, verifying the con-
vergence property. More results on other datasets are shown
in Figure 8 and 9.

Asynchronous FedRényi maintains stable HM perfor-
mance and effectively controls estimation errors. To ver-
ify the performance with the asynchronous FedRényi, we
build experiments and simulate different communication
thresholds by controlling the proportion of straggler α. As
shown in Table 2, the asynchronous FedRényi not only
maintains stable HM performance but also achieves effec-
tive approximation error control. More experimental results
on other datasets are presented in Appendix C.3.

Assumption 1 is empirically valid. To empirically demon-
strate the validity of Assumption 1, we conduct experiments
on the DUTCH dataset under a heterogeneous (Dir = 0.5)
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Figure 4: Verification of the co-coercivity assumption (As-
sumption 1) on DUTCH under Dir = 0.5 and Dir = +∞,
with uniform over data (λ = nk/n) and uniform over client
(λ = nk/n) settings and λ = 1. The X-axis represents
training iterations, while the Y-axis shows the values cor-
responding to each side of the co-coercivity inequality: (i)
⟨∇F (θ1)−∇F (θ2), θ1− θ2⟩, the left side of the inequality
in Assumption 1; (ii) β∥∇F (θ1)−∇F (θ2)∥2 with β = η/2,
the right side of the inequality in Assumption 1.

and isomorphism Data (Dir = +∞) distribution setting,
with uniform over data (γ = nk/n) and uniform over client
(γ = nk/n) settings and λ = 1. Specifically, in Figure
4, the X-axis represents training iterations, while the Y-
axis shows the values corresponding to each side of the
co-coercivity inequality: (i) ⟨∇F (θ1)−∇F (θ2), θ1 − θ2⟩,
the left-hand side of the inequality in Assumption 1; (ii)
β∥∇F (θ1)−∇F (θ2)∥2 with β = η/2, the right-hand side
of the inequality in Assumption 1. At each iteration, we ran-
domly select 5 clients and record their gradients and parame-
ter vectors. Then we compute ⟨∇F (θ1)−∇F (θ2), θ1−θ2⟩
and β∥∇F (θ1) − ∇F (θ2)∥2 values for these clients, fol-
lowing the inequality structure in Assumption 1. Next, we
plot the average across all selected clients over each iter-
ation. As shown in Figure 4, in most iterations, the line
of ⟨∇F (θ1) − ∇F (θ2), θ1 − θ2⟩ consistently lies above
the line of β∥∇F (θ1) − ∇F (θ2)∥2, indicating that the
inequality holds, which verifying the validity of the co-
coercivity assumption (i.e., ⟨∇F (θ1)−∇F (θ2), θ1−θ2⟩ ≥
β∥∇F (θ1)−∇F (θ2)∥2 ) in practice.

Assumption 2 is empirically valid. We plot Figure 5 to em-
pirically demonstrate the validity of Assumption 2, which
assumes that the change in predicted class probabilities is
Lipschitz continuous with respect to model parameters θ.
We adopt the same setup: DUTCH dataset, λ = 1, under
both a heterogeneous (Dir = 0.5) and isomorphism data
(Dir = +∞) distribution settings and two uniform over
data (γ = nk/n) and uniform over client (γ = nk/n)
weights settings. Each subplot in Figure 5 visualizes the
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Figure 5: Verification of Lipschitz assumption (Assumption
2) on DUTCH dataset under a Dir = 0.5 and Dir = +∞,
with uniform over data (λ = nk/n) and uniform over client
(λ = nk/n) settings and λ = 1. The X-axis denotes training
iterations, and the Y-axis represents the predicted probability
for each class.

prediction probability of Class 0 (blue) and Class 1 (red)
over training iterations. The X-axis denotes training itera-
tions, and the Y-axis represents the predicted probability for
each class. To compute these probabilities, at each iteration,
we compute the local predicted class probabilities over all
clients and then compute the average over clients to obtain
the global prediction probability. As shown in Figure 5, the
predicted probabilities for both classes evolve smoothly and
do not exhibit sharp fluctuations throughout the iterations.
This consistent behavior across multiple configurations em-
pirically supports the Lipschitz continuity assumption with
respect to θ.

6 CONCLUSION

We propose FedRényi, a federated fairness-aware algorithm
that enhances group fairness in decentralized heterogeneous
systems under two weighting schemes. FedRényi addresses
data heterogeneity by aggregating local empirical statistics
to estimate global Rényi correlation, with an estimation er-
ror of O(1/

√
n), matching centralized learning bounds and

improving upon prior estimation error bounds. FedRényi
algorithm reduces the expected squared gradient norm to
O(ϵ+1/n) with an iteration complexity of O(1/ϵ4). For sys-
tem heterogeneity, asynchronous FedRényi uses weighted
averaging over a nearest neighbor region to approximate
stragglers, with a non-increasing approximation error over a
communication round. Our experiments on multiple bench-
mark datasets clearly demonstrate that FedRényi could
achieve better accuracy and fairness trade-off over prior
FL fairness baselines with at least 2% improvement.
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A MATHEMATICAL NOTATIONS

Table 3: Key notations used in this paper.

Notation Meaning
X ∈ X Input feature
Y ∈ Y The ground-truth label
S ∈ S Sensitive attributes
P The underlying distribution defined on X × Y × S
(X,Y, S) The data sample drawn from a distribution P
(x, y, s) The realization of data sample
C Total number of classes
P Total number of attributes
k Index of client
Xk Feature variables on client k
Sk Attribute variables on client k
Pk Distribution on client k
fθ The prediction function parameterised by θ
nk The number of data examples for client k
nmin := mink nk The minimal number of data samples across all clients
⊮[·] An indicator function
Pc = P [fθ(X,S) = c] The probability of the model predicting class c
ρ = minc∈C Pc The smallest model prediction probability over all classes.
τ Total number of communication rounds
e Index of communication rounds
M Total number of local updates
m Index of local updates
T Total number of iterations

B THEORETICAL ANALYSIS

In this section, we prove the theoretical results in this paper.

B.1 PROOF FOR SECTION 4.2.2

In this section, we prove Theorem 1 and Proposition 1 in Section 4.2.2.
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B.1.1 Proof of Theorem 1

Theorem 3. (Theorem 1 restated, Estimation error of Rényi regularization for synchronous FedRényi) Suppose jmin ∽
umin ∽ rmin = O(1) and nmin ∽ n

K log(K) . When γk = nk

n or 1
K , for any global model θ and δ ∈ (0, 1), the following

inequality holds:

P
[
Ĥ(θ,v)−H(θ,v) ≤ O

(
1/
√
n
)∣∣θ] ≥ 1− δ.

Proof. of (Theorem 1)

Before proving Theorem 1, we first present some technical lemmas. Lemma 1 and 2 provides the estimation error of general
random variables for γk = nk/n and γk = 1/K respectively. Lemma 3 shows that the estimation errors from Lemma 1 and
2 can be transferred to each entry of matrix Q̂θ. Lemma 4 bounds the norm of matrix Qθ

Lemma 1. (mean-of-sum for γk = nk

n ) For any distribution Pk on different clients, denoting Vk = 1
nk

∑
i∈Ik

Vk,i, then the
condition γk = nk

n gives

P

{∣∣∣∣∣E[V ]− 1

n

K∑
k=1

∑
i∈Ik

Vk,i

∣∣∣∣∣ ≤
√

log(2/δ)

2n

}
≥ 1− δ. (9)

Lemma 2. (mean-of-mean for γk = 1
K ) For any distribution Pk on different clients, define nmin := mink=1,...,K nk as the

minimal number of data samples across different clients, and µmin := mink Vk, then the condition γk = 1
K gives

P

{∣∣∣∣∣ 1K
K∑

k=1

Vk − E

[
1

K

K∑
k=1

Vk

]∣∣∣∣∣ ≤
√

log(2K/δ) · log(4/δ)
Knminµmin

}
≥ 1− δ. (10)

Lemma 3. Suppose |j(c, p) − ĵ(c, p)| ≤ ϵ, |u(c) − û(c)| ≤ ϵ and |r(p) − r̂(p)| ≤ ϵ. Under ϵ = O
(

1√
n

)
and ĵ(c, p) ∽

û(c) ∽ r̂(p) = Ω
(

1√
n

)
, the following inequality holds:

j(c, p)r(p)√
u(c)r(p)

≤ ĵ(c, p)r̂(p)√
û(c)r̂(p)

+O(ϵ). (11)

Lemma 4. Recall that ρ = minc∈C Pc as the smallest model prediction probability over all classes. Then, the norm of
matrix Qθ is bounded : ∥Qθ∥ ≤

√
C
ρ .

Now we begin to prove Theorem 1. Given fixed global model θ, according to Lemma 3, the estimation error between each
entry of matrix Qθ (i.e., qcp) and Q̂θ (i.e., q̂cp) is bounded by O(ϵ), where ϵ is the estimation error bound in Lemma 1 or 2.
Thus, we define ε ∈ RC×P as an estimation error matrix and ε := Qθ − Q̂θ, where each entry εc,p = ϵ is the same.

First, we prove the estimation error of Rényi when γk = nk

n :



Ĥ(θ,v) = v⊤Q̂⊤
θ Q̂θv

= v⊤(Q̂⊤
θ Q̂θ)v

≤ v⊤
[
(Qθ + ε)⊤(Qθ + ε)

]
v

= v⊤
[
Q⊤

θ Qθ + ε⊤Q̂θ +Q⊤
θ ε+ ε⊤ε

]
v

≤ v⊤
[
Q⊤

θ Qθ + 2∥ε∥ · ∥Q̂θ∥+ ∥ε∥2
]
v

≤ v⊤
[
Q⊤

θ Qθ + 2(C · P )2 · ϵ ·

√
C

ρ
+ (C · P )2 · ϵ2

]
v

= v⊤Q⊤
θ Qθv + v⊤

[
2(C · P )2 · ϵ ·

√
C

ρ
+ (C · P )2 · ϵ2

]
v

≤ v⊤Q⊤
θ Qθv + ∥v∥ ·

[
(2(C · P )2 · ϵ ·

√
C

ρ
+ (C · P )2 · ϵ2

]
· ∥v∥

≤ v⊤Q⊤
θ Qθv +

[
2(C · P )2 · ϵ ·

√
C

ρ
+ (C · P )2 · ϵ2

]
,

Where the second, third, and fourth inequality is due to Cauchy–Schwarz inequality.

