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Abstract

Large Language Models (LLMs) have demonstrated
remarkable capabilities in Natural Language Under-
standing and text generation, but their application is
often limited by hallucinations, outdated knowledge,
and lack of evidence. Retrieval-Augmented Genera-
tion (RAG) addresses these fundamental LLM limi-
tations by integrating external knowledge sources,
thereby improving the factual accuracy and trace-
ability while maintaining the text generative capabil-
ities. This work presents the design and implemen-
tation of a web-based RAG system for the aerospace
domain, leveraging more than 10,000 NASA techni-
cal documents and lessons-learned mission reports.
The system integrates open-source LLaMA and
closed-source OpenAI models and performs an ex-
tensive comparative analysis of their performance
within the RAG framework. Evaluation through
both automated metrics and user studies demon-
strates the effectiveness of the RAG approach for
both technical and non-technical users. The findings
provide insights and establish a foundation for future
advancements in AI-driven knowledge management
for specialized fields1.

1 Introduction

Large organizations face a critical challenge: lever-
aging years or decades of accumulated knowledge
and lessons learned to inform new projects and deci-
sions. This problem is particularly acute in high-risk,
high-stakes environments. An example of such an en-
vironment is NASA, an organization with thousands
of past projects that span decades. NASA engineers
who work on new missions often struggle to find
relevant historical information that could prevent
costly mistakes or accelerate innovation. The core
challenge lies in the complexity of discovering knowl-
edge within vast and diverse available collections.
NASA, as a large and long-established organization
that works with multiple contractors, faces several
barriers: vocabulary differences across time periods,
varying terminology between contracting companies,

1Code and instructions for preparing the datasets
can be found at https://github.com/DominykasPe/Master_
Thesis_RAG

and the sheer scale of documentation. This creates
a scenario where critical lessons learned, such as
the infamous O-ring failure that led to the Chal-
lenger disaster in 1986, may be documented, but
remain inaccessible to engineers working on similar
components in new projects [1]. The result is a
knowledge gap where valuable insights from past
missions remain isolated and unused. This challenge
is exemplified by NASA’s efforts to develop risk dig-
ital assistants that can extract and leverage past
project data for predictive decision-making2.

This problem extends beyond aerospace to any
large organization with extensive historical documen-
tation: healthcare systems with decades of patient
data, legal firms with case histories, or manufactur-
ing companies with safety records. In these domains,
the ability to quickly and accurately retrieve rele-
vant historical information can significantly impact
decision quality, risk assessment, and project out-
comes.

RAG has emerged as a leading approach that
enhances LLMs by seamlessly integrating external
knowledge sources with text generation capabili-
ties [2]. This hybrid approach allows systems to
take advantage of both the generative strengths of
LLMs and the precision of Information Retrieval (IR)
techniques, producing responses drawn from a sub-
stantially broader knowledge base than what is en-
coded in the model parameters alone. While RAG
systems have demonstrated effectiveness across var-
ious domains, the specific challenges of applying
them to highly specialized technical documentation
in aerospace environments present unique opportu-
nities for research.

The core contribution of this work is address-
ing this knowledge discovery challenge through a
specialized RAG system designed for NASA’s docu-
mentation. By processing more than 10,000 NASA
technical documents [3] and lessons-learned mission
reports [4], this system allows engineers to quickly
access verified information with direct source ref-
erences, significantly reducing the time and effort
required to find relevant historical data. The system
integrates and compares open-source LLaMA and
closed-source OpenAI models, addressing the chal-
lenge of making NASA’s extensive technical docu-

2https://techport.nasa.gov/projects/117547
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mentation and lessons-learned databases more acces-
sible and trustworthy. Beyond the proof-of-concept
application, this work contributes a publicly avail-
able data collection pipeline and evaluation method-
ology combining automated metrics with user stud-
ies, providing a foundation for future research in
domain-specific RAG applications.
This paper is organized as follows: next section

reviews existing literature in the domains of RAG,
conversational agents, and evaluation methodologies,
focusing on applications in specialized domains and
space sector implementations. Our approach is de-
scribed in Section 3 and the evaluation is discussed
in Section 4. We conclude the paper in Section 5.

