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Abstract
Collective Predictive Coding (CPC) broadens the
classical framework of Predictive Coding (PC)
by positing a shared external representation (e.g.,
language, symbols, or common knowledge) that
couples agents in a multi-agent setting. Prior work
has shown that both PC and CPC can be analyzed
from a Bayesian perspective, with their updates
expressible via Langevin equations under suitable
assumptions. Notably, the CPC-derived Langevin
dynamics introduce an additional potential term
that can be viewed as an “external force,” captur-
ing how shared symbols steer the collective.

However, to fully grasp why substituting Bayesian
updates with Langevin dynamics is valid, one
must recognize that the corresponding Fokker–
Planck equation converges to the same posterior
distribution implied by Bayesian inference. In this
paper, we restore and expand the technical details
linking Bayesian updating, Fokker–Planck con-
vergence, and the emergence of the CPC-specific
force term. We also offer a more thorough discus-
sion of how each free-energy component in PC
and CPC is derived, why it matters for multi-agent
coordination, and what limitations arise from com-
munication constraints and symbol emergence.
These clarifications provide a stronger foundation
for leveraging CPC to orchestrate hybrid human–
AI collectives via shared external media.

1. Introduction
In multi-agent scenarios, especially those involving humans
and AI, collective dynamics often exhibit complexities that
cannot be reduced to independent agent behaviors. Tra-
ditional Predictive Coding (PC) accounts for each agent
(or system) updating its internal model by minimizing pre-
diction errors (Rao & Ballard, 1999; Friston & Kiebel,
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2009). Yet, humans and AI systems frequently share exter-
nal structures—such as languages, symbols, or knowledge
repositories—that act as coupling mechanisms.

Collective Predictive Coding (CPC) (Taniguchi, 2024) inte-
grates these shared elements by adding a collective regular-
ization term to the free energy, thereby encouraging agents
to align through a common representation w. Importantly,
in a Bayesian viewpoint, the CPC update equations can be
mapped to stochastic differential equations (Langevin dy-
namics) with an extra potential term functioning like a soft
“external force” on agents.

Despite the intrigue of this result, questions remain:

• Free-Energy Components: What exactly are the
terms in PC vs. CPC, and how do they differ?

• Bayesian-to-Langevin Equivalence: Why is it valid
to use Langevin dynamics to discuss convergence un-
der Bayesian updates?

• Fokker–Planck Equations: How do these equations
show that the equilibrium distribution is indeed the pos-
terior distribution under Bayesian inference, ensuring
that the Langevin perspective is consistent?

• Practical Complexity: How do real-world constraints
such as imperfect communication or emergent symbols
affect the CPC force term?

In what follows, we revisit the derivation of PC and CPC
free energy, show how the corresponding Bayesian updates
lead to a Fokker–Planck description whose equilibrium is
the target posterior, and illustrate how this ties neatly into
the Langevin formulation. By explicitly analyzing the role
of the Fokker–Planck equation, we clarify why replacing
Bayesian updates with Langevin dynamics is justified. We
then discuss the implications of CPC’s extra coupling term
and highlight potential application areas for hybrid human–
AI systems, as well as research gaps that need addressing.
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2. Predictive Coding and Collective Predictive
Coding

In this section, we reintroduce the detailed derivations of
Predictive Coding (PC) and its extension, Collective Predic-
tive Coding (CPC). The aim is to show how each term in the
free energy arises, why it connects to Bayesian inference,
and what changes in the multi-agent setting that includes a
shared representation w.

2.1. Predictive Coding (PC)

Generative Model. Predictive Coding traditionally as-
sumes a probabilistic generative model where latent states
zk generate observations ok for an agent k. Let:

pθ(z,o | a,C) =
∏
k

pθ(z
k | ak) pθ(ok | zk, ak, Ck).

• pθ(z
k | ak) specifies how the agent’s latent state de-

pends on actions or control variables.

• pθ(o
k | zk, ak, Ck) describes how observations arise

from latent states and rewards/context Ck.

Inference Model and Free Energy. Agents maintain a
variational distribution qϕ(z,o | a,C) to approximate the
true posterior. The PC free energy can be written as the
Kullback–Leibler divergence between the generative model
and the variational distribution:

FPC(θ, ϕ) = DKL

[
qϕ(z,o | a,C)

∥∥∥ pθ(z,o | a,C)
]
.

