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Abstract001

Large Language Models (LLMs) have demonstrated002

remarkable capabilities in Natural Language Under-003

standing and text generation, but their application is004

often limited by hallucinations, outdated knowledge,005

and lack of evidence. Retrieval-Augmented Genera-006

tion (RAG) addresses these fundamental LLM limi-007

tations by integrating external knowledge sources,008

thereby improving the factual accuracy and trace-009

ability while maintaining the text generative capabil-010

ities. This work presents the design and implemen-011

tation of a web-based RAG system for the aerospace012

domain, leveraging more than 10,000 NASA techni-013

cal documents and lessons-learned mission reports.014

The system integrates open-source LLaMA and015

closed-source OpenAI models and performs an ex-016

tensive comparative analysis of their performance017

within the RAG framework. Evaluation through018

both automated metrics and user studies demon-019

strates the effectiveness of the RAG approach for020

both technical and non-technical users. The findings021

provide insights and establish a foundation for future022

advancements in AI-driven knowledge management023

for specialized fields1.024

1 Introduction025

Large organizations face a critical challenge: lever-026

aging years or decades of accumulated knowledge027

and lessons learned to inform new projects and deci-028

sions. This problem is particularly acute in high-risk,029

high-stakes environments. An example of such an en-030

vironment is NASA, an organization with thousands031

of past projects that span decades. NASA engineers032

who work on new missions often struggle to find033

relevant historical information that could prevent034

costly mistakes or accelerate innovation. The core035

challenge lies in the complexity of discovering knowl-036

edge within vast and diverse available collections.037

NASA, as a large and long-established organization038

that works with multiple contractors, faces several039

barriers: vocabulary differences across time periods,040

varying terminology between contracting companies,041

and the sheer scale of documentation. This creates042

a scenario where critical lessons learned, such as043

1Code and datasets will be freely provided after accep-
tance.

the infamous O-ring failure that led to the Chal- 044

lenger disaster in 1986, may be documented, but 045

remain inaccessible to engineers working on similar 046

components in new projects [1]. The result is a 047

knowledge gap where valuable insights from past 048

missions remain isolated and unused. This challenge 049

is exemplified by NASA’s efforts to develop risk dig- 050

ital assistants that can extract and leverage past 051

project data for predictive decision-making2. 052

This problem extends beyond aerospace to any 053

large organization with extensive historical documen- 054

tation: healthcare systems with decades of patient 055

data, legal firms with case histories, or manufactur- 056

ing companies with safety records. In these domains, 057

the ability to quickly and accurately retrieve rele- 058

vant historical information can significantly impact 059

decision quality, risk assessment, and project out- 060

comes. 061

RAG has emerged as a leading approach that 062

enhances LLMs by seamlessly integrating external 063

knowledge sources with text generation capabili- 064

ties [2]. This hybrid approach allows systems to 065

take advantage of both the generative strengths of 066

LLMs and the precision of Information Retrieval 067

(IR) techniques, producing responses drawn from 068

a substantially broader knowledge base than what 069

is encoded in the model parameters alone. While 070

RAG systems have demonstrated effectiveness across 071

various domains, the specific challenges of applying 072

them to highly specialized technical documentation 073

in aerospace environments present unique opportu- 074

nities for research. 075

The core contribution of this work is address- 076

ing this knowledge discovery challenge through a 077

specialized RAG system designed for NASA’s docu- 078

mentation. By processing more than 10,000 NASA 079

technical documents [3] and lessons-learned mission 080

reports [4], this system allows engineers to quickly 081

access verified information with direct source ref- 082

erences, significantly reducing the time and effort 083

required to find relevant historical data. The sys- 084

tem integrates and compares open-source LLaMA 085

and closed-source OpenAI models, addressing the 086

challenge of making NASA’s extensive technical doc- 087

umentation and lessons-learned databases more ac- 088

cessible and trustworthy. 089

This paper is organized as follows: next section 090

reviews existing literature in the domains of RAG, 091

2https://techport.nasa.gov/projects/117547
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conversational agents, and evaluation methodologies,092

