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Abstract

Language models must be adapted to understand and follow user instructions.
Reinforcement learning is widely used to facilitate this — typically using fixed
criteria such as “helpfulness” and “harmfulness”. In our work, we instead propose
using flexible, instruction-specific criteria as a means of broadening the impact
that reinforcement learning can have in eliciting instruction following. We propose
“Reinforcement Learning from Checklist Feedback” (RLCF). From instructions,
we extract checklists and evaluate how well responses satisfy each item—using
both Al judges and specialized verifier programs—then combine these scores to
compute rewards for RL. We compare RLCF with other alignment methods on top
of a strong instruction following model (Qwen2.5-7B-Instruct) on five widely-
studied benchmarks — RLCF is the only method to help on every benchmark,
including a 4-point boost in hard satisfaction rate on FollowBench, a 6-point
increase on InFoBench, and a 3-point rise in win rate on Arena-Hard. We show
that RLCF can also be used off-policy to improve Llama 3.1 8B Instruct and
OLMo 2 7B Imnstruct. These results establish rubrics as a key tool for improving
language models’ support of queries that express a multitude of needs. We release
our our dataset of rubrics (WildChecklists), models, and code to the public

1 Introduction

Language models must follow user instructions to be useful. As the general public integrates language
model-based assistants into their completion of daily tasks, there is an expectation that models can
faithfully follow the users’ requests, which increasingly involve rich, multi-step instructions [Liu
et al.| 2024al Zhao et al.||2024} Zheng et al.|. Today’s models are almost universally trained to follow
instructions via a two-step process: instruction finetuning, followed by reinforcement learning from
human feedback (RLHF). Instruction finetuning, where the model is trained to mimic responses
generated by annotators [Raffel et al.l|2019], has historically been the primary workhorse for imbuing
language models with some amount of instruction following ability [Wang et al., 2022} |Chung et al.|
2022| Xu et al., 2024, Lambert et al.,[2024a]. Model developers then frequently employ RLHF, where
the model is trained to generate responses that look more like labeled “good” responses than “bad”
responses, as a refinement step to decrease the likelihood that the model exhibits predefined poor
behaviors (typically harmful behaviors) [Ziegler et al., {2019} Bai et al., [2022]]. Unlike “verifiable”
tasks where reinforcement learning is a workhorse [DeepSeek-Al et al., 2025} [Lambert et al., 20244,
Pyatkin et al.| |2025], reinforcement learning remains difficult to utilize for ambiguous or “non-
verifiable” tasks, such as instruction following. What would it take to make RL a general-purpose
solution at eliciting desirable behaviors in subjective or open-ended settings?
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Figure 2: We propose Reinforcement Learning from Checklist Feedback, where sampled responses
are evaluated by a teacher model grounded on a fixed set of criteria. In our pipeline, given instructions,
we first generate checklists synthetically from the instructions, grade each response on each checklist
item, combine per-item scores into a single weighted checklist score, then use this score for RL.
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ing preferences from a larger model, that model must infer what aspects to grade on, reducing the
“generator-verifier gap” that enables RL [Swamy et al.| 2025]. Even if multiple criterion-specific
prompts are used, these criteria may not be comprehensive [Bai et al., 2022} |Glaese et al., 2022].

In this paper, we ask: “how can we grade responses to instructions in a manner that is automatic
(requires no human annotation), flexible (considers all aspects of response quality), intuitive (aligned
with perceptible differences in responses), and applicable to any instruction or response, to enable
more better language model alignment?” We propose extracting dynamic rubrics from instructions —
an approach we term Reinforcement Learning from Checklist Feedback (RLCF). This approach
reduces the task of grading responses to answering a series of yes/no questions, which can be
answered by a model or by executing a verification program.

Our key contributions are:

1. We describe a new and improved algorithm for automatically generating checklists at scale.

2. We construct WildChecklists, a dataset consisting of 130,000 instructions and corresponding
checklists (generated synthetically). When applicable, we accompany items in each checklist
with a verification program to facilitate automatic evaluation. We plan to release this dataset to
the community as an artifact for future study.

3. We describe a new algorithm for grading responses according to checklists, using language
models and code, and we show to use this algorithm to rank responses for preference tuning.

4. We finetune Qwen2.5-7B-Instruct via reinforcement learning from checklist feedback using
WildChecklists, leading to a strong and improved 7B-parameter model for instruction following.

On 5 benchmarks covering both constrained instruction following (IFEval, InFoBench, FollowBench)
and general conversational assistance (AlpacaEval, Arena-Hard), we find that RLCF provides benefits
on all instruction following benchmarks while maintaining improved performance on general conver-
sational assistance benchmarks. In contrast, all alternative forms of Al feedback lead to mixed results,



as shown in[Figure T| RLCF provides a 5.4% relative improvement over Qwen2.5-7B-Instruct in
average hard satisfaction rate on FollowBench, a 6.9% relative improvement in overall requirement
following ratio on InFoBench, and a 6.4% relative improvement on Arena-Hard [Jiang et al., 2023} |Qin
et al.,|2024, |Li et al., 2024]]. RLCF can also be used off-policy; we see Llama 3.1 8B Instruct
and OLMo 2 7B Instruct improve using samples collected using Qwen2.5-7B-Instruct. De-
spite these considerable improvements, RLCF simply requires a teacher model, with no need for
additional data or human annotations, making this approach amenable to diverse languages or do-
mains. We provide evidence that checklist-based rewards are well-correlated to human preference
judgments (comparable to many finetuned reward models) while providing a stronger learning signal
than alternatives.