2 Related Work

The RAG architecture was first introduced by Lewis
et al. [5], combining a retrieval component with a
sequence-to-sequence generative model to enhance
text generation with external knowledge. Unlike tra-
ditional LLMs that rely solely on their pre-trained
knowledge, RAG allows models to generate high-
quality text supported by relevant external informa-
tion, making it particularly effective for knowledge-
intensive tasks [5]. The effectiveness of retrieval-
augmented approaches has been demonstrated in
open-domain Question Answering (QA) systems [6,
7] and dialogue systems [8], where the integration
of retrieval mechanisms has improved contextual
understanding and response generation capabilities.
Advanced RAG Architectures. While this

work implements a vanilla RAG architecture with
dense retrieval and direct generation, research has
explored more advanced designs to enhance retrieval
quality and generation accuracy.

Advanced approaches include multi-stage retrieval
combining sparse methods (BM25) with dense re-
trievers [9], re-ranking models (monoT5 [10], mo-
noELECTRA [11]) that refine results using cross-
encoders, and graph-based methods leveraging doc-
ument relationships and Abstract Meaning Repre-
sentation (AMR) graphs [12]. These methods ad-
dress limitations in vanilla RAG by incorporating
structural information: knowledge graph-based sys-
tems [13] integrate external knowledge bases for
improved answer extraction, while document graph
approaches [13] establish connections between re-
trieved documents to identify weakly connected rel-
evant information.

Conversational Agents in Space Sector. The
development of conversational QA systems has ad-
vanced significantly with the rise of LLMs, enabling
models to answer questions based on given contexts,
often involving RAG when documents surpass the
language model’s context window [14]. Studies focus
primarily on text-only documents (such as regula-
tions, manuals, and technical reports) from various

domains [15–17] and documents combining plain
text with tables (such as Wikipedia articles with
tabular data, financial reports, and semi-structured
knowledge sources) [18–20].

Several projects have explored the use of AI-
powered virtual assistants to aid engineers during
spacecraft mission design. The most notable ones
are Daphne [21], the Design Engineering Assistant
(DEA) [22], and SpaceQA [23]. DEA is a non-
intrusive decision support tool that enhances ex-
pert perception of different design alternatives and
past decision outcomes through Natural Language
Processing, Machine Learning, Knowledge Manage-
ment, and Human-Machine Interaction methods [22].
Daphne, evaluated at NASA’s Jet Propulsion Lab-
oratory (JPL), enhances design task performance
through a microservices architecture featuring a web
front-end, server (Daphne Brain), and software roles
that interface with structured knowledge graphs
for better design inputs [24]. SpaceQA, developed
by the European Space Agency (ESA), is an open-
domain QA system for space mission design, em-
ploying a dense retriever and neural reader similar
to an RAG pipeline [24].

LLM-as-a-Judge Evaluation in RAG Sys-
tems. Traditional evaluation of the RAG systems
require manually created ground truth data, which
are typically quite expensive to acquire. Traditional
metrics like ROUGE and BLEU fail to capture the
nuanced quality dimensions required for RAG evalu-
ation, particularly factual correctness and contextual
grounding. New evaluation methods, which employ
LLMs, thus recently started to emerge in RAG eval-
uation. Wang et al. [25] demonstrate that ChatGPT
can effectively evaluate text generation by providing
scores on 0-100 or 1-5 star scales for aspects such
as relevance, factual accuracy, and groundedness,
achieving state-of-the-art correlation with human
judgments across multiple NLG tasks. However, this
approach exhibits sensitivity to prompt design and
reduced effectiveness on datasets with strong lexical
biases.

Muhamed [26] introduces the CCRS (Contextual
Coherence and Relevance Score), employing LLaMA-
70B as a zero-shot judge to evaluate RAG systems in
five dimensions: contextual coherence, question rele-
vance, information density, answer correctness, and
information recall. Their evaluation on the BioASQ
biomedical dataset shows promising results across
multiple RAG configurations with different read-
ers and retrievers, while highlighting the challenge
of achieving perfect factual accuracy in complex
biomedical domains.