focusing on applications in specialized domains and093

space sector implementations. Our approach is de-094

scribed in Section 3 and the evaluation is discussed095

in Section 4. We conclude the paper in Section 5.096

2 Related Work097

The RAG architecture was first introduced by Lewis098

et al. [5], combining a retrieval component with a099

sequence-to-sequence generative model to enhance100

text generation with external knowledge. Unlike tra-101

ditional LLMs that rely solely on their pre-trained102

knowledge, RAG allows models to generate high-103

quality text supported by relevant external informa-104

tion, making it particularly effective for knowledge-105

intensive tasks [5]. The effectiveness of retrieval-106

augmented approaches has been demonstrated in107

open-domain question answering systems [6, 7] and108

dialogue systems [8], where the integration of re-109

trieval mechanisms has improved contextual under-110

standing and response generation capabilities.111

Conversational Agents in Space Sector. The112

development of conversational Question Answering113

systems has advanced significantly with the rise of114

LLMs, enabling models to answer questions based115

on given contexts, often involving RAG when doc-116

uments surpass the language model’s context win-117

dow [9]. Studies focus primarily on text-only docu-118

ments (such as regulations, manuals, and technical119

reports) from various domains [10–12] and docu-120

ments combining plain text with tables (such as121

Wikipedia articles with tabular data, financial re-122

ports, and semi-structured knowledge sources) [13–123

15].124

Several projects have explored the use of AI-125

powered virtual assistants to aid engineers during126

spacecraft mission design. The most notable ones127

are Daphne [16], the Design Engineering Assistant128

(DEA) [17], and SpaceQA [18]. DEA is a non-129

intrusive decision support tool that enhances ex-130

pert perception of different design alternatives and131

past decision outcomes through Natural Language132

Processing, Machine Learning, Knowledge Manage-133

ment, and Human-Machine Interaction methods [17].134

Daphne, evaluated at NASA’s Jet Propulsion Lab-135

oratory (JPL), enhances design task performance136

through a microservices architecture featuring a web137

front-end, server (Daphne Brain), and software roles138

that interface with structured knowledge graphs139

for better design inputs [19]. SpaceQA, developed140

by the European Space Agency (ESA), is an open-141

domain QA system for space mission design, em-142

ploying a dense retriever and neural reader similar143

to an RAG pipeline [19].144

LLM-as-a-Judge Evaluation in RAG Sys-145

tems. Traditional evaluation of the RAG systems146

require manually created ground truth data, which147

are typically quite expensive to acquire. Traditional 148

metrics like ROUGE and BLEU fail to capture the 149

nuanced quality dimensions required for RAG evalu- 150

ation, particularly factual correctness and contextual 151

grounding. New evaluation methods, which employ 152

LLMs, thus recently started to emerge in RAG eval- 153

uation. Wang et al. [20] demonstrate that ChatGPT 154

can effectively evaluate text generation by providing 155

scores on 0-100 or 1-5 star scales for aspects such 156

as relevance, factual accuracy, and groundedness, 157

achieving state-of-the-art correlation with human 158

judgments across multiple NLG tasks. However, this 159

approach exhibits sensitivity to prompt design and 160

reduced effectiveness on datasets with strong lexical 161

biases. 162

Muhamed [21] introduces the CCRS (Contextual 163

Coherence and Relevance Score), employing LLaMA- 164

70B as a zero-shot judge to evaluate RAG systems in 165

five dimensions: contextual coherence, question rele- 166

vance, information density, answer correctness, and 167

information recall. Their evaluation on the BioASQ 168

biomedical dataset shows promising results across 169

multiple RAG configurations with different read- 170

ers and retrievers, while highlighting the challenge 171

of achieving perfect factual accuracy in complex 172

biomedical domains. 173

Building on these evaluation foundations, broader 174

investigations have explored the reliability and ef- 175

fectiveness of LLM judges across different contexts. 176

Tseng et al. [22] conduct the first systematic evalua- 177

tion of LLMs as expert-level data annotators across 178

finance, biomedicine, and law domains, finding that 179

models average 35% behind human expert perfor- 180

mance despite showing promise in general NLP tasks. 181

Ashktorab et al. [23] develop EvalAssist, compar- 182

ing direct assessment versus pairwise comparison 183

strategies, and demonstrate that practitioners prefer 184

direct assessment for clarity while using pairwise 185

comparison for subjective evaluations. Bavaresco et 186

al. [24] present JUDGE-BENCH, a comprehensive 187

benchmark evaluating 11 LLMs across 20 datasets, 188

revealing substantial variance in model performance 189

and better alignment with non-expert versus expert 190

human judges. Thus, although the LLM-as-a-Judge 191

Evaluation still suffers from multiple issues, due to 192

its low cost, it is now a standard for RAG evaluation, 193

often accompanying expensive user studies. 194

User Evaluation Studies in RAG Systems. 195

While technical metrics provide important insights 196

into RAG performance, user-centered evaluation 197

remains critical for understanding real-world effec- 198

tiveness and adoption. Hasan et al. [25] present a 199

comprehensive study of five domain-specific RAG 200

applications deployed across governance, cyberse- 201

curity, agriculture, industrial research, and medical 202

diagnostics. Their approach combined Likert-scale 203

surveys with open-ended qualitative feedback to 204

capture both measurable insights and descriptive 205
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user experiences, ultimately documenting twelve key206

lessons learned from user feedback to guide future207

RAG system development and deployment practices.208

3 Method209

3.1 RAG Framework210

RAG is a hybrid approach that combines two essen-211

tial components: (i) a retrieval system that pulls212

documents from an external knowledge base, and213

(ii) a generation component that uses this informa-214

tion to create natural, human-like text [26, 27]. By215

blending these capabilities, RAG models can pro-216

duce coherent and fluent responses while anchoring217

their output in current real-world information. The218

workflow is illustrated in Figure 1.219

Figure 1. RAG Architecture workflow: (1) User sub-
mits query to the system, (2) Query is vectorized and
semantic search is performed against the document vec-
tor database, (3) Top-k relevant documents are retrieved
and passed as context, (4) LLM generates response using
both the original query and retrieved context, and (5)
presents it to the user.