2 Checklist Generation

Desiderata for checklists. We define a checklist as a sequence of requirements paired with an
instruction that satisfy the following properties:

1. Each requirement in the checklist is a yes/no question (e.g. “Does the text contain 3 commas?”).

2. Each requirement in the checklist must be answered relative to a given candidate response.

3. A response would be considered acceptable if and only if the response answers “yes” to all
checklist requirements.

To satisfy definition #3, checklists must be comprehensive (cover most relevant aspects of quality)
and natural (entailed by their corresponding instructions). Based on the observation that false positive
rewards are often more detrimental to reinforcement learning than false negatives [Huang et al., 2024,
we want checklists that are objective (facilitate automatic verification) and afomic (each requirement
focuses on a single aspect of quality), to make requirement checking easier.

Extract checklists per instruction. We examine two methods to extract checklists:

e Direct: We simply prompt an LM to extract a checklist from a given instruction [Cook et al.,
2024]]. This approach is intuitive and simple but risks repeating the original instruction via these
individual criteria, which may limit comprehensiveness and objectiveness.

e Candidate-based: We view a requirement as any aspect of an instruction that, when absent,
causes a response to fail. We propose a two-stage approach: produce responses of varying
quality, then prompt an LM to write a checklist of all their possible failure modes. For each
checklist item, we also prompt the model to generate an “importance” weight (from 0 to 100).

To compare these, we generate checklists for all instructions in InFoBench [Qin et al., |2024f]. We use
gpt-4o to blindly evaluate each of these checklists on naturalness, objectivity, comprehensiveness,
and atomicity, then select the better one overall. We manually perform the same evaluation on a
subset of 50 instructions from the “Easy Set” of InFoBench.

The results in show that checklists generated by prompting an LLM directly are more natural.
However, providing candidate responses to the LLM leads to checklists with consistently better
objectiveness, atomicity, and overall quality. There are absolute differences between scores from the
two evaluations — partly because they use different subsets — but directional trends are consistent.
We find that this difference translates to downstream performance after performing RL training. In
we show that Reinforcement Learning from Checklist Feedback is more effective on
checklists generated via the candidate-based method.

Regularization via universal criteria. In initial experiments, we found that optimizing for checklist
completion led to responses beginning with long preamble overviews, suggesting reward hacking.
Following |Sun et al.|[2023]] (who report a similar issue in prior work), we add two “universal require-
ments” to all generated checklists. These requirements state “1) The response directly address the
request without excessive or off-topic information not necessary for addressing the user’s instruction?
and 2) The response should match the context and the instruction, whether it requires professionalism,
friendliness, formality, or neutrality.”, with a corresponding total importance weight of 100/100.

Dataset Generation Using the candidate-based method, we generate checklists for 130,000 instruc-
tions from WildChat to create a new dataset, WildChecklists. To generate candidate responses for
our method, we use Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-3B, and Qwen2.5-7B [Yang et al.|
2024]. Qwen2.5-72B-Instruct is the checklist generator model for both methods.



Manual Evaluation Automatic Evaluation
Metric | Direct Candidate-Based \ Direct Candidate-Based

Naturalness 94.9 93.9 88.0 85.1
Objectiveness | 88.5 91.9 88.9 89.7
Comprehensiveness | 74.0 82.0 69.2 64.8
Atomicity | 68.0 90.0 98.6 99.0

% Preferred Overall | 38.0 56.0 | 40.6 51.2

Table 1: We evaluate two checklist generation methods on four specific aspects of quality and an
overall preference. Manual evaluation is performed on the first 50 rows of InFoBench “easy”, while
automatic evaluation is performed by gpt-4o on all 500 rows of InFoBench.

3 Reinforcement Learning from Checklist Feedback

Given WildChecklists, we generate high-quality preference data for RL via a four-step process:

Sampling Candidate Responses. To facilitate RL, we sample response pairs from our base policy
with a temperature of 1.3 and a fop-p of 0.9 [Holtzman et al.l | 2019]]. This is simpler than prior works
that systematically perturb samples to induce greater complexity [Sun et al., [2024, |Dong et al., 2024].

Flexible Scoring Given a prompt, a response, and an individual checklist item, we use a combination
of an LM judge and a verifier program to grade the response. For each checklist item, we prompt a

judge model (Qwen2.5-72B-Instruct) using the prompt in [Appendix B|to generate a numerical
score between 0 and 100. We take the average of 25 numerical scores sampled from the model

LLMs struggle to evaluate hard, discrete criteria, such as “does the response contain the letter R at
least three times?” [[Fu et al.||2024]. To handle such constraints, we follow prior work in generating a
program to grade responses when needed [Dong et al., 2024} |Zhou et al.,|2023]]. We prompt a model
(using the prompt in to write code only when the model is confident it can exactly check
the requirement. For example, our program generator abstains from writing a verifier for the criterion
“Is the sentence coherent”. The program-graded score is then averaged with the Al judge’s scoreE]

Preference Tuning. Given a separate numerical score for each criterion for each response, we take
the average of these scores, weighted by the importance score of each criterion. We keep only the
40% of response pairs with the greatest difference along at least one criterion of its corresponding
checklist. This removes response pairs that are too similar to offer useful pairwise signal. We then
assign these responses as a preference pair for direct preference optimization [Rafailov et al., [2023]].

4 Experimental Setup and Results

4.1 Experimental Details

Training Data As a fixed source of instructions for all methods, we use WildChat, a set of natural
conversations between users and Al language models crowdsourced from users across the world
[Zhao et al.| [2024]]. We filter out conversations that are non-English, toxic, or longer than two turns.

Models We experiment with finetuning Qwen2.5-7B and Qwen2.5-7B-Instruct. To produce Al
judgments or ground truth responses, we use Qwen2.5-72B-Instruct unless stated otherwise.

Training We finetune the model for 2 epochs using DPO with a batch size of 1024 and a maximum
sequence length of 2048. We use a cosine learning rate schedule with a max LR of 3e-6 and a min
LR of 2e-6E] We use OpenRLHEF for training [Hu et al.,|2024]], and we train on one 8xH100 node
with 80GB GPU memory, which took roughly 3 hours for each model.