Building on these evaluation foundations, broader
investigations have explored the reliability and ef-
fectiveness of LLM judges across different contexts.
Tseng et al. [27] conduct the first systematic evalua-
tion of LLMs as expert-level data annotators across
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finance, biomedicine, and law domains, finding that
models average 35% behind human expert perfor-
mance despite showing promise in general NLP tasks.
Ashktorab et al. [28] develop EvalAssist, compar-
ing direct assessment versus pairwise comparison
strategies, and demonstrate that practitioners prefer
direct assessment for clarity while using pairwise
comparison for subjective evaluations. Bavaresco et
al. [29] present JUDGE-BENCH, a comprehensive
benchmark evaluating 11 LLMs across 20 datasets,
revealing substantial variance in model performance
and better alignment with non-expert versus expert
human judges. Thus, although the LLM-as-a-Judge
Evaluation still suffers from multiple issues, due to
its low cost, it is now a standard for RAG evaluation,
often accompanying expensive user studies.
User Evaluation Studies in RAG Systems.

While technical metrics provide important insights
into RAG performance, user-centered evaluation
remains critical for understanding real-world effec-
tiveness and adoption. Hasan et al. [30] present a
comprehensive study of five domain-specific RAG ap-
plications deployed across governance, cybersecurity,
agriculture, industrial research, and medical diagnos-
tics. Their approach combined Likert-scale surveys
with open-ended qualitative feedback to capture
both measurable insights and descriptive user expe-
riences, ultimately documenting key lessons learned
from user feedback to guide future RAG system
development and deployment practices.

3 Method

3.1 RAG Framework

RAG is a hybrid approach that combines two essen-
tial components: (i) a retrieval system that pulls
documents from an external knowledge base, and
(ii) a generation component that uses this informa-
tion to create natural, human-like text [31, 32]. By
blending these capabilities, RAG models can pro-
duce coherent and fluent responses while anchoring
their output in current real-world information. The
workflow is illustrated in Figure 1.

The generation component leverages the contex-
tual information to produce responses that maintain
the natural language capabilities of LLMs while
being factually anchored. The system can be config-
ured to prioritize retrieved context over pre-trained
knowledge, ensuring that responses are based pri-
marily on the retrieved NASA documents rather
than the model’s training data [33].

3.2 RAG System Implementation

The core pipeline consists of six key steps: data
gathering, chunking, vectorization, storage, retrieval,
and response generation.

Figure 1. RAG Architecture workflow: (1) User sub-
mits query to the system, (2) Query is vectorized and
semantic search is performed against the document vec-
tor database, (3) Top-k relevant documents are retrieved
and passed as context, (4) LLM generates response using
both the original query and retrieved context, and (5)
presents it to the user.

3.2.1 Data Gathering

To be able to use the data, which would support our
use case of vast knowledge of a single organization,
we decided to create a novel collection consisting
of freely available NASA technical resources. We
used web scraping techniques to collect information
from NASA Technical Report Server3, which con-
tains papers, patents, reports and other technical
materials created or funded by NASA. The server
contains thousands of documents, collected since
1915, though our system focuses on documents from
the 2000s onwards to ensure relevance to current
aerospace practices. In addition to this, we used
documents available at the NASA Lessons Learned
website4 which contains reviewed lessons learned
from NASA programs and projects. Together, we
collected 1,859 records from the Lessons Learned
database, and 8,143 PDF files from the NASA Tech-
nical Report Server. The collection contains vari-
ous aerospace-related materials, on topics such as
spacecraft design, propulsion systems, and mission
operations.

The Selenium library was employed to automate
browser interactions and handle JavaScript-rendered
content, while BeautifulSoup was utilized for parsing
HTML and navigating through hundreds of pages ef-
ficiently. This combination was particularly needed
for NASA’s websites, which required navigating
through complex page hierarchies and extracting
data from dynamically loaded content. The web
scraping process required careful pacing to avoid
triggering rate-limiting mechanisms, with individual
PDF files often exceeding 30MB due to extensive
technical content and images.

3https://ntrs.nasa.gov/search
4https://llis.nasa.gov/
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3.2.2 Document Processing and Chunking

Chunking Strategy Analysis. Three primary
chunking approaches were evaluated for this domain-
specific application: (i) recursive chunking, which
splits text based on hierarchical separators (para-
graphs, sentences, words), (ii) semantic chunking,
which groups text based on semantic similarity using
embedding models to identify natural breakpoints,
and (iii) section-based chunking, which leverages doc-
ument structure to maintain semantic boundaries.
Recursive chunking, while computationally effi-

cient, was unsuitable for NASA documentation as
it often split technical procedures across multiple
chunks. Semantic chunking required significantly
higher processing power than section chunking, and
the chunks were too large to be useful for a system
with limited context window.