Let ϵ equals to the result in Lemma 1, the following inequality holds:

P
[
Ĥ(θ,v)−H(θ,v) ≤ C2P 2(

log(2/δ)

2n
+ 2

√
C log(2/δ)

2nρ
)

∣∣∣∣θ] ≥ 1− δ.

Therefore, we have that:

P
[
Ĥ(θ,v)−H(θ,v) ≤ Õ

( 1√
n

)∣∣∣∣θ] ≥ 1− δ, when γk = nk/n. (12)

Now we begin to prove estimation error when γk = 1
K .

Let the estimation error of ĵk(c, p), ûk(c) and r̂k(p) be ϵj , ϵu and ϵr respectively.

Under the condition of jmin ∽ umin ∽ rmin = O(1), according to lemma 2, the following holds:

ϵj =

√
log(2K/δ) · log(4/δ)

Knminjmin
=

√
log(2K/δ) · log(4/δ)

Knmin
,

ϵu =

√
log(2K/δ) · log(4/δ)

Knminumin
=

√
log(2K/δ) · log(4/δ)

Knmin
,

ϵr =

√
log(2K/δ) · log(4/δ)

Knminrmin
=

√
log(2K/δ) · log(4/δ)

Knmin
.

Thus, the estimation errors of ĵk(c, p), ûk(c) and r̂k(p) are the same:
√

log(2K/δ)·log(4/δ)
Knmin

.

Then, the following inequality holds:

P

[
Ĥ(θ,v)−H(θ,v) ≤ C2P 2(

log(2K/δ) · log(4/δ)
Knmin

+ 2

√
C log(2K/δ) · log(4/δ)

Knminρ
)

∣∣∣∣∣θ
]
≥ 1− δ.



Due to nmin ∽ n
K log(K) , we have that:

P
[
Ĥ(θ,v)−H(θ,v) ≤ Õ

( 1√
n

)∣∣∣∣θ] ≥ 1− δ, where γk = 1/K. (13)

Combining Equation (12) and (13), we have that:

P
[
Ĥ(θ,v)−H(θ,v) ≤ Õ

( 1√
n

)∣∣∣∣θ] ≥ 1− δ. (14)

Thus, the proof of Theorem 1 is finished.

B.1.2 Proof of Lemma 1

Proof. (of Lemma 1) Define Xk,i = ⊮[Ek,i] for an event Ek,i. This event E can be instantiated with the components contained
in Qθ. For example, it can be defined by the case where for a data (x, y, s), s = 0, fθk,t(x) = 1, or s = 1 and fθk,t(x) = 1.

Define Vk,i := Xk,i. Then we apply Hoeffding’s inequality across n data samples as follows

P

{∣∣∣∣∣
K∑

k=1

∑
i∈Ik

Vk,i − E

[
K∑

k=1

∑
i∈Ik

Vk,i

]∣∣∣∣∣ ≤ t

}

≥1− 2 exp
(
− 2t2∑K

k=1

∑
i∈Ik

(1)2

)
≥1− δ,

or equivalently

P

{∣∣∣∣∣E[V ]− 1

n

K∑
k=1

∑
i∈Ik

Vk,i

∣∣∣∣∣ ≤
√

log(2/δ)

2n

}
≥ 1− δ. (15)

B.1.3 Proof of Lemma 2

Proof. (of Lemma 2) Define Xk,i = ⊮[Ek,i] for an event Ek,i. This event E can be instantiated with the components contained
in Qθ. For example, it can be defined by the case where for a data (x, y, s), s = 0, fθk,t(x) = 1, or s = 1 and fθk,t(x) = 1.

For fixed k ∈ {1, ...,K}, applying Chernoff bound, we have

P

{∣∣∣∣∣ ∑
i∈Ik

Xi − E

[∑
i∈Ik

Xi

]∣∣∣∣∣ ≥ ϵE

[∑
i∈Ik

Xi

]}
≤ exp

(
−

ϵ2E[
∑

i∈Ik
Xk,i]

3

)
, (16)

or equivalently,

P

{∣∣∣∣∣ ∑
i∈Ik

Xi − E

[∑
i∈Ik

Xi

]∣∣∣∣∣ ≤ ϵE

[∑
i∈Ik

Xi

]}
≥ 1− exp

(
−

ϵ2E[
∑

i∈Ik
Xk,i]

3

)
. (17)



Define Vk := 1
nk

∑
i∈Ik

Xk,i. Let Gk be a good event such that (1− ϵ)E[Vk] ≤ Vk ≤ (1 + ϵ)E[Vk]. From the above result,

we know that P{Gk} ≥ 1− exp

(
−

ϵ2E[
∑

i∈Ik
Xk,i]

3

)
. Furthermore, denote G =

⋂K
k=1 Gk. Therefore,

P{G} ≥
K∏

k=1

(
1− exp

(
−

ϵ2E[
∑

i∈Ik
Xk,i]

3

))
≥ 1−

K∑
k=1

exp
(
−

ϵ2E[
∑

i∈Ik
Xk,i]

3

)
≥ 1−K · exp

(
− ϵ2nminµmin

3

)
.

(18)

Then we apply Hoeffding inequality across K clients as follows

P

{∣∣∣∣∣
K∑

k=1

Vk − E

[
K∑

k=1

Vk

]∣∣∣∣∣ ≤ t

}

=P{G} · P

{∣∣∣∣∣
K∑

k=1

Vk − E

[
K∑

k=1

Vk

]∣∣∣∣∣ ≤ t

∣∣∣∣∣G
}

+ (1− P{G}) · P

{∣∣∣∣∣
K∑

k=1

Vk − E

[
K∑

k=1

Vk

]∣∣∣∣∣ ≤ t

∣∣∣∣∣G
}

≥

(
1−K · exp

(
− ϵ2nminµmin

3

))
·

(
1− 2 exp

(
− 2t2∑K

k=1(2ϵE[Vk])2

))

≥1−K · exp
(
− ϵ2nminµmin

3

)
− 2 exp

(
− 2t2∑K

k=1(2ϵE[Vk])2

)
.

If ϵ ≥
√

3 log(2K/δ)
nminµmin

, then K · exp
(
− ϵ2nminµmin

3

)
≤ δ/2. On the other hand, if t ≥

√
K log(2K/δ)·log(4/δ)

nminµmin
, then

2 exp
(
− 2t2∑K

k=1(2ϵE[Vk])2

)
≤ δ/2.

Therefore, we have

P

{∣∣∣∣∣
K∑

k=1

Vk − E

[
K∑

k=1

Vk

]∣∣∣∣∣ ≤ t

}

≥P

{∣∣∣∣∣
K∑

k=1

Vk − E

[
K∑

k=1

Vk

]∣∣∣∣∣ ≤
√

K log(2K/δ) · log(4/δ)
nminµmin

}
≥1− δ,

or equivalently

P

{∣∣∣∣∣ 1K
K∑

k=1

Vk − E

[
1

K

K∑
k=1

Vk

]∣∣∣∣∣ ≤
√

log(2K/δ) · log(4/δ)
Knminµmin

}
≥ 1− δ. (19)

B.1.4 Proof of Lemma 3

Proof. (of Lemma 3)

Lemma 1 and 2 show the estimation error of single statistics û(c) and ĵ(c, p). Now we study how to transfer the estimation
error of each entry of the matrix Q̂θ that q̂cp := ĵ(c,p)·r̂(p)√

û(c)·r̂(p)
:



(
jr√
ur

)2 ≤ (ĵ + ϵ)2(r̂ + ϵ)2

(û− ϵ)(r̂ − ϵ)
=

(ĵ2 + ϵ2 + 2ĵϵ)(r̂2 + ϵ2 + 2r̂ϵ)

ûr̂ − ϵ(r̂ + û) + ϵ2

=
ĵ2r̂2 + ĵ2ϵ2 + 2ĵ2r̂ϵ+ ϵ2r̂2 + ϵ4 + 2r̂ϵ3 + 2ĵr̂2ϵ+ 2ĵϵ3 + 4ĵr̂ϵ2

ûr̂ − ϵ(r̂ + û) + ϵ2

≤ ĵ2r̂2 + ĵ2ϵ2 + 2ĵ2r̂ϵ+ ϵ2r̂2 + ϵ4 + 2r̂ϵ3 + 2ĵr̂2ϵ+ 2ĵϵ3 + 4ĵr̂ϵ2 + ϵ(r̂ + û)− ϵ2

ûr̂

=
ĵ2r̂2

ûr̂
+O(ϵ),

According to lemma 5, the last inequality is held due to ϵ is upper bounded by the order of Õ( 1√
n
) while ĵ(c, p), û(c) and

r̂(p) are all the empirical probabilities between 0 and 1.

Lemma 5. For any positive number v, p, q and 0 < v ≤ p ≤ q − v, if v ≤ q2/(2p), then the following inequality holds:

p

q − v
− p+ v

q
≤ 0. (20)

Proof. (of Lemma 5)

From the condition v ≤ q2/(2p) and 0 < v ≤ p ≤ q − v, we have following hold:

v ≤ q2/(2p) ≤ q2/(p+ v). (21)

Inequality 21 could be transferred as follows:

(p+ v)v ≤ vq ≤ q2. (22)

Then, the following inequality hold:

p

q − v
− p+ v

q

=
pq − (p+ v)(q − v)

(q − v)q

=
pq − pq + pv − qv + v2

(q − v)q

=
v(p− q + v)

(q − v)q

=
v(p+ v)− vq

q2 − vq

≤0,

where the last inequality is due to the inequality 22.

Thus, Lemma 5 is proved.

B.1.5 Proof of Lemma 4

Proof. (of Lemma 4)



∥Qθ∥ =

√√√√ C∑
c=1

P∑
p=1

j(c, p) · r(p)√
u(c) · r(p)

≤

√√√√ C∑
c=1

P∑
p=1

j(c, p) · r(p)
u(c)

=

√√√√ C∑
c=1

P∑
p=1

r(p)

u(c)

=

√√√√ C∑
c=1

1

u(c)

≤

√
C

ρ
,

where the first inequality is due to j(c, p) ≤ 1, and the second inequality is due to the definition of ρ.