*We sample responses using the n parameter in vLLM [Kwon et al., 2023]. This approach follows prior
work that describes the importance of using the mean score rather than mode score from an LM-as-a-judge
model [Wang et al.||2025a]] Regardless, this makes the Al judge component the computational bottleneck of our
pipeline. In[Section 5.7, we show that n can be significantly reduced, at a modest accuracy cost.

3This approach is much simpler than the most relevant prior work that uses programs to evaluate responses,
AutolF [Dong et al.}|2024], which uses test-case generation and LM-based filters to remove low-quality programs.

*When training models with Ultrafeedback, we instead used a minimum learning rate of 3e-7. We found this
parameter resulted in a slightly stronger baseline when learning from this feedback.
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Figure 3: Checklist feedback can be viewed as an extreme mixture-of-evaluators, where the space of
(prompted) evaluators is unbounded and a unique subset of evaluators is chosen for each instruction.

Benchmark Data We evaluate our method on five benchmarks: IFEval 2023, InFoBench
2024], FollowBench 2023]], AlpacaEval [Dubois et al.l 2024]), and Arena-Hard
2024]. The first three of these measure instruction following ability in the presence of
fine-grained constraints. The last two measure “general-purpose” instruction following ability, using
naturalistic instructions based on user queries collected in the wild.

4.2 Baselines

To show that RLCF is more effective than existing approaches, we compare against baselines:
instruction finetuning, specially-trained reward models (using either a single reward or mixture of
rewards), and prompted Al judges (using either a single evaluation rubric or a mixture of rubrics).

Instruction Finetuning: We compare with instruction finetuning, to isolate the benefit of additional
knowledge from the manner it is given (ground truth or rewards). Here, we distill [Hinton et al.,2013]
from a larger model, Qwen2.5-72B-Instruct, finetuned via LlamaFactory [Zheng et al.,[2024].

Reward Models: We mirror our training approach for learning from checklist feedback, but us-
ing state-of-the-art reward models to decide which response should be chosen or rejected. We
use Skywork/Skywork-Reward-Gemma-2-27B [Liu et al., 2024b]] and ArmoRM-L1ama3-8B-v0.1
[Wang et al|[2024b] — both are highly rated on RewardBench [Lambert et al., 2024b] [

Prompted AI Judge: We compare against using the same “teacher” model as a judge, without using
rubrics. We query this teacher in two settings: 1) “Ultrafeedback”, where the judge rates all candidate
responses from 1-5 2023]] separately across four quality aspects (instruction following,
helpfulness, truthfulness, honesty) and averages these scores; and 2) Al Judge, where a near-identical
prompt as RLCF is used (§3) to similarly sample 25 scores between 0 and 100 from the judge.

In[Figure 3] we unify these methods of automatic evaluation to distinguish our method from prior art.
In this context, checklist feedback can be viewed as a very large mixture of prompted evaluators.

5 Results

5.1 RL from Checklist Feedback consistently improves language models

Our proposed approach, RLCF, demonstrates consistent gains across all benchmarks
[Table 3| and [Table 4). On IFEval’s “loose” metrics (which apply minor preprocessing to responses
before checking for correctness), RLCF improves Qwen-7B-Instruct by 2.8-3.0% (relative), as
shown in the left half of On FollowBench (shown in[Table 3)), RLCF achieves an 8.2%
increase on Constraint Satisfaction Level (CSL; the expected proportion of constraints satisfied) and
a 5.5% increase on average Hard Satisfaction Rate (how often all constraints are satisfied). RLCF
also performs competitively on InFoBench (right half of [Table 2), achieving results comparable
to the best-performing reward model-based approaches while maintaining consistent gains across
all constrain-based benchmarks. On “general use-case” instruction following benchmarks, RLCF
consistently increases the win rate of Quen2.5-7B over GPT-4 (shown in[Table 4), with the relative
improvement ranging from 2.8% to 8.4%.

SSkywork/Skywork-Reward-Gemma-2-27B and ArmoRM-Llama3-8B-v0.1 are ranked as #4 and #24,
respectively, on RewardBench as of July 2025.



IFEval (prompt)  IFEval (inst.) InFoBench
Loose Strict Loose Strict \ Avg | Easy Hard Overall

GPT-4 79.3 76.9 85.4 83.6 ‘ 81.3 ‘ 89.3 864 87.3
Owen?2.5-7B-Instruct 75.0 72.5 81.8 79.9 | 77.3 | 82.7 76.0 78.1
+ SFT (Distilled) 66.9 64.1 75.3 72.8 | 69.8 | 79.9  70.6 73.5

+ DPO (via Skywork) 75.8 68.0 83.2 78.5 | 76.0 | 81.0 824 82.0
+ DPO (via ArmoRM)  73.8 70.2 81.7 783 | 76.0 | 84.2  83.1 83.5
+ DPO (via Ultrafbk.) 71.5 69.1 79.9 7177 | 74.6 | 823  79.0 80.0
+ DPO (via Al Judge) 73.0 68.9 80.9 77.8 | 75.2 | 81.0 73.9 76.1

+ DPO (RLCF) 71.3 72.6 84.1 80.3 | 78.6 | 84.2 84.0 84.1
QOwen2.5-7B (Base) 35.7 30.5 46.6 42.1 | 3877 | 688 774 74.8
+ SFT on WildChat 38.1 335 522 48.6 | 43.1 | 78.1 80.1 79.5
+ DPO (RLCF) 434 359 56.4 49.2 | 46.2 | 80.6 80.5 80.5

Table 2: For instruction following, RLCF leads to large gains with open-ended constraints (InFoBench)
and slightly positive or neutral changes on format-based constraints (IFEval). Off-the-shelf reward
models help on InFoBench but hurt on IFEval. We show positive results (relative to the baseline) in
blue, negative in orange, and neutral (within 0.5) in gray; the top variant of a given model is bolded.