The generation component leverages the contex-220

tual information to produce responses that maintain221

the natural language capabilities of LLMs while222

being factually anchored. The system can be config-223

ured to prioritize retrieved context over pre-trained224

knowledge, ensuring that responses are based pri-225

marily on the retrieved NASA documents rather226

than the model’s training data [28].227

3.2 Dataset Preparation228

To be able to use the data, which would support our229

use case of vast knowledge of a single organization,230

we decided to create a novel collection consisting231

of freely available NASA technical resources. We232

used web scraping techniques to collect information233

from NASA Technical Report Server3, which con-234

tains papers, patents, reports and other technical235

materials created or funded by NASA. The server236

3https://ntrs.nasa.gov/search

contains thousands of documents, collected since 237

1915, though our system focuses on documents from 238

the 2000s onwards to ensure relevance to current 239

aerospace practices. In addition to this, we used 240

documents available at the NASA Lessons Learned4 241

which contains reviewed lessons learned from NASA 242

programs and projects. Together, we collected 1,859 243

records from the Lessons Learned database, and 244

8,143 PDF files from the NASA Technical Report 245

Server. The collection contains various aerospace- 246

related materials, on topics such as spacecraft design, 247

propulsion systems, and mission operations. 248

The Selenium library was employed to automate 249

browser interactions and handle JavaScript-rendered 250

content, while BeautifulSoup was utilized for parsing 251

HTML and navigating through hundreds of pages ef- 252

ficiently. This combination was particularly needed 253

for NASA’s websites, which required navigating 254

through complex page hierarchies and extracting 255

data from dynamically loaded content. The web 256

scraping process required careful pacing to avoid 257

triggering rate-limiting mechanisms, with individual 258

PDF files often exceeding 30MB due to extensive 259

technical content and images. 260

3.3 RAG System Implementation 261

The core pipeline consists of six key steps: data 262

gathering, chunking, vectorization, storage, retrieval, 263

and response generation. 264

3.3.1 Document Processing and Chunking 265

Chunking Strategy Analysis. Three primary 266

chunking approaches were evaluated for this domain- 267

specific application: (i) recursive chunking, which 268

splits text based on hierarchical separators (para- 269

graphs, sentences, words), (ii) semantic chunking, 270

which groups text based on semantic similarity using 271

embedding models to identify natural breakpoints, 272

and (iii) section-based chunking, which leverages doc- 273

ument structure to maintain semantic boundaries. 274

Recursive chunking, while computationally effi- 275

cient, was unsuitable for NASA documentation as 276

it often split technical procedures across multiple 277

chunks. Semantic chunking required significantly 278

higher processing power than section chunking, and 279

the chunks were too large to be useful for a system 280

with limited context window. 281

Section-Based Chunking Implementation. 282

The implemented approach utilizes section-based 283

chunking through the pymupdf4llm5 library, which 284

employs a multi-stage algorithm specifically de- 285

signed to extract PDF content in formats optimized 286

for LLM and RAG environments. The library’s 287

4https://llis.nasa.gov/
5https://pypi.org/project/pymupdf4llm/
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algorithm first converts PDF pages to GitHub-288

compatible markdown format while preserving doc-289

ument structure through font analysis, header de-290

tection, and formatting preservation. Subsequently,291

it identifies section boundaries using font size vari-292

ations, header patterns (both # markdown syntax293

and bold formatting), and hierarchical document294

structure.295

For a document D with n sections, the chunk-296

ing function ϕ : D → C produces chunks C =297

