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Abstract

Large Language Models (LLMs) have demonstrated
remarkable capabilities in Natural Language Under-
standing and text generation, but their application is
often limited by hallucinations, outdated knowledge,
and lack of evidence. Retrieval-Augmented Genera-
tion (RAG) addresses these fundamental LLM limi-
tations by integrating external knowledge sources,
thereby improving the factual accuracy and trace-
ability while maintaining the text generative capabil-
ities. This work presents the design and implemen-
tation of a web-based RAG system for the aerospace
domain, leveraging more than 10,000 NASA techni-
cal documents and lessons-learned mission reports.
The system integrates open-source LLaMA and
closed-source OpenAl models and performs an ex-
tensive comparative analysis of their performance
within the RAG framework. Evaluation through
both automated metrics and user studies demon-
strates the effectiveness of the RAG approach for
both technical and non-technical users. The findings
provide insights and establish a foundation for future
advancements in Al-driven knowledge management
for specialized fields'.

1 Introduction

Large organizations face a critical challenge: lever-
aging years or decades of accumulated knowledge
and lessons learned to inform new projects and deci-
sions. This problem is particularly acute in high-risk,
high-stakes environments. An example of such an en-
vironment is NASA, an organization with thousands
of past projects that span decades. NASA engineers
who work on new missions often struggle to find
relevant historical information that could prevent
costly mistakes or accelerate innovation. The core
challenge lies in the complexity of discovering knowl-
edge within vast and diverse available collections.
NASA, as a large and long-established organization
that works with multiple contractors, faces several
barriers: vocabulary differences across time periods,
varying terminology between contracting companies,
and the sheer scale of documentation. This creates
a scenario where critical lessons learned, such as

1Code and datasets will be freely provided after accep-
tance
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RAG in the Aerospace Domain: A Comprehensive Retrieval,
Generation, and User Evaluation for NASA Documentation

the infamous O-ring failure that led to the Chal-
lenger disaster in 1986, may be documented, but
remain inaccessible to engineers working on similar
components in new projects [1]. The result is a
knowledge gap where valuable insights from past
missions remain isolated and unused. This challenge
is exemplified by NASA’s efforts to develop risk dig-
ital assistants that can extract and leverage past
project data for predictive decision-making?.

This problem extends beyond aerospace to any
large organization with extensive historical documen-
tation: healthcare systems with decades of patient
data, legal firms with case histories, or manufactur-
ing companies with safety records. In these domains,
the ability to quickly and accurately retrieve rele-
vant historical information can significantly impact
decision quality, risk assessment, and project out-
comes.

RAG has emerged as a leading approach that
enhances LLMs by seamlessly integrating external
knowledge sources with text generation capabili-
ties [2]. This hybrid approach allows systems to
take advantage of both the generative strengths of
LLMs and the precision of Information Retrieval
(IR) techniques, producing responses drawn from
a substantially broader knowledge base than what
is encoded in the model parameters alone. While
RAG systems have demonstrated effectiveness across
various domains, the specific challenges of applying
them to highly specialized technical documentation
in aerospace environments present unique opportu-
nities for research.

The core contribution of this work is address-
ing this knowledge discovery challenge through a
specialized RAG system designed for NASA’s docu-
mentation. By processing more than 10,000 NASA
technical documents [3] and lessons-learned mission
reports [4], this system allows engineers to quickly
access verified information with direct source ref-
erences, significantly reducing the time and effort
required to find relevant historical data. The sys-
tem integrates and compares open-source LLaMA
and closed-source OpenAl models, addressing the
challenge of making NASA’s extensive technical doc-
umentation and lessons-learned databases more ac-
cessible and trustworthy.

This paper is organized as follows: next section
reviews existing literature in the domains of RAG,

2https://techport.nasa.gov/projects/117547
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conversational agents, and evaluation methodologies,
focusing on applications in specialized domains and
space sector implementations. Our approach is de-
scribed in Section 3 and the evaluation is discussed
in Section 4. We conclude the paper in Section 5.

2 Related Work

The RAG architecture was first introduced by Lewis
et al. [5], combining a retrieval component with a
sequence-to-sequence generative model to enhance
text generation with external knowledge. Unlike tra-
ditional LLMs that rely solely on their pre-trained
knowledge, RAG allows models to generate high-
quality text supported by relevant external informa-
tion, making it particularly effective for knowledge-
intensive tasks [5]. The effectiveness of retrieval-
augmented approaches has been demonstrated in
open-domain question answering systems [6, 7] and
dialogue systems [8], where the integration of re-
trieval mechanisms has improved contextual under-
standing and response generation capabilities.

Conversational Agents in Space Sector. The
development of conversational Question Answering
systems has advanced significantly with the rise of
LLMs, enabling models to answer questions based
on given contexts, often involving RAG when doc-
uments surpass the language model’s context win-
dow [9]. Studies focus primarily on text-only docu-
ments (such as regulations, manuals, and technical
reports) from various domains [10-12] and docu-
ments combining plain text with tables (such as
Wikipedia articles with tabular data, financial re-
ports, and semi-structured knowledge sources) [13—
15).