Section-Based Chunking Implementation.
The implemented approach utilizes section-based
chunking through the pymupdf4llm5 library, which
employs a multi-stage algorithm specifically de-
signed to extract PDF content in formats optimized
for LLM and RAG environments. The library’s
algorithm first converts PDF pages to GitHub-
compatible markdown format while preserving doc-
ument structure through font analysis, header de-
tection, and formatting preservation. Subsequently,
it identifies section boundaries using font size vari-
ations, header patterns (both # markdown syntax
and bold formatting), and hierarchical document
structure.
For a document D with n sections, the chunk-

ing function ϕ : D → C produces chunks C =
{c1, c2, . . . , cn} where each chunk ci maintains se-
mantic coherence and includes metadata (chunk ID,
title, content, page number, section number, source
URL, and statistics) enabling full traceability to
original NASA materials.

Dataset Structure Analysis. As illustrated in
Figure 2, most Technical Reports contain between 5
and 20 chunks, as the NASA documents vary widely
from brief single-page reports to extensive techni-
cal manuals exceeding 50 pages6. This distribution
shows consistent chunking patterns across the collec-
tion. The figure shows a distribution capped at 80
chunks per document. We opted for this to limit the
processing of the outlier PDFs with complex tables
and figures.

3.2.3 Vectorization and Retrieval

For vectorization, the all-MiniLM-L6-v27 trans-
former model is utilized, which is a lightweight but

5https://pypi.org/project/pymupdf4llm/
6The Lessons Learned are typically single-page reports

that convert entirely into individual chunks and are thus not
included in the distribution.

7https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2

Figure 2. Distribution of NASA Technical Reports
by chunk count showing the frequency of documents
containing different numbers of chunks. Documents are
capped at 80 chunks per document due to processing
limitations that come from complex table formatting
and images in certain PDFs.

effective embedding model designed for semantic
search tasks. The vectors are stored in a FAISS8

database for efficient similarity search. For a user
query q, its embedding vq is computed and the
top-k most similar chunks are retrieved using co-
sine similarity. The retrieval process returns chunks
Rk = {cr1 , cr2 , . . . , crk} where rj represents the rank
of chunk crj based on similarity scores. Retrieval
quality is evaluated using standard metrics includ-
ing precision, recall, Mean Reciprocal Rank (MRR),
Hit Rate, and Normalized Discounted Cumulative
Gain (NDCG). The impact of different retrieval con-
figurations (varying k values and cosine similarity
thresholds) is examined in the Results section (Ta-
ble 2).

3.2.4 Language Model Integration

The system integrates both open-source and closed-
source language models to enable a comprehensive
comparison between paid and freely available op-
tions. The GPT models (GPT-4o-mini and GPT-
3.5-turbo) were selected for their cost-effectiveness
while maintaining strong performance capabilities,
making them accessible for budget-focused research
applications. For open-source alternatives, LLaMA-
3.3-70B-Instruct-Turbo and LLaMA-3.2-1B-Vision-
Instruct represent the only freely available models on
Together.ai’s platform9, ensuring consistent cloud-
based resource allocation critical for fair model com-
parison.
The system uses ChatPromptTemplate10 from

LangChain, a library designed for creating struc-
tured and concise prompt instructions. This tem-
plate formats the user’s question with the retrieved
context, creating a structured input that guides the

8https://faiss.ai/index.html
9https://www.together.ai/models

10https://python.langchain.com/api_reference/

core/prompts/langchain_core.prompts.chat.

ChatPromptTemplate.html

4

https://pypi.org/project/pymupdf4llm/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://faiss.ai/index.html
https://www.together.ai/models
https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html
https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html


language model to provide accurate, contextually
grounded answers based on the NASA documen-
tation rather than relying solely on its pre-trained
knowledge.
For evaluation purposes, all four models are as-

sessed in the automated generation evaluation to
provide a comprehensive performance comparison.
However, given the limited participant count in the
user study, only GPT-4o-mini and LLaMA-3.3-70B-
Instruct-Turbo are included in the user evaluation to
ensure sufficient statistical power while representing
both commercial and open-source model categories.