{c1, c2, . . . , cn} where each chunk ci maintains se-298

mantic coherence and includes metadata (chunk ID,299

title, content, page number, section number, source300

URL, and statistics) enabling full traceability to301

original NASA materials.302

Dataset Structure Analysis. As illustrated in303

Figure 2, most Technical Reports contain between 5304

and 20 chunks, as the NASA documents vary widely305

from brief single-page reports to extensive techni-306

cal manuals exceeding 50 pages6. This distribution307

shows consistent chunking patterns across the collec-308

tion. The figure shows a distribution capped at 80309

chunks per document. We opted for this to limit the310

processing of the outlier PDFs with complex tables311

and figures.312

Figure 2. Distribution of NASA Technical Reports
by chunk count showing the frequency of documents
containing different numbers of chunks. Documents are
capped at 80 chunks per document due to processing
limitations that come from complex table formatting
and images in certain PDFs.

3.3.2 Vectorization and Retrieval313

For vectorization, the all-MiniLM-L6-v27 trans-314

former model is utilized, which is a lightweight but315

effective embedding model designed for semantic316

search tasks. The vectors are stored in a FAISS8
317

6The Lessons Learned are typically single-page reports
that convert entirely into individual chunks and are thus not
included in the distribution.

7https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2
8https://faiss.ai/index.html

database for efficient similarity search. For a user 318

query q, its embedding vq is computed and the 319

top-k most similar chunks are retrieved using co- 320

sine similarity. The retrieval process returns chunks 321

Rk = {cr1 , cr2 , . . . , crk} where rj represents the rank 322

of chunk crj based on similarity scores. We limit the 323

system to retrieve top 3 documents per query, as 324

retrieving a small number of top documents (com- 325

monly between 3 and 5) is standard practice, though 326

the optimal k depends on the application and data 327

characteristics. Given the relatively small response 328

window in our system, 3 retrieved documents per 329

query provided a good balance between context rich- 330

ness and computational efficiency. 331

Retrieval quality is evaluated using standard met- 332

rics including precision, recall, Mean Reciprocal 333

Rank (MRR), Hit Rate, and Normalized Discounted 334

Cumulative Gain (NDCG). 335

3.3.3 Language Model Integration 336

The system integrates both open-source and closed- 337

source language models to enable a comprehensive 338

comparison between paid and freely available op- 339

tions. The GPT models (GPT-4o-mini and GPT- 340

3.5-turbo) were selected for their cost-effectiveness 341

while maintaining strong performance capabilities, 342

making them accessible for budget-focused research 343

applications. For open-source alternatives, LLaMA- 344

3.3-70B-Instruct-Turbo and LLaMA-3.2-1B-Vision- 345

Instruct represent the only freely available models on 346

Together.ai’s platform9, ensuring consistent cloud- 347

based resource allocation critical for fair model com- 348

parison. 349

The system uses ChatPromptTemplate10 from 350

LangChain, a library designed for creating struc- 351

tured and concise prompt instructions. This tem- 352

plate formats the user’s question with the retrieved 353

context, creating a structured input that guides the 354

language model to provide accurate, contextually 355

grounded answers based on the NASA documen- 356

tation rather than relying solely on its pre-trained 357

knowledge. 358

For evaluation purposes, all four models are as- 359

sessed in the automated generation evaluation to 360

provide a comprehensive performance comparison. 361

However, given the limited participant count in the 362

user study, only GPT-4o-mini and LLaMA-3.3-70B- 363

Instruct-Turbo are included in the user evaluation to 364

ensure sufficient statistical power while representing 365

both commercial and open-source model categories. 366

9https://www.together.ai/models
10https://python.langchain.com/api_reference/

core/prompts/langchain_core.prompts.chat.

