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ABSTRACT

Let (X, d) be a metric space and let p, v be discrete distributions supported on
finite point sets A, B C X. For any p € [1,00], the W,-distance between
© and v, I/Vp(u7 v), is defined as the p-th root of the minimum cost of trans-
porting the mass from g to v, where moving a unit of mass from a € A to
b € B incurs a cost of dP(a,b). We give a (Las Vegas) randomized algorithm
that always computes a (4 + ¢)-approximate W), optimal-transport (OT) plan in
O(n? + (n?/?e 1 log? A) o)) expected time, for all p € [1, 0o], where £ > 0 is
an arbitrarily small constant and A is the spread of AU B. The best previous result
achieved an O(log n)-approximation in O(pn?) time, but only for constant p. Our
algorithm significantly improves the approximation factor and, importantly, is the
first quadratic-time method that extends to the W, -distance. In contrast, additive
approximation methods such as Sinkhorn are efficient only for constant p and fail
to handle p = oo. Finally, we show that obtaining a relative approximation fac-
tor better than 2 in O(n?) time would resolve the long-standing open problem of
computing a perfect matching in an arbitrary bipartite graph in quadratic time.

1 INTRODUCTION

Let 1 and v be discrete probability distributions supported on sets A and B, respectively, with
|A| 4+ |B| = n. For each pair (a,b) € A x B, let d(a, b) denote the ground distance between a and
b. A transport plan is a function o : A x B — R that assigns a mass to each pair (a,b) such
that ), o(a,b) < p(a)and ) ., o(a,b) < v(b). Given a parameter p > 1, suppose the cost of
moving a unit of mass from a point ¢ € A to a point b € B is given by d(a, b)?. The W, cost of any
transport plan o between y and v is defined as

1/
wy(0) = Z o(a,b) x d(a, b)?

ac€A,beB
The W, cost above for finite p extends naturally to the W, cost of a transport plan o, defined as

= li = ; d(a,b).
woe(0) pros (o) abEAXE o 3(ah) >0 (a,0)
In the W), optimal transport (OT) problem, we wish to compute the transport plan o* that transports
the entire mass and has the smallest W), cost. We refer to the cost wy(c*) as the W),-distance and
denote it by W), (s, v). If p and v are uniform distributions, then we refer to the W,, OT problem as
the W), matching problem.

The W, distances, for varying values of p, possess several appealing properties that make it
favorable in applications. OT plans under the W) distance measure total displacement and are
therefore useful to capture structural properties such as semantic relationships from word embed-
dings (Kusner et al. (2015)). OT plans arising from the W5 distance have nice structural qualities
such as monotonicity (Brenier (1991); Aurenhammer et al. (1998)) and translation invariance (Co-
hen & Guibas (1999)), and tend to preserve the geometry of the distributions. Furthermore, recent
work in machine learning and topological data analysis uses W, distance to establish consistency
and convergence properties of topological summaries (Vishwanath et al. (2020); Damrich et al.
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(2024)), and to design topological layers in neural networks (Kim et al. (2020)). Due to these favor-
able properties, W,, distances has been used in applications across machine learning (Chang et al.
(2023); Chuang et al. (2022)), computer vision (Backurs et al. (2020); Lai et al. (2022)), and natural
language processing (Alvarez-Melis & Jaakkola (2018); Yurochkin et al. (2019)).

From an algorithmic standpoint, the exact computation of the W), distance between discrete
distributions can be formulated as a minimum-cost flow (MCF) problem, which can be solved in
n2te() time using recent advances in MCF algorithms (Chen et al. (2022)). While these results
mark important theoretical progress, they are highly complicated, making them unsuitable for prac-
tical implementations. Indeed, even the simpler task of designing a truly quadratic-time exact algo-
rithm for deciding whether a dense graph admits a perfect matching remains a longstanding open
problem in graph theory (Behnezhad et al. (2024)).

