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Abstract
We study the performance of stochastic first-order
methods for finding saddle points of convex-
concave functions. A notorious challenge faced
by such methods is that the gradients can grow ar-
bitrarily large during optimization, which may re-
sult in instability and divergence. In this paper, we
propose a simple and effective regularization tech-
nique that stabilizes the iterates and yields mean-
ingful performance guarantees even if the domain
and the gradient noise scales linearly with the size
of the iterates (and is thus potentially unbounded).
Besides providing a set of general results, we also
apply our algorithm to a specific problem in rein-
forcement learning, where it leads to performance
guarantees for finding near-optimal policies in an
average-reward MDP without prior knowledge of
the bias span.

1. Introduction
We study the performance of stochastic optimization algo-
rithms for solving convex-concave saddle-point problems
of the form minx∈X maxy∈Y f(x,y). The algorithms we
consider aim to approximate saddle points via running two
stochastic convex optimization methods against each other,
one aiming to minimize the objective function and the other
aiming to maximize. Both players have access to noisy
gradient evaluations at individual points xt and yt of the
primal and dual domains X and Y , and typically compute
their updates via gradient-descent-like procedures. Due to
the complicated interaction between the two concurrent pro-
cedures, it is notoriously difficult to ensure convergence of
these methods towards the desired saddle points, and in fact
even guaranteeing their stability is far from trivial. One
common way to make sure that the iterates do not diverge
is projecting them to bounded sets around the initial point.
While this idea does the job, it gives rise to a dilemma: how
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should one pick the size of these constraint sets to make
sure both that the optimum remains in there while keeping
the optimization process reasonably efficient? In this pa-
per, we propose a method that addresses this question and
provides as good guarantees as the best known projection-
based method, but without having to commit to a specific
projection radius.

It is well known that simply running gradient descent for
both the minimizing and maximizing players can easily
result in divergence, even when having access to exact gradi-
ents without noise (Goodfellow, 2016; Mertikopoulos et al.,
2018). While the average of the iterates may converge in
such cases, their rate of convergence is typically affected
by the magnitude of the gradients, which grows larger and
larger as the iterates themselves diverge, thus resulting in
arbitrarily slow convergence of the average. Numerous so-
lutions have been proposed to this issue in the literature,
most notably using some form of gradient extrapolation
(Korpelevich, 1976; Popov, 1980; Gidel et al., 2018; Mer-
tikopoulos et al., 2018). When these methods have access
to noiseless gradients and are run on smooth objectives,
these methods are remarkably stable: they can be shown
to converge monotonically towards their limit. That said,
convergence of such methods in the stochastic case is much
less well-understood, unless the iterates are projected to a
compact set (Juditsky et al., 2011; Gidel et al., 2018), or the
boundedness of the gradients ensured by other assumptions
(Mishchenko et al., 2020; Loizou et al., 2021; Sadiev et al.,
2023). Indeed, unless projections are employed, the iterates
of one player may grow large, which can result in large gra-
dients observed by the opposite player, which in turn may
result in large iterates for the second player—which effects
may eventually cascade and result in instability and diver-
gence. Our main contribution is proposing a stabilization
technique that eliminates the risk of divergence.

For the sake of exposition, let us consider the special case
of bilinear objectives

f(x,y) = xTMy + bTx− cTy,

and primal-dual stochastic gradient descent ascent starting
from the initial point x1 = 0 and y = 0 as a baseline:

xt+1 = xt − ηg̃x(t)

yt+1 = yt − ηg̃y(t),
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where g̃x(t) = ∇xf(xt,yt) + ξx(t) and g̃y(t) =
∇yf(xt,yt) + ξy(t) are potentially noisy and unbiased
estimates of the gradients with respect to x and y. Using
standard tools (that we will explain in detail below), the
average of the first T iterates produced by the above proce-
dure can be shown to satisfy the following guarantee on the
duality gap:

G(x∗,y∗) = f

(
1

T

T∑
t=1

xt,y
∗

)
− f

(
x∗,

1

T

T∑
t=1

yt

)

≤
∥x∗∥22 + ∥y∗∥22

2ηT
+

η

2T

T∑
t=1

E
[
∥g̃x(t)∥22 + ∥g̃y(t)∥22

]
.

If one can ensure that the gradient estimates g̃x(t) and
g̃y(t) remain bounded by a constant G > 0, one can set
η ∼ 1/(G

√
T ) and obtain a convergence rate of order

G(∥x∗∥2
2+∥y∗∥2

2)√
T

. However, notice that there is no way to
make sure that the gradients actually remain bounded while
executing the algorithm! Indeed, notice that ∇xf(xt,yt) =
Myt + b, which grows large as yt grows large. A natu-
ral idea is to project the iterates to balls of respective sizes
Dx, Dy > 0, which guarantees that the iterates and thus
the gradients remain bounded. However, convergence to
the saddle point (x∗,y∗) is now only possible whenever
the respective norms satisfy ∥x∗∥ ≤ Dx and ∥y∗∥ ≤ Dy,
otherwise the optimal solution is excluded from the feasible
set. Unfortunately, in many applications, it is impossible to
pick the constants Dx and Dy appropriately due of lack of
prior knowledge of the solution norms.

In this paper, we propose a method that guarantees upper
bounds on the duality gap of the following form (when
specialized to the setting described above):

G(x∗,y∗) = O

(
∥x∗ − x1∥22 + ∥y∗ − y1∥22 + 1√

T

)
,

where the big-O notation hides some problem-dependent
constants related to the objective function f (which will be
made explicit in our main theorem). Notably, our method
requires no prior knowledge of the norms ∥x∗ − x1∥22 and
∥y∗ − y1∥22 whatsoever, and in particular performs no pro-
jections to make sure that the iterates remain bounded, thus
addressing the challenge outlined above. Furthermore, our
guarantees continue to hold for potentially data-dependent
comparators (x∗,y∗), and even when the gradients are sub-
ject to multiplicative noise that can scale with the magnitude
of the gradient itself. Our main technical tool is augmenting
the objective with a well-chosen regularization term which
allows us to eliminate the terms ∥g̃x(t)∥22 + ∥g̃y(t)∥22 ap-
pearing in the guarantee of standard primal-dual gradient de-
scent, and replace them with an upper bound of the gradients
of the objective evaluated at the initial point (x1,y1). These

bounds have the appealing property of being initialization-
dependent, in that they guarantee improved performance
when we pick the initial points (x1,y1) close to (x∗,y∗).
Besides the simple bilinear setting discussed above, we
study a more general set of games that we call “sub-bilinear”,
and provide an algorithmic framework that comes with guar-
antees that express closeness to initialization in terms of
general Bregman divergences.

The initialization-adaptive nature of our bounds is simi-
lar to the guarantees proved by Liu & Orabona (2022),
who propose algorithms for the same setting that achieve
an initialization-dependent convergence rate of the order
G(x∗,y∗) = Õ

(
∥x∗−x1∥2+∥y∗−y1∥2√

T

)
, where Õ(·) hides

polylogarithmic factors of T and the comparator norms.
While this guarantee may appear to be stronger than our
result, it is only proved under the condition that all gradients
remain bounded as ∥gx(t)∥22 ≤ 1 and ∥gy(t)∥22 ≤ 1, which
cannot be ensured in the unconstrained setting that we con-
sider in the present work. Another closely related work (that
was pointed to our attention after posting the initial version
of this work online) is due to Jacobsen & Cutkosky (2023),
who proposed an algorithm for convex optimization that
is able to deal with potentially unbounded gradients that
satisfy a certain “sub-quadratic” growth condition. As their
Section 3 shows, their technique is directly extensible to
saddle-point optimization in bilinear games and even our
notion of sub-bilinear games. Even more curiously, their key
technical idea is nearly identical to the one employed in our
work. However, the objectives of their work were slightly
different from ours in that they focused on the special case
of Euclidean geometries and deterministic gradients. In
contrast, our main results hold for stochastic gradients and
stochastic comparator points (x∗,y∗), and are expressed
in terms of general Bregman divergences. We believe that
their analysis can be adjusted to handle these extensions:
while dealing with stochastic gradients seems easy, handling
data-dependent comparator points and working with general
Bregman divergences appears to be rather challenging in
their framework, and could require significant changes to
their algorithm and analysis. We nevertheless encourage the
reader to credit Jacobsen & Cutkosky (2023) just as much
as our work when referring to the regularization technique
we study in this paper.

More broadly speaking, our work contributes to the line of
work on parameter-free optimization methods that are able
to adapt to problem complexity without prior knowledge of
the relevant problem parameters. In the context of online
convex optimization (OCO), several effective parameter-
free algorithms are known to achieve guarantees scaling
optimally with the initialization error ∥x∗ − x1∥, without
requiring prior knowledge thereof (Streeter & McMahan,
2012; Orabona, 2013; van der Hoeven, 2019). Cutkosky
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& Boahen (2016); Cutkosky (2019); Mhammedi & Koolen
(2020) improve these guarantees by providing initialization-
adaptive bounds for OCO in unconstrained domains without
prior knowledge of both the size of the domain or subgra-
dients of the loss. One would think that this would make
their method suitable for solving the problem we study in
this paper—however, their bound depends on the maximum
norm of the observed subgradients, which is problematic
for the reasons we have discussed extensively above.

Unconstrained saddle-point problems have many impor-
tant applications. Perhaps the most well-known such ap-
plications are in optimizing dual representations of convex
functions (Shalev-Shwartz & Singer, 2006; Bubeck et al.,
2015, Section 5.2;Wang & Abernethy, 2018; Wang et al.,
2023). Our original motivation during the development of
this work has been to develop primal-dual methods for solv-
ing average-reward Markov decision processes (MDPs): this
problem can be formulated as a linear program with primal
variables that are of unknown scale. In the simpler setting
of discounted Markov decision processes, previous work
has provided efficient planning methods based on saddle-
point optimization (Wang, 2017; Jin & Sidford, 2020; Cheng
et al., 2020). While in this simple setting the primal vari-
ables (called value functions in this setting) are known to be
uniformly bounded, this is not the case in the more challeng-
ing average-reward setting we consider here: in this case,
the value functions can have arbitrarily large norm depend-
ing on the program structure. As it is well-known in the
reinforcement-learning literature, estimating this parameter
with only online sample access is as hard as solving the orig-
inal problem, and learning optimal policies without its prior
knowledge has been widely conjectured to be impossible
(Bartlett & Tewari, 2009; Fruit et al., 2018b;a; Zhang & Ji,
2019). Using our techniques developed in the present paper,
we make progress on this important problem by proposing
a planning algorithm that is guaranteed to produce a near-
optimal policy without having prior knowledge of the scale
of the value functions after a polynomial number of queries
made to a simulator of the environment.