ChatPromptTemplate.html
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3.4 Evaluation Framework367

The evaluation approach is built upon a our con-368

structed test dataset consisting of 50 records that369

are used for both retrieval and generation evalu-370

ation. Each record contains a manually crafted371

question created from randomly selected document372

chunks, paired with expected answers derived from373

the chunk content. For answer preparation, either374

the complete chunk content was used or GPT-4 was375

employed to extract only the parts relevant to the376

specific problem, ensuring that evaluation answers377

remained strictly grounded in the original NASA378

documentation while avoiding potential human error379

in test dataset creation. The expected answers are380

standardized to 150-200 tokens in length, with each381

record referencing 1-3 relevant document chunks. Ta-382

ble 1 illustrates the structure of a typical evaluation383

record.384

Table 1. Example evaluation record from the test
dataset.

Question What issue was discovered with the ILT radiator during the
CALIPSO satellite-level thermal vacuum test?

Expected Answer During the satellite-level thermal vacuum test of CALIPSO,
which aimed to demonstrate positive thermal control of all
payload components within their required temperature limits
under...

Relevant Chunks 20070021525.pdf 11, 20070021525.pdf 12

3.4.1 Automated Evaluation385

Generation quality is evaluated using a multifaceted386

approach that uses ROUGE scores, BERTScore for387

estimating semantic similarity, and LLM-as-a-Judge388

evaluation.389

BERTScore computes semantic similarity by sum-390

ming cosine similarities between token embeddings.391

For reference sentence x and predicted sentence y,392

the F1 measure is calculated as:393

FBERT = 2
P ×R

P +R
(1)394

where P and R represent precision and recall based395

on maximum cosine similarities between tokens of396

the generated and ground truth answer [29].397

ROUGE metrics evaluate n-gram overlap between398

generated and reference texts. The ROUGE-N score399

is calculated as:400

ROUGE-N =

∑
S∈R

∑
g∈S Countmatch(g)∑

S∈R
∑

g∈S Count(g)
(2)401

where R represents reference summaries, g repre-402

sents n-grams, and Countmatch(g) is the maximum403

number of matching n-grams of the generated and404

ground truth answer [30].405

3.4.2 LLM-as-a-Judge Methodology406

The LLM-as-a-Judge approach has emerged as a407

promising method to replace traditional statistical408

metrics and human evaluation with LLMs for assess- 409

ment tasks [31]. Compared to traditional evaluation 410

methods, LLM judges demonstrate significant ad- 411

vantages: they can adjust evaluation criteria based 412

on specific task context rather than relying on fixed 413

metrics, generate interpretive evaluations that of- 414

fer comprehensive feedback on model performance, 415

and provide a scalable and reproducible alternative 416

to human evaluation while significantly reducing 417

associated costs and time [31]. 418

However, LLM-as-a-Judge approaches face sev- 419

eral critical challenges. Evaluation results are often 420

influenced by prompt templates, which can lead to 421

biased or inconsistent assessments [32]. Additionally, 422

LLMs may inherit implicit biases from their training 423

data, impacting the fairness and reliability of their 424

evaluations, while distinct tasks and domains re- 425

quire specific evaluation criteria that make dynamic 426

adaptation challenging [33]. 427

This work utilizes two LLM-as-a-Judge methods: 428

the first uses OpenAI’s GPT-4o-mini model for eval- 429

uation, while the second implements G-Eval [34], 430

a framework that uses a chain-of-thought (CoT) 431

approach to evaluate the quality of generated text 432

through structured evaluation forms. The main 433

LLM-as-a-Judge scores are Correctness, Relevance, 434

Accuracy, and Groundedness. Correctness measures 435

factual correctness and completeness, Relevance as- 436

sesses how well the answer addresses the question, 437