B.1.6 Proof of Proposition 1

Proposition 3. (Proposition 1 restated, convergence of FedRényi) Suppose η ≤ O(1/M) and Lk(θ) satisfies (GL, BL)-
bounded gradient dissimilarity, where 1

K

∑K
k=1 ∥

∂Lk(θ)
∂θ ∥

2 ≤ G2
L + B2

L∥
∂L(θ)
∂θ ∥

2. If ∥∂L(θ)
∂θ ∥

2, ∥∂Qθ

∂θ ∥
2, ∥∂Q̂θ

∂θ ∥
2, ∥∂vθ

∂θ ∥
2

are bounded by Ḡ for all θ, Then, H(θ,v) satisfies (GH , BH)-bounded gradient dissimilarity, where GH is CḠ(ρ+C)
ρ2

and BH is 1. F (θ) also satisfies (GF , BF )-bounded gradient dissimilarity, where BF = 2B2
L and GF = 2G2

L + (4λ −
2B2

Lλ
2)CḠ(ρ+C)

ρ2 + 4B2
Lλ ·

√
CḠ2(ρ+C)

ρ2 . Thus, FedRényi algorithm achieves E[∥∇F̂ (θT )∥2] ≤ ϵ and E[∥∇F (θT )∥2] ≤

ϵ+O
(

1
n +maxθ

∥∥∂Q̂θ

∂θ −
∂Qθ

∂θ

∥∥2)) when T ≥ O(1/ϵ2).

Proof. (of Proposition 1 )

Before we prove that F (θ) satisfies (GF , BF )-bounded gradient dissimilarity, we first prove that H(θ,v) satisfies (GH , BH)-
bounded gradient dissimilarity:

1

K

K∑
k=1

∥∥∥∥∂Hk(θk,v)

∂θk

∥∥∥∥2

=
1

K

K∑
k=1

∥∥∥∥Qθk · vθ ·
[∂Qθk

∂θk
· vθ +

∂vθ

∂θ
·Qθk

]∥∥∥∥2

=
1

K

K∑
k=1

∥Qθk∥2 · ∥vθ∥2 ·

[∥∥∥∥∂Qθk

∂θk

∥∥∥∥2 · ∥vθ∥2 +
∥∥∥∥∂vθ

∂θ

∥∥∥∥2 · ∥Qθk∥2
]

≤ 1

K

K∑
k=1

(C
ρ

)
·
[
Ḡ+ Ḡ ·

(C
ρ

)]
=
CḠ(ρ+ C)

ρ2

≤CḠ(ρ+ C)

ρ2
+

∥∥∥∥∂H(θ,v)

∂θ

∥∥∥∥2,



where the first inequality is due to the assumption that ∥∂Qθ

∂θ ∥
2, ∥∂vθ

∂θ ∥
2 are bounded by Ḡ, ∥vθ∥2 ≤ 1, and the last inequality

is due to the non-negativity of
∥∥∥∥∂H(θ,v)

∂θ

∥∥∥∥2.

Therefore, H(θ,v) satisfies (GH , BH)-bounded gradient dissimilarity, where GH is CḠ(ρ+C)
ρ2 and BH is 1.

Then, we begin to prove that F (θ) satisfies (G,B)-bounded gradient dissimilarity:

1

K

K∑
k=1

∥∥∥∥∂Fk(θk)

∂θk

∥∥∥∥2

=
1

K

K∑
k=1

∥∥∥∥∂
[
Lk(θk) + λHk(θk,v)

]
∂θk

∥∥∥∥2

≤ 2

K

K∑
k=1

∥∥∥∥∂Lk(θk)

∂θk

∥∥∥∥2 + 2λ

K

K∑
k=1

∥∥∥∥∂Hk(θk,v)

∂θk

∥∥∥∥2
≤2G2

L + 2B2
L ·
∥∥∥∥∂L(θ)∂θ

∥∥∥∥2 + 2λ · CḠ(ρ+ C)

ρ2
+ 2λ

∥∥∥∥∂H(θ,v)

∂θ

∥∥∥∥2
=2B2

L ·
∥∥∥∥∂L(θ)∂θ

∥∥∥∥2 + 2B2
Lλ

2

∥∥∥∥∂H(θ,v)

∂θ

∥∥∥∥2 + 4B2
Lλ

〈
∂L(θ)

∂θ
,
∂H(θ,v)

∂θ

〉
+ 2G2

L + 2λ
CḠ(ρ+ C)

ρ2
+ 2(λ−B2

Lλ
2)

∥∥∥∥∂H(θ,v)

∂θ

∥∥∥∥2 − 4B2
Lλ

〈
∂L(θ)

∂θ
,
∂H(θ,v)

∂θ

〉
=2B2

L

∥∥∥∥∂F (θ)

∂θ

∥∥∥∥2 + 2G2
L + 2λ

CḠ(ρ+ C)

ρ2
+ 2(λ−B2

Lλ
2)

∥∥∥∥∂H(θ,v)

∂θ

∥∥∥∥2 − 4B2
Lλ

〈
∂L(θ)

∂θ
,
∂H(θ,v)

∂θ

〉
≤2B2

L

∥∥∥∥∂F (θ)

∂θ

∥∥∥∥2 + 2G2
L + 2λ

CḠ(ρ+ C)

ρ2
+ 2(λ−B2

Lλ
2)

∥∥∥∥∂H(θ,v)

∂θ

∥∥∥∥2 + 4B2
Lλ

∥∥∥∥∂L(θ)∂θ

∥∥∥∥ · ∥∥∥∥∂H(θ,v)

∂θ

∥∥∥∥
=2B2

L

∥∥∥∥∂F (θ)

∂θ

∥∥∥∥2 + 2G2
L + 2λ

CḠ(ρ+ C)

ρ2
+ 2(λ−B2

Lλ
2)

∥∥∥∥Qθ · vθ ·
[∂Qθ

∂θ
· vθ +

∂vθ

∂θ
·Qθ

]∥∥∥∥2
+ 4B2

Lλ

∥∥∥∥∂L(θ)∂θ

∥∥∥∥ · ∥∥∥∥Qθ · vθ ·
[∂Qθ

∂θ
· vθ +

∂vθ

∂θ
·Qθ

]∥∥∥∥
≤2B2

L

∥∥∥∥∂F (θ)

∂θ

∥∥∥∥2 + 2G2
L + (4λ− 2B2

Lλ
2)
CḠ(ρ+ C)

ρ2
+ 4B2

Lλ ·

√
CḠ2(ρ+ C)

ρ2
,

where the first inequality is due to (a+ b)2 ≤ 2a2+2b2, and the second inequality is due to the (GL, BL)-bounded gradient
dissimilarity condition of L(θ) and H(θ,v), the third inequality is due to −∥a∥ · ∥b∥ ≤ ⟨a, b⟩, the last inequality is due to
the assumption that ∥∂L(θ)

∂θ ∥
2, ∥∂Qθ

∂θ ∥
2, ∥∂vθ

∂θ ∥
2 are bounded by Ḡ.

Therefore, F (θ) satisfies (GF , BF )-bounded gradient dissimilarity, where BF = 2B2
L and GF = 2G2

L + (4λ −
2B2

Lλ
2)CḠ(ρ+C)

ρ2 + 4B2
Lλ ·

√
CḠ2(ρ+C)

ρ2 .

Then, we begin to study the convergence of FedRényi. We first decompose ∥∇F (θ)∥2 as follows

∥∇F (θ)∥2 =∥∇F (θ)−∇F̂ (θ) +∇F̂ (θ)∥2 ≤ 2∥∇F̂ (θ)∥2 + 2∥∇F̂ (θ)−∇F (θ)∥2

=2∥∇F̂ (θ)∥2 + 2λ2

∥∥∥∥∥∂Ĥ(θ, v̂∗)

∂θ
− ∂H(θ,v∗)

∂θ

∥∥∥∥∥
2

,

where the first inequality is due to (a+ b)2 ≤ 2a2 + 2b2.

Define v∗ = argmaxv⊥v1,∥v∥2≤1 L(θ) + λH(θ), v̂∗ = argmaxv⊥v1,∥v∥2≤1 L(θ) + λĤ(θ). Then we upper bound the



last term as follows.∥∥∥∥∥∂Ĥ(θ, v̂∗)

∂θ
− ∂H(θ,v∗)

∂θ

∥∥∥∥∥
2

= 4

∥∥∥∥∥Q̂θ(v̂
∗(v̂∗)⊤) · ∂Q̂θ

∂θ
−Qθ(v

∗(v∗)⊤) · ∂Qθ

∂θ

∥∥∥∥∥
2

=

∥∥∥∥∥Q̂θ · (v̂∗(v̂∗)⊤ − v∗(v∗)⊤) · ∂Q̂θ

∂θ
+ Q̂θ · (v∗(v∗)⊤) · (∂Q̂θ

∂θ
− ∂Q

∂θ
) + (Q̂θ −Qθ) · (v∗(v∗)⊤) · ∂Qθ

∂θ

∥∥∥∥∥
2

≤2∥Q̂θ∥2 · ∥v̂∗(v̂∗)⊤ − v∗(v∗)⊤∥2 ·

∥∥∥∥∥∂Q̂θ

∂θ

∥∥∥∥∥
2

+ 4∥Q̂θ∥2 · ∥v∗(v∗)⊤∥2 ·

∥∥∥∥∥∂Q̂θ

∂θ
− ∂Q

∂θ

∥∥∥∥∥
2

+ 4∥Q̂θ −Qθ∥2 · ∥v∗(v∗)⊤∥2 ·

∥∥∥∥∥∂Qθ

∂θ

∥∥∥∥∥
2

≤2C
ρ
· ∥v̂∗(v̂∗)⊤ − v∗(v∗)⊤∥2 · Ḡ+ 4

C

ρ
·

∥∥∥∥∥∂Q̂θ

∂θ
− ∂Q

∂θ

∥∥∥∥∥
2

+ 4∥Q̂θ −Qθ∥2 · Ḡ

≤O

(
1

n
+

∥∥∥∥∥∂Q̂θ

∂θ
− ∂Qθ

∂θ

∥∥∥∥∥
2)

,

where the inequality is due to (a+ b)2 ≤ 2a2 +2b2, and the second inequality is due to ∥∂Qθ

∂θ ∥
2 ≤ Ḡ, ∥∂Q̂θ

∂θ ∥
2 ≤ Ḡ, ∥v∥ ≤

1, ∥v̂∗ − v∗∥ ≤ O(
√

1
n ), ∥Q̂θ −Qθ∥ ≤ O(

√
1
n ), and Lemma 4.