FollowBench Soft Satisfaction Rate Hard Satisfaction Rate

Level L1 L2 L3 L4 L5 Avg L1 L2 L3 L4 L5 Avg | CSL
GPT-4 ‘ 89.2 893 87.6 831 849 878 ‘ 89.2 876 836 830 751 837 ‘ 3.52
Qwen2.5-7B-Instr. 874 840 830 796 790 82.6 | 874 80.6 723 622 544 714 | 3.05
+ SFT (Distilled) 875 832 844 768 749 814 | 875 783 739 60.7 49.1 69.9 | 2.90
+ DPO (Skywork) 796 841 777 777 781 794 | 79.6 81.1 674 629 565 695 2.88
+ DPO (ArmoRM) 864 846 79.1 792 769 812 | 864 829 690 639 497 704 | 3.10
+ DPO (Ultrafbk.) 885 841 825 763 726 80.8 | 885 8l.1 624 635 549 726 | 298
+ DPO (AI Judge) 872 879 757 792 776 815 | 872 835 624 635 549 703 2.95
DPO (RLCF) 886 888 838 799 810 844 | 886 8.2 758 651 61.8 753 | 3.30
QOwen2.5-7B (Base) | 559  60.7 56.6 56.1 546 568 | 559 49.1 36.1 334 195 388 1.20
+ SFT (WildChat) 654 753 716 647 651 684 | 654 692 574 469 403 558 2.02
+ DPO (RLCF) 70.6 760 695 636 578 675 | 70.6 677 49.6 424 283 517 2.08
+ RLCF w/o code 709 771 733 660 635 702 | 709 70.0 565 429 363 553 | 2.20

Table 3: RLCF leads to improvements on FollowBench on across all metrics when starting with
an instruction-tuned model, while using an off-the-shelf reward model for preference labeling leads
to regressions for most metrics. This algorithm also helps when applied to a non-instruction-tuned
model, though it does not beat supervised finetuning. “CSL” stands for “Constraint Satisfaction
Level”. We show positive results (relative to the baseline) in blue, negative in orange, and neutral
(within 0.5 for satisfaction rate or 0.05 for CSL) in gray; the top variant of a given model is bolded.

5.2 Comparing automatic evaluators

In[Table 2] [Table 3] and [Table 4] we observe our approach of performing RL from Checklist Feed-
back (RLCF) outperforms RL from other sources of automatic evaluation across most benchmarks.
However, off-the-shelf reward models show mixed results depending on the benchmark. Skywork
(Skywork-Reward-Gemma-2-27B), a leading model on the RewardBench leaderboard, shows strong
improvements with RLHF on InFoBench, Arena-Hard, and AlpacaEval — RLHF via Skywork notably
outperforms RLCF on AlpacaEval by a large margin. However, Skywork-guided RLHF leads to
notable regressions as on IFEval and FollowBench. Similarly, RLHF with ArmoRM shows significant
improvements on AlpacaEval and InFoBench, modest/mixed results on Arena-Hard and FollowBench,
and significant regressions on IFEval.

We also evaluate checklist feedback’s ability as a judge on RewardBench} shows checklist
scores are well-correlated with preference annotations on RewardBench, especially for the "Chat"
and "Chat Hard" categories [Lambert et al.|[2024b]. However, specialized reward models (Skywork,

Unlike our method for checklist generation on WildChat, here we do not use any ground truth or output
from other models when generating checklists.



Arena-Hard AlpacaEval
Vanilla Style-Controlled Vanilla Length-Controlled

GPT-4 (0314) 50.0 50.0 22.1 353
Owen2.5-7B-Instruct 51.3 42.8 33.5 36.2
+ SFT (Distilled) 32.6 29.2 36.1 333
+ DPO (via Skywork) 55.1 50.3 44.8 41.5
+ DPO (via ArmoRM) 50.8 46.4 37.6 38.1
+ DPO (via Ultrafeedback) 52.8 479 33.7 38.7
+ DPO (via Al Judge) 51.0 44 4 28.8 334
+ DPO (RLCF) 54.6 48.4 36.2 37.1
Qwen2.5-7B (Base) 19.6 24.1 8.9 94
+ SFT on WildChat 8.8 8.8 9.4 7.5
+ DPO (RLCF) 19.4 21.6 11.2 10.5
+ RLCF w/o program verification 23.1 27.1 11.0 13.9

Table 4: We compare methods on two “general” instruction following benchmarks: Arena-Hard and
AlpacaEval. RLCF gives modest but consistent gains on both the original metric and length/style-
controlled metric on each benchmark. We show positive results (relative to the baseline) in blue,
negative in orange, and neutral (within 0.5) in gray; the top variant of a given model is bolded.

| Chat Chat Hard Safety ~Reasoning

Skywork-27B | 96.1 89.9 93.0 98.1
ArmoRM | 96.9 76.8 90.5 97.3
Checklist-Based Reward | 90.0 80.7 71.4 88.5

Table 5: On RewardBench, Specialized reward models like Skywork-27B and ArmoRM excel at
predicting which response is superior. Our checklist-based approach is worse on this this benchmark,
but still achieves competitive performance on challenging categories like Chat Hard and Reasoning.

ArmoRM), are much better here, though worse at supervising RLHF. This follows prior evidence that
reward model “accuracy” is poorly correlated with efficacy in RLHF [Malik et al.,[2025| [Razin et al.}
2025]). Note that our method shows relatively less correlation with Safety — our implementation of
RLCF is not designed as a substitute for safety alignment (see more discussion in §Section 5.3).