3.3 Evaluation Framework

The evaluation approach is built upon a our con-
structed test dataset consisting of 50 records that
are used for both retrieval and generation evalu-
ation. Each record contains a manually crafted
question created from randomly selected document
chunks, paired with expected answers derived from
the chunk content. For answer preparation, either
the complete chunk content was used or GPT-4 was
employed to extract only the parts relevant to the
specific problem, ensuring that evaluation answers
remained strictly grounded in the original NASA
documentation while avoiding potential human error
in test dataset creation. The expected answers are
standardized to 150-200 tokens in length, with each
record referencing 1-3 relevant document chunks. Ta-
ble 1 illustrates the structure of a typical evaluation
record.

Table 1. Example evaluation record from the test
dataset.

Question What issue was discovered with the ILT radiator during the
CALIPSO satellite-level thermal vacuum test?

Expected Answer During the satellite-level thermal vacuum test of CALIPSO,
which aimed to demonstrate positive thermal control of all
payload components within their required temperature limits
under...

Relevant Chunks 20070021525.pdf 11, 20070021525.pdf 12

3.3.1 Automated Evaluation

Generation quality is evaluated using a multifaceted
approach that uses ROUGE scores, BERTScore for
estimating semantic similarity, and LLM-as-a-Judge
evaluation.

BERTScore computes semantic similarity by sum-
ming cosine similarities between token embeddings.
For reference sentence x and predicted sentence y,
the F1 measure is calculated as:

FBERT = 2
P ×R

P +R
(1)

where P and R represent precision and recall based
on maximum cosine similarities between tokens of
the generated and ground truth answer [34].

ROUGE metrics evaluate n-gram overlap between
generated and reference texts. The ROUGE-N score

is calculated as:

ROUGE-N =

∑
S∈R

∑
g∈S Countmatch(g)∑

S∈R
∑

g∈S Count(g)
(2)

where R represents reference summaries, g repre-
sents n-grams, and Countmatch(g) is the maximum
number of matching n-grams of the generated and
ground truth answer [35].

3.3.2 LLM-as-a-Judge Methodology

This work utilizes two LLM-as-a-Judge methods:
the first uses OpenAI’s GPT-4o-mini model for eval-
uation, while the second implements G-Eval [36],
a framework that uses a chain-of-thought (CoT)
approach to evaluate the quality of generated text
through structured evaluation forms. The main
LLM-as-a-Judge scores are Correctness, Relevance,
Accuracy, and Groundedness. These dimensions are
particularly critical for NASA applications: Correct-
ness ensures that factual claims match documented
mission outcomes, Relevance verifies that responses
address the specific engineering question posed, Ac-
curacy validates that technical specifications align
with source documentation, and Groundedness con-
firms traceability to authoritative NASA sources
rather than hallucinated content. For end users,
groundedness scores above 0.85 indicate high con-
fidence that retrieved information originates from
verified NASA documentation, addressing the knowl-
edge gap where engineers previously struggled to
trace historical decisions back to their sources.

The custom GPT-4o-mini evaluation uses a single
prompt11 requesting scores on a 0-10 scale for three
criteria (relevance, factual accuracy, groundedness)
with direct numerical output. This design choice,
while computationally efficient, introduces poten-
tial conflation of evaluation criteria: the model may
struggle to independently assess whether an answer
is “relevant to the question” versus “factually accu-
rate according to source documents.” For instance,
when evaluating a response about spacecraft ther-
mal systems, the single-prompt judge might rate
factual accuracy highly simply because the answer
discusses thermal management, without carefully
checking if specific temperature values match the
source documents.
In contrast, G-Eval employs a more structured

CoT approach that decomposes evaluation into se-
quential reasoning steps for four criteria (correct-
ness, relevance, accuracy, groundedness), forcing the
model to independently assess each dimension. This
prevents the model from conflating evaluation dimen-
sions and applies stricter standards when assessing
technical precision. This dual approach enables eval-
uation using both single-prompt and multi-prompt

11GPT-4o-mini uses custom ChatPromptTemplate
prompts.
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methodologies for comprehensive RAG system as-
sessment.