Because exact algorithms remain expensive, research has shifted toward scalable approximation
methods. A seminal result by Charikar (2002) introduced an O(log n)-approximation for W; by em-
bedding the ground metric into a hierarchically well-separated tree; a greedy transport procedure on
the tree yielded an exact solution in O(n?) time, producing an overall O (log n)-approximation. This
work opened the door to more refined methods, and subsequent efforts have developed near-linear-
time (1 + ¢)-approximation algorithms under additional assumptions, such as when the ground
distance is Euclidean in fixed dimensions (Agarwal et al. (2022; 2024); Fox & Lu (2023)), and
more recently, sub-quadratic algorithms for higher-dimensional Euclidean settings (Andoni & Zhang
(2023); Beretta et al. (2025)). However, none of these techniques extend naturally to the case
p > 2. Building on this line of work, Lahn et al. (2025) recently presented a relative O(logn)-
approximation algorithm for any finite p > 2, with runtime O (n2 log U log A log n), where log U
is the bit-length of the input probabilities and A is the spread of A U B (the ratio of its largest to
smallest nonzero pairwise distance).

One influential direction of work was introduced by Cuturi (2013), who proposed entropic reg-
ularization of OT. It guarantees solutions within an additive error of €A, where A denotes the
maximum ground distance between points in A U B. Although weaker than a relative (1 + ¢)-
approximation, it applies across all metrics and inspired a series of additive approximation algo-
rithms, including parallelizable variants (Altschuler et al. (2017); Dvurechensky et al. (2018); Jam-
bulapati et al. (2019); Lahn et al. (2019; 2023)). Nonetheless, their runtimes remain on the order of
n?/e®M) for W, and worsen to n? /e?(®) for larger p, with no extension to the case p = oc.

Our results. In this paper, we present two constant-factor approximation algorithms for the W,

problem. These are the first truly quadratic-time (assuming A + U = 20(”1/8)) approximation
algorithms for the W), problem over any ground metric, applicable to all p € [1,o0], including
p = oo. This improves the O(log n)-approximation of Lahn et al. (2025) to a constant factor, while
extending the guarantee to every p.

Theorem 1.1. Let p and v be two discrete distributions supported on a set of n points in
an arbitrary metric space. Let p € [l,00] be a parameter, and let ¢ > 0 be an arbitrar-
ily small constant. A (4 + €)-approximate OT plan under the W,, metric can be computed in
O(n? + (n*?e'log? Alog U)' o)) expected time, where A is the spread of the support set and
U is the ratio of the max to min probability in i or v.

Our main technical contribution is a technique for approximating d(-, -, inspired by Bourgain’s
multi-level sampling (Bourgain (1985)). This multi-level sampling has inspired a sequence of re-
sults based on clustering points, much like the approach we adopt in this paper. Broadly, these
results fall into two categories: spanner constructions and distance oracles for metric spaces. The
spanners (Har-Peled et al. (2023); Baswana & Sen (2007); Cohen (1998)) are typically designed to
approximate the underlying metric, whereas in our setting we seek to approximate dP(-, ), which
is not a metric. This distinction forces us to design a clustering scheme and a directed spanner that
is not strongly connected, but in which shortest paths nevertheless preserve d?(-, -) within a factor
of (4 + ¢)P. Using a minimum-cost flow algorithm on the directed spanner we construct will imply
Theorem 1.1.

Since the interior point method in Chen et al. (2022) does not admit a practical implementa-
tion, we also design a simple combinatorial algorithm for the W, matching problem, i.e., when p
and v are uniform distributions. A parallel line of work instead leverages such clusterings to de-
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sign distance oracles, i.e., data structures that allow efficient querying of distances between two
points (Thorup & Zwick (2005); Mendel & Naor (2007); Awerbuch et al. (1998)). However, these
oracles cannot be used to answer bichromatic closest-pair (BCP) queries, which are central to our
setting. To overcome this limitation, we tailor our clustering scheme to efficiently support both
weighted nearest-neighbor (WNN) and weighted bichromatic closest-pair queries. Importantly, al-
though answering pairwise-distance queries are expensive in our framework, our algorithms avoid
them entirely and instead rely solely on BCP and WNN queries. Using these data structures, we
obtain a simpler combinatorial algorithm to compute a (4 + ¢)-approximate W, matching.