Notations. For an integer T , we use [T ] = 1, 2, · · · , T .
We denote as 1 the vector with all one entries in Rm and
represent the positive orthant as Rn

+. Let X ⊆ Rm and
f : X → R differentiable. For vectors x,x′ ∈ X we
define their inner product as ⟨x,x′⟩ =

∑m
i=1 xix

′
i and the

Bregman divergence of x at x′ induced by f : X → R as

Dx(x∥x′) = f(x)− f(x′)− ⟨∇f(x′),x− x′⟩ .

2. Preliminaries
We now formally define our problem setup and objectives.
First, we recall some standard definitions.

Definition 2.1. (convex-concave function) Let X ⊆

Rm,Y ⊆ Rn be convex sets. A function f : X ×Y → R is
said to be convex-concave if it is convex in the first argument
and concave in the second. That is, f is convex-concave if
for any x,x′ ∈ X , y,y′ ∈ Y and λ ∈ [0, 1], we have

f (λx+ (1− λ)x′,y) ≤ λf (x,y) + (1− λ)f (x′,y) ,

and

f (x, λy + (1− λ)y′) ≥ λf (x,y) + (1− λ)f (x,y′) .

Definition 2.2. (subgradient and subdifferential) Let X ∗

denote the dual space of X . For a function h : X → R,
g ∈ X ∗ is a subgradient of h at x ∈ X if for all x′ ∈ X ,

h(x)− h(x′) ≤ ⟨g,x− x′⟩ .

The set of all subgradients of a function h at x is called the
subdifferential, and is denoted by ∂h(x).

We recall that when h is convex and differentiable, then
∇h(x) ∈ ∂h(x) holds for all x ∈ X , and additionally
∂h(x) = {∇h(x)} holds whenever x is in the interior of
the domain X .

Definition 2.3. (strong convexity) For γ ≥ 0, a function
h : X → R is γ-strongly convex with respect to the norm
∥·∥ if and only if for all x,x′ ∈ dom (h), g ∈ ∂h(x):

h(x′)− h(x) ≥ ⟨g,x′ − x⟩+ γ

2
∥x′ − x∥2 .

We consider the problem of finding (approximate) saddle
points of convex-concave functions on the potentially un-
bounded convex domains X × Y ⊆ Rm × Rn:

inf
x∈X

sup
y∈Y

f(x,y), (1)

where f : X × Y → R is assumed to be convex-concave in
the sense of Definition 2.1. We focus on the classic stochas-
tic first-order oracle model where algorithms can only access
noisy estimates of the subgradients at individual points in
X × Y . Specifically, we will consider incremental algo-
rithms that produce a sequence of iterates (xt,yt)

T
t=1 by

running two concurrent online learning methods for choos-
ing the two sequences {xt}Tt=1 and {yt}Tt=1. The algo-
rithm picking the sequence {xt}Tt=1 aims to minimize the
sequence of losses {f(·,yt)}Tt=1 and is referred to as the
min player, and the algorithm picking {yt}Tt=1 that aims
to minimize {−f(xt, ·)}Tt=1 is called the max player. In
each round t, the two players have access to a stochastic
first-order oracle that provides the following noisy estimates
of a pair of subgradients gx(t) ∈ ∂xf(xt,yt) and gy(t) ∈
−∂y (−f(xt,yt)), with the noisy estimates written as

g̃x(t) = gx(t) + ξx(t)
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g̃y(t) = gy(t) + ξy(t).

Here, ξx(t) ∈ Rm and ξy(t) ∈ Rn are zero-mean noise
vectors generated in round t ∈ [T ] from some unknown
distributions, independently of the interaction history Ft−1.
Using the notation Et [xt] = E [xt |Ft−1 ] = xt to denote
expectations conditioned on the history of observations
up to the end of time t, we can write the above conditions
as Et [g̃x(t)] = gx(t) and Et

[
g̃y(t)

]
= gy(t). Note that

when the objective is differentiable we can simply set
gx(t) = ∇xf(xt,yt) and gy(t) = ∇yf(xt,yt).

In a good part of this work, we focus on the important class
of bilinear objective functions that take the following form:

f(x,y) = xTMy + bTx− cTy.

Here, M ∈ Rm×n, b ∈ Rm and c ∈ Rn and the domains
for the optimization variables are X = Rm and Y = Rn.
This objective is clearly differentiable, and its gradients with
respect to xt and yt are given as gx(t) = Myt + b and
gy(t) = M Txt − c. In the context of bilinear games, we
will consider a natural noise model where in each round
t, we have access to noisy versions of the matrices and
vectors necessary for computing the gradients. Specifically,
we have M̂(t) = M + ξM (t), b̂(t) = b + ξb(t), and
ĉ(t) = c+ ξc(t) where ξM (t), ξb(t), ξc(t) are i.i.d, zero-
mean random matrices and vectors generated from unknown
distributions. We then use these observations to build the
following estimators for the gradients:

g̃x(t) = M̂(t)yt + b̂(t)

g̃y(t) = M̂(t)Txt − ĉ(t).

This fits into the generic noise model defined earlier with
ξx(t) = ξM (t)yt + ξb(t) and ξy(t) = ξM (t)Txt − ξc(t).
Regarding the magnitude of the noise, we will make the
assumption that there exists constants LM , Lb and Lc such
that Et

[
∥b̂t∥2

]
≤ Lb, Et

[
∥ĉt∥22

]
≤ Lc, and

Et

[∥∥M̂(t)y
∥∥2
2

]
≤ L2

M∥y∥22

Et

[∥∥M̂(t)Tx∥22
]
≤ L2

M∥x∥22,

holds for all x,y ∈ X ×Y . Note that this latter assumption
is satisfied whenever the operator norm of each M̂(t) is
upper bounded by LM with probability one.

This noise model is often more realistic than simply assum-
ing that ξx(t) and ξy(t) have uniformly bounded norms,
and is much more challenging to work with: notably, these
noise variables scale with the iterates xt and yt, and may
thus grow uncontrollably as the iterates grow large. In par-
ticular, the noise is precisely of this form in our application
to reinforcement learning presented in Section 4.

The final output of the algorithm will be denoted as
(xT ,yT ), and due to noise in the gradients, its quality will
be measured in terms of the duality gap, defined with respect
to a comparator point (x∗,y∗) as

G(x∗,y∗) = f(xT ,y
∗)− f(x∗,yT ).

We will allow the comparator points x∗,y∗ to depend on the
entire interaction history FT , and in particular allow choices
such as (x∗,y∗) = arg maxx,y∈S G(x,y) for arbitrary
bounded sets S ⊆ X × Y . The gap function evaluated at
this point is often called a merit function, which measures
progress towards finding an optimal solution to the min-max
optimization problem in question. Another typical choice
for comparator point is a saddle point of f that satisfies the
inequalities

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗) (2)

for all x ∈ X ,y ∈ Y . In the rest of the paper, we will use
x∗,y∗ to refer more generally to any potentially random
pair of comparator points, and will call such comparator
choices adaptive. We provide an example that makes use
of adaptive comparators in Section 4 in the context of rein-
forcement learning.

3. Algorithm and main results
We now present our algorithmic approach and provide its
performance guarantees. For didactic purposes, we start
with the special case of bilinear games and Euclidean ge-
ometries, and then later provide an extension to sub-bilinear
objectives and more general geometries in Section 3.2.

3.1. Unconstrained bilinear games

As a gentle start, we first describe our approach for bilin-
ear games as defined in Section 2 where the domains are
X = Rm and Y = Rn, and distances are measured in terms
of the Euclidean distances in the respective spaces. For
this case, the core idea of our approach is to run stochas-
tic gradient descent/ascent to compute the iterates of the
two players. As discussed before, this procedure may di-
verge and produce large gradients when run on the original
objective, unless the iterates are projected to a bounded
set. Our key idea is to replace the projection set with an
appropriately chosen regularization term added to the ob-
jective. Precisely, we introduce the regularization functions
Hx(x) = 1

2 ∥x− x1∥22 and Hy(y) = 1
2 ∥y − y1∥22, and

define our algorithm via the following recursive updates:

xt+1= arg min
x∈Rm

{
⟨x, g̃x(t)⟩+ ϱxHx(x) +

1

ηx
∥x− xt∥22

}
yt+1= arg min

y∈Rn

{
−
〈
y, g̃y(t)

〉
+ϱyHy(y) +

1

ηy
∥y − yt∥22

}
.
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For each player, the update rules can be recognized as an
instance of Composite Objective MIrror Descent (COMID,
Duchi et al., 2010), and accordingly we refer to the resulting
algorithm as Composite Objective Gradient Descent-Ascent
(COGDA). The updates can be written in closed form as

xt+1 =
xt − ηxg̃x(t)

1 + ϱxηx
+

ϱxηxx1

1 + ϱxηx

yt+1 =
yt + ηyg̃y(t)

1 + ϱyηy
+

ϱyηyy1

1 + ϱyηy
.

(3)

This expression has a clear intuitive interpretation: for the
min-player, it is a convex combination of the standard SGD
update xt − ηxg̃x(t) and the initial point x1, with weights
that depend on the regularization parameter ϱx. Setting
ϱx = 0 recovers the standard SGD update and makes
the algorithm vulnerable to divergence issues. The overall
method closely resembles the stabilized online mirror de-
scent method of Fang et al. (2022), and we will accordingly
refer to the effect of the newly introduced regularization
term as stabilization.

After running the above iterations for T steps, the algorithm
outputs xT = 1

T

∑T
t=1 xt and yT = 1

T

∑T
t=1 yt. The fol-

lowing theorem is our main result regarding the performance
of this algorithm.

Theorem 3.1. Let ϱy = 4ηxL
2
M and ϱx = 4ηyL

2
M .

Then, the duality gap achieved by COGDA satisfies
the following bound against any adaptive comparator
(x∗,y∗) ∈ Rm × Rn:

E [G(x∗;y∗)] ≤
(

1

ηyT
+ 2ηxL

2
M

)
E
[
∥y∗ − y1∥22

]
+

(
1

ηxT
+ 2ηyL

2
M

)
E
[
∥x∗ − x1∥22

]
+

2ηy
T

T∑
t=1

E
[∥∥∥M̂(t)Tx1 − ĉ(t)

∥∥∥2
2

]

+
2ηx
T

T∑
t=1

E
[∥∥∥M̂(t)y1 + b̂(t)

∥∥∥2
2

]
.