Accuracy assesses technical detail alignment, and 438

Groundedness verifies that the context is indeed 439

obtained from the source documents. 440

The custom GPT-4o-mini evaluation uses a single 441

prompt11 requesting scores on a 0-10 scale for three 442

criteria (relevance, factual accuracy, groundedness) 443

with direct numerical output, while G-Eval employs 444

a more structured CoT approach that decomposes 445

evaluation into explicit reasoning steps for four crite- 446

ria (correctness, relevance, accuracy, groundedness). 447

This dual approach enables evaluation using both 448

single-prompt and multi-prompt methodologies for 449

comprehensive RAG system assessment. 450

3.4.3 User Study Design 451

The user study was conducted with 20 participants 452

from diverse non-technical backgrounds, with only 453

3 participants having IT experience, ensuring evalu- 454

ation from the general audience perspective. Each 455

session lasted 15-25 minutes, during which each par- 456

ticipant was asked to complete five distinct engi- 457

neering tasks designed to simulate realistic scenarios 458

requiring specialized aerospace knowledge retrieval. 459

Task Design and Implementation. The five 460

tasks covered critical aerospace domains: (1) Engine 461

Rollback Investigation, requiring analysis of Propul- 462

11GPT-4o-mini uses custom ChatPromptTemplate
prompts.
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sion Systems Laboratory data on ice particle effects;463

(2) Satellite Thermal System Evaluation, focusing464

on CALIPSO payload thermal performance; (3) Air-465

craft Noise Profile Assessment, examining noise com-466

ponents across different flight conditions; (4) Critical467

Power System Design, investigating Uninterruptible468

Power Supply applications; and (5) Electronics Sys-469

tem Safety Review, identifying analytical methods470

for circuit problem detection. Tasks were created471

by randomly choosing document chunks, manually472

creating problems from those chunks. GPT model473

was only used for acquiring supplementary infor-474

mation such as creating scenarios to assist users475

in understanding the problem. Each task required476

participants to find at least three of seven prede-477

fined keywords to demonstrate successful knowledge478

acquisition. Figure 3 illustrates the structure and479

complexity of a typical user study task.480

Figure 3. Example of Task 1 in User Evaluation
Study: Engine Rollback Investigation interface show-
ing the structured engineering scenario presented to
participants.

Study Protocol and Bias Mitigation. Par-481

ticipants received authentication credentials and ac-482

cessed a web application that provided clear instruc-483

tions and system descriptions. To prevent cheating484

and ensure authentic interaction with the RAG sys-485

tem, copy functionality was disabled for task descrip-486

tions, requiring users to reformulate queries in their487

own words. The system randomly assigned different488

models (LLaMA-3.3-70B-Instruct-Turbo or GPT-489

4o-mini) to each task per user, ensuring balanced490

model comparison. Upon completion, participants491

provided feedback through the System Usability492

Scale12 (SUS) questionnaire supplemented with cus-493

tom questions addressing task difficulty, AI assistant494

12https://www.surveylab.com/blog/

system-usability-scale-sus/

helpfulness, and system improvement suggestions. 495

4 Results 496

Retrieval Performance. The retrieval system 497

demonstrates strong capability in addressing the 498

core knowledge discovery challenge presented in the 499

introduction. Table 2 presents the evaluation re- 500

sults, showing that the system successfully retrieves 501

relevant NASA documentation with a recall of 0.66 502

and hit rate of 0.68, meaning it finds the majority 503

of expected documents and successfully locates at 504

least one relevant document for most queries. 505

Table 2. Retrieval evaluation results across 50 test
questions, where each question has one or several ex-
pected answer chunks from potentially different source
files.

