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Abstract

Digital histopathology images must be examined accurately and quickly as part of a pathol-
ogist’s clinical procedure. For histopathology image segmentation, different variants of U-
Net and fully convolutional networks (FCN) are state-of-the-art. HistNet or histopathology
network for semantic labelling in histopathology images, for example, is one of them. We
improve our previously proposed model HistNet in this paper by introducing new skip
pathways to the decoder stage to aggregate multiscale features and incorporate a feature
pyramid to keep the contextual information. In addition, to boost performance, we employ
a deep supervision training technique. We show that not only does the proposed design
outperform the baseline, but it also outperforms state-of-the-art segmentation architectures
with much fewer parameters.
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1. Introduction

The gold standard method of diagnosis, especially in cancer, is a pathologist’s examination
of patient tissue samples under a microscope. The manual technique, on the other hand,
is time-consuming, labor-intensive, and necessitates a quantitative evaluation of pathology
slides that can be subjective (Gurcan et al., 2009).

Computational Pathology was born with the development of digital Whole Slide Im-
age (WSI) scanners, which use machine learning techniques to assist pathologists in their
diagnosis (Burlutskiy et al., 2019; Deng et al., 2020). Specifically, WSI pixels are divided
into malignant and benign zones, allowing a diagnosis to be made on the tissue sample.
Deep learning models are particularly well suited for these problems since they can develop
expert comprehension after being trained on annotated WSIs. Typically, pathologists scan
slides for regions-of-interest (ROI) that are relevant to the disease being diagnosed, and
then check these regions for abnormal tissues. Computational pathology and deep learning
algorithms have shown considerable potential in highlighting (segmenting) diagnostically
relevant regions as a visual aid and clinical decision support for pathologists (Webster and
Dunstan, 2014; Litjens et al., 2016; Campanella et al., 2018).

Related Works: Medical image analysis has relied on pixel-based (Minaee et al., 2021)
and entity graph-based (Ahmedt-Aristizabal et al., 2021) techniques for semantic segmen-
tation. However, only pixel-based analysis for proper delineation of object boundaries is
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Figure 1: YAMU: Annotations and detailed structure. Multiscale input feature maps (in the
leftmost column) are generated from the input feature map (I/P) in the proposed network.
The feature map from the strided convolution of the stem layer is l3 encoder layer. Three
multi-resolution spatial squeeze and excitation blocks are included in the long skip-pathways
(MRcSE).

included in the work. Contextual links and global data are used by both PSPNet (Zhao
et al., 2017) and DeepLabV3+ (Chen et al., 2018). PSPNet employs a pyramid pooling
module. However, because it is only used at the end of the encoder, access to multi-scale
information in separate encoder-decoder stages is not possible. HistNet (Samanta et al.,
2021) provides multi-scale information via the encoder stage, allowing for continuous access
to multi-scale data. Works in (Zhou et al., 2018; Bilinski and Prisacariu, 2018; Zhang et al.,
2018; Huang et al., 2017) use dense shortcut connections and dense skip pathways in the
decoder, allowing each decoder block to access data generated by all preceding blocks. This
enables the collection of background data and the combination of features from different
resolutions. HistNet also allows multi-resolution feature fusion, but instead of appending
output from all previous decoders, the models can choose which feature to propagate farther
up the decoder at each stage.

In this work, we improve our previously proposed model HistNet (Samanta et al., 2021)
by adding new skip pathways to the decoder stage to aggregate multiscale data and incor-
porating a feature pyramid to keep the contextual information. To improve performance
even further, we use a deep supervision training technique. The proposed architecture is
shown in Figure 1. We show that the proposed design outperforms not just the baseline,
but also state-of-the-art segmentation architecture with far less learnable parameters.
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2. METHOD

2.1. Model Architecture

Figure 1 shows the detailed architecture of our proposed model, named YAMU. By in-
cluding trainable multi-scale input feature maps (MSc) in each of the three encoder layers,
we improve on our prior recommended design HistNet (Samanta et al., 2021). Also, to
calibrate the encoder layers features, a unique long skip pathways called multi-resolution
spatial squeeze and excitation (MRcSE) are devised from encoder to decoder by mixing
high resolution local features with low resolution global features. The proposed segmenta-
tion model is made up of three parts: a stem, an encoder, and a decoder, each of which
contains inception+ blocks and modified dense blocks. The methodology also employs a
deep supervision training strategy.