In particular, setting x1 = 0 and y1 = 0 and
ηx = 1/LM

√
2T and ηy = 1/LM

√
2T , the duality

gap is upper bounded as

E [G(x∗,y∗)]=O

L2
ME

[
∥y∗∥22 + ∥x∗∥22

]
+ L2

b + L2
c

LM

√
T

 .

We stress that this bound holds against arbitrary data-
dependent choices of the comparator points (x∗,y∗),
and in particular also against the choice (x∗,y∗) =
arg maxx,y∈S G(x,y) for any bounded set S ⊂ Rn ×Rm,
recovering a standard notion of merit function studied in

the context of saddle-point optimization (Nemirovski et al.,
2009). It is insightful to compare this bound side by side
with the one we would get by running primal-dual stochas-
tic gradient without regularization. By standard arguments
(see, e.g., Zinkevich, 2003; Nemirovski et al., 2009), the
following bound is easy to prove:

E [G(x∗;y∗)] ≤
E
[
∥x∗ − x1∥22

]
ηxT

+
E
[
∥y∗ − y1∥22

]
ηyT

+
ηx
T

T∑
t=1

E
[∥∥∥M̂(t)yt + b̂(t)

∥∥∥2
2

]

+
ηy
T

T∑
t=1

E
[∥∥∥M̂(t)Txt − ĉ(t)

∥∥∥2
2

]
.

A major problem with this bound is that it features the
squared stochastic gradient norms evaluated at xt and yt,
which are generally unbounded, which makes this guarantee
void of meaning without projecting the updates. Our own
guarantee stated above replaces these gradient norms with
the norms of the gradients evaluated at the initial point
x1,y1, which is always bounded irrespective of how large
the actual iterates xt,yt get.

At first, it may seem surprising that such an improvement
is possible to achieve by such a simple regularization trick.
To provide some insight about how regularization helps
us achieve our goal, we provide the brief proof sketch of
the above statement here (and defer the full proof to Ap-
pendix A.1).

Proof sketch of Theorem 3.1. Consider (x∗,y∗) ∈ Rm ×
Rn. As the first step, we introduce the notation
f (reg) (x,y) = f (x,y) + ϱx

2 ∥x− x1∥22 −
ϱy

2 ∥y − y1∥22
and rewrite the expected duality gap as

E [G(x∗;y∗)] ≤ 1

T

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (x∗,yt)
]

+
ϱx
2T

T∑
t=1

E
[
∥x∗ − x1∥22 − ∥xt − x1∥22

]
+

ϱy
2T

T∑
t=1

E
[
∥y∗ − y1∥22 − ∥yt − y1∥22

]
.

The first term in this decomposition then can be further
written as the sum of regrets of the min and the max players:

1

T

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (x∗,yt)
]

=
1

T

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (xt,yt)
]
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+
1

T

T∑
t=1

E
[
f (reg) (xt,yt)− f (reg) (x∗,yt)

]
These terms can then be controlled via the standard regret
analysis of COMID due to Duchi et al. (2010), and an addi-
tional “ghost-iterate” trick to account for adaptive compara-
tors (see Section 3 of Nemirovski et al., 2009). In particular,
a few lines of calculations (along the lines of the online
gradient descent analysis of Zinkevich, 2003) yield the fol-
lowing bound on the sum of the two regrets:

1

T

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (x∗,yt)
]

≤
E
[
∥y∗ − y1∥22

]
ηyT

+
ηy
T

T∑
t=1

E
[∥∥g̃y(t)

∥∥2
2

]

+
E
[
∥x∗ − x1∥22

]
ηxT

+
ηx
T

T∑
t=1

E
[
∥g̃x(t)∥

2
2

]
Recalling the form of the gradient estimators, we note that

E
[
∥g̃x(t)∥

2
2

]
= E

[∥∥∥M̂(t)yt + b̂(t)
∥∥∥2
2

]
≤ 2E

[∥∥∥M̂(t) (yt − y1)
∥∥∥2
2

]
+ 2E

[∥∥∥M̂(t)y1 + b̂(t)
∥∥∥2
2

]
≤ 2L2

ME
[
∥yt − y1∥22

]
+ 2E

[∥∥∥M̂(t)y1 + b̂(t)
∥∥∥2
2

]
,

and a similar bound can be shown for the norm of g̃y(t)
as well. Putting the above bounds together and setting
ϱy ≥ 4LMηx and ϱx ≥ 4LMηy gives the result.

As can be seen from the proof sketch above, the role of the
additional regularization term for the x-player is to elimi-
nate the gradient norms appearing in the regret bound of
the y-player. This effect kicks in once the regularization
parameter ϱx becomes large enough, so that the correspond-
ing negative term in the regret bound of the first player can
overpower the positive term appearing on the bound of the
opposite player. The same story applies to the second player.
Note that while the regularization pulls the iterates closer to
the initial point x1,y1, it does not explicitly guarantee that
they remain uniformly bounded at all times t, and in fact
such claim seems impossible to show in general due to the
noise in the gradient estimates. Remarkably, the analysis
above works seamlessly for noisy gradient estimates, even
though the gradient noise can grow proportionally with the
size of the iterates. Another technical challenge that the
analysis needs to address is the potential data-dependence
of the comparators (x∗,y∗), which introduces a potential
bias into the estimates of the gap function G(x∗,y∗). We
handle this bias by adapting an elegant “ghost-iterate” trick

of Nemirovski et al. (2009), which we regard as an appli-
cation of the technique of Rakhlin & Sridharan (2017) for
controlling suprema of a collection of martingales via online
learning.

3.2. Sub-bilinear games and general divergences

After setting the stage in the previous section, we are now
ready to introduce our method in its full generality. Specif-
ically, we are going to consider a somewhat broader class
of objective functions, and provide mirror-descent style per-
formance guarantees that measure distances in terms of
Bregman divergences. We are going to take inspiration from
Theorem 3.1 and its proof we have just presented: in short,
the idea is to add appropriate regularization terms to the ob-
jective that will cancel some otherwise large positive terms
in the regret analyses of the two players. The choice of the
regularization terms will be somewhat more involved in this
case, and will require taking the structure of the objective
function into account.

We will let ωx : X → R and ωy : Y → R be two convex
functions, to be called the distance-generating functions
over X and Y . We suppose that ωx is γx-strongly convex
with respect to the norm ∥·∥x and similarly that ωy is γy-
strongly convex with respect to ∥·∥y. We will respectively
denote the Bregman divergences induced by ωx and ωy as
Dx(·∥·) and Dy(·∥·). We will assume that the objective
function satisfies the following condition:

Definition 3.2. (sub-bilinear function) A convex-concave
function f : X × Y → R is said to be l-sub-bilinear for
some l > 0 with respect to the norms ∥·∥x and ∥·∥y, if its
subgradients gx ∈ ∂xf(x,y) and gy ∈ ∂yf(x,y) satisfy
the following conditions for all x,y:

∥gx∥2x,∗ ≤ l2
(
∥y∥2x,∗ + 1

)
,

∥gy∥2y,∗ ≤ l2
(
∥x∥2y,∗ + 1

)
.

This condition effectively states that, for a fixed y (resp. x),
the objective function f(x,y) is Lipschitz with respect to x
(resp. y) with a constant that grows at most as fast as ∥y∥x,∗
(resp. ∥x∥y,∗). Put differently, it means that f behaves like
a bilinear function asymptotically as one approaches infinity
in each direction, which justifies the name “sub-bilinear”
(mirroring the notion of “sublinearity” or “subadditivity”
in convex analysis, cf. Hiriart-Urruty & Lemaréchal, 2001,
Section C.1). We will further suppose that the stochastic
gradients themselves satisfy the following conditions for
some L > 0:

Et

[
∥g̃x(t)∥x,∗

]2
≤ L2

(
∥yt − y1∥2x,∗ + 1

)
,

Et

[∥∥g̃y(t)
∥∥
y,∗

]2
≤ L2

(
∥xt − x1∥2y,∗ + 1

)
.

(4)
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Supposing that the condition holds with norms respectively
centered at x1 and y1 is without loss of generality, and
in particular one can always verify l2

(
∥x∥2y,∗ + 1

)
≤

L2
(
∥x− x1∥2y,∗ + 1

)
at the price of replacing l by a larger

factor L that may depend on ∥x1∥y,∗.

For this setting, our algorithm is an adaptation of composite-
objective mirror descent (COMID, Duchi et al., 2010), which
itself is an adaptation of the classic mirror descent method of
Nemirovski & Yudin (1983); Beck & Teboulle (2003), vari-
ants of which have been used broadly since the early days of
numerical optimization (Rockafellar, 1976; Martinet, 1970;
1978). In particular, we introduce the additional regular-
ization functions Hx : X → R and Hy : Y → R defined
respectively for each x and y as Hx(x) =

1
2 ∥x− x1∥2y,∗

and Hy(y) = 1
2 ∥y − y1∥2x,∗, and use these as additional

regularization terms to calculate the following sequence of
updates in each round t = 1, 2, . . . , T :

xt+1= arg min
x∈X

{
⟨x, g̃x(t)⟩+ ϱxHx(x) +

1

ηx
Dx(x∥xt)

}
yt+1= arg max

y∈Y

{〈
y, g̃y(t)

〉
− ϱyHy(y)−

1

ηy
Dy(y∥yt)

}
,

We refer to this algorithm as Composite-Objective Mirror
Descent-Ascent (COMIDA), and provide our main result
regarding its performance.

Theorem 3.3. Suppose that f is sub-bilinear and the
stochastic gradients satisfy the conditions in Equation (4).
Letting ϱx =

2ηyL
2

γy
and ϱy = 2ηxL

2

γx
, and x∗,y∗ be arbi-

trary adaptive comparator points, the expected duality gap
of COMIDA satisfies the following bound:

E [G(x∗;y∗)] ≤ 2E [Dy(y
∗∥y1)]

ηyT
+

ϱy
2
E
[
∥y∗ − y1∥2x,∗

]
+

2E [Dx(x
∗∥x1)]

ηxT
+

ϱx
2
E
[
∥x∗ − x1∥2y,∗

]
+ L2

(
ηy
γy

+
ηx
γx

)
.