3.3.3 User Study Design

The user study was conducted with 20 participants
from diverse non-technical backgrounds, with only
3 participants having IT experience, ensuring evalu-
ation from the general audience perspective. Each
session lasted 15-25 minutes, during which each par-
ticipant was asked to complete five distinct engi-
neering tasks designed to simulate realistic scenarios
requiring specialized aerospace knowledge retrieval.
Task Design and Implementation. The five

tasks covered critical aerospace domains: (1) Engine
Rollback Investigation, requiring analysis of Propul-
sion Systems Laboratory data on ice particle effects;
(2) Satellite Thermal System Evaluation, focusing
on CALIPSO payload thermal performance; (3) Air-
craft Noise Profile Assessment, examining noise com-
ponents across different flight conditions; (4) Critical
Power System Design, investigating Uninterruptible
Power Supply applications; and (5) Electronics Sys-
tem Safety Review, identifying analytical methods
for circuit problem detection. Tasks were created
by randomly choosing document chunks, manually
creating problems from those chunks. GPT model
was only used for acquiring supplementary infor-
mation such as creating scenarios to assist users
in understanding the problem. Each task required
participants to find at least three of seven prede-
fined keywords to demonstrate successful knowledge
acquisition. Figure 3 illustrates the structure and
complexity of a typical user study task.

Figure 3. Example of Task 1 in User Evaluation
Study: Engine Rollback Investigation interface show-
ing the structured engineering scenario presented to
participants.

Study Protocol and Bias Mitigation. Par-

ticipants received authentication credentials and ac-
cessed a web application that provided clear instruc-
tions and system descriptions. To prevent cheating
and ensure authentic interaction with the RAG sys-
tem, copy functionality was disabled for task descrip-
tions, requiring users to reformulate queries in their
own words. The system randomly assigned different
models (LLaMA-3.3-70B-Instruct-Turbo or GPT-
4o-mini) to each task per user, ensuring balanced
model comparison. Upon completion, participants
provided feedback through the System Usability
Scale12 (SUS) questionnaire supplemented with cus-
tom questions addressing task difficulty, AI assistant
helpfulness, and system improvement suggestions.

4 Results

Retrieval Performance. To evaluate the impact
of retrieval parameters on system performance, we
conducted extensive experiments across different
configurations of document count (k) and cosine
similarity thresholds (minimum similarity between
query and document embeddings required for re-
trieval), as shown in Table 2. The system was tested
across 50 questions, where each question has one
or several expected answer chunks from potentially
different source files.

The results reveal important trade-offs between
precision and recall across different configurations.
The baseline configuration (k=3, threshold=None),
which was used in subsequent generation and user
evaluation experiments, follows standard RAG prac-
tice for balancing context richness with computa-
tional efficiency. This configuration achieves a recall
of 0.66 and hit rate of 0.68, finding the majority
of expected documents and locating at least one
relevant document for most queries. The MRR of
0.64 indicates that relevant documents consistently
appear in top positions.

Notably, the k=3 configuration with thresh-
old=0.8 achieves the highest precision (0.39) while
maintaining strong recall (0.62), suggesting this
might represent an optimal configuration for appli-
cations prioritizing answer accuracy. Conversely,
higher k values with no threshold filtering (e.g.,
k=10, threshold=None) maximize recall (0.69) and
NDCG (0.65) at the cost of lower precision (0.07).
Lower threshold values (0.5-0.7) showed poor perfor-
mance and were thus only evaluated for k=3. While
the precision scores appear modest, this may reflect
the system’s ability to find additional relevant doc-
uments beyond those manually marked in the test
dataset.

Generation Capabilities. The generation eval-
uation demonstrates that the RAG system success-

12https://www.surveylab.com/blog/

system-usability-scale-sus/
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Table 2. Retrieval performance comparison across different numbers of retrieved documents (k) and cosine
similarity thresholds (minimum similarity required for document inclusion). Each configuration was tested on 50
questions. Threshold=None indicates no filtering.