2.1.1. Encoder and Decoder

The encoder block in the proposed YAMU-Net is made up of a stem block and three
inception+ blocks. The stem block employs convolution (kernel size of 7× 7) with stride 2
and a maxpooling layer to downscale the input image by 4, as shown in Figure 5 (a). The
inception+ block (Figure 5 (b)) follows the stem block and is made up of 1× 1, 3× 3, and
5×5 parallel convolution layers with a short skip connection. Furthermore, the convolution
technique is the same for the 3 × 3 and 5 × 5 branches. To extract information from two
distinct FoVs, Inception+ blocks use a parallel of standard and dilated convolution. The
model uses three alternative dilation rates of 2, 3, and 4 for the three inception+ blocks in
the dilated convolution. As seen in HistNet (Samanta et al., 2021), the dilation rates are
optimally found.

YAMU-net uses a customised decoder block, Figure 5 (c) to finely identify morphological
aspects in a WSI. It’s made up of five modified dense blocks and employs dilated convolution
(dilation rate of 2). A short skip link exists in each redesigned dense decoder block, allowing
features from the same and lower resolution stages to be reused. In addition, two sets of
parallel and conventional convolution are used to integrate the multi-level features.

By lowering the number of channels in each of the HistNet’s convolution layers, we were
able to reduce the total number of learnable parameters. We divide the number of output
channels by 2, 4, and 8 to get the best pruned model. The number of output channels in
HistNet were 32, 32, 64, 128, 256 at the encoder layer, and 128, 64, 32, 32, 32 at the decoder
layer.

Proposed supervised semantic segmentation model uses a stem block in the initial en-
coder layer. Some spatial information may be lost at the deeper encoder layers as a result of
employing the stem block to make the model more computationally efficient. This may af-
fect the segmentation performance. In this work, we implemented multi-scale input images
at the encoder layers to address this issue.

2.1.2. multi-scale input feature maps (MSc):

To keep the contextual information in the proposed model, we concatenate the local in-
formation from the input image to the deeper encoder layer, in addition to the multiscale
feature extractor block, as illustrated in Figure 1. Kernel sizes of 7 × 7, 15 × 15, 15 × 15,
and corresponding stride factors of 4, 8, and 16 with zero padding of 3, 6, and 6 are used to
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compute multi-scale input feature maps of size 128×128, 64×64, and 32×32, respectively.
To scale the input image, we used a convolution-based technique rather than traditional
pooling operations. (Springenberg et al., 2014) presents a convolution-based technique re-
places inter-feature dependencies, making the scaling operation trainable rather than fixed
by backpropagation. As described in the following subsection, the study also built a new
long skip connection that adaptively emphasises the essential channels utilising higher and
lower resolution feature maps, namely MRcSE, and propagates it to the decoder layer.

2.1.3. Multi-resolution spatial squeeze and excitation (MRcSE)

The new long skip connection adaptively avoids less relevant channels, as shown in Figure 2,
by reconstructing the encoder layer feature based on high resolution global and low resolu-
tion local features. 1×1 convolution is employed to recalibrate the feature matrix, followed
by a spatial squeeze block. Before running the resulting vector via the Spatial Squeeze (SS)
block, the convolution layer is utilised to minimise the number of channels. There are four
layers in the encoder (see Figure 1). The encoder layers are denoted as E =[l0, l1, l2, l3],
with l3 being the stem layer and l2, l1, l0 being the inception+ blocks. The output channels
of the indicated layers are 128, 64, 32, and 16, respectively, from l3 to l0. To compute the
summation of the resultant vector for an encoder layer, we use 1× 1 convolution for other
layers as a bottleneck to maintain dimensionality and then compute the resultant vector for
all layers as illustrated in Figure 2. The fused resultant vector of the ith encoder layer li is
made up of the total of resultant vectors formed by the local and high level global feature
layers, namely li, li−1,..., l0. To excite and transfer the output to the decoder layer, the li
encoder layer output is multiplied with this fused resultant vector.