Theorem 1.2. Let A and B be two point sets of size n each in an arbitrary metric space, and let
p € [1,00] be a parameter. A (4 + €)-approximate W, matching of A and B can be computed
in O(n?c=21og® A) expected time, and an (8 + ¢)-approximate W, matching of A and B can be
computed in O(n? + n*Fc=2log? A) time.

To our knowledge, there are no known practical and implementable approximation algorithms
for the W,,-matching problem that run in o(n?-) time.

Next, we establish conditional lower bounds that suggest our results cannot be significantly
improved without a major breakthrough in the graph matching problem, namely, computing a perfect
matching in any graph in O(n?) time.

Theorem 1.3. If there exists a quadratic-time algorithm that achieves a (2 — €)-relative approxima-
tion or A /2 — € additive approximation for the Wo,-matching problem, where A is the diameter of
the point set and € > 0 is a constant, then a perfect matching in an arbitrary graph can be computed
in O(n?) time if one exists.

We conclude with a primitive implementation of our simple combinatorial algorithm alongside
some experimental results suggesting that the algorithm computes good quality TW,-matchings for
p € [1,00] in Section 4. While we prove that the approximation factor of our algorithm is (4 + ¢)
in the worst case, our experimental results indicate that our algorithm computes even better approx-
imations of W,,-matchings in practice.

2 DISTANCE APPROXIMATION AND PROXIMITY QUERIES

Let P be a set of points, and let d: P x P — R>q be a metric. We describe a clustering based
distance function that approximates d(-, -), similar to the methods for constructing k-spanners and
distance oracles discussed in Section 1, and that can be represented using roughly n*/? space (as
opposed to O(n?) space to store all pairwise distances), and we use it to construct a spanner and to
maintain bichromatic closest pairs.

We present only a two-layered clustering in the main text. Similar to the prior works, this layered
clustering approach can be generalized to a k-level clustering. Extending to k-level clustering has
a reduced number of clusters in which any point is expected to participate, at the expense of an
increased stretch factor of the data structure. We provide more details about the k-level clustering in
Appendix B.

We begin with a few notations. Given a point € P and a subset (Q C P, the distance from x to
(@ is defined as d(z, Q) = min,ecq d(x, ¢). For a point ¢ € P and subset ) C P, define the Voronoi

region of ¢ to be
Vi, Q) :=={y € P|d(y,q) <d(y,Q)}.
That is, V' (¢, Q) consists of the points in P for which ¢ is closer than any point in Q.

Two-layered clustering. We construct a two-layered clustering of points of P. Set Py = P. Next,
we choose a subset P; C P, by sampling each point in P, independently with probability n~"/2.
The expected size of Py is E[| P[] = n'/.

Let A = max,,epd(p,q) be the diameter of P. Without loss of generality, assume
min, ,d(p,¢) = 1 implying the metric space (P,d) also has spread A. We choose ¢ > 0
to be a sufficiently small constant. Set ¢ = [log, =) A], 1o = 0, and r; = (1 + £ for
1 < ¢ < t. We generate two types of clusters: (i) For each ¢ € Py \ P; and for every ¢ < ¢,
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define Cy[i] = {z € V(q,P1) | d(z,q) < 7;}. (ii) For each ¢ € P; and for every i < ¢,
define Cyi]| = {# € Py | d(w,q) < 7;}. We refer to i as the index of the cluster Cy[i]. Let
C = {Cy[i] | ¢ € Py,i <t} be the collection of all clusters. Note that a point p € P may belong
to many clusters. The number of clusters that contain p is called the degree of p and is denoted as
dege(p). While the degree of any particular point may be as large as n in the worst case, we prove
that the expected degree of each point in P is much smaller.

Lemma 2.1. E [deg.(p)] = O(n'2c=log A) for all p € P.

Proof. We note that for any 0 < ¢ < j < ¢ and for any ¢ € P, C,y[i] C C,[j]. There are at most
O(s71log A) different values of i. Therefore it suffices to prove for any p € P, the number of
points ¢ € P where p € C,[t] is O(n'/?) in expectation.