Documents Retrieved Similarity Prec. Rec. MRR Hit Rate NDCG

3 None 0.23 0.66 0.64 0.68 0.64
3 0.5 0.08 0.10 0.10 0.10 0.10
3 0.6 0.28 0.33 0.33 0.34 0.33
3 0.7 0.38 0.51 0.49 0.52 0.49
3 0.8 0.39 0.62 0.60 0.64 0.60
3 0.9 0.32 0.64 0.62 0.66 0.62

5 None 0.14 0.68 0.64 0.70 0.65
5 0.8 0.36 0.62 0.60 0.64 0.60
5 0.9 0.28 0.66 0.62 0.68 0.63

7 None 0.10 0.68 0.64 0.70 0.65
7 0.8 0.36 0.62 0.60 0.64 0.60
7 0.9 0.26 0.66 0.62 0.68 0.63

10 None 0.07 0.69 0.64 0.70 0.65
10 0.8 0.35 0.62 0.60 0.64 0.60
10 0.9 0.25 0.67 0.62 0.68 0.63

fully addresses the core challenge of providing accu-
rate, contextually grounded responses from NASA
documentation. Table 3 presents the results using
only queries for which at least one relevant document
was retrieved (34 of 50 questions), corresponding to
the 68% hit rate. Performance across all four models
is remarkably consistent, underscoring the critical
role of high-quality retrieval in RAG systems.

The results show strong semantic performance
with BERTScore F1 values between 0.78-0.80, in-
dicating that generated answers are semantically
very close to ground truth. For NASA engineers,
BERTScore values above 0.75 signal that the system
preserves technical meaning even when using dif-
ferent wording, while ROUGE-1 scores of 0.46-0.48
demonstrate strong unigram overlap with approx-
imately half of the technical terms from reference
answers appearing in generated responses.

The comparative analysis between custom LLM-
as-a-Judge and G-Eval metrics reveals important
methodological insights. While the custom GPT-4o-
mini approach yields higher factual accuracy scores
(0.88-0.90) compared to G-Eval accuracy scores
(0.81-0.85), the remarkably high G-Eval relevance
scores (0.96-0.98) compared to custom relevance
scores (0.84-0.87) demonstrate that focused single-
criterion prompts enable more precise assessment.
The lower G-Eval accuracy scores suggest that multi-
prompt evaluation applies stricter standards when
assessing technical precision, better identifying cases
where responses use approximately correct aerospace
terminology without precisely matching source spec-
ifications.

The high groundedness scores (0.87-0.88) con-
firm that the system successfully leverages NASA
documentation rather than relying on pre-trained

knowledge, ensuring factual accuracy and traceabil-
ity. The consistency across models suggests that
retrieval quality, rather than model choice, deter-
mines RAG performance for specialized aerospace
documentation.

User Evaluation Results. The user evaluation
provides crucial validation that the RAG system
successfully addresses the challenge of knowledge
discovery from the introduction. Figure 4 shows the
completion times of tasks in different models, while
Figure 5 shows the number of attempts by users to
complete various tasks.

Figure 4. Comparison of GPT-4o-mini and LLaMA-
3.3-70B-Instruct-Turbo models showing average task
completion times in minutes. Each bar represents the
mean completion time, with n indicating the number
of users who completed each task. Vertical black lines
show the minimum and maximum completion times for
each model and task combination.

Most notably, the low attempt counts reveal that
users with no aerospace domain experience success-
fully solved relatively complex aerospace engineering
scenarios in just a few tries. The first three tasks
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Table 3. Generation evaluation results on the retrieved documents (34 questions).

Metric GPT4o-mini GPT3.5-turbo LLaMA-70b LLaMA-vision

Semantic Metrics
BERTScore Precision 0.74 0.78 0.75 0.75
BERTScore Recall 0.83 0.82 0.83 0.83
BERTScore F1 0.78 0.80 0.79 0.78
Semantic Similarity 0.85 0.85 0.85 0.82

ROUGE Metrics
ROUGE-1 0.46 0.48 0.46 0.47
ROUGE-2 0.26 0.29 0.26 0.29
ROUGE-L 0.45 0.48 0.45 0.47

LLM-as-a-judge Metrics
Answer Relevance 0.86 0.85 0.87 0.84
Factual Accuracy 0.89 0.88 0.90 0.89
Groundedness 0.88 0.87 0.88 0.88

G-Eval Metrics
G-Eval Correctness 0.79 0.75 0.79 0.74
G-Eval Relevance 0.98 0.97 0.97 0.96
G-Eval Accuracy 0.85 0.81 0.84 0.81
G-Eval Groundedness 0.87 0.86 0.87 0.87

Figure 5. Comparison of GPT-4o-mini and LLaMA-3.3-
70B-Instruct-Turbo models showing the average number
of attempts users required to complete each task. Each
bar displays the mean number of attempts, with n in-
dicating the number of users who completed each task.
Vertical black lines show the minimum and maximum
number of attempts for each model and task combina-
tion.

required in average only 1.3 attempts to complete,
demonstrating that the system effectively bridges
the knowledge gap where valuable insights from past
missions previously remained isolated.