Computation of recalibrated/excited feature map: assume the input feature map after 1×
1 convolution layer FL=[f(L,1),f(L,2),..,f(L,N)] as a combination of channels fL,i ∈ kHL×WL .

N is the number of output channels in the Lth encoder layer. Spatial squeeze is implemented
by a global average pooling layer, producing vector zL ∈ k1×1×N with its kth element given
by

zL(k) =
1

HL ×WL

HL∑
i

WL∑
j

f(L,k)(i, j) (1)

This operation embeds global spatial information from the Lth encoder layer in vector
zL. The vector zL is transformed to ẑL = W1(ReLU(W2zL)), where W1 ∈ kN×N , W2 ∈
kN×N are the weights of two fully-connected layers. This represents the channel-by-channel
dependencies. By passing it via a sigmoid layer σ(ẑL), the dynamic range of ẑL activations
is brought to the interval [0, 1]. The resultant vector is

R̂ = [
∑
l⊆E

σ(ẑL(1)),
∑
l⊆E

σ(ẑL(2)), ...,
∑
l⊆E

σ(ẑL(N))]. (2)

F̂cSE = [f(L,1)
∑
l⊆E

σ(ẑL(1)), f(L,2)
∑
l⊆E

σ(ẑL(2)),

..., f(L,N)

∑
l⊆E

σ(ẑL(N))].
(3)
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Figure 2: For the Lth encoder layer, the long skip connection has been redesigned (MRcSE).
It entails creating spatial feature maps for each channel based on its relevance. The high-
lighted box indicates the Spatial squeeze block used to construct the resulting vector from
the input features.

This summation of the resultant vector in equation 2 is used to recalibrate the Lth encoder
layer features FL represented as F̂cSE in equation 3. The activation σ(ẑL(i)) indicates the
importance of the ith channel of Lth encoder layer which are re-scaled. As the network learns,
these activations are adaptively tuned to ignore less important channels and emphasize the
important ones. The architecture of the block is illustrated in Figure 2.

2.2. Deep Supervision

In this research, we present YAMU training with deep supervision. This training method
was inspired by Deeply Supervised Nets (DSN) (Lee et al., 2014; Li et al., 2019; Le’Clerc Ar-
rastia et al., 2021). To speed up training convergence, the DSN network governs each layer
based on the ground truth label. The objective is to force the output of the decoder layers to
the original segmentation map. To do so, variance is added to the overall loss by combining
the losses from the two decoder dense blocks’ output with the appropriate downsampled
version of the ground truth segmentation map. For obtaining lucidity and robustness of the
information collected in the centre of the network, losses are estimated in the middle and
end of the network from the 1st and last decoder layer output, as illustrated in Figure 1.
The DSN technique also aids in the solution of the vanishing gradient problem.

3. EXPERIMENTS

3.1. Datasets

This study makes use of the Prostate Cancer Grade Assessment (PANDA) dataset from the
PANDA Challenge 2020 (Bulten et al., 2022; PANDA, 2020) and the Colonoscopy Tissue
Segment dataset from DigestPath 2019 (DigestPath, 2019).
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3.1.1. PANDA dataset 2020