The proof is provided in Appendix A.2. Notably, as in
the case of Theorem 3.1, the statement remains valid for
adaptively chosen comparator points such as (x∗,y∗) =
arg maxx,y∈S G(x,y) for arbitrary bounded sets S ⊆
X × Y . The most important special case of our setting is
when the norms appearing in the statement are dual to each
other, and in particular ∥·∥x = ∥·∥y,∗ and ∥·∥y = ∥·∥x,∗,
so that ωx is strongly convex with respect to ∥·∥y,∗ and
ωy is strongly convex with respect to ∥·∥x,∗. This is the
case for instance when X = Y = Rm, ωx = 1

2 ∥·∥
2
A and

ωy = 1
2 ∥·∥

2
A−1 for a symmetric positive definite matrix

A ∈ Rm×m. We state a specialized version of our state-
ment to this setting below.

Corollary 3.4. Suppose that f is sub-bilinear and the
stochastic gradients satisfy the conditions in Equation (4),
and suppose additionally that ωx is γx-strongly convex with
respect to ∥·∥y,∗ and ωy is γy-strongly convex with respect

to ∥·∥x,∗. Set the parameters as ϱx =
2ηyL

2

γy
, ϱy = 2ηxL

2

γx
,

ηx = ηy =
√
γxγy/L2T . Then, letting x∗,y∗ be arbitrary

adaptive comparator points, the duality gap of COMIDA
satisfies the following bound:

E [G(x∗;y∗)]

= O

(
L (E [Dx(x

∗∥x1) +Dy(y
∗∥y1)] + 1)√

γxγyT

)
.

The proof simply follows from using the definition of strong
convexity to upper bound γy ∥y∗ − y1∥2x,∗ ≤ 2Dy(y

∗∥y1)

and γx ∥x∗ − x1∥2y,∗ ≤ 2Dy(x
∗∥x1).

The above results enjoy the same initialization-dependent
property as the ones we have established earlier for bilinear
games, with the upgrade that the result now holds in terms
of general Bregman divergences and also slightly relaxes
the conditions on the objective function.

4. Application to Average Reward Markov
Decision Processes

In this section, we apply techniques from the previous sec-
tion for computing near-optimal policies in average-reward
Markov Decision Processes (AMDPs). As it is well-known,
this task can be formulated as a linear program (LP), which
in turn can be solved by finding a saddle point of the associ-
ated Lagrangian. Below, we will only describe the saddle-
point optimization problem itself and give more context on
the problem in Appendix B. For a full technical description
of the LP formulation of optimal control in MDPs, we refer
to Section 8.8 in the classic textbook of Puterman (1994).

We consider infinite-horizon AMDPs denoted as
(S,A, r, P ) where S is a finite state space of cardi-
nality S, A is a finite action space of cardinality A,
r : S ×A → [0, 1] a reward function and P : S ×A → ∆S

a stochastic transition model. For ease of notation, we
often refer to the reward vector r ∈ RSA with entries
{r(s, a)}(s,a)∈S×A, and the transition matrix P ∈ RSA×S

with rows P(s,a),· = P (·|s, a) ∈ ∆S for (s, a) ∈ S × A.
We also define the matrix E ∈ RSA×S with entries
E(s,a),s′ = I{s=s′}.

The agent-environment interaction in this MDP setting is
described thus: for k = 1, 2, · · · ,K steps, having ob-
served the current state sk of the environment, the agent
takes action ak according to some stochastic policy π(·|sk).
In consequence of this action, the agent receives an im-
mediate reward rk = r(sk, ak), and moves to the next
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state sk+1 ∼ P (·|sk, ak), from where the interaction con-
tinues. The performance of the policy π is measured in
terms of the long-term average reward (or gain) ρπ =

lim supK→∞
1
KEπ

[∑K
k=1 r(sk, ak)

]
. The goal of the op-

timal control problem is to find an optimal policy π∗ that
achieves maximal average reward: π∗ = arg maxπ ρ(π).
We provide more details on the existence conditions of such
optimal policies in the Appendix.

The Lagrangian associated with the optimal control problem
is written as

L(µ;v) = ⟨µ, r⟩+ ⟨v,P Tµ−ETµ⟩ .

Here, the primal variable µ ∈ ∆SA is a probability distri-
bution on the state-action space that we will refer to as an
occupancy measure and the dual v ∈ RS is a real-valued
function that we will refer to as a value function. The saddle
point (µ∗,v∗) corresponds to the pair of the optimal occu-
pancy measure µ∗ and the optimal value function v∗. In
most problems of practical interest, the scale of the value
functions is unknown a priori, and consequently there is no
tractable way of coming up with a bounded set V ⊂ RS that
will include the optimal value function v∗. Without such
prior knowledge, one has to solve the unconstrained saddle-
point optimization problem minv∈RS maxµ∈∆SA

L(µ;v)
in order to find the optimal policy—which is precisely the
subject of our paper.

We will employ a version of our stochastic primal-dual al-
gorithm to solve the above unconstrained problem. We
work in the well-studied setting of planning with random-
access models, where we are given a simulator (or gen-
erative model) of the transition function P that we can
query at any state-action pair (s, a) for an i.i.d. sample from
P (·|s, a). We will use this simulator to build estimators of
the gradients

∇vL(µ;v) = P Tµ−ETµ

∇µL(µ;v) = r + Pv −Ev,

with their stochastic estimators calculated for each t as

g̃v(t) = es′t − est

g̃µ(t) =
∑

(s,a)∈S×A

[r(s, a) + vt(s
′
t)− vt(s)]e(s,a),

using i.i.d. samples (st, at) ∼ µt, s
′
t ∼ P (·|st, at), also

s′t(s, a) ∼ P (·|s, a) for all (s, a) ∈ S ×A. This makes for
a total of SA+ 1 queries per gradient computation.

Since in our setting only v is unconstrained, it will be
enough to introduce the stabilizing regularization for these
parameters. With that, our algorithm will initialize v1 = 0
and µ1 arbitrarily, and then perform the following sequence

of updates for all t = 1, 2, . . . , T :

vt+1= arg min
v∈RS

{
⟨v, g̃v(t)⟩+

1

2ηv
∥v − vt∥22+ϱv ∥v∥2∞

}
,

µt+1 = arg min
µ∈∆SA

{
−
〈
µ, g̃µ(t)

〉
+

1

ηµ
DKL (µ∥µt)

}
,

where DKL (µ∥µ′) =
∑

s,a µ(s, a) log
µ(s,a)
µ′(s,a) is the rel-

ative entropy (or Kullback–Leibler divergence) between
µ and µ′. We refer to the resulting algorithm as
COMIDA-MDP.

The output of COMIDA-MDP is a policy πT : S → ∆A,
defined by first computing the average of the primal iterates
µT = 1

T

∑T
t=1 µt, and then setting

πT (a|s) =
µT (s, a)∑

a′∈A µT (s, a
′)

for all s, a. Then, adapting a result from Cheng et al. (2020),
we can relate the suboptimality of the output policy to the
duality gap evaluated at a well-chosen pair of comparator
points (µ∗,vπT ):

ρπ
∗
− ρπT = G(µπ∗

;vπT ).

Notably, the size of the comparator point vπT is unknown a
priori, and additionally it depends on the interaction history
which will necessitate some extra care in our analysis. We
once again refer to Appendix B for more details regarding
the choice of vπT and the formal proof of the above claim.

Our main result in this section is the following.

Theorem 4.1. Let ϱv = 4ηµ. Then, the output of
COMIDA-MDP satisfies the following bound:

E
[〈

µπ∗
− µπT , r

〉]
≤

DKL
(
µπ∗∥∥µ1

)
ηµT

+ ηµ + 2ηv

+

(
1

ηvT
+ 4ηµ

)
E
[∥∥vπT

∥∥2
2

]
.

In particular, if the output policy satisfies
∥∥vπT

∥∥
∞ ≤ B

for some B > 0 and µ1 is the uniform distribution over

SA, and tuning the parameters as ηµ =
√

log(SA)
ST and

ηv =
√

SA/T , the bound becomes

E
[〈

µπ∗
− µπT , r

〉]
= O

(√
B4SA log (SA)

T

)
.

Thus, the iteration complexity of COMIDA-MDP for finding
an ε-optimal policy is of the order B4SA log(SA)

ε2 . We stress,
unlike similar prior results such as the ones of Wang (2017);
Jin & Sidford (2020); Cheng et al. (2020) that this result
does not require prior knowledge of B. As each iteration
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uses SA + 1 queries to the generative model, this makes
for a total of B4S2A2 log(SA)

ε2 query complexity, which is
suboptimal in terms of its dependence on SA, but optimal
in terms of ε.

5. Discussion
Our work contributes to the rich literature on saddle-point
optimization via incremental first-order methods, a subject
studied at least since the works of Martinet (1970; 1978);
Rockafellar (1976); Nemirovski & Yudin (1983). In the last
few years, this topic has enjoyed a massive comeback within
the context of optimization for machine learning models,
and in particular generative adversarial networks (GANs,
Goodfellow et al., 2014). The instability of standard gra-
dient descent/ascent methods has been pointed out early
on during this revival, which brought significant attention
to a family of methods known extragradient methods, first
proposed by Korpelevich (1976) and further developed by
Popov (1980); Nemirovski (2004); Juditsky et al. (2011);
Rakhlin & Sridharan (2013a;b). A wealth of recent works
have contributed to a better understanding of these methods,
and most notably established last-iterate convergence of
extragradient-type methods for a variety of problem settings
(Daskalakis et al., 2017; Gidel et al., 2018; Mertikopoulos
et al., 2018; Mishchenko et al., 2020). The majority of these
works assume access to either deterministic gradients or gra-
dients with uniformly bounded noise and bounded domain.
The assumption of bounded noise was more recently lifted
in the works of Loizou et al. (2021) and Sadiev et al. (2023),
but their assumptions on the noise and the objective function
are ultimately incompatible with our setting.

We leave several interesting questions open for future work.
The biggest of these questions is if the scaling with the
initialization error ∥x∗ − x1∥22 + ∥y∗ − y1∥22 can be im-
proved to ∥x∗ − x1∥2 + ∥y∗ − y1∥2. This is obviously
possible when we have prior knowledge of these norms, and
can tune the learning rate to fully optimize the first set of
bounds in Theorem 3.1. Without prior knowledge, it is less
clear if such improvement is possible, unlike in the case of
convex minimization problems where there exist efficient al-
gorithms that achieve such improved rates, at least up to log
factors (Streeter & McMahan, 2012; Orabona, 2013; 2014).
While we were not aware of this at the time of preparing
the first version of this article, the recent work of Jacobsen
& Cutkosky (2023) has already provided some results that
hint at a negative answer: their Theorem 2.3 shows that
there exists an online linear optimization problem with sub-
quadratic gradient growth where quadratic scaling with the
comparator norm is unavoidable. Whether or not their coun-
terexample can be adapted to our setting remains to be seen.