Expanding, we obtain two main sums:

FPC(θ, ϕ) =
∑
k

Eq

[
ln

qϕ(z
k | ok, ak)

pθ(zk | ak)

]
︸ ︷︷ ︸

(A) Individual regularization

+
∑
k

Eq

[
ln

qϕ(o
k | Ck)

pθ(ok | zk, ak, Ck)

]
︸ ︷︷ ︸

(B) Prediction accuracy (surprise)

.

(1)

1. (A) Individual Regularization: This term represents
the KL divergence between the posterior qϕ(z

k |
ok, ak) and the prior pθ(zk | ak). Minimizing it re-
duces the complexity of the latent states, preventing
them from straying too far from prior expectations.

2. (B) Prediction Accuracy (Surprise): This term
captures how well the model predicts observations.
Eq[ln pθ(o

k | zk, ak, Ck)] is akin to a log-likelihood,
and the difference with ln qϕ(o

k | Ck) measures how
surprising the observations are under the model.

2.2. Collective Predictive Coding (CPC)

Shared Representation w. When N agents share a sym-
bolic or language-based representation w, the generative
model becomes:

pθ(w, z,o | a,C) = pθ(w)
∏
k

pθ
(
zk | w, ak

)
pθ
(
ok | zk, ak, Ck

)
.

The inference model analogously introduces qϕ(w | z),
ensuring that w is inferred from the states of all agents.

CPC Free Energy. The CPC free energy is:

FCPC(θ, ϕ) = DKL

[
qϕ(w, z,o | a,C)

∥∥ pθ(w, z,o | a,C)
]
.

Its expanded form highlights an additional collective regu-
larization term:

FCPC(θ, ϕ) = Eq

[
ln

qϕ(w | z)
pθ(w)

]
︸ ︷︷ ︸

(C) Collective term

+
∑
k

Eq

[
ln

qϕ(z
k | w, ok, ak)

pθ(zk | w, ak)

]
︸ ︷︷ ︸

(D) Indiv. reg. w.r.t. w

+
∑
k

Eq

[
ln

qϕ(o
k | Ck)

pθ(ok | zk, ak, Ck)

]
︸ ︷︷ ︸

(E) Prediction accuracy (surprise)

. (2)

• (C) Collective Regularization: This new term reflects
how the posterior qϕ(w | z) might deviate from the
prior pθ(w). Essentially, it measures the complexity or
“collective cost” of adjusting the external representation
w to align with the agents’ latent states z.

• (D) Individual Regularization (with w): Each agent’s
latent state must be consistent not only with local data
(ok, ak) but also with the shared w.

• (E) Prediction Accuracy: Remains similar to standard
PC but is now influenced indirectly by w.

2.3. Why Does CPC Introduce a New Coupling?

In standard PC, each agent’s updates are driven purely by
its own observations and priors. By contrast, CPC agents
also track how consistent w is with their states and others’,
effectively adding a “social” or “collective” potential to
the free-energy surface. As we will see, this extra term
reappears in the Langevin equations as an external force.

3. Bayesian Updating, Langevin Equations,
and the Fokker–Planck Perspective

This section clarifies why Bayesian updating—as implied
by free-energy minimization—can be cast as a Langevin
process, and how the Fokker–Planck equation formalizes
the convergence of this process to the posterior distribution.
By restoring these details, we connect the free-energy per-
spective more explicitly to the idea that the final stationary
distribution is indeed the Bayesian posterior.
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Figure 1. A schematic illustrating Collective Predictive Coding. In CPC, each agent updates its own internal states (latent variables)
while also interacting with shared external representations (language, symbols, etc.). The difference from standard Predictive Coding is
the collective regularization term, allowing alignment of agents through the environment’s symbolic layer. This collective layer effectively
acts like an additional control force in the system’s stochastic dynamics.

3.1. Bayesian Updating and Stochastic Gradient Descent

Consider a target distribution (posterior) of parameters x:

π(x) ∝ exp
[
−U(x)

]
, (3)

where U(x) represents the negative log of the (unnor-
malized) posterior plus any regularizers. In PC or CPC,
U(x) typically corresponds to the expected negative log-
likelihood plus KL divergences appearing in the free energy.
Minimizing U(x) (or equivalently, the free energy) leads to
posterior-consistent estimates.

When we allow stochasticity to preserve exploration—
instead of pure gradient descent—we obtain a Langevin
update:

dx

dt
= −∇xU(x) + ξ(t), (4)

where ξ(t) is typically Gaussian noise. Under mild assump-
tions (e.g., Gaussian white noise, sufficiently small step size,
and smooth U(x)), the long-term behavior of x(t) samples
from π(x).