Fix an arbitrary p € Py. For points ¢ € Py \ P, we have that p can only participate in clusters
centered at ¢ if d(p,q) < d(p, P1). Let wy, ..., ws be the points of P, ordered by non-decreasing
distance to p. If w; € Py \ Py and p € Cy, [t], then it must be the case that w1, ..., w;_1 ¢ P1. We

sampled the points P, independently from P, with probability n~"/?, so we have

Prpe Cy,lt]] < HPr['wt ¢ P = (1 _ %)3

The expected number of points in Py \ P; with a cluster containing p is then

§1(ws € P\ P1)-Prlpe Cy.[t] g%(p%)s < Vn.

We additionally note that E[| P;|] = \/n. Therefore, E [deg.(p)] < 2v/n. O

Cluster-induced distance approximation. We define the distance function, d¢: P x P — R>
based on the clustering. For any pair of points z,y € P, let ¢ be the smallest index of a cluster that
contains both x and y. Then we set d¢(x,y) = 27;.

Lemma 2.2. d(z,y) < dc¢(z,y) < (4 + &)d(z, ).

Proof. We say two points x and y are separated by P, if there are points a,b € P; such that
d(z,a) < d(z,y) and d(y,b) < d(x,y). Without loss of generality, let d(x,a) < d(y,a). Then
y € Cgli] for i such that d(y,a) < r; = (1+ )" < (1+ 5)d(y, a). So we have

de(z,y) =2r; =2 (1 + Z)Z <2 (1 + 2) d(y,a) <4 (1 + Z) d(x,y).

If  and y are not separated then either x € Cy, or y € C,. Without loss of generality, assume
x € Cyli]. Then we have de(z,y) = 2r; =2 (1+£)" <2(1+ £)d(a,y). d

2.1 PROXIMITY QUERIES

Next, we show that the clustering constructed above can be used for answering some proximity
queries, which will be crucial for our OT plan computation.

Directed spanner. Let A, B C P be two disjoint subsets of P, letd: P x P — R>( be a metric,
and let p € [1, 00). We construct a graph G = (V, E) and a set of edge weights w,,: £ — Rx>¢ such
that the shortest path from any ¢ € A to any b € B in the graph G with respect to weights wy, is
approximately d”(a, b).

For each cluster C' € C, we create two vertices ac,bc. Set V.= AU B U {ac,bc | C € C}.
For each cluster C' € C, we add the following three sets of edges to E:

(i) Add the edge ac — bc and set wy,(ac — be) = (2r;)? if the index of C is 4.
(i) Forevery a € AN C, we add the edge a — ac and set wy(a — ac) = 0.
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(iii) Forevery b € BN C, we add the edge b — b and set w,(bc — b) = 0.

Clearly |[V| = O(ne~tlog A) since |C| = O(ne~!log A). Since the expected degree of each point
is O(y/ne~"log A), the expected number of edges is O(n*?c~'log A). Define dg,: A x B —
R as the shortest path distance in G with respect to edge weights w,.

Lemma 2.3. The weighted graph G with weights w,, satisfies d?(a,b) < dg ,(a,b) < (4 +¢)P -
dP(a,b) forall a,b € A x B and for any p € [1,00).

Weighted nearest neighbor. Let P be a point set, and let A C P. Given a weight function
w: A — Rxg, define the weighted distance d,,: A x P — R as dy(a,p) = de(a,p) — w(a).
Our goal is to maintain the weighted nearest neighbor in A for every p € P, i.e. NN, (p) =
arg minge 4 dy,(a, p), as points (of P) are inserted into and deleted from A.

We build the above clustering C on the entire set P. For each point p € A, we store the list of
clusters to which it belongs. For each C' € C such that p € P, we maintain the points of AN C
in a max-heap using their weights. Let ac be the point of A N C stored at the root of the heap. If
the index of C is i, we set pc = 2r; — w(ac). Next, we store the set X = {(ac,C) | C € C}in
a min-heap H using ¢¢ as the key. The first element ac of the pair stored at the root of H is the
desired nearest neighbor NN, (p). Insertion or deletion of a point is straightforward. Omitting the

details, we state that the expected update time is O(n'/?c ! log(n) log A).