The PANDA dataset categorizes cancer tissue into Gleason patterns (3, 4, or 5), based
on the architectural growth patterns of the tumour from histopathology scans of prostate
biopsy samples (Bulten et al., 2022; PANDA, 2020). There are six class labels in the
mask image. Background (non-tissue area), stroma (connective and non-epithelium tissue),
benign epithelium, cancerous epithelium (Gleason 3), cancerous epithelium (Gleason 4),
and cancerous epithelium (Gleason 5) are the six labels in the annotation mask. For the
ablation study experimentation, we separated the data into three categories: background
(stroma and non-tissue region), benign (healthy epithelium), and malignant epithelium
(combination of the three Gleason patterns). And for the state-of-the-art comparison, we
have used mentioned six labels annotations. Since the organizer did not publicly release the
test set for blind validation. Therefore, we solely used the PANDA 2020 training dataset
supplied from Radboud University Medical Center (RUMC). The PANDA 2020 dataset from
the Karolinska Institute lacks pixel-level labels and was therefore excluded from training and
testing. The data was divided into two groups at random: development and testing. Based
on a 75 : 25 split, the development set was further divided into training and validation.
To preserve balance between classes, patches/tiles were taken from the development set.
We double-checked that patches from the training and validation sets came from mutually
exclusive whole slide images. The study uses 13268 (from 3922 biopsies) for training and
1676 (from 600 biopsies) for testing patches with a size of 1024×1024.

3.1.2. Colonoscopy Tissue Segment-DigestPath2019

The DigestPath 2019 dataset is intended for binary segmentation tasks that separate benign
and malignant tissue (DigestPath, 2019). The DigestPath 2019 dataset contains 660 tissue
imaging samples from 324 WSI. To deal with the massive image size, we extract 12,922 tiles
with a size of 512×512, of which we use 70% for training and 30% for validation. Training
and validation datasets are mutually exclusive in WSI level.

3.2. Ablation Study

We study each stage’s segmentation performance using the PANDA dataset to assess the
contributions of each stage in our proposed approach. The research investigates the amount
of experimentally optimal output channels, U-Net++ (Zhou et al., 2020) skip pathways vs.
revised long skip pathways, multi-scale input, and deep supervision training technique. The
study starts with HistNet (Samanta et al., 2021), a semantic labelling context aggregation
network, as a baseline and gradually upgrades the model. We initially reduce the number
of output channels in the encoder and decoder convolution layers by half to compare per-
formance with the baseline. Table 1 compares the performance of three different pruned
HistNet models to the original one. The model with 1.85 million parameters outperforms
the model with 3.5 million parameters, as demonstrated.

Following that, the impact of various skip pathways is examined in Table 2. U-Net++
skip pathways provide similar performance to the original HistNet skip pathways. When
we incorporated our proposed long skip pathways, the model improved 1.37 percent in the
benign class, 0.85 percent in the malignant class, and overall mean improvement of 1.08
percent with lower standard deviation. We used a deep supervision training technique,
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HistNet (# parameters
in millions)

Background Benign Malignant Mean DICE

P0 (3.5) 98.89 77.12 87.52 87.84 ± 8.89
P1 (1.85) 98.87 76.72 87.16 87.59 ± 9.04
P2 (0.47) 98.59 74.60 83.94 85.71 ± 9.86
P3 (0.12) 98.23 68.47 78.54 81.75 ± 12.54

Table 1: Using the PANDA2020 dataset, the effects of channel pruning on HistNet. The
smaller versions of HistNet P0 are P1, P2, and P3.

Architecture Performance (DICE in %)

PC SPW MSc MRcSE DS Background Benign Malignant MD
# param
(in M)

✓ - - - - 98.87 76.72 87.16 87.59 ±9.04 1.855
✓ ✓ - - - 98.79 77.7 87.08 87.89 ±9.44 2.109
✓ - ✓ - - 98.86 78.25 87.44 88.18±9.22 2.115
✓ - - ✓ - 98.89 78.09 88.01 88.67 ±8.09 2.093
✓ - - - ✓ 98.57 75.46 84.15 86.06 ±9.53 1.859
✓ - - ✓ ✓ 98.89 79.29 88.18 88.79 ± 8.01 2.130
✓ - ✓ ✓ ✓ 98.89 80.49 88.2 89.19 ±7.54 2.185