5.3 Learning from candidate-based vs directly-generated checklists

In[Section 2| we described a novel method for candidate-based checklist generation, and we presented
some intrinsic evaluation showing that this method generates good checklists. Do these checklists
indeed translate to better models after RL training?

In[Table 6] we observe that RLCF is consistently better using “candidate-based” checklists than using
checklists generated “directly* by prompting: 2% better on IFEval, equally good on InFoBench, and
2-3% better on FolllowBench. This shows that RLCF depends on detailed, and objective checklists
that may offer more new information than checklists obtained directly from the original prompt.

5.4 Where does checklist feedback help?

Does checklist feedback help with a specific aspect of instructions, such as rule-based format
constraints? Performance on specific constraint types on FollowBench, shown in[Table 7] shows that,
unsurprisingly, prompt-based scoring is helpful for prompts involving style or format constraints.
We also see that RLCF is best for “content” constraints, which are qualifiers included on open-
ended questions to limit the valid space of answers (e.g. “How might economic data from the past
quarter affect the Fed’s decision on interest rates? Additionally, consider how inflation rates might
influence their decision.”). This suggests checklist feedback incentivizes models to attend to the
full instruction rather than using a few influential spans to generate responses.

This hypothesis is supported by qualitative analysis of the preference data in[Table 8] We observe
that using an Al judge with a single rubric is often insensitive to major changes in the prompt. When
the user asks to translate an utterance to Spanish, the Al judge assigns a 100-point score to both a



IFEval (prompt) IFEval (inst.) InFoBench | FollowBench

Loose Strict Loose Strict | Avg Overall SSR  HSR
QOwen2.5-7B-Instruct 75.0 72.5 81.8 79.9 77.3 78.1 826 714
+ RLCF (direct) 74.3 69.5 81.5 779 | 76.9 84.3 825 728
+ RLCF (candidate-based)  77.3 72.6 84.1 80.3 | 78.6 84.1 844 753

Table 6: Using candidate-based checklists is crucial to making RLCF work, suggesting that the
quality and properties of checklists are important for learning from checklist feedback.

| Avg (HSR) | Format Style Situation Content

GPT-4 \ 83.7 | 833 97.3 78.2 76.0
QOwen2.5-7B-Instruct 71.4 60.0 87.3 78.1 60.0
+ DPO (Skywork) 69.5 62.7 88.0 74.7 52.8
+ DPO (ArmoRM) 70.4 62.0 89.3 71.8 58.4
+ SFT (Distilled) 71.1 61.3 85.3 80.0 57.6
+ RLCF w/o prompt-based scoring 73.6 62.7 90.7 81.8 59.2
+ RLCF w/o program verification) 73.8 68.7 91.3 80.0 55.2
+ RLCF 75.3 64.0 90.7 80.0 66.4

Table 7: On FollowBench, RLCF helps especially with “content” constraints, which are qualifiers that
restrict the valid space of answers. The metric shown is “average hard satisfaction rate”. We speculate
that RLCF helps models attend to full instructions. We show positive results in blue, negative in
orange, and neutral (within 0.5) in gray; the top variant of a given model is bolded.

perfect response and a poor response that contains a slightly flawed translation along with incoherent
phrases. In the second example, Skywork-27B assigns wildly different scores to responses with
identical meaning. The two scoring components of checklist feedback — a verification program and a
checklist-based Al judge — can balance each other’s shortcomings, as shown in the first example.

5.5 Does RLCF lead to specialization at the expense of generality?

Do the gains shown by RLCF on instruction following come at the expense of domains not well-
represented in the training data (WildChat)? WildChat focuses primarily on daily assistance, advice,
and analysis (75.5%), with only 12% on factual information and mathematics [Zhao et al.| [2024].
Is this causing specialization at the expense of generality? We evaluate RLCF on three tasks with
limited representation in WildChat: refusal to answer unsafe prompts (measured on XSTest [Rottger
et al.,[2023]]), basic math (measured on GSM8K [Cobbe et al., 2021])), and hallucination prevention
(measured on Truthful QA [Lin et all,[2021])). In we see that RLCF slightly alters the model’s
safety profile (reducing false refusals while slightly impairing true refusals) and reduces GSM8K
and Truthful QA performance by 1-1.5%. This suggests a need for expanding WildChecklists to a
more diverse prompt distribution. Fortunately, this is easier than retraining a reward model. RMs like
Skywork-27B show better generality out-of-the-box (e.g. in because they do not assume
fixed criteria, but support for very different prompts would require retraining [Malik et al.| [2025].

5.6 RLCF improves other model families off-policy

We use Qwen2.5 models as the policy and judge in our experiments. Does RLCEF still work for
other model families? Do our checklists capture universal criteria or are they tied to a particular
choice of model? Using WildChecklists with samples from Qwen2.5-7B-Instruct scored by
Qwen2.5-72B-Instruct, we trained Llama 3.1 8B Instruct [Dubey et al.2024] and OLMo 2
7B Instruct [OLMo et all[2024] off-policy with DPO. In[Table 10| we see positive results with
both models: L1ama sees strong improvements with InFoBench/FollowBench after RLCF and OLMo
sees strong improvements with IFEval after RLCF, and there are no regressions for either model.
This suggests these checklists do capture universal criteria.

5.7 How much compute is required for producing checklist-based Al judgments?



Responses Skywork | Al Checklist | Checklist
Reward | Judge (code) (judge)

Prompt  Translate to Spanish: “Hello how are you doing?”

1. Is the generated text in Spanish? (weight: 100/100)
2. Is the text an accurate and complete translation of the English sentence? (weight: 100/100)

“{Hola, ;c6mo estds?” | 25.5 | 100.0 | 100.0 | 952

Checklist

“HOLA, (COMO TE ESTAScaller"H!impo-
rtant"Endpoint unfinishedPr">vak dao 7 £ HE"[...]”