3.2. Fokker–Planck Equation and Stationary
Distribution

The distribution µ(x, t) of states x at time t in the SDE
Equation (4) evolves according to the Fokker–Planck equa-

tion:
∂

∂t
µ(x, t) = ∇x ·

(
∇xU(x)µ(x, t)

)
+∆x µ(x, t), (5)

where ∆x is the Laplacian operator in x-space (assuming
isotropic diffusion). The key fact is:

• Stationary Distribution: If µ(x, t) converges to a
stationary solution π(x) such that ∂

∂tπ(x) = 0, then
one can show

π(x) ∝ exp[−U(x)],

matching the target posterior. Essentially, the drift term
−∇xU(x) in Equation (4) drives the system toward
the posterior distribution, while the diffusion (noise)
ensures exploration.

Implication for Bayesian Inference. Thus, the same
distribution that one obtains via Bayesian updates (i.e.,
π(x) ∝ e−U(x)) emerges as the stationary solution of the
Langevin dynamics in Equation (4). This is the formal
reason why substituting Bayesian updates with a Langevin
process is valid under typical conditions (small steps, Gaus-
sian noise, etc.).

For Predictive Coding, U(x) incorporates the expected sur-
prise and regularization terms in FPC, while for Collective
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Predictive Coding, U(x) includes additional coupling from
w. In both cases, the Fokker–Planck perspective demon-
strates that the dynamics converge to the corresponding
posterior distribution.

3.3. Conclusion: Linking Free Energy to Stochastic
Dynamics

Minimizing the free energy in a deterministic gradient fash-
ion might yield a point estimate. However, introducing noise
(leading to the Langevin SDE) can maintain a distributional
perspective, sampling around modes of the free-energy land-
scape in proportion to e−U(x). Consequently, analyzing PC
or CPC in terms of Langevin dynamics is justified by the
Fokker–Planck equation’s guarantee that the equilibrium
distribution remains the intended Bayesian posterior.

4. Emergence of an Additional Force in CPC
We now apply the Fokker–Planck and Langevin reasoning
to compare the updates of PC and CPC. The key difference
is the extra collective term R(x) from the shared represen-
tation w, yielding a new force in the system’s dynamical
equations.

4.1. PC: Baseline Langevin Dynamics

In standard PC,

UPC(x) ≈ − ln p(o | x) + KL regularizers,

leading to the Langevin equation:

dx

dt
= −∇xUPC(x) + ξ(t). (6)

By Equation (5), the stationary distribution of x is
πPC(x) ∝ e−UPC(x), mirroring the Bayesian posterior for
the generative model.

4.2. CPC: Augmented Potential and External Force

In Collective Predictive Coding, the effective energy con-
tains an extra piece:

UCPC(x) = UPC(x) + R(x),

where R(x) encapsulates the dependence on the shared
representation w and the collective regularization. The asso-
ciated Langevin equation is:

dx

dt
= −∇x

[
UPC(x) + R(x)

]
+ ξ(t). (7)

Thus, the gradient ∇xR(x) modifies each agent’s dynamics.
Physically, one can interpret −∇xR(x) as an external force
that arises only because of the multi-agent coupling through
w.

Why Does This Matter? Even if an individual agent’s
local observations are fully explained (i.e., it has minimal
individual free energy), the additional term R(x) can still
push that agent to change its state in order to better syn-
chronize with the shared representation. This mechanism
underlies CPC’s capacity for collective alignment, in which
language, symbols, or shared knowledge structures impose
a “soft” constraint on each agent’s updates.

Fokker–Planck Equilibration for CPC. Applying the
same Fokker–Planck argument, the equilibrium distribution
for Equation (7) is πCPC(x) ∝ e−UPC(x)−R(x). In other
words, the distribution at stationarity is shaped by both the
local predictive-coding objective and the collective coupling
induced by w.

5. Discussion
We have shown that CPC introduces an external force via an
extra potential term in the Langevin equations, and that the
Fokker–Planck equilibrium matches the posterior distribu-
tion implied by CPC’s generative model. Here, we expand
on broader implications, limitations, and future directions.

5.1. Hybrid Human–AI Coordination

In scenarios where humans and AI agents share a symbolic
framework (e.g., natural language instructions, code reposi-
tories, or knowledge graphs), the external force −∇xR(x)
can be interpreted as:

A steering mechanism by which updates to the
shared representation w shape the entire system’s
evolution.