Metric Score

Precision 0.23
Recall 0.66
MRR 0.64
Hit Rate 0.68
NDCG 0.64

The MRR of 0.64 indicates that relevant docu- 506

ments consistently appear in top positions, crucial 507

for engineers who need quick access to historical 508

information. While the 0.23 precision score appears 509

low, this may reflect the system’s ability to find ad- 510

ditional relevant documents beyond those manually 511

marked in the test dataset. Across all test questions, 512

the system retrieved 150 documents (we use top 3 513

retrieved documents only) with 53 identified as rele- 514

vant, demonstrating its effectiveness in navigating 515

NASA’s extensive 10,000+ document collection. 516

Generation Capabilities. The generation eval- 517

uation demonstrates that the RAG system success- 518

fully addresses the core challenge of providing accu- 519

rate, contextually grounded responses from NASA 520

documentation. Table 3 presents the results using 521

only queries for which at least one relevant document 522

was retrieved (34 of 50 questions), corresponding to 523

the 68% hit rate. Performance across all four models 524

is remarkably consistent, underscoring the critical 525

role of high-quality retrieval in RAG systems. 526

The results show strong semantic performance 527

with BERTScore F1 values between 0.78-0.80, in- 528

dicating that generated answers are semantically 529

very close to ground truth. ROUGE-1 scores of 530

0.46-0.48 demonstrate strong unigram overlap, con- 531

sidered very good for domain-specific datasets. Most 532

importantly, the LLM-as-a-judge metrics reveal that 533

all models generate highly relevant and accurate 534

answers, with factual accuracy and groundedness 535

scores of 0.87-0.90, demonstrating that responses 536

6
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Table 3. Generation evaluation results on the retrieved documents (34 questions).

Metric GPT4o-mini GPT3.5-turbo Llama-70b Llama-vision

Semantic Metrics
BERTScore Precision 0.74 0.78 0.75 0.75
BERTScore Recall 0.83 0.82 0.83 0.83
BERTScore F1 0.78 0.80 0.79 0.78
Semantic Similarity 0.85 0.85 0.85 0.82

ROUGE Metrics
ROUGE-1 0.46 0.48 0.46 0.47
ROUGE-2 0.26 0.29 0.26 0.29
ROUGE-L 0.45 0.48 0.45 0.47

LLM-as-judge Metrics
Answer Relevance 0.86 0.85 0.87 0.84
Factual Accuracy 0.89 0.88 0.90 0.89
Groundedness 0.88 0.87 0.88 0.88

GEval Metrics
GEval Correctness 0.79 0.75 0.79 0.74
GEval Relevance 0.98 0.97 0.97 0.96
GEval Accuracy 0.85 0.81 0.84 0.81
GEval Groundedness 0.87 0.86 0.87 0.87

are not only correct but well-supported by retrieved537

context.538

The comparative analysis between custom LLM-539

as-a-Judge and G-Eval metrics reveals important540

methodological insights for RAG evaluation. While541

the custom GPT-4o-mini approach yields higher542

factual accuracy scores (0.88-0.90) compared to G-543

Eval accuracy scores (0.81-0.85), this difference may544

reflect the inherent limitations of single-prompt eval-545

uation. The custom approach’s reliance on a sin-546

gle, comprehensive prompt could potentially make547

it more susceptible to prompt-specific biases and548

may oversimplify complex evaluation criteria into di-549

rect numerical outputs. In contrast, G-Eval’s multi-550

prompt CoT methodology decomposes evaluation551

into explicit reasoning steps, possibly providing more552

nuanced and reliable assessments despite lower abso-553

lute scores. The remarkably high G-Eval relevance554

scores (0.96-0.98) compared to custom relevance555

scores (0.84-0.87) further suggest that structured556

multi-prompt approaches might offer more granular557

analysis capabilities, while single-prompt evaluation558

may conflate different evaluation dimensions.559

This performance directly addresses the “knowl-560

edge gap” problem from the introduction by enabling561

engineers to access verified information with direct562

source references. The high groundedness scores563

(0.87-0.88) confirm that the system successfully lever-564

ages NASA documentation rather than relying on565

pre-trained knowledge, ensuring factual accuracy566

and traceability. The consistency across models567

suggests that when provided with high-quality re-568

trieved context, all evaluated models are capable569

of producing accurate and relevant answers to tech-570

nical questions, validating the RAG approach for 571

specialized aerospace documentation. 572

User Evaluation Results. The user evaluation 573

provides crucial validation that the RAG system 574

successfully addresses the challenge of knowledge 575

discovery from the introduction. Figure 4 shows the 576

completion times of tasks in different models, while 577

Figure 5 shows the number of attempts by users to 578

complete various tasks. 579

Figure 4. Comparison of GPT-4o-mini and LLaMA-
3.3-70B-Instruct-Turbo models showing average task
completion times in minutes. Each bar represents the
mean completion time, with n indicating the number
of users who completed each task. Vertical black lines
show the minimum and maximum completion times for
each model and task combination.