Dynamic bichromatic closest pair. Let P be a point set, and let A, B C P be two disjoint point
sets. Given a weight function w: AU B — R>(, we define the weighted distance d,,: Ax B — R
as

dw(a,b) =dc(a,b) — w(a) + w(b).
Our goal is to maintain BCP,, (A, B) = arg minq p)c ax B dw(a, b) as points are inserted into and
deleted from A and B. We only insert the points of P to A or B. We describe a simple data structure
to maintain BCP,,(A, B).

As for NN queries, we build the above clustering C on the entire set P. For each C' € C, we
maintain the points of B N C' in a min-heap using their weights as the key, and we maintain the
points of A N C' in a max-heap using their weights. Let ac (resp. bc) be the point of A N C' (resp.
B N C) stored at the root of the heap. If the index of C' is 4, we set

dc = 2r; —w(ac) + w(be).
Next, we store the set X = {(a¢,bc) | C € C} in a min-heap H using ¢¢ as the key. The pair
stored at the root of H is the desired pair BCP,, (A, B).
The following observation is critical to the design of the BCP data structure.

Lemma 24. Let (a*,b*) be the pair stored at the root of H. Then d,(a* b*) =
ming peax B dw(a,b).

A similar claim also appears in Lahn et al. (2025) as Lemma 2.3. We include the proof in
Appendix C, for completeness. We also note that the BCP data structure can be updated efficiently.

Lemma 2.5. Let P be a set of n points in a metric space. Let A,B C P be two weighted
point sets. A weighted BCP data structure under the distance function d,, can be maintained in
O(y/ne~'log Alogn) expected time per insertion and deletion.

3 ALGORITHMS FOR W,

In this section, we use the collection of clusters and data structures constructed in Section 2 to design
two efficient algorithms for the optimal transport problem.

3.1 MINIMUM-COST FLOW BASED ALGORITHM

Let y and v be discrete distributions with support sets A and B; let |A| + |B| = n. We compute
an approximate W,-OT as follows. First assume p > 1 is a finite value. Let G = (V, E) be the
directed graph constructed on A U B described in Section 2.1, and let w, be the corresponding
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weight function on F. We add a source vertex s and sink vertex ¢ to the graph G. We also add an
edge s — a for every a € A with weight wy,(s — a) = 0 and an edge b — ¢ for every b € B
with weight w,(b — ¢) = 0. This addition gives the graph a single source and single sink to run
minimum cost flow. Next, we assign capacities to each edge as follows: For each cluster C' € C and
corresponding edge ac — be in F, assign a capacity of u(ac — bc) = 1. Additionally, for each
a,b € C we assign the capacity u(a — ac) = u(bc — b) = 1. Finally, foreacha € Aand b € B,
we assign the source and sink edge capacities as u(s — a) = pu(a) and u(b — t) = v(b).

We compute the capacitated min-cost max- flow f* in this directed graph using the algorithm
by Chen et al. (2022) in (n3/2e~ ' log? A)1+°() log U expected time. Using the minimum cost flow

o(a,b) = 0 foralla € A,b € B. While the total flow from s to ¢ is positive, find any path
T=8—a— ac — bc — b — t where f*(e) > 0 for every edge e on the path 7 and increment
o(a,b) by A = min{f*(e) | e € w}. Additionally decrement f*(e) by X for every edge e € .
We repeat until f* is zero everywhere. This concludes the construction of the transport plan o. It
follows naturally from Lemma 2.3 that o is an approximate transport plan with respect to the W),
distance. Since G has O(n*?c =" log A) edges, the overall expected runtime of constructing ¢ from
[*is O(n*?e~ log A). This proves Theorem 1.1 for p € [1, c0).

f*, we compute a transport plan o where wy(0) < (3. f*(e)wp(e))l/p as follows. Initially,

For p = o0, we proceed as follows. We maintain the same source and sink vertices s, ¢t as well
as the same edge capacities as above. We then compute a sequence of maximum flows instead of
a single minimum cost flow in GG, and perform binary search on the radii of the clusters. By con-
struction, there are at most O(e ! log A) different values of r;. For a fixed 1 <i < O(s log A),
define the graph G; to be the graph G with all edges of cost wy (ac — b.) > 2r; removed. Com-
pute a maximum flow f; in G; from s to ¢ in (n%/2c " log A)'+°(1) log U expected time using the
algorithm of Chen et al. (2022). If ) , fi(s — a) = 1, then conclude that W, (x,v) < 2r; and
decrease i. Otherwise, conclude that W, (u, v) > 2r; and increase 4.