0.0 ‘ 100.0 ‘ 100.0 ‘ 0.0

Prompt  make a sentence with “dense”

1. Does the generated text contain the word “dense”? (weight: 100/100)

Szl 2. Is the generated text a coherent and grammatically correct sentence? (weight: 75/100)
“The forest was dense, with trees so close together [...]” | 33.1 | 100.0 | 100.0 | 97.3
“The forest was blanketed by a layer of dense vegetation.” | 8.0 | 100.0 | 100.0 | 96.6

Table 8: Comparing the scores assigned to various prompts and responses, we see that reward models
are too sensitive, prompted Al judges are too granular, and checklists give stable, interpretable scores.

XSTest GSMS8K | TruthfulQA

Safe (1) Unsafe () Overall (1) | Accuracy | MC1 MC2

QOwen2.5-7B-Instruct 92.0 83.0 86.0 83.2 435 604
+ RLCF 95.6 81.0 86.9 82.2 420 59.0
+ DPO (Skywork) 90.4 89.0 88.6 85.6 452 63.1

Table 9: In our experiments, RLCF uses prompts that focus primarily on daily assistance and writing
[Zhao et al., 2024]]. This has a small effect on “non-target” tasks: refusal to answer unsafe prompts
(measured on XSTest), basic mathematical reasoning (measured on GSMS8K), and hallucination
prevention (measured on Truthful QA), suggesting that RLCF incurs modest trade-offs on underrepre-
sented domains, which could be mitigated by improving domain coverage of training prompts.

As described in[Section 3] RLCF grades responses on 90

each criterion using 25 samples from a judge model. i InfFoBench - Followtiench

This creates the computational bottleneck of our scor- 804 o L

ing procedure. In we evaluated models [I _________

trained using RLCF modified to use fewer samples 70 - Qwen2.5.78 struct g of 3
. . . . wenz.o- nstruc Vg O

from the judge. Response grading on WildChat with Avg of 5 = Avgof10

3, 5, 10, or 25 samples took 32, 40, 72, and 92 hours, ®  Avgof 25

respectively, on one 8xH100 node. We observe sta-

ble efficacy on IFEvaﬂ and InFoBench across sample  Figure 4: RLCF samples 25 scores when
sizes. For FollowBench, using fewer samples hurts the  grading each requirement. This is expensive.
“content” and “situation” categories, suggesting that  Fortunately, much of the efficacy is retained
a cheap, high-variance score may suffice for simpler using just 5 samples (55% less clock time).

criteria but not for difficult, ambiguous instructions.

6 Related Works

Our method is a new means of generating synthetic Al feedback. This follows prior work that use
“Al feedback” to guide reinforcement learning algorithms, either via a single prompt/rubric [Tunstall
et al.|[2023] or a collection of rubrics [Cui et al.||2023]). In our paper, we show that checklist feedback
is significantly more effective than UltraFeedback [|Cui et al.l 2023]], which evaluates responses on
four global principles. Our work is also related to prior works that use reward models as synthetic
preference annotators for RL [Sun et al.| [2023]]. In[Table 2| [Table 3| [Table 4, we demonstrates the
risks of using reward models to supervise RL [Liu et al.,|2024b, |Wang et al., 2024c]].

"The models we trained all showed moderate variance on IFEval, so slight differences are likely due to noise.



IFEval (prompt) IFEval (inst.) InFoBench | FollowBench

Loose Strict Loose Strict | Avg Overall SSR  HSR
Llama 3.1 8B Instruct 79.1 71.3 83.5 76.2 77.5 83.1 77.6 68.0
+ RLCF (off-policy) 80.2 71.9 83.9 76.5 78.1 84.2 818 723
OLMo 2 7B Instruct 78.1 69.3 79.5 71.3 | 74.6 80.1 72.3 594
+ RLCF (off-policy) 79.6 70.8 82.0 73.9 | 76.6 80.5 719 604

Table 10: RLCF works off-policy for OLMo 2 7B Instruct and Llama 3.1 8B Instruct. For
Llama, we see neutral results with IFEval and strong improvements on InFoBench and FollowBench.

For OLMo, we see strong improvements with IFEval and neutral results on InFoBench and Follow-
Bench.

We focus on complex instruction following. One line of work synthesizes instructions with explicit,
pathological constraints to train models to generalize to other instructions [Xu et al.,[2023| |He et al.,
2024, |Sun et al., [2024} Dong et al., 2024]]. These papers use DPO on controlled candidate responses,
while we contribute a drop-in evaluator which allows scoring responses sampled directly from a
student model (opening the door to other RL algorithms like GRPO [Shao et al., 2024]).

Our work is related to a nascent line of work that explores using rubrics for language model alignment
and evaluation. |(Cook et al|[2024]] demonstrate that using model-generated checklists can be useful
at inference-time for proprietary LLMs. Similarly, Saha et al|[2023]] use generated checklists at
inference time to improve constrained reasoning tasks. [Saad-Falcon et al.| |2024]] use checklists to
evaluate language models and match our finding that checklists can outperform reward models at
response evaluation. Wang et al.|[2025b], contemporaneously to us, introduce a rubric generation
method called “pre-comparison-derived criteria” which also uses candidate responses sampled
from different language models; they show that these criteria improve the agreement of automatic
evaluations of model-generated responses with human judgments. Our work is the first to apply a
similar approach to RL, at the same time as some contemporaneous works. |[Dineen et al.|[2025]] use
detailed rubrics that greatly improve model safety. Their work differs from ours by using RL with
explicit rewards (GRPO) and using checklists that were defined at a global level (the same large set
of criteria applied to all tasks) rather than the instruction-specific checklists we espouse in this work.