Most notably, the low attempt counts reveal that 580

users with no aerospace domain experience success- 581

fully solved relatively complex aerospace engineering 582

scenarios in just a few tries. The first three tasks 583

7
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Figure 5. Comparison of GPT-4o-mini and LLaMA-3.3-70B-Instruct-Turbo models showing the average number
of attempts users required to complete each task. Each bar displays the mean number of attempts, with n
indicating the number of users who completed each task. Vertical black lines show the minimum and maximum
number of attempts for each model and task combination.

required in average only 1.3 attempts to complete,584

demonstrating that the system effectively bridges585

the knowledge gap where valuable insights from past586

missions previously remained isolated.587

These user evaluation results correspond closely588

with the generation evaluation findings, where all589

models performed very similarly when provided with590

high-quality retrieved context. This consistency vali-591

dates the RAG approach: engineers can now quickly592

access verified information with direct source refer-593

ences. The evaluation with 20 participants complet-594

ing realistic engineering scenarios provides strong595

evidence of the system’s practical utility for NASA596

engineers.597

5 Conclusion598

In this study, we introduced a specialized RAG sys-599

tem designed to address the critical knowledge dis-600

covery challenge faced by large organizations with601

extensive historical documentation. Our approach602

processes over 10,000 NASA technical documents603

and lessons-learned reports, offering engineers quick604

access to verified information with direct source ref-605

erences, addressing a significant need for efficient606

knowledge retrieval in high-stakes aerospace envi-607

ronments.608

The system demonstrated effectiveness across mul-609

tiple evaluation dimensions, achieving a recall of 610

0.66 and hit rate of 0.68 across the vast document 611

collection. All four evaluated models achieved con- 612

sistent generation quality (BERTScore F1 0.78-0.80, 613

groundedness scores 0.87-0.88) when provided with 614

high-quality retrieved context, suggesting that re- 615

trieval quality, rather than model choice, deter- 616

mines RAG performance. The 20-participant user 617

study validated practical utility, showing that non- 618

technical users can solve complex aerospace engineer- 619

ing problems with minimal attempts, indicating the 620

system’s potential to bridge knowledge gaps where 621

valuable historical insights previously remained iso- 622

lated. 623

Future work should test different chunking ap- 624

proaches such as recursive and semantic chunking, 625

which were barely explored in this paper, and in- 626

vestigate whether LLMs have already been trained 627

on NASA documentation data, as this may affect 628

evaluation validity. 629
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A Appendix 820

A.1 System Interface Design 821

The RAG system was implemented as a web-based application to facilitate user evaluation and ensure 822

consistent interaction experiences across all participants. Figure A.1 demonstrates the dual-panel interface 823

design that integrates task management with conversational AI interaction. 824

Figure A.1. Complete user interface of the RAG system showing the integrated evaluation environment. The left
panel displays the current task description, answer submission area, and task progress tracker, while the right
panel provides the interactive chat interface where users can query the AI assistant, receive contextually grounded
responses, and navigate through retrieved source documents with direct links to original NASA materials.

A.2 User Evaluation Questionnaire Details 825

After users completed all tasks and gained familiarity with the system, a comprehensive questionnaire was 826

administered consisting of System Usability Scale (SUS) questions and additional questions to assess AI 827

performance and user experience. 828
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Figure A.2. System Usability Scale (SUS) questionnaire responses showing the distribution of user ratings across
all ten SUS questions. Each horizontal bar represents one SUS question with response percentages and participant
counts (n) for each rating level from Strongly Disagree to Strongly Agree.
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Figure A.3. User feedback analysis across four custom evaluation questions assessing AI system performance. The
visualization shows response distributions for questions evaluating system accuracy, response quality, information
usefulness, and overall satisfaction with percentage breakdowns and participant counts for each response category.

Figure A.4. Task difficulty assessment showing user-reported difficulty levels for each of the five evaluation tasks.
The stacked bar chart displays the percentage distribution of difficulty ratings (Very Easy to Very Hard) with
participant counts, providing insights into task complexity from the user perspective.
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