We close by highlighting (one more time) some similarities
between our approach and some previously proposed meth-

ods. We first mention the work of Jacobsen & Cutkosky
(2023) that we learned about after completing the first ver-
sion of the present manuscript. Their methods have the
advantage of being completely parameter-free, and demon-
strating a slightly more refined dependence on the compara-
tor norms than our guarantees do. On the other hand, our
algorithm is arguably much simpler and is thus much easier
to adapt to more general settings, as evidenced by our main
results that are stated in terms of general Bregman diver-
gences. In contrast, the analysis of Jacobsen & Cutkosky
(2023) is strictly tied to Euclidean norms and it is unclear
if a generalization to other geometries is straightforwardly
possible. Similarly, we believe that adjusting their analysis
to handle stochastic gradients and data-dependent compara-
tors may not be entirely straightforward. Besides this work,
our method also bears close similarity to the stabilized on-
line mirror descent method of Fang et al. (2022): their
approach introduces a similar regularization term to address
issues faced by OMD in unconstrained convex minimiza-
tion problems. Their use of regularization had the purpose
of allowing time-dependent (and more generally, adaptive)
learning-rate schedules, which is ultimately quite different
from the purpose that we employed this technique for, and
also requires a different tuning rule than our method. The
extension of this technique by Hsieh et al. (2021) to a two-
player game setting similar to ours remained restricted to
consider noiseless gradients and bounded decision sets. Ad-
ditionally, an anonymous reviewer has pointed our attention
to the similarity between our approach and an “anchoring”
technique extensively studied under the name of Halpern it-
eration in the optimization literature (Halpern, 1967; Lieder,
2021). All these connections suggest that the simple and
natural regularization trick we made use of in this paper is a
tool of fundamental importance with a large range of diverse
uses. In light of our results and these observations, we are
particularly curious to see if this trick will find further uses
in the context of saddle-point optimization and game theory
in the future.
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A. Proof of results in Section 3
In this section, we provide a detailed proof of claims, lemmas and theorems in Section 3 in the main text.

A.1. Complete proof of Theorem 3.1

We start by rewriting the expected duality gap evaluated at (x∗;y∗) as follows:

E [G(x∗;y∗)] = E [f(xT ,y
∗)− f(x∗,yT )]

=
1

T

T∑
t=1

E [f(xt,y
∗)− f(x∗,yt)]

=
1

T

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (x∗,yt)
]

+
ϱy
2T

T∑
t=1

E
[
∥y∗ − y1∥22 − ∥yt − y1∥22

]
+

ϱx
2T

T∑
t=1

E
[
∥x∗ − x1∥22 − ∥xt − x1∥22

]
. (5)

To control the first set of terms in the above expression, we apply the regret analysis in Appendix A.2.1. Precisely, with
Dx(x∥x′) = 1

2 ∥x− x′∥22, Dy(y∥y′) = 1
2 ∥y − y′∥22 and, Hx(x) =

1
2 ∥x− x1∥22, Hy(y) =

1
2 ∥y − y1∥22, we get:

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (x∗,yt)
]

=

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (xt,yt)
]
+

T∑
t=1

E
[
f (reg) (xt,yt)− f (reg) (x∗,yt)

]

≤
E
[
∥y∗ − y1∥22

]
ηy

+ ηy

T∑
t=1

E
[∥∥g̃y(t)

∥∥2
2

]
+

E
[
∥x∗ − x1∥22

]
ηxT

+ ηx

T∑
t=1

E
[
∥g̃x(t)∥

2
2

]
. (6)

To proceed, we recall the assumptions we made on the gradient estimators on the main text, namely that the inequalities
Et

[∥∥M̂(t)y
∥∥2
2

]
≤ L2

M ∥y∥22 and Et

[∥∥M̂(t)Tx∥22
]
≤ L2

M ∥x∥22 hold for all x,y ∈ X × Y . Using this condition allows
us to bound the gradient norms as

Et

[∥∥g̃y(t)
∥∥2
2

]
= Et

[∥∥∥M̂(t)Txt − ĉ(t)
∥∥∥2
2

]
= Et

[∥∥∥M̂(t)T (xt − x1) + M̂(t)Tx1 − ĉ(t)
∥∥∥2
2

]
≤ 2Et

[∥∥∥M̂(t)T (xt − x1)
∥∥∥2
2

]
+ 2Et

[∥∥∥M̂(t)Tx1 − ĉ(t)
∥∥∥2
2

]
≤ 2L2

M ∥xt − x1∥22 + 2Et

[∥∥∥M̂(t)Tx1 − ĉ(t)
∥∥∥2
2

]
,

where the third line uses the triangle inequality and Cauchy–Schwarz, and the second follows from said assumption.
Likewise, we can show

Et

[
∥g̃x(t)∥

2
2

]
≤ 2L2

M ∥yt − y1∥22 + 2Et

[∥∥∥M̂(t)y1 + b̂(t)
∥∥∥2
2

]
.

Therefore, by the tower rule and monotonicity of expectation,

E
[∥∥g̃y(t)

∥∥2
2

]
= E

[
Et

[∥∥g̃y(t)
∥∥2
2

]]
≤ 2L2

ME
[
∥xt − x1∥22

]
+ 2E

[∥∥∥M̂(t)Tx1 − ĉ(t)
∥∥∥2
2

]
,
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and

E
[
∥g̃x(t)∥

2
2

]
= E

[
Et

[
∥g̃x(t)∥

2
2

]]
≤ 2L2

ME
[
∥yt − y1∥22

]
+ 2E

[∥∥∥M̂(t)y1 + b̂(t)
∥∥∥2
2

]
.

Plugging these derivations into the bound of Equation Equation (6) and then combining the result with the bound of
Equation Equation (5), we obtain

E [G(x∗;y∗)] ≤
(

1

ηyT
+

ϱy
2

)
E
[
∥y∗ − y1∥22

]
+

2ηy
T

T∑
t=1

E
[∥∥∥M̂(t)Tx1 − ĉ(t)

∥∥∥2
2

]

+

(
1

ηxT
+

ϱx
2

)
E
[
∥x∗ − x1∥22

]
+

2ηx
T

T∑
t=1

E
[∥∥∥M̂(t)y1 + b̂(t)

∥∥∥2
2

]

+
1

T

T∑
t=1

E
[
∥yt − y1∥22

] (
2ηxL

2
M − ϱy

2

)
+

1

T

T∑
t=1

E
[
∥xt − x1∥22

] (
2ηyL

2
M − ϱx

2

)
.

By setting ϱy = 4ηxL
2
M and ϱx = 4ηyL

2
M , we eliminate the last two terms in the bound above and arrive at the result stated

in the theorem:

E [G(x∗;y∗)] ≤
(

1

ηyT
+ 2ηxL

2
M

)
E
[
∥y∗ − y1∥22

]
+

2ηy
T

T∑
t=1

E
[∥∥∥M̂(t)Tx1 − ĉ(t)

∥∥∥2
2

]

+

(
1

ηxT
+ 2ηyL

2
M

)
E
[
∥x∗ − x1∥22

]
+

2ηx
T

T∑
t=1

E
[∥∥∥M̂(t)y1 + b̂(t)

∥∥∥2
2

]
.

A.2. Proof of Theorem 3.3

Consider the expected duality gap at arbitrary adaptive comparator points (x∗,y∗):

E [G(x∗;y∗)] = E [f(xT ,y
∗)− f(x∗,yT )] .

By the convex-concave property of f and straightforward derivations, we can rewrite the above gap in terms of the regret of
a min-max optimization scheme and regularization terms as

E [G(x∗;y∗)] = E [f(xT ,y
∗)− f(x∗,yT )]

≤ 1

T

T∑
t=1

E [f (xt,y
∗)− f (x∗,yt)]

=
1

T

T∑
t=1

E [f (xt,y
∗)− f (xt,yt)] +

1

T

T∑
t=1

E [f (xt,yt)− f (x∗,yt)]

=
1

T

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (xt,yt)
]
+

1

T

T∑
t=1

E
[
f (reg) (xt,yt)− f (reg) (x∗,yt)

]
+

ϱy
T

T∑
t=1

E [Hy(y
∗)−Hy(yt)] +

ϱx
T

T∑
t=1

E [Hx(x
∗)−Hx(xt)] , (7)

where in this case,
f (reg)(x,y) = f(x,y) +

ϱx
2
Hx(x)−

ϱy
2
Hy(y).

The rest of the proof is split in two parts. First, we control regularized regret of the min and max players, corresponding to
the first two sums appearing on the right-hand side of the above bound. Then, substituting the resulting bound back into
Equation (7), we take advantage of the negative terms Hx(xt) and Hy(yt) appearing on the right hand side to cancel out
some potentially large terms in the regret analysis, arriving at a bound that is robust to large iterates.
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A.2.1. REGRET ANALYSIS OF COMIDA ON A REGULARIZED OBJECTIVE

This part of the proof is based on the regret analysis of Composite Mirror Descent (COMID) for stochastic convex optimization.
The proof is a more-or-less standard exercise in convex analysis (appearing, e.g., as Theorem 8 of Duchi et al. (2010)), and
we provide it for completeness as Lemma D.1 in Appendix D. In this section, we directly apply the implied guarantee on the
regret of COMID against an adaptive comparator in Corollary D.2 to control the regret of each player.

For the max player, we denote the loss in round t as ℓt(y) = −f(xt,y) for y ∈ Y and we define its regularized loss as
ℓ
(reg)
t (y) = −f(xt,y) + ϱyHy (y). Then, the total expected regret of the max player on the regularized objective can be

rewritten as
T∑

t=1

E
[
f (reg) (xt,y

∗)− f (reg) (xt,yt)
]
=

T∑
t=1

E
[
ℓ
(reg)
t (yt)− ℓ

(reg)
t (y∗)

]
.

Notice that ℓ(reg)
t (·) is convex by the concave property of f(xt, ·). We will bound the regret using Corollary D.2, with initial

iterate u1 = y1, gradient estimates g̃u(t) = −g̃y(t) and gradients gu(t) = −gy(t). Also, we will set U = Rn, ωu = ωy,
ηu = ηy and ϱu = ϱy . With y∗ adaptive and potentially dependent on the interaction history, this gives

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (xt,yt)
]
≤ 2E [Dy(y

∗∥y1)]

ηy
+

ηy
γy

T∑
t=1

E
[∥∥g̃y(t)

∥∥2
y,∗

]
+ ϱyE [Hy(y1)] .