As a result, we have

∥∇F (θ)∥2 ≤ 2∥∇F̂ (θ)∥2 +O

(
1

n
+

∥∥∥∥∥∂Q̂θ

∂θ
− ∂Qθ

∂θ

∥∥∥∥∥
2)

.

Finally, the convergence result is the immediate from Theorem I in Karimireddy et al. [2020].

B.2 PROOF FOR SECTION 4.3.2

In this subsection, we prove Proposition 2 and Theorem 2 in Section 4.3.2.

B.2.1 Proof of Proposition 2

Proposition 4. (Proposition 2 restated, approximation error of each straggler in asynchronous FedRényi) Define
maxk,k′∈[K] ∥θek,0 − θek′,0∥ = εe0. Suppose that Assumption 1 and 2 hold. Then, for each communication round e, the

approximation errors of model and local statistics on each stragglers k̃ are upper bounded:

∥θ̃e
k̃,M
− θe

k̃,M
∥ ≤ εe0,

|̃je
k̃,M

(c, p)− j̄e
k̃,M

(c, p)| ≤ Lεe0 + ζ,

|ũe
k̃,M

(c)− ūe
k̃,M

(c)| ≤ Lεe0 + ζ. (23)

Proof. (of Proposition 2)

Before proving Proposition 2, we show the following technical lemma:

Lemma 6. (Non-expansiveness of SGD under β-co-coercive condition)

∥SGD(x)− SGD(y)∥ ≤ ∥x− y∥.



Now we begin to prove Proposition 2.

We first bound the model distance between θek,M and θek′,M on arbitrary two different clients k, k′ ∈ [K], k ̸= k′ by
following inequality:

∥θek,M − θek′,M∥ = ∥θek,M−1 − η∇F (θek,M−1)− θek′,M−1 + η∇F (θek′,M−1)∥ ≤ ∥θek,M−1 − θek′,M−1∥ ≤ εeM−1 ≤ εe0,

(24)

where the first inequality is due to Assumption 1 and Lemma 6, the second inequality is due to the definition of εet , the last
inequality is due to Lemma 6.

Then, we begin to bound the approximation error between θe
k̃,M

and θ̃e
k̃,M

:

∥θ̃e
k̃,M
− θe

k̃,M
∥

=∥
∑K−K̃e+1

k′=1 W k,k′

θ θek′,M∑K−K̃e+1

k′=1 W k,k′

θ

− θek,M∥

≤
∑K−K̃e+1

k′=1 W k,k′

θ ∥θek′,M − θek,M∥∑K−K̃e+1

k′=1 W k,k′

θ

≤
∑K−K̃e+1

k′=1 W k,k′

θ∑K−K̃e+1

k′=1 W k,k′

θ

εe0

=εe0,

where the first inequality is due to the triangle inequality, and the second inequality is due to inequality 24.

Next, we bound the approximation error between of local statistics j̃e
k̃,M

(c, p) and ũe
k̃,M

(c). Recall that ūe
k̃,M

(c) and

j̄e
k̃,M

(c, p) are the empirical probability and empirical conditional probability of P̂[fθ(Xk, Sk) = c], we could study the

approximation error through P̂[fθe+1
k,0

(Xk, Sk) = c]:

∣∣∣∣
∑k′∈Robζ(k̃)

k′=1 W k,k′ P̂
[
fθe+1

k′,0
(X ′

k, S
′
k) = c

]
∑k′∈Robζ(k̃)

k′=1 W k,k′
− P̂

[
fθe+1

k,0
(Xk, Sk) = c

]∣∣∣∣
≤

∑k′∈Robζ(k̃)
k′=1 W k,k′

∣∣∣P̂[fθe+1

k′,0
(X ′

k, S
′
k) = c

]
− P̂

[
fθe+1

k,0
(Xk, Sk) = c

]∣∣∣∑k′∈Robζ(k̃)
k′=1 W k,k′

=

∑k′∈Robζ(k̃)
k′=1 W k,k′

∣∣∣P̂[fθe+1

k′,0
(X ′

k, S
′
k) = c

]
− P̂

[
fθe+1

k,0
(X ′

k, S
′
k) = c

]
+ P̂

[
fθe+1

k,0
(X ′

k, S
′
k) = c

]
− P̂

[
fθe+1

k,0
(Xk, Sk) = c

]∣∣∣∑k′∈Robζ(k̃)
k′=1 W k,k′

≤

∑k′∈Robζ(k̃)
k′=1 W k,k′

∣∣∣P̂[fθe+1

k′,0
(X ′

k, S
′
k) = c

]
− P̂

[
fθe+1

k,0
(X ′

k, S
′
k) = c

]∣∣∣∑k′∈Robζ(k̃)
k′=1 W k,k′

+

∑k′∈Robζ(k̃)
k′=1 W k,k′

∣∣∣P̂[fθe+1
k,0

(X ′
k, S

′
k) = c

]
− P̂

[
fθe+1

k,0
(Xk, Sk) = c

]∣∣∣∑k′∈Robζ(k̃)
k′=1 W k,k′

≤L ·

∑k′∈Robζ(k̃)
k′=1 W k,k′

∥∥∥θe+1
k′,0 − θe+1

k,0

∥∥∥∑k′∈Robζ(k̃)
k′=1 W k,k′

+

∑k′∈Robζ(k̃)
k′=1 W k,k′

ζ∑k′∈Robζ(k̃)
k′=1 W k,k′

≤L · εe0 + ζ,

Where the first and second inequality is due to triangle inequality, and the third inequality is due to Assumption 2 and
definition of robust neighbor set Robζ(k̃) that Robζ(k̃) = {k′ : ∥ωūk′(c)− ūk̃(c)∥ ≤ ζ, k′ ∈ [K],∀c and ∀ω ∈ (0, 1)}.



Combining the above inequality and definition of je
k̃,M

(c, p) and ue
k̃,M

(c), we can bound the approximation error between

j̃e
k̃,M

(c, p) and je
k̃,M

(c, p), ũe
k̃,M

(c) and ue
k̃,M

(c), respectively:

|̃je
k̃,M

(c, p)− j̄e
k̃,M

(c, p)| ≤ Lεe0 + ζ,

|ũe
k̃,M

(c)− ūe
k̃,M

(c)| ≤ Lεe0 + ζ.

B.2.2 Proof of Lemma 6

Proof. (of Lemma 6)

∥SGD(x)− SGD(y)∥2 =∥(x− ηg(x))− (y − ηg(y))∥2

=∥x− y∥2 + η2∥g(x)− g(y)∥2 − 2η(x− y)⊤(g(x)− g(y))

≤∥x− y∥2 + η2∥g(x)− g(y)∥2 − 2ηβ∥g(x)− g(y)∥2

=∥x− y∥2 + η(η − 2β)∥g(x)− g(y)∥2

≤∥x− y∥2,

where the first inequality is due to β-co-coercive condition of g(x), and the last inequality is due to η ≤ 2β.

B.2.3 Proof of Theorem 2

Theorem 4. (Theorem 2 restated, estimation error of Rényi regularization for asynchronous FedRényi) Suppose jmin ∽
umin ∽ rmin = O(1) and nmin ∽ n

K log(K) . When γk = nk

n or 1
K , for any communication round e, any global model θe+1

and δ ∈ (0, 1), we have the following inequality holds:

P
[
Ĥ(θe+1, ṽe+1)−H(θe+1,ve+1) ≤ O

(
1/
√
n+ (Lεe0 + ζ)2

)∣∣∣θe+1
]
≥ 1− δ.

Proof. (of Theorem 2)

Recall that the H(θe+1,ve+1) = (ve+1)
⊤
Qe+1

θ

⊤
Qe+1

θ ve+1, where ve+1 is the second largest singular vector of Qe+1
θ .

Before proving Theorem 2, we propose the following lemma to bound ∥ve+1 − ṽe+1∥.

Lemma 7. Define ξ = min |λ2 − λ3|, |λ̃2 − λ̃3|, where λ1 ≥ · · · ≥ λp and λ̃1 ≥ · · · ≥ λ̃p are singular values of matrix Q
and Q̃. Assume ξ is at the constant order. Suppose that ∥Q− Q̃∥ ≤ ϵQ and ĵ(c, p) ∽ û(c) ∽ r̂(p) = Ω

(
1√
n

)
, the following

inequality holds:

∥v − ṽ∥ ≤
√
2
ϵQ
ξ
.

First, we study the approximation error between Qθ and Q̃θ.

Given fixed global model θe+1 for arbitrary communication round e + 1, For all participating client k ∈ [K]\Ie+1,

θe+1
k,0 = θe+1 =

∑K−K̃e+1

k=1 γkθ
e
k,M +

∑K̃e+1

k̃=1 γk̃θ̃
e
k̃,M

. For any straggler k̃ ∈ Ie+1, θe+1

k̃,0
= θe

k̃,M
. Thus, ϵe+1

0 ≤ ϵeM , where
ϵeM is bounded by Proposition 2.

Next, according to Lemma 3, the approximation error between each entry of matrix Qe+1
θ and Q̃e+1

θ is bounded by O(ϵe+1
0 ),

We define ε̃ ∈ RC×P as an approximation error matrix and ε̃ = Qe+1
θ − Q̃e+1

θ , where each entry ε̃c,p = Lεe0 + ζ is the
same.

Now we start to prove Theorem 2.