Several projects have explored the use of Al-
powered virtual assistants to aid engineers during
spacecraft mission design. The most notable ones
are Daphne [16], the Design Engineering Assistant
(DEA) [17], and SpaceQA [18]. DEA is a non-
intrusive decision support tool that enhances ex-
pert perception of different design alternatives and
past decision outcomes through Natural Language
Processing, Machine Learning, Knowledge Manage-
ment, and Human-Machine Interaction methods [17].
Daphne, evaluated at NASA’s Jet Propulsion Lab-
oratory (JPL), enhances design task performance
through a microservices architecture featuring a web
front-end, server (Daphne Brain), and software roles
that interface with structured knowledge graphs
for better design inputs [19]. SpaceQA, developed
by the European Space Agency (ESA), is an open-
domain QA system for space mission design, em-
ploying a dense retriever and neural reader similar
to an RAG pipeline [19].

LLM-as-a-Judge Evaluation in RAG Sys-
tems. Traditional evaluation of the RAG systems
require manually created ground truth data, which
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are typically quite expensive to acquire. Traditional
metrics like ROUGE and BLEU fail to capture the
nuanced quality dimensions required for RAG evalu-
ation, particularly factual correctness and contextual
grounding. New evaluation methods, which employ
LLMs, thus recently started to emerge in RAG eval-
uation. Wang et al. [20] demonstrate that ChatGPT
can effectively evaluate text generation by providing
scores on 0-100 or 1-5 star scales for aspects such
as relevance, factual accuracy, and groundedness,
achieving state-of-the-art correlation with human
judgments across multiple NLG tasks. However, this
approach exhibits sensitivity to prompt design and
reduced effectiveness on datasets with strong lexical
biases.

Muhamed [21] introduces the CCRS (Contextual
Coherence and Relevance Score), employing LLaMA-
70B as a zero-shot judge to evaluate RAG systems in
five dimensions: contextual coherence, question rele-
vance, information density, answer correctness, and
information recall. Their evaluation on the BioASQ
biomedical dataset shows promising results across
multiple RAG configurations with different read-
ers and retrievers, while highlighting the challenge
of achieving perfect factual accuracy in complex
biomedical domains.

Building on these evaluation foundations, broader
investigations have explored the reliability and ef-
fectiveness of LLM judges across different contexts.
Tseng et al. [22] conduct the first systematic evalua-
tion of LLMs as expert-level data annotators across
finance, biomedicine, and law domains, finding that
models average 35% behind human expert perfor-
mance despite showing promise in general NLP tasks.
Ashktorab et al. [23] develop EvalAssist, compar-
ing direct assessment versus pairwise comparison
strategies, and demonstrate that practitioners prefer
direct assessment for clarity while using pairwise
comparison for subjective evaluations. Bavaresco et
al. [24] present JUDGE-BENCH, a comprehensive
benchmark evaluating 11 LLMs across 20 datasets,
revealing substantial variance in model performance
and better alignment with non-expert versus expert
human judges. Thus, although the LLM-as-a-Judge
Evaluation still suffers from multiple issues, due to
its low cost, it is now a standard for RAG evaluation,
often accompanying expensive user studies.

User Evaluation Studies in RAG Systems.
While technical metrics provide important insights
into RAG performance, user-centered evaluation
remains critical for understanding real-world effec-
tiveness and adoption. Hasan et al. [25] present a
comprehensive study of five domain-specific RAG
applications deployed across governance, cyberse-
curity, agriculture, industrial research, and medical
diagnostics. Their approach combined Likert-scale
surveys with open-ended qualitative feedback to
capture both measurable insights and descriptive
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user experiences, ultimately documenting twelve key
lessons learned from user feedback to guide future
RAG system development and deployment practices.

3 Method
3.1 RAG Framework

RAG is a hybrid approach that combines two essen-
tial components: (i) a retrieval system that pulls
documents from an external knowledge base, and
(ii) a generation component that uses this informa-
tion to create natural, human-like text [26, 27]. By
blending these capabilities, RAG models can pro-
duce coherent and fluent responses while anchoring
their output in current real-world information. The
workflow is illustrated in Figure 1.

Framework
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Figure 1. RAG Architecture workflow: (1) User sub-
mits query to the system, (2) Query is vectorized and
semantic search is performed against the document vec-
tor database, (3) Top-k relevant documents are retrieved
and passed as context, (4) LLM generates response using
both the original query and retrieved context, and (5)
presents it to the user.

The generation component leverages the contex-
tual information to produce responses that maintain
the natural language capabilities of LLMs while
being factually anchored. The system can be config-
ured to prioritize retrieved context over pre-trained
knowledge, ensuring that responses are based pri-
marily on the retrieved NASA documents rather
than the model’s training data [28].