Likewise, reusing previous notation we denote the loss of the min player as in round t as ℓt(x) = f(x,yt). Since f(·,yt) is
convex, and by equivalence of the minimization step of COMIDA to that of Corollary D.2 when u1 = x1, g̃u(t) = g̃x(t),
gu(t) = gx(t), U = Rm, ωu = ωx, ηu = ηx and ϱu = ϱx, we can bound the regret of the min player against an adaptive
comparator x∗ as follows:

T∑
t=1

E
[
f (reg) (xt,yt)− f (reg) (x∗,yt)

]
≤ 2E [Dx(x

∗∥x1)]

ηx
+

ηx
γx

T∑
t=1

E
[
∥g̃x(t)∥

2
x,∗

]
+ ϱxE [Hx(x1)] .

Therefore, the total expected regret of COMIDA on the regularized objective is bounded above as follows:

T∑
t=1

E
[
f (reg) (xt,y

∗)− f (reg) (xt,yt)
]
+

T∑
t=1

E
[
f (reg) (xt,yt)− f (reg) (x∗,yt)

]
≤ 2E [Dy(y

∗∥y1)]

ηy
+

ηy
γy

T∑
t=1

E
[∥∥g̃y(t)

∥∥2
y,∗

]
+ ϱyE [Hy(y1)]

+
2E [Dx(x

∗∥x1)]

ηx
+

ηx
γx

T∑
t=1

E
[
∥g̃x(t)∥

2
x,∗

]
+ ϱxE [Hx(x1)] .

This completes the first part of the proof.

A.2.2. ELIMINATING THE GRADIENT NORMS

For the second part, we make use of our specific definition of the regularization function: Hx(x) =
1
2 ∥x− x1∥2y,∗ and

Hy(y) =
1
2 ∥y − y1∥2x,∗. In this case Hx(x1) = Hy(y1) = 0. Then, plugging in the bounds from Appendix A.2.1 in the

expected duality gap we have:

E [G(x∗;y∗)] ≤ 2E [Dy(y
∗∥y1)]

ηyT
+

ηy
γyT

T∑
t=1

E
[∥∥g̃y(t)

∥∥2
y,∗

]
+

2E [Dx(x
∗∥x1)]

ηxT
+

ηx
γxT

T∑
t=1

E
[
∥g̃x(t)∥

2
x,∗

]
+

ϱy
2T

T∑
t=1

E
[
∥y∗ − y1∥2x,∗ − ∥yt − y1∥2x,∗

]
+

ϱx
2T

T∑
t=1

E
[
∥x∗ − x1∥2y,∗ − ∥xt − x1∥2y,∗

]
. (8)

To proceed, we make crucial use of our noise condition stated as Equation (4) in the main text so that we can bound the
gradient norms as

E
[∥∥g̃y(t)

∥∥2
2

]
= E

[
Et

[∥∥g̃y(t)
∥∥2
2

]]
≤ E

[
L2
(
∥xt − x1∥2y,∗ + 1

)]
.
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Also,
E
[
∥g̃x(t)∥

2
2

]
= E

[
Et

[
∥g̃x(t)∥

2
2

]]
≤ E

[
L2
(
∥yt − y1∥2x,∗ + 1

)]
.

Plugging these into the bound of Equation (8) gives

E [G(x∗;y∗)] ≤ 2E [Dy(y
∗∥y1)]

ηyT
+

ηy
γy

L2 +
ϱy
2
E
[
∥y∗ − y1∥2x,∗

]
+

2E [Dx(x
∗∥x1)]

ηxT
+

ηx
γx

L2 +
ϱx
2
E
[
∥x∗ − x1∥2y,∗

]
+

1

T

T∑
t=1

E
[
∥yt − y1∥2x,∗

](ηxL
2

γx
− ϱy

2

)
+

1

T

T∑
t=1

E
[
∥xt − x1∥2y,∗

](ηyL
2

γy
− ϱx

2

)
.

Lastly, choosing ϱy = 2ηxL
2

γx
and ϱx =

2ηyL
2

γy
results in the bound stated in the theorem:

E [G(x∗;y∗)] ≤ 2E [Dy(y
∗∥y1)]

ηyT
+

ηyL
2

γy
+

ϱy
2
E
[
∥y∗ − y1∥2x,∗

]
+

2E [Dx(x
∗∥x1)]

ηxT
+

ηxL
2

γx
+

ϱx
2
E
[
∥x∗ − x1∥2y,∗

]
.
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B. Analysis for the Average-Reward MDP Setting
B.1. Problem setup

First we briefly recall some general concepts related to average-reward MDPs (and refer the reader to Chapter 8 of Puterman,
1994 for a more detailed introduction into the topic). Consider infinite-horizon AMDPs denoted as (S,A, r, P ) where S
is a finite state space of cardinality S, A is a finite action space of cardinality A, r : S × A → [0, 1] a reward model and
P : S × A → ∆S a stochastic transition model. For ease of notation, we often refer to the reward vector r ∈ RSA with
{r(s, a)}(s,a)∈S×A entries, and the transition matrix P ∈ RSA×S with P [s, a] = p(·|s, a) ∈ ∆S for (s, a) ∈ S ×A.

In this work, we primarily focus on the class of AMDPs where each policy π has a well-defined unique stationary state
distribution (or state-occupancy measure) νπ : S → [0, 1], defined for each s as

νπ(s) = lim
K→∞

1

K

K∑
k=1

P [xk = x |π] .

The stationary distribution can be seen to satisfy the linear system of equations νπ(s) =
∑

(s′,a′) p(s|s′, a′)π(a′|s′)νπ(s′)
for all s ∈ S . Hence, the corresponding stationary state-action distribution (or state-action occupancy measure) µπ(s, a) =
π(a|s)νπ(s) for (s, a) ∈ S × A is also unique, and we can write the average-reward objective as ρπ = ⟨µπ, r⟩. This
compact representation of the reward criterion and occupancy measure inspires the linear programming approach to optimal
control in MDPs, wherein we are interested in solving the linear program

max
µ∈RSA

⟨µ, r⟩

subject to ETµ = P Tµ

⟨µ,1⟩ = 1

µ ≥ 0.

(9)

In the above expressions, the operator E : RSA → RS is defined as (ETµ)(s) =
∑

a µ(s, a) for s ∈ S. This LP is
motivated by the fact that the set of distributions µ that satisfy the constraints exactly corresponds to the set of stationary
state-action distributions that can be potentially induced by a stationary policy in the MDP.

We also define the value function (or bias function) of policy π as vπ : S → R, taking the following value in each state
s ∈ S:

vπ(s) = lim
K→∞

Eπ

[
K∑

k=1

(r(sk, ak)− ρπ)

∣∣∣∣∣s0 = s

]
=
∑
a

π(a|s) [r(s, a)− ρπ + ⟨p(·|s, a),vπ⟩] . (10)

Then, the value function of an optimal policy maximizing ρπ can be shown to be an optimal solution of the dual of the
LP (9), written as follows:

min
ρ∈R,v∈V

ρ

subject to Ev ≥ r + Pv − 1ρ.
(11)

Finding an optimal solution to either of the LPs can be equivalently phrased as solving the following bilinear game:

min
v∈V

max
µ∈∆SA

L(v;µ), (12)

with the Lagrangian associated with the LPs is defined as

L(v;µ) = ⟨µ, r⟩+ ⟨v,P Tµ−ETµ⟩+ ρ(1− ⟨µ,1⟩)
= ⟨µ, r⟩+ ⟨v,P Tµ−ETµ⟩ .

The gradients of the above objective are respectively expressed as

∇vL(v;µ) = P Tµ−ETµ and ∇µL(v;µ) = r + Pv −Ev.
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Now in the context of planning, it is assumed that the transition model is unknown, hence the gradients cannot be computed
exactly. Rather, we assume access to an accurate simulator which can be queried at any state-action pair (s, a) ∈ S ×A
to obtain a sample next state s′ ∼ p(·|s, a). Indeed, with vt,µt determined by the end of round t − 1, we can compute
unbiased estimates in round t as:

g̃v(t) = es′t − est

g̃µ(t) =
∑

(s,a)∈S×A

(
r(s, a) + vt(s

′
t(s, a))− vt(s)

)
e(s,a),

using i.i.d samples (st, at) ∼ µt, s
′
t ∼ p(·|st, at), also s′t(s, a) ∼ p(·|s, a) for all (s, a) ∈ S ×A.

Our aim is to find a near-optimal policy with a polynomial number of queries to the generative model, by running a version
of gradient descent-ascent on the Lagrangian L. In particular, we aim to derive a bound on the suboptimality of the output
policy in terms of the optimization-error guarantee that we obtain by running our algorithm. To achieve this, a key quantity to
study is the expected gap of the averaged iterates (µT ,vT ) ∈ ∆SA ×V against arbitrary comparators (µ∗,v∗) ∈ ∆SA ×V
denoted as

E [G(µ∗;v∗)] = E [L(µ∗;vT )− L(µT ;v
∗)] , (13)

where (µT ,vT ) =
(

1
T

∑T
t=1 µt,

1
T

∑T
t=1 vt

)
and πT are as described in the main text. Then, a relationship between the

duality gap and the policy can be established by choosing the comparators as (µ∗,v∗) = (µπ∗
,vπT ) ∈ ∆SA ×RS . Indeed,

as we show in Lemma C.2 (a result adapted from Cheng et al., 2020), the two quantities under this choice can be related as

E
[
G(µπ∗

;vπT )
]
= E

[〈
µπ∗

− µπT , r
〉]

. (14)

B.2. Methodology

In order to apply standard OMD to solve Equation (12), previous LP-based approaches to planning in finite AMDPs (Wang,
2017; Jin & Sidford, 2020) required the domain V to cover v∗, which requires prior knowledge of the properties of the MDP.
To this end, they made the assumption that the value functions of all policies have bounded span seminorm: for all policies
π, the value function vπ satisfies ∥vπ∥sp = maxs v

π(s) −mins′ v
π(s′) ≤ B for some B > 0. We call this quantity the

worst-case bias span. A simple way to make sure that the above assumption holds is to suppose that the Markov chains
induced by each policy π have bounded mixing time tmix, defined as

tmix = max
π

[
arg min

t≤1

{
max
ν∈∆S

∥∥∥νT (P π)
t − νπ

∥∥∥
1

}]
.

This ensures that the supremum norm of the value of any policy is bounded above with ∥vπ∥∞ ≤ 2tmix. Previous works of
Wang (2017); Jin & Sidford (2020) assumed this mixing-time parameter to be known, and designed iterative algorithms that
require projections to the set VB =

{
v ∈ RS : ∥v∥∞ ≤ 2tmix

}
. Since this parameter is typically unknown and is hard to

estimate, these algorithms are not fully satisfactory.