Ĥ(θe+1, ṽe+1)−H(θe+1,ve+1)

=Ĥ(θe+1, ṽe+1)− Ĥ(θe+1,ve+1) + Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

=(ṽe+1)
⊤
(Q̃e+1

θ )
⊤
Q̃e+1

θ ṽe+1 − (ve+1)
⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ve+1 + Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

≤(ṽe+1)
⊤[

(Q̂e+1
θ + ε̃)⊤(Q̂e+1

θ + ε̃)
]
ṽe+1 − (ve+1)

⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ve+1 + Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

≤(ṽe+1)
⊤[

(Q̂e+1
θ )

⊤
Q̂e+1

θ + 2∥ε̃∥ · ∥Q̂e+1
θ ∥+ ∥ε̃∥2

]
ṽe+1 − (ve+1)

⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ve+1 + Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

≤(ṽe+1)
⊤[

(Q̂e+1
θ )

⊤
Q̂e+1

θ + 2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2
]
ṽe+1 − (ve+1)

⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ve+1 + Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

=(ṽe+1)
⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ṽe+1 + (ṽe+1)
⊤[

2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2
]
ṽe+1 − (ve+1)

⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ve+1

+ Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

≤(ṽe+1)
⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ṽe+1 − (ve+1)
⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ve+1 +
[
2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2

]
+ Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

=(ṽe+1)
⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ṽe+1 − (ve+1)
⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ṽe+1 + (ve+1)
⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ṽe+1 − (ve+1)
⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ ve+1

+
[
2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2

]
+ Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

=((ṽe+1)
⊤ − (ve+1)

⊤
)(Q̂e+1

θ )
⊤
Q̂e+1

θ ṽe+1 + (ve+1)
⊤
(Q̂e+1

θ )
⊤
Q̂e+1

θ (ṽe+1 − ve+1)

+
[
2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2

]
+ Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

≤∥(ṽe+1)
⊤ − (ve+1)

⊤∥ · ∥(Q̂e+1
θ )

⊤
Q̂e+1

θ ∥ · ∥ṽe+1∥+ ∥(ve+1)
⊤∥ · ∥(Q̂e+1

θ )
⊤
Q̂e+1

θ ∥ · ∥ṽe+1 − ve+1∥

+
[
2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2

]
+ Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

=∥(ṽe+1)
⊤ − (ve+1)

⊤∥ · ∥(Q̂e+1
θ )

⊤
Q̂e+1

θ ∥ ·
(
∥ṽe+1∥+ ∥(ve+1)

⊤∥
)
+
[
2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2

]
+ Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

≤2∥(ṽe+1)
⊤ − (ve+1)

⊤∥ · ∥(Q̂e+1
θ )

⊤
Q̂e+1

θ ∥+
[
2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2

]
+ Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

≤2
√
2
Lεe0 + ζ

ξ
· ∥Q̂e+1

θ ∥2 +
[
2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2

]
+ Ĥ(θe+1,ve+1)−H(θe+1,ve+1)

≤2
√
2
Lεe0 + ζ

ξ
· (C

ρ
) +

[
2C2P 2 · (Lεe0 + ζ) + (Lεe0 + ζ)2

]
+ Ĥ(θe+1,v)−H(θe+1,ve+1)

=2C2P 2 · (Lεe0 + ζ)2 + (2C2P 2 + 2
√
2
C

ρξ
) · (Lεe0 + ζ) + Ĥ(θe+1,ve+1)−H(θe+1,ve+1),

where the second and third inequality is due to Cauchy–Schwarz inequality, the sixth inequality is due to ∥v∥ ≤ 1 as v is
the singular vector of matrix, the seventh inequality is due to Lemma 7, the last inequality is due to Lemma 4.

Then, combining the above inequality with Theorem 1, we have that:

P

[
Ĥ(θe+1, ṽe+1)−H(θe+1,ve+1) ≤ O

(√
1

n
+ (Lεe0 + ζ)2

)∣∣∣∣∣θe+1

]
≥ 1− δ. (25)

B.2.4 Proof of Lemma 7

Proof. (of Lemma 7)

Define α = Θ(v, ṽ) as the angle between vector v and ṽ. Then, according to Davis–Kahan theorem Yu et al. [2015], the
following inequality hold:

sin(α) ≤ ∥Q− Q̃∥
ξ

.



Then we begin to bound ∥v − ṽ∥:

∥v − ṽ∥

=
√
∥v∥2 + ∥ṽ∥2 − 2v⊤ṽ

=
√

2
(
1− cos(α)

)
=

√
2
(
1−

√
1− sin2(α)

)
≤

√√√√
2
(
1−

√
1− ∥Q− Q̃∥2

ξ2
)

≤

√√√√
2
(
1−

√
1−

ϵ2Q
ξ2
)

≤

√
2− 2

(
1−

ϵ2Q
ξ2
)

=
√
2
ϵQ
ξ
,

where the first inequality is due to the Davis–Kahan theorem, the third inequality is due to
√
1− x ≥ 1− x when 0 ≤ x ≤ 1

and 0 ≤ ϵ2Q
ξ2 ≤ 1.



C SUPPLEMENTARY NUMERICAL EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

Dataset. To have an impartial experiment result, we conduct the test-bed in four widely used benchmark datasets, ADULT,
COMPAS, DRUG, and DUTCH, following the setups of Chu et al. [2021], Du et al. [2020] and Donini et al. [2020].
Specifically, the ADULT dataset Kohavi [1996] contains 45, 222 instances, where the training and test part are two separated
files consisting of 32K and 14K samples, respectively, and the training data is partitioned into 50 clients. The binary class
label of each instance indicates whether a person’s annual income exceeds 50K dollars. Following the settings of Hardt
et al. [2016], we take gender as the sensitive attribute. The COMPAS Larson et al. and the DRUG Fehrman et al. [2017]
dataset contain 5, 278 and 1, 885 data instances, respectively. Following the design of Chu et al. [2021], we uniformly
sample 4, 800 and 1, 600 instances as the training data from COMPAS and DRUG, respectively, and then use the remaining
part as the test dataset. The training data in the experiments is divided into 20 clients for the COMPAS dataset and 10
clients for the DRUG dataset. In COMPAS, the binary class label indicates whether the person is a recidivist or not, while
in DRUG, it manifests whether the person abuses a volatile substance or not. Following Chu et al. [2021], we use the
(‘African-American’, ‘Caucasian’) as the sensitive attribute in COMPAS and (‘white’,‘non-white’) in DRUG. The DUTCH
dataset collects personal information of the inhabitants in the Netherlands and the task is to classify the individual into
high-income or low-income, with gender as the protected attribute. It contains 60, 419 data instances. We also sample 80%
data to construct the training set and use the remaining part as the test dataset.

Hyperparameters. In this paper, several combinations of hyperparameters are adopted, including the regularization
parameter λ ∈ ({0.1, 0.5, 1, 5, 1000}), temperature parameter ρ is 0.1, training rounds T and local updates iteration M
∈ ({(100, 10), (100, 4), (100, 2), (500, 50), (1000, 4)}), and proportion of straggler α ∈ ({0, 0.3, 0.5}). Most experimental
settings of baselines follow the configurations proposed by the original authors. The structure of the logistics regression
model follows Baharlouei et al. [2020]. We fix the batch size as 64. We tune the optimization step size η in {5e-3, 2e-3, 1e-3,
5e-2, 2e-2, 1e-2, 0.5, 0.2, 0.1, 5, 2, 1}, and pick the optimal setting for each dataset by observing the average of top-20 HM
values of the model trained by FedAvg. Then we set η for every experiment in our work on ADULT, COMPAS, DRUG, and
DUTCH as {5, 0.1, 0.02, 0.1}. The client number of FL system on ADULT, COMPAS, DRUG, and DUTCH are as {50, 20,
10, 30} following Du et al. [2020], Chu et al. [2021], Ezzeldin et al. [2023]. The fraction of activate client in FL system is
set as 0.4. The hyperparameter of regularization term µ in FedProx Li et al. [2020b] and Scaffold Karimireddy et al. [2020]
are tuned in {0.01, 0.1, 0.5, 1, 2}, and we set µ = 1 according to the optimal result. The hyperparameter used in FedFair
Chu et al. [2021], LCO Chu et al. [2021], FL-FairBatch Roh et al. [2021], FedFB Zeng et al. [2021], and FairFed Ezzeldin
et al. [2023] are following the setting proposed by the authors. Additionally, we follow the common stopping criteria in FL
that each algorithm stops training when the number of training rounds T is reached.

Baselines. In this paper, we adopt the following state-of-the-art algorithms as our baselines, which are designed for the
problems of heterogeneity and group fairness:

• Local: To observe the effect of server aggregation, we also adopt the local training setting, where each client updates
their model by only local training.

• FedAvg McMahan et al. [2017]: the original FL algorithm which does not consider fairness for different demographic
groups.

• FedProx Li et al. [2020b]: the representative FL algorithm for tackling the statistical and system heterogeneous problem
by sloving an optimization object with regularization constraint. We compare the performance of FedProx to verify the
effectiveness of FedRényi in tackling heterogeneous problem.

• Scaffold Karimireddy et al. [2020]: the FL algorithm for statistical heterogeneous problem by constructing regularization
term with aggregated variate. We set Scaffold in our comparative group to observe the impact of statistical heterogeneity.

• FedFair Chu et al. [2021]: the cross-silo federated framework for group fairness by leveraging estimated statistics from
participants. We use FedFair as a baseline to compare accuracy, fairness, and their trade-off.

• LCO Chu et al. [2021]: the local variant of FedFair for the locally optimization problem. We take LCO as our baseline
for the same reason as FedFair.

• FedAvg+FairBatch (FL-FairBatch) Roh et al. [2021]: the enhancement of FedAvg that each client adopts the FairBatch
to debias its local training data. To verify the effectiveness of FedRényi in tackling group fairness problem, we take this



algorithm as our baseline.

• FedFB Zeng et al. [2021]: an in-processing debiasing approach in FL based on FairBatch, where the server computes
new weights for each client based on their statistics. Improving group fairness by leveraging the aggregated local statistics
from each client, we compare this method with FedRényi.

• FairFedEzzeldin et al. [2023]: the federated framework which adjust the aggregated weights of clients according to the
deviations between local and global fairness metrics or accuracy. We take this method as our baseline to compare the
effect of different aggregation methods to solve the group fairness problem and optimize the accuracy of model.

Communication Simulation. To simulate the network latency in practice, we use the beta distribution to simulate
the communication ability of each client. Specifically, we use the beta distribution generation package in Scipy. The
hyperparameters of beta distribution (a and b) are set as 0.3 and 1, respectively. The results of the probability density function
(PDF) are used to compute the latency. For PDF values that tend to be positively infinite, we trim them to 16 based on
network programming in practice, where the network wait time has a specific upper limit. Each client has a communication
delay of at least 1 second.