Rather than micromanaging each agent’s internal states, sys-
tem designers or stakeholders can influence w—for instance,
by embedding certain norms or goals. The CPC free energy
then ensures that all agents shift their beliefs/strategies ac-
cordingly, as long as they remain within the CPC paradigm.

5.2. Practical Caveats and Imperfections

Real-world conditions may undermine the neat Fokker–
Planck-based story:

• Communication Noise: Agents might only partially
receive updates to w, or interpret them differently (es-
pecially human vs. AI).

• Symbol Emergence: The space of possible w could
expand over time, with new symbols spontaneously
created. Modeling pθ(w) thus becomes nontrivial.

• Incentive Misalignment: Agents may not purely mini-
mize the CPC free energy if they have external rewards
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or strategic motives that deviate from it.

• Computation Limits: In high-dimensional or continu-
ous domains, approximating ∇xR(x) may be compu-
tationally expensive.

Hence, while the theory is conceptually compelling, bridg-
ing to real applications calls for robust approximations and
possibly hierarchical or modular expansions of CPC.

5.3. Ethical and Safety Considerations

From an AI safety perspective, CPC’s external force can be
a double-edged sword:

• Positive Aspect: One can embed norms, ethics, or
alignment constraints into w, so that CPC agents re-
main consistent with human values.

• Negative Aspect: If w is hijacked or corrupted (e.g.,
maliciously introduced misinformation), the entire sys-
tem could be pulled in undesirable directions.

Designers must therefore ensure the shared representation
is secure, interpretable, and open to scrutiny.

5.4. Open Challenges and Future Work

(1) Empirical Validation in Multi-Agent Systems. We
suggest testing CPC in multi-agent reinforcement learning
environments where agents pass discrete or continuous sym-
bols, then verifying whether the learned “external force”
indeed fosters alignment or coordination.

(2) Human–AI Co-learning. Another direction is to in-
corporate humans-in-the-loop to see how well they adapt
to AI-suggested symbols and vice versa. This might illu-
minate emergent communication phenomena and symbol
grounding issues.

(3) Generalizing w. In some applications, w might itself
be structured (e.g., a graph of scientific concepts) or un-
structured (e.g., text corpora). Different representations may
yield different forms of R(x) and thereby distinct modes of
collective control.

6. Conclusion
In this paper, we have provided a comprehensive account
of how Collective Predictive Coding (CPC) differs from
conventional Predictive Coding (PC). We reintroduced the
detailed free-energy components in both frameworks, em-
phasized how Bayesian updating maps to Langevin equa-
tions, and then used the Fokker–Planck perspective to clarify
that the stationary distribution of these SDEs coincides with
the respective Bayesian posteriors for PC and CPC.

Key Takeaways:

• PC explains how individual agents minimize free en-
ergy by aligning their latent states with observations
and priors.

• CPC incorporates a shared external representation w,
adding a collective term to the free energy that mani-
fests as an external force in the Langevin dynamics.

• The Fokker–Planck framework ensures that substitut-
ing Bayesian updates with Langevin equations does
not distort the final equilibrium distribution, providing
formal grounding for the approach.

• Real-world applications involve challenges like com-
munication noise, emergent symbols, and partial align-
ment, but CPC suggests a promising path to orches-
trate hybrid human–AI systems through a common
symbolic layer.

Future Directions. Beyond the immediate theoretical ex-
tensions, we encourage work on:

1. Robust Simulation Studies: To empirically test how
well CPC’s external force fosters or hinders coordina-
tion in noisy, multi-agent contexts.

2. Symbol Emergence Modeling: Investigating how w
evolves in open-ended environments and how new sym-
bols might dynamically reshape R(x).

3. Safe and Accountable Implementations: Ensuring
that any externally controlled representation remains
transparent and not vulnerable to malicious interfer-
ence.

By showing in detail why and how CPC aligns with
Bayesian–Langevin theory, this manuscript hopefully clar-
ifies the mechanisms driving the additional collective po-
tential and inspires further research into safe, coordinated
multi-agent systems.

Impact Statement
This work refines the conceptual and mathematical link be-
tween Bayesian inference, Predictive Coding, and Collective
Predictive Coding. By highlighting how shared represen-
tations can introduce a soft external force in multi-agent
systems, we underscore both the benefits (easier alignment
and collective control) and risks (susceptibility to manipula-
tion or corruption). We believe clearer theoretical grounding
of CPC can stimulate responsible innovation in cooperative
AI and human–AI teaming, while also cautioning that the
power of shared symbolic channels should be carefully gov-
erned.
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