We are interested in near-optimal planning in general AMDPs for which the stationary state distribution is well defined and
bias span is potentially unknown, and thus we have to set V = RS . Since the primal variables are naturally restricted to the
simplex domain, we only require the stabilization trick to control the actions of the min-player in the bound. Hence, we can
bound the duality gap against arbitrary comparator points (v∗;µ∗) as follows:

E [G(v∗;µ∗)] = E [L(vT ;µ
∗)− L(v∗;µT )]

≤ 1

T

T∑
t=1

E [L (vt;µ
∗)− L (v∗;µt)]

=
1

T

T∑
t=1

E [L (vt;µ
∗)− L (vt;µt)] +

1

T

T∑
t=1

E [L (vt;µt)− L (v∗;µt)]

=
1

T

T∑
t=1

E [L (vt;µ
∗)− L (vt;µt)] +

1

T

T∑
t=1

E
[
L(reg) (vt;µt)− L(reg) (v∗;µt)

]
17
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+
ϱv
T

T∑
t=1

E [Hv(v
∗)−Hv(vt)] , (15)

where we have defined L(reg) (v;µ) = L (v;µ) + ϱvHv(v).

Taking into account the new (unregularized) loss objective of the max-player and required projections to the simplex, our
algorithm executes COMID to optimize v and standard OMD (which is same as COMIDA with ϱµ = 0) for µ. Precisely, the
updates are calculated by solving

vt+1 = arg min
v∈RS

{
⟨v, g̃v(t)⟩+ ϱv ∥v∥2∞ +

1

2ηv
∥v − vt∥22

}
µt+1 = arg min

µ∈∆SA

{
−
〈
µ, g̃µ(t)

〉
+

1

ηµ
DKL (µ∥µt)

}
,

using the gradient estimators described in the main text. We present the complete pseudocode as Algorithm 1.

Algorithm 1 COMIDA-MDP
Input: Step sizes ηv, ηµ, Regularization constants ϱv , Initial points v1,µ1.
for t = 1 to T do

//Mirror Descent//
Sample (st, at) ∼ µt, s

′
t ∼ p(·|st, at)

Compute g̃v(t) = es′t − est
Update

vt+1 = arg minv∈RS

{
⟨v, g̃v(t)⟩+ ϱv ∥v∥2∞ + 1

2ηv
∥v − vt∥22

}
//Mirror Ascent//
Sample s′t ∼ p(·|s, a) for all (s, a) ∈ S ×A
Compute g̃µ(t) =

∑
(s,a)[r(s, a) + vt(s

′
t)− vt(s)]e(s,a)

Update
µt+1 = arg minµ∈∆SA

{
−
〈
µ, g̃µ(t)

〉
+ 1

ηµ
DKL (µ∥µt)

}
end for
Return vT = 1

T

∑T
t=1 vt, µT = 1

T

∑T
t=1 µt.

C. The proof of Theorem 4.1
We restate the result here for convenience of the reader.

Theorem C.1. Let ϱv = 4ηµ. Then, the output of COMIDA-MDP satisfies the following bound:

E
[〈

µπ∗
− µπT , r

〉]
≤

DKL
(
µπ∗∥∥µ1

)
ηµT

+ ηµ +

(
1

ηvT
+ 4ηµ

)
E
[∥∥vπT

∥∥2
2

]
+ 2ηv

We start by stating a useful result (which we have learned from Cheng et al., 2020) that connects the duality gap with the
suboptimality of the policy output by the algorithm.

Lemma C.2. (cf. Proposition 4 of Cheng et al., 2020) The duality gap at (µT ,vT ) satisfies

G(µπ∗
,vπT ) = L(µπ∗

;vT )− L(µT ;v
πT ) = ρ∗ − ρπT .

Proof. From Equation (13), recall that

G(µπ∗
,vπT ) = L(µπ∗

;vT )− L(µT ;v
πT ). (16)
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By definition of the Lagrangian, we can write

L(µπ∗
;vT ) =

〈
µπ∗

, r
〉
+
〈
vT ,P

Tµπ∗
−ETµπ∗

〉
=
〈
µπ∗

, r
〉
,

since µπ∗
is a valid stationary distribution that satisfies P Tµπ∗

= ETµπ∗
. On the other hand, using that µT ∈ ∆SA and

rearranging terms we have that:

L(µT ;v
πT ) = ⟨µT , r⟩+

〈
vπT ,P TµT −ETµT

〉
+ ρπT (1− ⟨µT ,1⟩)

=
〈
µT , r + PvπT −EvπT − ρπT 1

〉
+ ρπT

=
∑
s,a

∑
a′

µT (s, a
′)πT (a|s)

(
r(s, a) +

〈
p(·|s, a),vπT

〉
− vπT (s)− ρπT

)
+ ρπT = ρπT ,

where the last equality holds by definition of πT in the main text and the value functions in Equation (10). Combining both
expressions in Equation (16) gives the desired result.

C.1. Proof of Theorem 4.1

First, we prove that the gradient norms are bounded. By definition of the gradients,

Et

[
∥g̃v(t)∥

2
2

]
= Et

[∥∥es′t − est
∥∥2
2

]
= Et

[
1− 2I{s′t=st} + 1

]
≤ 2. (17)

Also, using that r(s, a) ∈ [0, 1] for any (s, a) ∈ S ×A,∥∥g̃µ(t)
∥∥2
∞ ≤ max

(s,a,s′)
|r(s, a) + vt(s

′)− vt(s)|
2 ≤ (1 + 2 ∥vt∥∞)

2 ≤ 2 + 8 ∥vt∥2∞ , (18)

where the last inequality is Cauchy–Schwarz.

In what follows, we let v∗ = vπT , and derive a bound on the duality gap evaluated at this comparator point. We start by
appealing to Lemma C.2 and decomposing the duality gap as follows:

ρ∗ − ρπT = E [G(v∗;µ∗)] ≤ 1

T

T∑
t=1

E [L (vt,µ
∗)− L (vt,µt)]

+
1

T

T∑
t=1

E
[
L(reg) (vt,µt)− L(reg) (v∗,µt)

]
(19)

+
ϱv
T

T∑
t=1

E
[
∥v∗∥2∞ − ∥vt∥2∞

]
.

Let gµ(t) = ∇µL(vt;µt) denote the gradient of the Lagrangian in round t. By the standard online mirror descent analysis,
we obtain the following upper bound on the first term that corresponds to the regret of the µ-player:

T∑
t=1

E [L (vt;µ
∗)− L (vt;µt)]

(a)

≤
T∑

t=1

E
[〈
µ∗ − µt, g̃µ(t)

〉]
(b)

≤ DKL (µ
∗∥µ1)

ηµ
+

ηµ
2

T∑
t=1

E
[∥∥g̃µ(t)

∥∥2
∞

]
+

T∑
t=1

E
[〈
gµ(t)− g̃µ(t),µ

∗ − µt

〉]
(c)

≤ DKL (µ
∗∥µ1)

ηµ
+ ηµ

T∑
t=1

E
[∥∥g̃µ(t)

∥∥2
∞

]
(20)

(d)

≤ DKL (µ
∗∥µ1)

ηµ
+ ηµ

T∑
t=1

E
[
1 + 4 ∥vt∥2∞

]

19
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Here, we have used (a) Definition 2.2, (b) Lemma D.1 with U = ∆SA, ℓt (·) = −L (vt; ·), Du(u∥u′) = DKL (u∥u′),
ϱu = 0 and u1 = µ1, (c) that µ∗ is a fixed comparator and g̃µ(t) is an unbiased estimate of gµ(t), as well as (d) the bound
on the gradient norm established in Equation (18).

As for the second term that corresponds to the regret of the v-player, the analysis is somewhat more involved. One challenge
is that the comparator point v∗ = vπt is dependent on the iterates. To address this, we apply Corollary D.2 with the
appropriate parameters including U = RX , ωu (u) =

1
2 ∥u∥

2
2, , as well as noting that ωu is 1-strongly convex and is the

dual norm of itself gives the following bound:

T∑
t=1

E
[
L(reg) (vt;µt)− L(reg) (v∗;µt)

]

≤
E
[
∥v∗ − v1∥22

]
ηv

+ ηv

T∑
t=1

E
[
∥g̃v(t)∥

2
2

]
(21)

≤
E
[
∥v∗ − v1∥22

]
ηv

+ 2ηv.

The last inequality follows from using that E
[
∥g̃v(t)∥

2
2

]
≤ 2. Putting Equations (20) and (21) in Equation (19), we finally

obtain the following bound:

ρ∗ − ρπT = E [G(v∗;µ∗)]

≤ DKL (µ
∗∥µ1)

ηµT
+

ηµ
T

T∑
t=1

E
[
1 + 4 ∥vt∥2∞

]
+

E
[
∥v∗ − v1∥22

]
ηvT

+ 2ηv +
ϱv
T

T∑
t=1

E
[
∥v∗∥2∞ − ∥vt∥2∞

]
.

Recalling the choice v1 = 0, choosing ϱv = 4ηµ, and bounding ∥v∗∥∞ ≤ ∥v∗∥2 we obtain the result claimed in the
theorem.
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D. Auxiliary Lemmas
Lemma D.1. (cf. Theorem 8 of Duchi et al., 2010) Let ℓt : U → R be convex, gu(t) ∈ ∂ℓt(ut) and g̃u(t) be such that
Et [g̃u(t)] = gu(t). Given u1 ∈ U , define g̃u(1) ∈ Rm and the sequence of vectors {(ut, g̃u(t))}Tt=2 via the following
recursion for t ∈ [T ]:

ut+1 = arg min
u∈U

{
⟨u, g̃u(t)⟩+ ϱuHu (u) +

1

ηu
Du(u∥ut)

}
. (22)

Suppose the distance-generating function ωu is γu-strongly convex with respect to ∥·∥u. For any u∗ ∈ U ,

T∑
t=1

E
[
ℓ
(reg)
t (ut)− ℓ

(reg)
t (u∗)

]
≤ E [Du(u

∗∥u1)]

ηu
+

ηu
2γu

T∑
t=1

E
[
∥g̃u(t)∥

2
u,∗

]
+ ϱuE [Hu(u1)] +

T∑
t=1

E [⟨gu(t)− g̃u(t),ut − u∗⟩] .

where
ℓ
(reg)
t (u) = ℓt (u) + ϱuHu (u) . (23)

Proof. Using the definition of ℓ(reg)
t , consider the regret in terms of the regularized loss:

ℓ
(reg)
t (ut)− ℓ

(reg)
t (u∗) = ℓt (ut)− ℓt (u

∗) + ϱuHu(ut)− ϱuHu(u
∗)

=
(
ℓt (ut)− ℓt (u

∗) + ϱuHu(ut+1)− ϱuHu(u
∗)
)
+ ϱu

(
Hu(ut)−Hu(ut+1)

)
.