Table 2: An ablation study is conducted using the PANDA2020 dataset. PC stands for
pruned channel model (P1), SPW for U-Net++ skip pathways, MRcSE for our proposed
long skip pathways, DS for deep supervision training approach, MSc for multi-scale input
feature map, and MD for mean DICE.

which resulted in a 1.28 percent increase in the benign class. The proposed redesign of the
skip connection with deep supervision enhances overall performance much more.

Multi-scale features have also been added at various encoder layers, which improve
model performance by 3.77 percent, 1.04 percent, and 1.16 percent for benign, malignant,
and overall mean DICE, respectively.

In several pruned versions of the HistNet, we also strive to demonstrate the utility of
redesigned long skip connections using deep supervision training technique. It demonstrates
how the modified long skip connection may be used in a smaller network efficiently. Tables
3 shows that redesigned long skip connections and deep supervision are more successful in
a smaller network.

Model (# parameters
in millions)

Background Benign Malignant Mean Dice

P0 + MRcSE + DS (4.01) 98.88 79.75 88.21 88.94±8.22
P1 + MRcSE +DS (2.13) 98.89 79.29 88.18 88.79 ± 8.01
P2 + MRcSE + DS (0.54) 98.59 75.26 84.60 86.15 ± 9.58
P3 + MRcSE + DS (0.14) 98.26 70.34 80.79 83.12 ± 11.52

Table 3: Effects of Multi-resolution spatial squeeze and excitation (long skip connection)
with deep supervision (DS) using the PANDA2020 dataset on different pruned version of
the HistNet.
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Model Backbone Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 # params
in millions

FCN-8s (Long et al., 2014) - 93.71 92.80 68.86 62.29 71.29 53.32 69.75

DeepLabV3+ Xception 96.55 94.44 71.81 67.96 73.45 50.23 41.25

PSPNet (Zhao et al., 2017) VGG-16 95.01 93.38 61.18 53.85 65.52 38.22 17.11

SegNet (Badrinarayanan et al., 2017) VGG-16 93.84 93.43 58.42 47.95 61.02 24.57 11.55

DeepLabV3+ (Chen et al., 2018) ResNet-50 91.04 90.33 65.52 59.63 66.18 48.60 10.38

U-Net++ (Zhou et al., 2018) VGG-19 95.04 94.06 70.35 61.28 67.87 55.80 09.05

U-Net (Ronneberger et al., 2015) VGG-19 66.05 62.13 15.15 22.08 29.51 15.19 07.76

DeepLabV3+ EfficientNet-B0 94.38 93.07 78.27 72.80 79.13 45.29 06.41

MSU (Abraham and Khan, 2018) - 94.79 94.03 69.33 57.59 67.22 22.76 05.64

ResCU-Net (Shen et al., 2020) - 95.25 94.77 76.26 68.11 75.70 40.83 40.73

HistNet (Samanta et al., 2021) - 95.98 95.07 74.31 68.38 74.57 57.57 03.5

YAMU - 95.91 95.29 78.14 73.72 79.50 64.25 02.18

Table 4: Accuracies of segmentation models on Radboud prostate tissue segment dataset-
PANDA2020. Class:0, 1, 2, 3, 4, 5 corresponds to the background, stroma, benign, Gleason
grade 3, Gleason grade 4, and Gleason grade 5, respectively.

Model Mean DICE (%) Model Mean DICE (%)

FCN-8s 91.85 U-Net++ 85.69

DeepLabV3+ 90.13 MSU 89.12

PSPNet 90.54 ResCU-Net 92.12

SegNet 90.43 HistNet 92.36

U-Net 85.43 YAMU 93.50

Table 5: Results on colonoscopy tissue segment dataset- DigestPath2019.