Let i* be the smallest value of ¢ such that ) , fi(s — x) = 1. Then we compute a transport
plan o from f;« as above in the case when p < oc. Initially, o(a,b) = O foralla € A,b € B.
While the total flow from s to ¢ is positive, find any path m = s — a — a¢c — bc — b — t where
fi=(e) > 0 for every edge ¢ on the path 7 and increment o(a,b) by A\ = min{f;-(e) | ¢ € «}.
Additionally decrement f;-(e) by A for every edge e € w. We repeat until f;- is zero everywhere.
This concludes the construction of the transport plan o. It follows naturally from Lemma 2.3 that o
is an approximate transport plan with respect to the W, distance. Similar to the algorithm for finite
p, we observe that the overall expected runtime of constructing o from f;- is O(n*?e = log A).
This proves Theorem 1.1 for p = oo.

3.2 A SIMPLER MATCHING ALGORITHM

We present a significantly simpler, combinatorial algorithm that runs in O~(n2 ) time and computes
a minimum-—cost matching under the W, metric between two point sets A and B, each of size n.
The algorithm selects an appropriate parameter ¢ and simulates a single scale of the Gabow—Tarjan
cost—scaling framework for bipartite matching, with all steps executed efficiently via a bichromatic
closest—pair data structure. Given the parameter §, we begin by defining scaled costs as a scaled
version of the p-th power of the proxy distance ¢(a,b) = [} df(a,b)|. The algorithm proceeds
with these integer costs ¢(a, b).

Matchings and augmenting paths A matching M is a collection of vertex—disjoint edges. A
vertex not incident to any edge of M is said to be free. A matching is perfect if no vertex is free.
Given a matching M, an alternating path is a path whose edges alternate between those in M
and those outside M. An augmenting path is an alternating path whose two endpoints are free.
Augmenting along such a path flips the membership of its edges in M, thereby increasing the size
of the matching by one.

1-feasible matching. Each vertex v € AUB is assigned an integer dual variable y(v). A matching
M and dual weights y(-) are 1-feasible if

y(a) +yb) < é(a,b) +1 for all (a,b) € A x B, (1
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y(a) +y(b) = é(a,b) for all (a,b) € M. (2)
We define the slack of an edge (a, b) with respect to a matching M and dual weights y(-) as

0, if (a,b) € M,
s(a,b) = { ,
¢(a,b) —y(a) —y(b) + 1, if (a,b) & M.
An edge is admissible if s(a,b) = 0, and the set of admissible edges forms the admissible graph

We initialize the matching M = @ and set all dual weights to zero, i.e., y(v) = 0 for every
v € AU B. Note that (M, y) is 1-feasible. Let Bp = B be the free vertices of B with resepct to M.
The algorithm maintains a 1-feasible pair (M, y) consisting of a matching M and dual weights y(-),
and executes iterations. Each iteration has the dual adjustment step, which builds an augmenting
path of admissible edges, and augmentation step, which computes a maximal set of vertex-disjoint
augmenting paths and augments the matching along these paths to increase the size of the matching.
Next, we describe the dual adjustment and the augmentation steps.

Dual adjustment via BCP-based Hungarian Search. The Hungarian search procedure runs a
Dijkstra-style shortest path search using slacks as edge lengths. This search is implemented using
bichromatic closest pair (BCP) queries, described in Section 2.1, with implicit dual updates. The
search maintains a tree. Let U C B: the set of vertices of B already added to this search tree and
let V- C A be the set of vertices of A not yet added to the search tree. Initially, U contains all free
vertices in B, each with distance label ¢, = 0, and V' = A. Define effective weights

w(b) =y(b) — 4, forbel, w(a) =y(a) foraeV.

At each iteration, select the edge

1, b) = i s(a’ b))+ 4y} = i d?(a’,b") —w(a’) —w(®)}.
(a,b) = arg a’/er‘r/{lglleU{e(a b))+ by} = arg alel"l/l’lé’lle[]{ (@', b)) —w(a) —w(b)}

This minimization is exactly a BCP query, which we answer using the data structure described in
Section 2.1.