To proceed, we let hu(t+ 1) ∈ ∂Hu(ut+1), so that we can use the convexity of ℓt and Hu to bound the first set of terms as

ℓt (ut)− ℓt (u
∗) + ϱuHu(ut+1)− ϱuHu(u

∗)

≤ ⟨gu(t),ut − u∗⟩+ ϱu ⟨hu(t+ 1),ut+1 − u∗⟩
= ⟨g̃u(t),ut − u∗⟩+ ϱu ⟨hu(t+ 1),ut+1 − u∗⟩+ ⟨gu(t)− g̃u(t),ut − u∗⟩ . (24)

Before we proceed to bound the first two terms, note that ut+1 in Equation (22) is a solution to a constrained convex
optimization problem, and as a result it satisfies the following optimality condition for any u ∈ U :〈

u− ut+1, g̃u(t) + ϱuhu(t+ 1) +
1

ηu
(∇ωu(ut+1)−∇ωu(ut))

〉
≥ 0. (25)

Thus, we bound the first two terms on the right-hand side of the inequality (24) as follows:

⟨g̃u(t),ut − u∗⟩+ ϱu ⟨hu(t+ 1),ut+1 − u∗⟩
= ⟨g̃u(t) + ϱuhu(t+ 1),ut+1 − u∗⟩+ ⟨g̃u(t),ut − ut+1⟩

=

〈
g̃u(t) + ϱuhu(t+ 1) +

1

ηu
(∇ωu(ut+1)−∇ωu(ut)) ,ut+1 − u∗

〉
+

1

ηu
⟨∇ωu(ut+1)−∇ωu(ut),u

∗ − ut+1⟩+ ⟨g̃u(t),ut − ut+1⟩

(a)

≤ 1

ηu
⟨∇ωu(ut+1)−∇ωu(ut),u

∗ − ut+1⟩+ ⟨g̃u(t),ut − ut+1⟩

(b)
=

1

ηu

(
Du(u

∗∥ut)−Du(u
∗∥ut+1)

)
− 1

ηu
Du(ut+1∥ut) + ⟨g̃u(t),ut − ut+1⟩

(c)

≤ 1

ηu

(
Du(u

∗∥ut)−Du(u
∗∥ut+1)

)
− γu

2ηu
∥ut+1 − ut∥2u + ⟨g̃u(t),ut − ut+1⟩

≤ 1

ηu

(
Du(u

∗∥ut)−Du(u
∗∥ut+1)

)
+

γu
ηu

sup
u

(〈
ηu
γu

g̃u(t),u

〉
− 1

2
∥u∥2u

)
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(d)
=

1

ηu

(
Du(u

∗∥ut)−Du(u
∗∥ut+1)

)
+

γu
2ηu

∥∥∥∥ηuγu g̃u(t)

∥∥∥∥2
u,∗

=
1

ηu

(
Du(u

∗∥ut)−Du(u
∗∥ut+1)

)
+

ηu
2γu

∥g̃u(t)∥
2
u,∗ .

We have used (a) the optimality condition stated in Equation (25), (b) the so-called three-points identity of Bregman
divergences (cf. Lemma 4.1 in (Beck & Teboulle, 2003)), (c) the strong convexity of Du(·∥ut) and (d) the fact that for any
norm ∥·∥, we have supu

{
⟨u, g⟩ − 1

2 ∥u∥
2
}
= 1

2 ∥g∥
2
∗.

Thus, putting together all the above calculations, we arrive at the following bound:

ℓt (ut)− ℓt (u
∗) + ϱuHu(ut+1)− ϱuHu(u

∗)

≤ ⟨g̃u(t),ut − u∗⟩+ ϱu ⟨hu(t+ 1),ut+1 − u∗⟩+ ⟨gu(t)− g̃u(t),ut − u∗⟩

≤ 1

ηu

(
Du(u

∗∥ut)−Du(u
∗∥ut+1)

)
+

ηu
2γu

∥g̃u(t)∥
2
u,∗ + ⟨gu(t)− g̃u(t),ut − u∗⟩ .

Furthermore, plugging in the definition of ℓ(reg)
t we get

ℓ
(reg)
t (ut)− ℓ

(reg)
t (u∗) = (ℓt (ut)− ℓt (u

∗) + ϱuHu(ut+1)− ϱuHu(u
∗)) + ϱu

(
Hu(ut)−Hu(ut+1)

)
≤ 1

ηu

(
Du(u

∗∥ut)−Du(u
∗∥ut+1)

)
+

ηu
2γu

∥g̃u(t)∥
2
u,∗ + ⟨gu(t)− g̃u(t),ut − u∗⟩

+ ϱu

(
Hu(ut)−Hu(ut+1)

)
.

Hence, taking marginal expectations on both sides, summing over t = 1, · · · , T steps, evaluating the telescoping terms and
upper bounding some negative terms by zero, we finally obtain the following bound on the total regret of COMID on the
regularized objective:

T∑
t=1

E
[
ℓ
(reg)
t (ut)− ℓ

(reg)
t (u∗)

]
≤ E [Du(u

∗∥u1)]

ηu
+

ηu
2γu

T∑
t=1

E
[
∥g̃u(t)∥

2
u,∗

]
+

T∑
t=1

E [⟨gu(t)− g̃u(t),ut − u∗⟩] + ϱuE [Hu(u1)] .

This completes the proof.

Corollary D.2. Suppose the sequence of vectors {(ut, g̃u(t))}Tt=1 are as described in Lemma D.1 above. If the comparator
u∗ is adaptive and potentially dependent on the interaction history FT , the following inequality holds:

T∑
t=1

E
[
ℓ
(reg)
t (ut)− ℓ

(reg)
t (u∗)

]
≤ 2E [Du(u

∗∥u1)]

ηu
+

ηu
γu

T∑
t=1

E
[
∥g̃u(t)∥

2
u,∗

]
+ ϱuE [Hu(u1)] .

Proof. Recall that for any comparator u∗ ∈ U we can upper-bound the total regret from Lemma D.1 as:

T∑
t=1

E
[
ℓ
(reg)
t (ut)− ℓ

(reg)
t (u∗)

]
≤ E [Du(u

∗∥u1)]

ηu
+

ηu
2γu

T∑
t=1

E
[
∥g̃u(t)∥

2
u,∗

]
+ ϱuE [Hu(u1)] +

T∑
t=1

E [⟨gu(t)− g̃u(t),ut − u∗⟩] . (26)

Notice the last sum is zero when the comparator point u∗ is independent of the interaction history FT , but this is generally
not true for adaptively chosen comparators. A crude upper bound may be proved by treating it as a supremum of martingales,
for instance by relying on the techniques of Rakhlin & Sridharan (2017). Inspired by their techniques, we provide a refined
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bound on this term based on a reduction to online learning, which has otherwise been first introduced in this context by
Nemirovski et al. (2009). Lemma D.3 states the resulting bound which we highlight below:

T∑
t=1

E [⟨gu(t)− g̃u(t),ut − u∗⟩] ≤ E [Du(u
∗∥u1)]

ηu
+

ηu
2γu

T∑
t=1

Et

[
∥gu(t)− g̃u(t)∥

2
u,∗

]
.

Notably, the terms appearing on the right-hand side are comparable to the terms appearing in the bound of Equation (26). In
particular, using that

Et

[
∥gu(t)− g̃u(t)∥

2
u,∗

]
≤ Et

[
∥g̃u(t)∥

2
u,∗

]
holds because of the unbiasedness of the gradient estimate g̃u(t), we can combine the bound of Lemma D.3 and Equation (26)
to obtain the bound

T∑
t=1

E
[
ℓ
(reg)
t (ut)− ℓ

(reg)
t (u∗)

]
≤ 2E [Du(u

∗∥u1)]

ηu
+

ηu
γu

T∑
t=1

E
[
∥g̃u(t)∥

2
u,∗

]
+ ϱuE [Hu(u1)] .

This completes the proof.

Lemma D.3. Let u∗ ∈ U be an arbitary adaptive comparator point as described in the statement of Corollary D.2. Then,
T∑

t=1

E [⟨gu(t)− g̃u(t),ut − u∗⟩]

≤ E [Du(u
∗∥u1)]

ηu
+

ηu
2γu

T∑
t=1

Et

[
∥gu(t)− g̃u(t)∥

2
u,∗

]
.

D.1. The proof of Lemma D.3

For the sake of the proof, we will introduce an auxiliary online learning game, where in each round t = 2, . . . , T , the
following steps are repeated:

1. the online learner chooses ût ∈ U ,

2. the environment chooses the cost function ct = (gu(t)− g̃u(t)),

3. the online learner incurs cost ⟨ct, ût⟩ and observes ct.

Having introduced this scheme, we can write the following decomposition:
T∑

t=1

⟨gu(t)− g̃u(t),ut − u∗⟩ =
T∑

t=1

⟨gu(t)− g̃u(t),ut − ût⟩+
T∑

t=1

⟨gu(t)− g̃u(t), ût − u∗⟩

=

T∑
t=1

⟨gu(t)− g̃u(t),ut − ût⟩+
T∑

t=1

⟨ct, ût − u∗⟩ ,

where the first sum is a martingale and the second term is the regret in the auxiliary online learning game we have just
introduced. Since the expectation of the first term is zero, this leaves us with bounding the auxiliary regret.

To this end, we will let the online learner run mirror descent with the regularizer Du, learning rate ηu and initial iterate
û1 = u1. For the subsequent rounds, the updates are given as ût = arg minu∈U

{
⟨u, ct−1⟩+ 1

ηu
Du(u∥ût−1)

}
. By

following the same steps as in Lemma D.1 (with the simplification ϱu = 0) and noting that the comparator u∗ is independent
of the interaction history of this auxiliary online learning game, we obtain the following bound on the instantaneous regret
in round t:

⟨ct, ût − u∗⟩ ≤ 1

ηu

(
Du(u

∗∥ût)−Du(u
∗∥ût+1)

)
+

ηu
2γu

∥gu(t)− g̃u(t)∥
2
u,∗ .

Taking the marginal expectation on both sides and summing up over all rounds T , concludes the proof.
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