C.2 ADDITIONAL EXPERIMENTS FOR RESULTS IN MAIN PAPER

Effect of Regularization parameter λ. Next, we analyze how the regularization parameter λ affects the performance of
the models trained by FedRényi in another three datasets. As the result shown in Figs. 6, for each dataset with two data
distribution settings, we train and fine-tune the base models with λ in {0.1, 0.5, 1, 5, 1000}.

Among these empirical results, the fairness performance of FedRényi shows a growing trend in most cases, while the
accuracy performance shows a tendency to decrease or unchanged on the contrary, especially on DUTCH, as shown in
Figure 2 of the main text. Recalling Equation 6, the regularization term becomes more significant to the FL training object,
when λ becomes larger, which might compromise accuracy. Therefore, these results further demonstrate that FedRényi
can construct a trade-off between accuracy and fairness. However, the FedRényi performance does not always exhibit the
expected trade-off. As shown in Figure 6, the accuracy of models does not always drop with λ decreasing. We speculate that
the sensitive features in these datasets are easy to identify. Therefore, increasing λ might over-optimize the empirical target,
making the ACC unstable. Overall, the defects do not obscure the fact that the FedRényi algorithm can balance the accuracy
and fairness through different λ values by adjusting the value of λ and obtain the optimal results, according to different
preferences.
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Figure 6: The effect of parameter λ in four dataset.



The Trade-off between Accuracy and Fairness. A comparison of testing ACC and FR about each algorithm is shown in
Figure 7. Only the top-5 results (with better HM value) of each algorithm will be plotted, and some methods show less than
5 points are caused by overlap. Intuitively, red and yellow scatters (FedRényi results) get closer to the optimal corner than
others in most cases. Besides, these scatters approximately form several curves, exhibiting the trade-off ability between ACC
and FR. In particular, most baselines behave closely in these experiments, except the FairFed (blue). Some blue triangles
tend to be towards the upper left, which means FairFed may over-emphasize fairness, thus penalizing the accuracy.
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Figure 7: The ACC and FR trade-off in four datasets with two data distribution settings (Dir=0.5, Dir=+∞). Some methods
show less than 5 points are caused by overlap. FedRényi performs closer to the optimal (the top right) and approximately
forms trade-off curves from the bottom right (most accurate and least fair) to the top left (least accurate and most fair).

Convergence. To further verify the convergence properties of FedRényi in the heterogeneous and the uniform (isomor-
phism) data distribution setting, we visually record the training loss at different communication rounds in Figure 8 and 9.
Also, the testing ACC, testing FR of FedRényi at different communication rounds on four datasets are presented. Intuitively,
the training losses of FedRényi decrease with increasing communication and become stable at around 25 rounds in ADULT
and DUTCH, and at around 50 rounds in COMPAS and DRUG.
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Figure 8: The illustration about the training loss of FedRényi under the uniform (Isomorphism) data settings on four datasets,
which verify that FedRényi converges to a stable range after a certain number of rounds
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Figure 9: The illustration about the training ACC, and FR of FedRényi under the uniform (Isomorphism) data settings on
four datasets, which verify that FedRényi converges to a stable range after a certain number of rounds



C.3 ROBUSTNESS EXPERIMENT

Compared to the general machine learning scenario, one of the implementation challenges of FL is client communication. In
this paper, we adjust the step T and local updates interval M to investigate the effect of communication frequency. We also
adjust the client dropping rate to simulate the situation where some clients are lost in the communication round. To verify
the robustness of FedRényi about the condition change of communication, two groups of additional experiments are set up.

Robustness of total iteration T and local update iteration M . To evaluate the sensibility of FedRényi to communication
frequency, we compare the HM of FedRényi with FedAvg and FairFed. It is well known that communication costs are
especially expensive in FL. Comparing the result in different columns in Table 4, the performance of FedRényi with different
γk settings improves as the training rounds T or the number of local updates (M ) are increased in most case. For example,
when the number of communication round is increasing with the same training epoch, e.g., (T:100, M:10) to (T:100, M:4) or
(T:100, M:4) to (T:100, M:2), the accuracy of our proposed method is improved.

Comparing different results that testing with the same communication frequency, e.g., (T:100, M:10) and (T:500, M:50), the
overall performances of FedRényi achieve outstanding stability, which proves the robustness to communication costs of
our algorithm. In conclusion, the results of the supplementary experiment provide evidence of the FedRényi robustness
specifically for different training epochs and communication rounds.

Table 4: The HM effect of different federated dropping rates on COMPAS and DRUG with Heterogeneous setting.

Step T Local Updates M
T=100, M=10 T=100, M=4 T=100, M=2 T=500, M=50Method
Dir=0.5/+∞ Dir=0.5/+∞ Dir=0.5/+∞ Dir=0.5/+∞

COMPAS
FedAvg 0.72/0.71 0.723/0.713 0.72/0.71 0.713/0.72
FairFed 0.68/0.71 0.73/0.65 0.64/0.68 0.69/0.63

λ=1000 0.71/0.715 0.703/0.717 0.72/0.717 0.72/0.715FedRényi
(1/K) λ=0.1 0.71/0.715 0.717/0.718 0.72/0.722 0.715/0.713

λ=1000 0.712/0.713 0.718/0.717 0.72/0.71 0.725/0.722FedRényi
(nk/n) λ=0.1 0.718/0.715 0.722/0.72 0.723/0.72 0.718/0.715

DUTCH
FedAvg 0.69/0.7 0.687/0.71 0.683/0.697 0.8/0.797
FairFed 0.69/0.73 0.51/0.59 0.75/0.69 0.64/0.63

λ=1000 0.805/0.798 0.768/0.773 0.747/0.737 0.85/0.808FedRényi
(1/K) λ=0.1 0.805/0.795 0.784/0.767 0.769/0.742 0.809/0.805

λ=1000 0.805/0.795 0.77/0.772 0.733/0.73 0.807/0.83FedRényi
(nk/n) λ=0.1 0.812/0.807 0.787/0.768 0.775/0.74 0.853/0.84

Asynchronous affect. To verify the performance with the asynchronous FedRényi (Option II in Algorithm 1), we build
experiments and simulate different communication thresholds to control the proportion of straggler α. Generally, as the
proportion of stragglers (α) increases, the amount of algorithm available data will decrease significantly, resulting in
degraded HM. As shown in Table 5 and 6, the asynchronous FedRényi not only performs stable HM but also does fairly
well in bias control. When the asynchronous scheme is utilized in the training process of FedRényi, there exists a tolerable
decline in HM (smaller than 0.06). These results demonstrate our method could accelerate the training process against
stragglers with a small performance decline.

In addition, in order to explore the trade-off ability of FedRényi between FR and ACC under asynchronous settings, we set
α as 0.3 and 0.5 respectively and record them in the form of scatter plots, as shown in Figure 10. Also, only the top-5 results
(with better HM value) of each algorithm will be plotted, and some methods show less than 5 points are caused by overlap.
As shown in Figure 10, the scatters of FedRényi approximately form several curves, exhibiting the trade-off ability between
ACC and FR in most cases.



Table 5: The HM and the average approximation errors over stragglers with different α. These approximation errors are
measured by the L2 distance between the approximation values and the corresponding target from stragglers.

Dir=0.5 λ=1 Drop α: 0% Drop α: 30% Drop α: 50%

(T, M) = (100, 4) HM/j Error/
u Error/θ Error

HM/j Error/
u Error/θ Error

HM/j Error/
u Error/θ Error

ADULT
Asynchronous

FedRényi (nk/n)
0.88/0/

0/0
0.88/0.03/
0.04/0.01

0.87/0.03/
0.04/0.02

Asynchronous
FedRényi (1/K)

0.88/0/
0/0

0.88/0.03/
0.04/0.01

0.87/0.03/
0.04/0.02

Synchronous
FedRényi (nk/n)

0.88/0/
0/0

0.88/0/
0/0

0.88/0/
0/0

COMPAS
Asynchronous

FedRényi (nk/n)
0.77/0/

0/0
0.73/0.03/
0.01/0.92

0.71/0.01/
0.02/1.41

Asynchronous
FedRényi (1/K)

0.75/0/
0/0

0.76/0.04/
0.01/0.27

0.78/0.01/
0.02/0.34

Synchronous
FedRényi (nk/n)

0.76/0/
0/0

0.76/0/
0/0

0.76/0/
0/0

DRUG
Asynchronous

FedRényi (nk/n)
0.74/0/

0/0
0.74/0.01/
0.01/0.25

0.75/0.08/
0.03/0.40

Asynchronous
FedRényi (1/K)

0.73/0/
0/0

0.72/0.01/
0.02/0.29

0.73/0.09/
0.02/0.37

Synchronous
FedRényi (nk/n)

0.74/0/
0/0

0.74/0/
0/0

0.74/0/
0/0

DUTCH
Asynchronous

FedRényi (nk/n)
0.78/0/

0/0
0.77/0.03/
0.02/2.44

0.79/0.03/
0.01/4.04

Asynchronous
FedRényi (1/K)

0.74/0/
0/0

0.74/0.03/
0.02/2.47

0.78/0.03/
0.01/4.01

Synchronous
FedRényi (nk/n)

0.78/0/
0/0

0.78/0/
0/0

0.78/0/
0/0



Table 6: The comparison between FedProx and FedRényi with different straggler proportions in the heterogeneous setting.