Remove a from V, set ¢, = ¢, + s(a,b), and add it to the search tree. If a is free, a shortest
augmenting path has been found. Otherwise, let b’ be its matched partner; set £, = £,, update
w(b’) = y(b') — 4y, and insert ¥’ into U.

This procedure simulates Hungarian search procedure without explicitly updating all duals: off-
sets are stored in the effective weights and automatically incorporated by BCP queries. When the
search terminates at a free vertex a* € A, let A = ¢,«. The dual weights are then updated as

y(a) < y(a) + £(a) foralla € S, y(b) < y(b) — £(b) forallbe T,

where S C A and T' C B are the sets of vertices reached. In practice, these updates are never
carried out explicitly. Instead, the effective weights w(+) store the necessary offsets, and BCP queries
automatically incorporate them.

Augmentation step using weighted nearest neighbor. Once the dual adjustment phase reaches a
free vertex in A, the search guarantees that there is at least one augmenting path in the admissible
graph. The algorithm then finds a maximal set of vertex-disjoint augmenting paths by conducting a
sequence of partial depth-first search (DFS): Start a DFS from each free point of B in a sequential
manner. Let X be the set of points of A that have not yet been visited by any DFS. Initially X = A.
The DFS alternates between unmatched admissible edges from B to A and matched edges from A
back to B. Whenever the DFES is at a vertex v € B, the next admissible edge can be retrieved by a
weighted nearest neighbor query:

a = arg min {d"(u, ') — y(u) - y(a) }.

We use the data structure of Section 2.1 to answer the NN query. We then check whether (u, a) is
admissible. Thus, a single nearest neighbor query suffices to reveal the next admissible edge. a is
removed from X. If a is matched to b”, then we extend the alternating path by adding (a,b”) to
it and the DFS continues from b”. If the DFS reaches a free vertex a in A, an augmenting path is
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identified. The algorithm then starts a DFS from a different free point of B. This step terminates
when a DFS has been executed from each of the free points of B.

Finally, all discovered augmenting paths are flipped simultaneously to update the matching. For
each augmenting path and for every vertex b € B lying on it, reduce the dual weight by one:
y(b) < wy(b) — 1. This correction guarantees that all newly matched edges remain tight under the
1-feasible condition.

The algorithm alternates between dual adjustment and augmentation until all vertices are
matched. The final pair (M, y) is a perfect matching and remains 1-feasible throughout the exe-
cution.

Efficiency. We select the parameter § so that the edge costs become integers and the optimal cost
is scaled to ©(n/¢). Scaling by ¢ preserves the true optimum, while rounding introduces at most an
additive error of n. Moreover, the 1-feasible matching produced is itself within +n of the rounded
optimum (Gabow & Tarjan (1989)). Hence, the total deviation is at most 2n, and whenever the
rounded optimum is at least 2n /e, the resulting solution is guaranteed to be within a (1 + &) factor
of the true optimum.

Gabow and Tarjan showed that if the costs are integers and the value of the optimal solution is
O(n/e), then a single scale of their algorithm converges in O(y/n/e) phases. In particular, when

the optimal solution has value 2n /¢, the algorithm terminates in O(1/n/¢) phases, and combined
with the error bounds above, produces a (1 + £)-approximation.

Each of the two steps—dual adjustment and augmentation—of a phase can be implemented
using efficient geometric data structures. The dual adjustment step builds a weighted bichromatic
closest pair (BCP) data structure on U and V' and performs dynamic updates as U and V' change.
Since points are only added to U and deleted from V/, the total number of updates cannot exceed 2n,
and therefore the total time spent in this step is bounded by O(n) queries to the BCP data structure.
The augmentation step builds a weighted nearest neighbor (WNN) data structure on all points of A,
and as the points of A are visited by a depth-first search they are deleted from the structure. Thus, the
augmentation step can also be implemented using O(n) queries to the WNN data structure. Each of

these queries is supported in O(\/ﬁ) time (see Section 2.1), so the overall execution time per phase
is O(n?).