7 Limitations

We highlight three limitations with our work. First, our implementation of RLCF uses “strong-
to-weak generalization” — a larger model (Qwen2.5-72B-Instruct) provides Al judgments for
tuning a smaller model, though RLCF beats other methods also useing a 72B teacher. Second,
we only explored preference-based RL in our work. We believe that using checklist feedback to
train policy gradient-based algorithms is an exciting future research direction. Lastly, our scoring
method is expensive — grading response pairs on each requirement for 130k instructions with
Qwen2.5-72B-Instruct takes roughly 4 days on eight H1I00 GPUs with 80GB GPU memory,
which is computationally infeasible for many practitioners. In[Section 5.7] we show that this cost can
be reduced by 50% at some slight cost to accuracy, but further optimization is warranted.

8 Conclusion

We provide a detailed study of reinforcement learning from checklist feedback (RLCF). We propose
a novel algorithm for automatically extracting rubrics from instructions, and we use this algorithm
to construct a dataset of instructions and rubrics, WildChecklists. We demonstrate that RLCF is
uniformly effective at improving strong instruction following models on all benchmarks we consider.

Our study follows an active line of work that highlights the limitations of reward models in supervising
reinforcement learning. One exciting future direction to emerge from this work is: how can we
combine checklist-style feedback with trainable judges? Our current approach relies on carefully-
designed, prompt-based components for rubric generation and response grading under a rubric. Why
is this more effective than methods that naturally learn to grade responses from human preference
data? We believe that analysis of RLCF can motivate better reward models in the future.
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A The role of response pair mining
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Figure 5: Impact of different filtering strategies on model performance on FollowBench and In-
FoBench. We compare filtering pairs based on overall checklist score differences versus filtering
based on single-aspect score differences, at varying dataset sizes. There are only slight differences
between these two filtering methods, until we start filtering out the vast majority of the data. This
suggests that the reward signal, rather than the specific filtering algorithm, is likely responsible for
this method’s effectiveness.

In our algorithm for learning from checklist feedback, we only train on the 40% of response pairs
that differ the most on at least one criterion. This approach differs from thresholding on the reward
difference with a single scalar reward, which may represent the aggregation of multiple small
differences across all requirements. How much is the filtering component responsible for the success
of RLCF?

To investigate this, we compared two approaches: selecting pairs with the largest differences in
overall weighted checklist scores versus selecting pairs with the largest differences on any single
aspect’s score. As shown in Figure[5] performance shows that, when discarding just 20% or 40%
of response pairs, the method of filtering makes almost no difference. On the other hand, when
discarding 90% of response pairs (with least difference in reward), performance plummets on both
benchmarks, suggesting that, regardless of the filtering strategy, keeping some “harder” response
pairs is beneficial. Rather than aspect-based filtering being the primary driver of improvement, the
results suggest that checklist-based rewards inherently capture more instruction-relevant dimensions
of quality, leading to more effective preference tuning even with moderate filtering.

B Prompt for Generating Verification Programs

We describe the prompt used for generating programs to selectively verify responses in
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C Prompt for Scoring Semantic Criteria

We describe the prompt used for requirement checking in|Figure 7
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Answer: [Yes]
Justification: Yes, we list a few limitations of the proposed work in
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

19



Question: For each theoretical result, does the paper provide the full set of assumptions and
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Justification: There is no significant theoretical work contained in this paper.
Guidelines:
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. Experimental result reproducibility
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If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code with careful documentation is posted at www.github.com/
viswavi/RLCF (along with links to models), and our generated dataset is posted at
www.huggingface.co/datasets/viswavi/rlcf

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper discloses training and test details, such as training data sources

(Section 4.1)), training hyperparameters (Section 4.1}, data generation parameters (Section 3)),
prompts (listed in [Appendix B|and[Appendix C] and specific benchmark dataset settings

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We did not report statistical significance of our experiments, due to compute
overhead and clear trends we see across extensive comparison experiments. This aligns with
common practice in the instruction following literature, where statistical testing is often
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omitted. We do consider adding more such analysis in future iterations though.and this is
something we will consider adding in future drafts.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For our key experiments, we reported the exact computer resources used

for training and for data generation). We did not report all computer

resources for reproducing all baselines or ablation experiments, because we used varying
compute for these experiments, and this did not seem absolutely necessary to describe in the

paper.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: To the best of our knowledge, we completely conform to the NeurI[PS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper does not discuss societal impacts at length, beyond a brief disclaimed
in[Section 5.2]that our method is not a substitute for safety alignment. We justify this because
our paper, which focuses on instruction following, considers the same societal impacts as
any other work on instruction following — there is nothing significantly different about the
harms posed by our proposed method than those posed by existing, widespread methods
(e.g. reward models or Al judges).

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: We have instituted one very limited safeguard, which was to curate our training
data only with a filtered, non-toxic version of WildChat. However, as with any work that
releases general purpose language models and datasets to support these models, there is a
very real potential for misuse. We feel that the risk for misuse is comparable to the many
other papers that study language modeling, and we are not targeting sensitive domains
specifically in our work.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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12.

13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited and credited our use of WildChat, in compliance of its 0DC-BY
license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: As mentioned in the paper, we will release the dataset we constructed Wild-
Checklists. We will also document and opensource the code for RLCF.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
The only annotation work done for this paper was done by the authors of the paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We have described using LLMs as teacher and student models, for improving
the student model’s instruction following capability. We have also detailed the checklist
synthesis approach (based on criticizing LLM-generated outputs), as well as using LLM as
judges for specific checklist items.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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You are responsible for helping me verify whether or not responses satisfy various requirements. Given
a natural language requirement, you will have to classify whether this can be converted to a Python
program to automatically check it or whether it should be given to a human collaborator. Your human
collaborator is a reliable and cheap expert, and you should trust them. Accordingly, only write code for
verifying a constraint if you are very confident that this will exactly check the constraint. You should
never make ANY approximations when verifying a constraint. If you feel that you must approximate
the constraint in order to verify whether a response follows that constraint, let your human collaborator
take care of it. You should ONLY generate code for requirements that are explicitly about syntax or
format (e.g. punctuation, unicode characters used, number of paragraphs, shallow grammar, presence of
some mandatory keyword specified by the prompt, etc). If there are many different ways to write an
answer, you most likely should not generate code for it. If you are not sure, you should not generate
code. You should only generate code if you are 100% sure that the constraint can be verified perfectly
with a simple Python function.