These user evaluation results correspond closely
with the generation evaluation findings, where all
models performed very similarly when provided with
high-quality retrieved context. This consistency vali-
dates the RAG approach: engineers can now quickly
access verified information with direct source refer-
ences. The evaluation with 20 participants complet-
ing realistic engineering scenarios provides strong
evidence of the system’s practical usage for NASA.

5 Conclusion

In this study, we introduced a specialized RAG sys-
tem designed to address the critical knowledge dis-
covery challenge faced by large organizations with
extensive historical documentation. Our approach
processes over 10,000 NASA technical documents
and lessons-learned reports, offering engineers quick
access to verified information with direct source ref-
erences, addressing a significant need for efficient
knowledge retrieval in high-stakes aerospace envi-
ronments.

The system demonstrated effectiveness across mul-
tiple evaluation dimensions. Retrieval experiments
revealed important trade-offs: k=3, threshold=0.8
achieved highest precision (0.39) with recall (0.62),
while k=10, threshold=None maximized recall (0.69)
at low precision (0.07). All four evaluated models
achieved consistent generation quality (BERTScore
F1 0.78-0.80, groundedness scores 0.87-0.88) when
provided with high-quality retrieved context, sug-
gesting that retrieval quality, rather than model
choice, determines RAG performance. The 20-
participant user study validated practical utility,
showing that non-technical users solved complex
aerospace engineering problems with minimal at-
tempts, indicating the system’s potential to bridge
knowledge gaps where valuable historical insights
previously remained isolated.
Future work should test different chunking ap-

proaches such as recursive and semantic chunking,
which were barely explored in this paper, and inves-
tigate whether LLMs have already been trained on
NASA documentation, as this may affect evaluation
validity. Additionally, implementing more advanced
RAG architectures with re-ranking mechanisms, as
discussed in the Related Work section, could further
improve retrieval precision and answer accuracy.
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A Appendix

A.1 System Interface Design

The RAG system was implemented as a web-based application to facilitate user evaluation and ensure
consistent interaction experiences across all participants. Figure A.1 demonstrates the dual-panel interface
design that integrates task management with conversational AI interaction.

Figure A.1. Complete user interface of the RAG system showing the integrated evaluation environment. The left
panel displays the current task description, answer submission area, and task progress tracker, while the right
panel provides the interactive chat interface where users can query the AI assistant, receive contextually grounded
responses, and navigate through retrieved source documents with direct links to original NASA materials.

A.2 User Evaluation Questionnaire Details

After users completed all tasks and gained familiarity with the system, a comprehensive questionnaire was
administered consisting of System Usability Scale (SUS) questions and additional questions to assess AI
performance and user experience.
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Figure A.2. System Usability Scale (SUS) questionnaire responses showing the distribution of user ratings across
all ten SUS questions. Each horizontal bar represents one SUS question with response percentages and participant
counts (n) for each rating level from Strongly Disagree to Strongly Agree.
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Figure A.3. User feedback analysis across four custom evaluation questions assessing AI system performance. The
visualization shows response distributions for questions evaluating system accuracy, response quality, information
usefulness, and overall satisfaction with percentage breakdowns and participant counts for each response category.

Figure A.4. Task difficulty assessment showing user-reported difficulty levels for each of the five evaluation tasks.
The stacked bar chart displays the percentage distribution of difficulty ratings (Very Easy to Very Hard) with
participant counts, providing insights into task complexity from the user perspective.

13


	Introduction
	Related Work
	Method
	RAG Framework
	RAG System Implementation
	Data Gathering
	Document Processing and Chunking
	Vectorization and Retrieval
	Language Model Integration

	Evaluation Framework
	Automated Evaluation
	LLM-as-a-Judge Methodology
	User Study Design


	Results
	Conclusion
	Appendix
	System Interface Design
	User Evaluation Questionnaire Details