Next, we describe how to choose a § so that the optimal cost with the rounded costs is scaled to
©(n/e). Since the optimal cost can take values between 1 and nA, we consider a sequence of scales

. £ i
51' = (1+E)Z‘E, ’L=172,..., ’VIOg(l_,'_a)(nA)—‘

For each ¢;, we execute a single scale of the algorithm, each of which runs in O(n?) time. Among
all executions that terminate within this bound, we return the matching of smallest cost. This proves
Theorem 1.2.

4 EMPIRICAL EVALUATION

This section contains an empirical evaluation of the clustering method from Section 2 as well as the
approximation factor obtained from the primal—dual algorithm of Section 3.2. Computations were
performed on a computer with an 8-core Apple M1 CPU with 16GB RAM. Samples are drawn from
uniform and truncated normal distributions on the unit cube in up to 10 dimensions.

Cluster distance accuracy. We first evaluate the quality of the clustering by comparing the
induced cluster distances to the ground metric. For each value of n, we measure both the maximum
and the average distortion across all pairs. Figure (1e) confirms that the worst-case distortion never
exceeds the theoretical (4 + ¢)-approximation guarantee of Lemma 2.2. More importantly, the
average distortion is often substantially smaller, typically close to a factor of 2. This suggests that
in practice the effective approximation factor is significantly tighter than the worst-case analysis.

Clustering efficiency. Next, we examine the degree, ie. the number of clusters each point
participates in. Figure (1d) shows that the observed averages closely track the theoretical bound of



Under review as a conference paper at ICLR 2026

Exact min-cost
w o ow »

Computed min-cost /
o o r B NN
o o o

(a) Approximation Ratio (Normal) (b) Approximation Ratio (Uniform)

|
\
\
?
!

Exact min-cost

t/

Computed min

0 1000 2000 3000 4000 5000 6000 7000 8000

n

wow s
o & o

W;\

o

s wN

© o E NN
o o u oo

tt

- p=5
—— p=inf

= =
5] )

Number of Operations
=
5]

n

4.0

0
0 1000 2000 3000 4000 5000 6000 7000 8000

3 30T TT DO

]
v wN e

=]
Y
-

102

n

(c) Algorithm Efficiency

450 — e -

4001 --—- 22vA Y ' .

3s0) 1 1.5«% y li' ' |__|,_ 30 ! I i1 il 1 8 80
Ezsu il]' é 2.0
g 200 |l g 815
g W

150 "” 1.0

100 t o5 * :/agx

5000 10000 15000 20000 25000 30000 35000 40000 00 2000 4000 6000 8000 10000
n n
(d) Average Degree (e) Max and Average Distortion

Figure 1: Empirical evaluation of the 2-layer clustering and W,-matching algorithm.

Lemma 2.1 for dimension d < 10, and both distributions. This indicates that the two-layer clustering
is both space-efficient and stable across different settings.

Algorithm accuracy. To evaluate the accuracy of the primal-dual matching algorithm, we com-
pare the computed matching cost to that obtained using the exact distance matrix. Figures (1b)
and (1a) report the approximation ratio across values of p € {1,2,3,4,5,00}. The ratios consis-
tently remain well within the theoretical (4 + ¢) factor, with typical values close to 1.5-2, again
suggesting that the empirical performance is considerably better than the worst-case analysis. This
trend is stable across both uniform and normal distributions.

Algorithm efficiency. We measure efficiency by the number of bichromatic closest pair (BCP)
queries, which dominate the running time. As shown in Figure (lc), the query counts scale as
predicted and remain nearly identical across all choices of p. Combined with the O(nz) per-query
complexity, this provides strong empirical evidence that the algorithm runs in quadratic time and
scales smoothly with problem size.

Summary. Overall, the experiments demonstrate that the proposed method is both theoreti-
cally grounded and empirically robust. While the theoretical analysis guarantees only a (4 + €)
approximation, the observed approximation ratios are consistently much smaller, indicating that the
algorithm is practically near-optimal. The clustering step is efficient in both time and space, and its
distortions are far below the worst-case bound. Taken together, these results suggest that our ap-
proach is a practical alternative to additive methods such as Sinkhorn, particularly in regimes where
existing techniques either fail to apply (e.g., p = 00) or require higher-than-quadratic time.
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