When a constraint can be verified EXACTLY with a program, then return a Python function that verifies
the constraint. This code should be contained within two sets of triple backquotes, “‘. The Python
function must return a boolean, and it should only use builtins/standard libraries in Python. If the
constraint cannot be verified with a simple Python function (which means your human collaborator will
handle the verification of this constraint), please return "NONE" and nothing else. The safest thing to
do is to return "defer to human expert ##t#" 95% of the time. Now, let’s go through a couple examples:

Input:

Outline a curriculum development process for a 16-week high school history course, including setting
week-by-week objectives and designing assignments. Include two mid-term exams and a final exam.
Provide a detailed grading criteria based on the assignments and exams you have designed.

Requirement:
Does the response specify the inclusion of two mid-term exams and a final exam

Verification Function:
defer to human expert ####
(there are multiple valid ways to describe this, and it is not a simple boolean check)

Input:

Welcome to ISLAM STORE’s Brand Story

Our Journey: A Vision Brought to Life ISLAM STORE was founded with the vision to create an
inclusive, informative, and accessible platform for Muslims and non-Muslims alike. Our goal is to
promote awareness and understanding of Islam while offering high-quality Islamic products.

Requirement:
Does the generated text contain any Arabic?

Verification Function:

““python

def verify_requirement(text):

# Arabic Unicode block range (0600-06FF)

# Plus Extended Arabic (0750-077F)

# Plus Arabic Presentation Forms (FB50-FDFF, FE70-FEFF)

return any((’\()600’ <= char <= "\06FF’) or ("\u0750’ <= char <= "\u077F’) or C\uFB50’ <= char <=
\uFDFF’) or C\uFE70’ <= char <= "\uFEFF’) for char in text)
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Input:
{input}

Requirement:
{requirement}

Verification Function:

Figure 6: Prompt for generating verification code
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Based on the provided input instruction and response from a worker, assess the response based on the
following criteria:

1. Does it satisfy the specific requests of the instruction?

2. Does the response directly address the request without excessive or off-topic information not
necessary for addressing the user’s instruction?

3. Does the response match the context and the instruction, whether it requires professionalism,
friendliness, formality, or neutrality?

Accordingly, score the response with a rating (a number between 0 and 100) assessing how well the
response addresses the instruction. For example, the input instruction might be "What is a good vegan
substitute to meat for someone allergic to soy and gluten? Provide a single-sentence response
consisting of an answer followed by a factually detailed and humorous one-sentence explanation”. Your
selection should be based on the response and the instruction, using the following rating scale:

- 100: Select 100 if the generated text represents an optimal solution that expertly balances all relevant
aspects of the instruction. For the example above (about the vegan substitute), and the criterion above
(about factual detail), an example 100-point response is "Mushrooms, because they can be easily
caramelized and browned, they are rich in the glutamates which lead to incredible umami flavors, they
naturally are completely free of soy and gluten, and they don’t look cute as babies". This response is
richly detailed and factual, and though it fails to be humorous, it is still a 100-point response on the
factual detail criterion.

- 75: Return 75 if the generated text very effectively addresses the main requirements but has room for
minor improvements. The response should be unconditionally acceptable (at a professional level) but
may not be absolutely perfect. There are no mistakes that critically undermine the question. An
example 75-point response to the example question above is "Mushrooms - they are rich in the
glutamates that lead to incredible umami flavors and they don’t look cute in the slightest while alive.".
This response has one interesting fact but could be more detailed.

- 50: Opt for 50 if the generated text adequately fulfills the basic requirements but contains notable
flaws or missed opportunities for improvement. The response should still be functionally acceptable.
The response contains at most one minor inadequacy or inaccuracy related to the question but there are
no mistakes that critically undermine the question. An example 50-point response to the example
question above is "Mushrooms, because they can be easily caramelized and browned, they’re
universally beloved by sophisticated palates, and they don’t look cute in the slightest while alive." The
statement that they 're universally beloved by people with sophisticated palates, while potentially true, is
vague and not objective.

- 25: Return 25 if the generated text fulfills the key condition specified by the question and
demonstrates awareness of the key requirements but fails to execute them effectively. The text may
contain non-critical inaccuracies or irrelevant information. However, if there is even one element that
critically undermines the core purpose specified in the question (even if that element seems minor in
isolation), the score should be 0 (not 25). An example 25-point response to the example question above
is "Mushrooms, because they can be easily caramelized and browned, they are absolutely brimming
with protein, and they don’t look cute in the slightest while alive." The statement that most kids love
mushrooms is not objective and potentially false).

- 0: Opt for 0 if the generated text fails to meet the question’s requirements or provides no information
that could be utilized to answer the question. If the response contains a critical error relevant to the
question, return a 0. For the question about the vegan substitute, an example 0-point response is
"Mushrooms, because they make you question why you ever thought a dead animal could compare to
this vegan delight." While funny and engaging, this response contains zero factual detail about
mushrooms, critically violating the question.

Your score can be any number between 0 and 100 (not just the ones listed above). If you are totally
confused, return -1 as a default. You should use your judgment to determine the most appropriate score.
Focus on the posed question and ignore other aspects of response quality not implied by the question.
Return only a number - do not include any other text in your response.

Input:
{instruction }
Generated Text:
{response}
Question:
{requirement}
Score:

Figure 7: Prompt for checklist scoring
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