Dir=0.5 (T, M) = (100, 4), λ=1

Method Drop: 0% Drop: 30% Drop: 50%
ACC/FR/HM ACC/FR/HM ACC/FR/HM

ADULT
FedProx 0.84/0.91/0.87 0.84/0.93/0.88 0.84/0.93/0.88

Asynchronous
FedRényi (nk/n) 0.85/0.92/0.88 0.85/0.92/0.88 0.85/0.92/0.88

Asynchronous
FedRényi (1/K) 0.85/0.91/0.87 0.85/0.91/0.87 0.85/0.91/0.87

COMPAS
FedProx 0.68/0.83/0.75 0.69/0.85/0.76 0.69/0.85/0.76

Asynchronous
FedRényi (nk/n) 0.68/0.89/0.77 0.66/0.81/0.73 0.67/0.76/0.71

Asynchronous
FedRényi (1/K) 0.70/0.80/0.75 0.69/0.86/0.76 0.68/0.91/0.78

DRUG
FedProx 0.63/0.84/0.72 0.63/0.84/0.72 0.62/0.88/0.73

Asynchronous
FedRényi (nk/n) 0.66/0.84/0.74 0.65/0.84/0.74 0.67/0.85/0.75

Asynchronous
FedRényi (1/K) 0.61/0.93/0.73 0.61/0.89/0.72 0.64/0.85/0.73

DUTCH
FedProx 0.81/0.59/0.68 0.81/0.63/0.71 0.81/0.66/0.73

Asynchronous
FedRényi (nk/n) 0.82/0.75/0.78 0.82/0.77/0.79 0.82/0.75/0.78

Asynchronous
FedRényi (1/K) 0.82/0.67/0.74 0.82/0.67/0.74 0.82/0.74/0.78
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Figure 10: The ACC and FR trade-off in four datasets with two data distribution settings (Dir=0.5, Dir=+∞) and two
proportion of straggler settings (α = 0.3, α = 0.5). Some methods show less than 5 points are caused by overlap.



Robustness of client dropping. In practice, a fraction of offline clients may drop out randomly during the communication
stage (upload and download) in the training process. This proportion of dropped clients is known as the drop rate. In this
paper, the setting of the proportion of stragglers α is [0, 0.3, 0.5], where 0 means no client is dropped. The effect of the
proportion of stragglers is evaluated in four datasets as shown in Table 7. With different dropping rates, the ACC/FR/HM of
FedRényi under two configurations both stay stable with tolerable fluctuation in most cases (0.05), which demonstrates the
robustness of FedRényi to different dropping rates and fits for the FL practical implementation.

Table 7: The effect of different proportion of federated stragglers on four datasets with different heterogeneous settings

T:100 M:10 ACC FR HM
Drop α 0%/30%/50% 0%/30%/50% 0%/30%/50% 0%/30%/50% 0%/30%/50% 0%/30%/50%
Method Dir = 0.5 Dir = +∞ Dir = 0.5 Dir = +∞ Dir = 0.5 Dir = +∞

ADULT
FedAvg 0.58/0.41/0.62 0.6/0.55/0.46 0.92/0.72/0.97 0.93/0.87/0.88 0.71/0.53/0.76 0.73/0.68/0.61

FedRényi (1/K) 0.62/0.51/0.5 0.61/0.52/0.51 0.94/0.86/0.91 0.94/0.84/0.85 0.75/0.63/0.64 0.74/0.62/0.63
FedRényi (nk/n) 0.61/0.47/0.47 0.6/0.54/0.54 0.93/0.8/0.9 0.93/0.84/0.85 0.74/0.59/0.61 0.73/0.65/0.66

COMPAS
FedAvg 0.66/0.67/0.66 0.67/0.66/0.66 0.8/0.75/0.82 0.76/0.79/0.76 0.72/0.71/0.73 0.71/0.72/0.7

FedRényi (1/K) 0.67/0.66/0.67 0.67/0.67/0.66 0.82/0.78/0.76 0.83/0.77/0.78 0.74/0.71/0.71 0.74/0.72/0.71
FedRényi (nk/n) 0.67/0.66/0.67 0.67/0.67/0.66 0.83/0.79/0.76 0.84/0.77/0.77 0.74/0.72/0.71 0.75/0.71/0.71

DRUG
FedAvg 0.64/0.68/0.69 0.66/0.62/0.63 0.77/0.89/0.96 0.71/0.65/0.63 0.7/0.77/0.8 0.68/0.63/0.63

FedRényi (1/K) 0.68/0.67/0.66 0.68/0.66/0.66 0.94/0.9/0.9 0.92/0.88/0.9 0.79/0.76/0.77 0.78/0.76/0.76
FedRényi (nk/n) 0.68/0.66/0.67 0.68/0.66/0.67 0.94/0.89/0.9 0.93/0.89/0.92 0.79/0.76/0.77 0.79/0.76/0.77

DUTCH
FedAvg 0.81/0.8/0.81 0.8/0.8/0.8 0.62/0.58/0.62 0.62/0.62/0.63 0.7/0.67/0.7 0.7/0.7/0.7

FedRényi (1/K) 0.83/0.83/0.83 0.83/0.83/0.83 0.84/0.77/0.79 0.84/0.77/0.75 0.84/0.8/0.81 0.84/0.8/0.79
FedRényi (nk/n) 0.83/0.83/0.83 0.83/0.83/0.83 0.86/0.82/0.76 0.84/0.76/0.75 0.84/0.82/0.79 0.84/0.79/0.78



C.4 SCALABILITY EXPERIMENT

To evaluate the scalability to large-scale dataset of our method, we conduct the image classification on CelebA dataset Liu
et al. [2015] following the setting in FairGrad Ban and Ji [2024]. The CelebA contains 202599 samples with 162770 for
training, 19867 for validation, and 19962 for testing. Each image sample in the CelebA contains 40 binary attribute labels,
and we focus on 2 attribution among 40 for binary classification. We take the 21-th attribute (gender) as the sensitive attribute,
take the third attribute (attractive) as the classification label for each image. The training data of CelebA is partitioned into
20 client. We compare the performance of our method and FedAvg with 20% activate client as shown in Table 8.

Table 8: Performances of methods with the heterogeneous setting on CelebA. The Accuracy, fairness, and harmonic mean
are denoted by AC, FR, and HM, respectively.

CelebA
Dir=0.5, λ=1 Drop α: 0% Batch Size=256 9-layers CNN

(T, M) = (100, 10) ACC FR HM
FedAvg 0.702±0.005 1.0±0.0 0.825±0.003

FedRényi (nk/n) 0.715±0.001 1.0±0.0 0.834±0.001
FedRényi (1/K) 0.716±0.001 1.0±0.0 0.834±0.001

C.5 RESULT SUMMARY

To evaluate the performance of each algorithm on four different datasets, we construct several sets of experiments with
different levels of heterogeneity. To avoid the unfair comparison caused by random factors in practice and hyperparameter
settings, we record the mean and standard deviation of the top-20 performances (with better HM values) about different
algorithms.

As shown in experimental results (see Table 9-12), FedRényi outperforms other baseline methods and shows a satisfactory
level of ACC, FR, and HM in most cases, under different heterogeneity scenarios. These results support the effectiveness of
our proposed method.



Table 9: Performances of methods with the heterogeneous setting on ADULT. The Accuracy, fairness, and harmonic mean
are denoted by AC, FR, and HM, respectively. A smaller Dir indicates a more heterogeneous distribution across clients.
Dir=+∞ represents the uniform data distribution setting.

ADULT Method Dir=0.5 Dir=1 Dir=8 Dir=+∞
Local 0.56±0.12 0.67±0.06 0.67±0.06 0.63±0.12

FedAvg 0.62±0.12 0.59±0.12 0.59±0.12 0.6±0.10
FedProx 0.61±0.12 0.63±0.07 0.63±0.07 0.58±0.12
Scaffold 0.56±0.20 0.62±0.06 0.56±0.20 0.56±0.14
FedFair 0.51±0.07 0.58±0.02 0.52±0.08 0.5±0.13

LCO 0.52±0.01 0.59±0.04 0.52±0.07 0.5±0.13
FL-FairBatch 0.64±0.00 0.64±0.00 0.64±0.00 0.64±0.00

FedFB 0.65±0.00 0.65±0.01 0.64±0.00 0.64±0.00
FairFed 0.62±0.17 0.64±0.21 0.64±0.21 0.63±0.17

FedRényi (1/K) 0.67±0.03 0.69±0.04 0.67±0.03 0.68±0.03

ACC

FedRényi (nk/n) 0.65±0.04 0.65±0.03 0.65±0.04 0.68±0.03
Local 0.87±0.07 0.93±0.02 0.93±0.02 0.97±0.01

FedAvg 0.87±0.1 0.89±0.12 0.89±0.12 0.91±0.07
FedProx 0.88±0.11 0.84±0.06 0.84±0.06 0.76±0.14
Scaffold 0.88±0.13 0.85±0.05 0.84±0.06 0.79±0.11
FedFair 0.84±0.17 0.86±0.08 0.85±0.11 0.85±0.16

LCO 0.86±0.07 0.89±0.11 0.87±0.04 0.84±0.11
FL-FairBatch 0.91±0.02 0.93±0.02 0.93±0.02 0.92±0.02

FedFB 0.92±0.03 0.93±0.02 0.93±0.02 0.92±0.02
FairFed 0.77±0.16 0.95±0.07 0.95±0.07 0.92±0.08

FedRényi (1/K) 0.94±0.04 0.94±0.05 0.95±0.05 0.92±0.04

FR

FedRényi (nk/n) 0.94±0.04 0.95±0.03 0.92±0.05 0.93±0.05
Local 0.68±0.09 0.78±0.03 0.78±0.03 0.76±0.02

FedAvg 0.72±0.11 0.71±0.12 0.71±0.12 0.72±0.08
FedProx 0.72±0.11 0.72±0.06 0.72±0.06 0.66±0.13
Scaffold 0.68±0.16 0.72±0.05 0.67±0.09 0.66±0.12
FedFair 0.63±0.10 0.69±0.03 0.65±0.09 0.63±0.14

LCO 0.65±0.02 0.71±0.06 0.65±0.05 0.63±0.12
FL-FairBatch 0.75±0.00 0.76±0.00 0.76±0.00 0.75±0.00

FedFB 0.76±0.00 0.77±0.01 0.76±0.00 0.75±0.00
FairFed 0.69±0.16 0.76±0.11 0.76±0.11 0.75±0.11

FedRényi (1/K) 0.78±0.03 0.8±0.04 0.79±0.04 0.78±0.03

HM

FedRényi (nk/n) 0.77±0.04 0.77±0.03 0.76±0.04 0.79±0.04



Table 10: Performances of methods with the heterogeneous setting on COMPAS. The Accuracy, fairness, and harmonic
mean are denoted by AC, FR, and HM, respectively. A smaller Dir indicates a more heterogeneous distribution across clients.
Dir=+∞ represents the uniform data distribution setting.