3.3. Discussion

The results of many popular DL-based segmentation models on the Radboud PANDA
dataset for Gleason grading in prostate core needle biopsies are summarised in Table 4. On
this data, our proposed model has a relative increase of around 12.15% over the initial FCN-
8s model. In addition, for this multi-class semantic segmentation task, the suggested model
achieved state-of-the-art performance. Table 5 focuses on the DigestPath2019 validation
set. The proposed model outperforms the FCN-8s, DeepLabv3+, PSPNet, SegNet, U-Net,
and several versions of U-Net. Furthermore, the YAMU model achieves state-of-the-art
performance for both the PANDA dataset and the DigestPath2019 dataset with the fewest
number of learnable parameters. Future work will include a thorough examination of the
proposed model on several types of digital image datasets for semantic segmentation in
order to test the model’s capacity across various distributions.

4. Conclusions

A novel architecture for more accurate semantic segmentation in histopathology images has
been described. Our model’s improved performance can be attributed to its revamped skip
pathways, multi-scale input feature maps, and use of the deep supervision technique, all of
which aim to improve context aggregation. We tested the proposed model on two datasets
and found that it outperformed other state-of-the-art semantic segmentation approaches
consistently.
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Appendix A. Qualitative Results

We also assess the models on a qualitative level. The segmentation mask created by the
proposed model and other state-of-the-art benchmark models are shown in Figure 3 &
4. Importantly, the proposed model’s segmentation boundaries are finer and closer to the
ground truth than DeepLabV3+ (with different backbones), which also includes multi-scale
context information, as well as U-Net, U-Net++, and MSU, which use a substantially
more complex model. This further reinforces our model’s ability to extract meaningful
morphological information through context aggregation.
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Figure 3: Comparison of tile label output for five different classes of state-of-the-art FCN-
based models and proposed YAMU model.
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Figure 4: Comparison of tile label output for five different classes of state-of-the-art U-Net-
based models and proposed YAMU model.
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Patch Size Batch Size Background Benign Malignant Mean DICE

256 32 98.82 74.87 86.04 86.57 ± 9.78

512 16 98.73 77.24 87.97 87.94 ± 8.78

1024 8 98.89 80.49 88.2 89.19 ± 7.54

Table 6: Proposed model performance with different patch size on PANDA2020 dataset

Appendix B. Model Training

For the model comparison, two sets of training datasets were used, with the PANDA dataset
having six classes and the DigestPath dataset having binary classes. The models were built
using the Keras framework, which featured a Tensorflow backend. With Adam optimizer
and step learning rate, we use an initial learning rate of 10−3 and a batch size of 8, decreasing
the learning rate by a factor 0.1 every 150 epochs. All the models were trained using a
sophisticated loss function, which is a weighted combination of categorical cross-entropy
and dice loss function. The training continued for all the models until the loss converged.

Rotations in multiples of 90 degrees, as well as horizontal and vertical flipping, were
used as augmentations. These were used before Hematoxylin-Eosin-DAB (HED)-light aug-
mentations ((Tellez et al., 2019)), to ensure that the rotations and flip transformations of
the images with and without HED augmentation were comparable. The purpose of HED-
light augmentation is to transform RGB channel images to HED space using the colour
deconvolution method in order to determine the contribution of applied stains based on
stain-specific RGB absorption. For HED-light, we choose a 0.04 intensity value.

Appendix C. Effect of varying patch sizes

We perform a study to determine the effect of varying patch sizes on model performance.
Table 6 shows the results of this study. The patch size of 1024× 1024 with batch size of 8
gave the best performance when trained on a NVIDIA RTX 6000 GPU.

Appendix D. Stem block, Inception + module and Modified dense block
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Figure 5: a) Stem block; b) Modified inception module using standard and dilated convo-
lution namely Inception+ module used in YAMU-Net encoder layers l0, l1, l2; c) Modified
dense block used in the YAMU-Net decoder layer D1, D2, D3, D4, D5.
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