COMPAS Method Dir=0.5 Dir=1 Dir=8 Dir=+∞
Local 0.62±0.01 0.64±0.01 0.65±0.01 0.65±0.01

FedAvg 0.66±0.01 0.67±0.01 0.66±0.01 0.66±0.01
FedProx 0.66±0.01 0.67±0.01 0.67±0.01 0.67±0.00
Scaffold 0.47±0.12 0.48±0.13 0.45±0.14 0.50±0.13
FedFair 0.62±0.03 0.57±0.04 0.62±0.03 0.59±0.06

LCO 0.59±0.03 0.58±0.06 0.56±0.07 0.56±0.06
FL-FairBatch 0.67±0.01 0.67±0.00 0.67±0.00 0.66±0.00

FedFB 0.67±0.01 0.67±0.01 0.67±0.0 0.66±0.01
FairFed 0.62±0.03 0.57±0.04 0.62±0.03 0.59±0.06

FedRényi (1/K) 0.68±0.01 0.66±0.02 0.66±0.01 0.66±0.01

ACC

FedRényi (nk/n) 0.68±0.01 0.65±0.01 0.66±0.01 0.66±0.01
Local 0.81±0.01 0.80±0.04 0.79±0.03 0.80±0.00

FedAvg 0.79±0.03 0.77±0.03 0.78±0.02 0.77±0.02
FedProx 0.79±0.03 0.79±0.03 0.78±0.03 0.77±0.02
Scaffold 0.82±0.10 0.74±0.10 0.71±0.05 0.81±0.06
FedFair 0.79±0.10 0.91±0.05 0.70±0.11 0.79±0.07

LCO 0.85±0.09 0.83±0.06 0.87±0.04 0.90±0.05
FL-FairBatch 0.78±0.02 0.79±0.01 0.79±0.01 0.78±0.01

FedFB 0.75±0.03 0.74±0.01 0.76±0.01 0.74±0.01
FairFed 0.79±0.10 0.91±0.05 0.70±0.11 0.79±0.07

FedRényi (1/K) 0.81±0.02 0.81±0.03 0.77±0.05 0.82±0.02

FR

FedRényi (nk/n) 0.82±0.01 0.81±0.01 0.80±0.06 0.81±0.02
Local 0.70±0.01 0.71±0.02 0.71±0.01 0.72±0.00

FedAvg 0.72±0.01 0.72±0.01 0.72±0.01 0.71±0.01
FedProx 0.72±0.01 0.73±0.01 0.72±0.01 0.72±0.00
Scaffold 0.60±0.11 0.58±0.11 0.55±0.07 0.62±0.08
FedFair 0.69±0.05 0.70±0.04 0.66±0.05 0.68±0.06

LCO 0.70±0.04 0.68±0.06 0.68±0.05 0.69±0.05
FL-FairBatch 0.72±0.01 0.73±0.00 0.73±0.00 0.72±0.00

FedFB 0.71±0.01 0.70±0.01 0.71±0.00 0.7±0.01
FairFed 0.69±0.05 0.70±0.04 0.66±0.05 0.68±0.06

FedRényi (1/K) 0.72±0.03 0.73±0.02 0.71±0.02 0.73±0.01

HM

FedRényi (nk/n) 0.73±0.02 0.71±0.01 0.72±0.02 0.73±0.01



Table 11: Performances of methods with the heterogeneous setting on DRUG. The Accuracy, fairness, and harmonic mean
are denoted by AC, FR, and HM, respectively. A smaller Dir indicates a more heterogeneous distribution across clients.
Dir=+∞ represents the uniform data distribution setting.

DRUG Method Dir=0.5 Dir=1 Dir=8 Dir=+∞
Local 0.65±0.01 0.66±0.01 0.66±0.02 0.67±0.01

FedAvg 0.67±0.02 0.67±0.02 0.67±0.02 0.64±0.02
FedProx 0.67±0.01 0.65±0.02 0.67±0.01 0.66±0.01
Scaffold 0.66±0.01 0.55±0.13 0.62±0.04 0.54±0.13
FedFair 0.67±0.02 0.67±0.02 0.67±0.02 0.64±0.02

LCO 0.49±0.05 0.60±0.06 0.49±0.11 0.65±0.01
FL-FairBatch 0.66±0.00 0.66±0.00 0.66±0.00 0.66±0.00

FedFB 0.66±0.00 0.66±0.00 0.66±0.00 0.66±0.00
FairFed 0.50±0.08 0.63±0.04 0.56±0.12 0.62±0.04

FedRényi (1/K) 0.68±0.01 0.68±0.01 0.69±0.01 0.68±0.01

ACC

FedRényi (nk/n) 0.69±0.01 0.69±0.01 0.69±0.01 0.69±0.01
Local 0.88±0.03 0.89±0.03 0.87±0.05 0.89±0.01

FedAvg 0.86±0.02 0.85±0.01 0.87±0.01 0.85±0.03
FedProx 0.86±0.02 0.85±0.01 0.87±0.01 0.85±0.03
Scaffold 0.82±0.06 0.84±0.01 0.87±0.06 0.83±0.05
FedFair 0.86±0.02 0.85±0.01 0.87±0.01 0.85±0.03

LCO 0.93±0.03 0.85±0.07 0.83±0.11 0.86±0.04
FL-FairBatch 0.84±0.00 0.84±0.00 0.84±0.01 0.84±0.00

FedFB 0.85±0.00 0.84±0.00 0.84±0.00 0.84±0.00
FairFed 0.77±0.10 0.84±0.11 0.81±0.06 0.90±0.06

FedRényi (1/K) 0.96±0.03 0.95±0.03 0.96±0.02 0.96±0.02

FR

FedRényi (nk/n) 0.96±0.02 0.96±0.02 0.96±0.02 0.96±0.02
Local 0.75±0.01 0.76±0.01 0.75±0.03 0.76±0.01

FedAvg 0.75±0.02 0.75±0.01 0.76±0.01 0.73±0.02
FedProx 0.75±0.01 0.74±0.01 0.76±0.01 0.74±0.01
Scaffold 0.73±0.02 0.66±0.02 0.72±0.05 0.65±0.07
FedFair 0.75±0.02 0.75±0.01 0.76±0.01 0.73±0.02

LCO 0.64±0.04 0.70±0.06 0.62±0.11 0.74±0.02
FL-FairBatch 0.74±0.00 0.74±0.00 0.74±0.00 0.74±0.00

FedFB 0.74±0.00 0.74±0.00 0.74±0.00 0.74±0.00
FairFed 0.61±0.09 0.72±0.06 0.66±0.08 0.73±0.05

FedRényi (1/K) 0.80±0.01 0.79±0.01 0.80±0.01 0.80±0.01

HM

FedRényi (nk/n) 0.80±0.01 0.80±0.01 0.80±0.01 0.80±0.01



Table 12: Performances of methods with the heterogeneous setting on DUTCH. The Accuracy, fairness, and harmonic mean
are denoted by AC, FR, and HM, respectively. A smaller Dir indicates a more heterogeneous distribution across clients.
Dir=+∞ represents the uniform data distribution setting.

DUTCH Method Dir=0.5 Dir=1 Dir=8 Dir=+∞
Local 0.79±0.01 0.80±0.01 0.81±0.01 0.80±0.01

FedAvg 0.81±0.01 0.81±0.01 0.81±0.01 0.81±0.01
FedProx 0.80±0.01 0.81±0.01 0.81±0.01 0.81±0.01
Scaffold 0.60±0.12 0.57±0.13 0.55±0.13 0.57±0.13
FedFair 0.61±0.16 0.62±0.08 0.61±0.15 0.61±0.13

LCO 0.62±0.03 0.67±0.03 0.61±0.05 0.61±0.13
FL-FairBatch 0.81±0.01 0.81±0.01 0.81±0.01 0.81±0.01

FedFB 0.69±0.05 0.74±0.05 0.74±0.04 0.60±0.10
FairFed 0.62±0.13 0.70±0.07 0.75±0.06 0.61±0.12

FedRényi (1/K) 0.83±0.01 0.83±0.00 0.83±0.00 0.83±0.00

ACC

FedRényi (nk/n) 0.83±0.01 0.83±0.01 0.83±0.01 0.83±0.01
Local 0.67±0.04 0.67±0.05 0.65±0.06 0.65±0.07

FedAvg 0.64±0.08 0.65±0.08 0.66±0.07 0.66±0.06
FedProx 0.63±0.09 0.67±0.06 0.65±0.07 0.63±0.08
Scaffold 0.84±0.18 0.87±0.13 0.87±0.16 0.84±0.16
FedFair 0.65±0.35 0.71±0.12 0.62±0.19 0.72±0.19

LCO 0.65±0.35 0.73±0.01 0.64±0.01 0.72±0.11
FL-FairBatch 0.66±0.06 0.66±0.06 0.66±0.07 0.64±0.07

FedFB 0.92±0.04 0.72±0.21 0.69±0.20 0.87±0.23
FairFed 0.78±0.25 0.80±0.18 0.75±0.11 0.80±0.20

FedRényi (1/K) 0.94±0.04 0.93±0.03 0.94±0.03 0.94±0.04

FR

FedRényi (nk/n) 0.96±0.04 0.95±0.04 0.94±0.04 0.96±0.04
Local 0.73±0.02 0.73±0.02 0.72±0.02 0.72±0.02

FedAvg 0.72±0.02 0.72±0.02 0.73±0.02 0.73±0.02
FedProx 0.70±0.02 0.73±0.02 0.72±0.02 0.71±0.02
Scaffold 0.70±0.14 0.69±0.13 0.67±0.14 0.68±0.14
FedFair 0.63±0.22 0.66±0.10 0.61±0.17 0.66±0.15

LCO 0.63±0.06 0.70±0.01 0.62±0.02 0.66±0.12
FL-FairBatch 0.73±0.02 0.73±0.02 0.73±0.02 0.72±0.02

FedFB 0.79±0.04 0.73±0.08 0.71±0.07 0.71±0.14
FairFed 0.69±0.17 0.75±0.10 0.75±0.08 0.69±0.15

FedRényi (1/K) 0.88±0.02 0.88±0.00 0.88±0.00 0.88±0.00

HM

FedRényi (nk/n) 0.89±0.02 0.89±0.02 0.88±0.02 0.89±0.02
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