3.2 Dataset Preparation

To be able to use the data, which would support our
use case of vast knowledge of a single organization,
we decided to create a novel collection consisting
of freely available NASA technical resources. We
used web scraping techniques to collect information
from NASA Technical Report Server®, which con-
tains papers, patents, reports and other technical
materials created or funded by NASA. The server

Shttps://ntrs.nasa.gov/search
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contains thousands of documents, collected since
1915, though our system focuses on documents from
the 2000s onwards to ensure relevance to current
aerospace practices. In addition to this, we used
documents available at the NASA Lessons Learned*
which contains reviewed lessons learned from NASA
programs and projects. Together, we collected 1,859
records from the Lessons Learned database, and
8,143 PDF files from the NASA Technical Report
Server. The collection contains various aerospace-
related materials, on topics such as spacecraft design,
propulsion systems, and mission operations.

The Selenium library was employed to automate
browser interactions and handle JavaScript-rendered
content, while BeautifulSoup was utilized for parsing
HTML and navigating through hundreds of pages ef-
ficiently. This combination was particularly needed
for NASA’s websites, which required navigating
through complex page hierarchies and extracting
data from dynamically loaded content. The web
scraping process required careful pacing to avoid
triggering rate-limiting mechanisms, with individual
PDF files often exceeding 30MB due to extensive
technical content and images.

3.3 RAG System Implementation

The core pipeline consists of six key steps: data
gathering, chunking, vectorization, storage, retrieval,
and response generation.

3.3.1 Document Processing and Chunking

Chunking Strategy Analysis. Three primary
chunking approaches were evaluated for this domain-
specific application: (i) recursive chunking, which
splits text based on hierarchical separators (para-
graphs, sentences, words), (ii) semantic chunking,
which groups text based on semantic similarity using
embedding models to identify natural breakpoints,
and (iii) section-based chunking, which leverages doc-
ument structure to maintain semantic boundaries.

Recursive chunking, while computationally effi-
cient, was unsuitable for NASA documentation as
it often split technical procedures across multiple
chunks. Semantic chunking required significantly
higher processing power than section chunking, and
the chunks were too large to be useful for a system
with limited context window.

Section-Based Chunking Implementation.
The implemented approach utilizes section-based
chunking through the pymupdf4lim® library, which
employs a multi-stage algorithm specifically de-
signed to extract PDF content in formats optimized
for LLM and RAG environments. The library’s

4https://llis.nasa.gov/
Shttps://pypi.org/project/pymupdf4llm/
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algorithm first converts PDF pages to GitHub-
compatible markdown format while preserving doc-
ument structure through font analysis, header de-
tection, and formatting preservation. Subsequently,
it identifies section boundaries using font size vari-
ations, header patterns (both # markdown syntax
and bold formatting), and hierarchical document
structure.

For a document D with n sections, the chunk-
ing function ¢ : D — C produces chunks C' =
{c1,¢2,...,¢cn} where each chunk ¢; maintains se-
mantic coherence and includes metadata (chunk ID,
title, content, page number, section number, source
URL, and statistics) enabling full traceability to
original NASA materials.

Dataset Structure Analysis. As illustrated in
Figure 2, most Technical Reports contain between 5
and 20 chunks, as the NASA documents vary widely
from brief single-page reports to extensive techni-
cal manuals exceeding 50 pages®. This distribution
shows consistent chunking patterns across the collec-
tion. The figure shows a distribution capped at 80
chunks per document. We opted for this to limit the
processing of the outlier PDFs with complex tables
and figures.

Distribution of Documents by Chunk Count

. ‘| “ | ||||"|||l|||n ; ]
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Figure 2. Distribution of NASA Technical Reports
by chunk count showing the frequency of documents
containing different numbers of chunks. Documents are
capped at 80 chunks per document due to processing
limitations that come from complex table formatting
and images in certain PDF's.

3.3.2 Vectorization and Retrieval

For vectorization, the all-MiniLM-L6-v2” trans-
former model is utilized, which is a lightweight but
effective embedding model designed for semantic
search tasks. The vectors are stored in a FAISS®

6The Lessons Learned are typically single-page reports
that convert entirely into individual chunks and are thus not
included in the distribution.

"https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

8https://faiss.ai/index.html
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database for efficient similarity search. For a user
query g, its embedding v, is computed and the
top-k most similar chunks are retrieved using co-
sine similarity. The retrieval process returns chunks
Ry ={cy,,Crys - - -, Cr, } Where r; represents the rank
of chunk ¢,; based on similarity scores. We limit the
system to retrieve top 3 documents per query, as
retrieving a small number of top documents (com-
monly between 3 and 5) is standard practice, though
the optimal k depends on the application and data
characteristics. Given the relatively small response
window in our system, 3 retrieved documents per
query provided a good balance between context rich-
ness and computational efficiency.

Retrieval quality is evaluated using standard met-
rics including precision, recall, Mean Reciprocal
Rank (MRR), Hit Rate, and Normalized Discounted
Cumulative Gain (NDCG).

3.3.3 Language Model Integration

The system integrates both open-source and closed-
source language models to enable a comprehensive
comparison between paid and freely available op-
tions. The GPT models (GPT-40-mini and GPT-
3.5-turbo) were selected for their cost-effectiveness
while maintaining strong performance capabilities,
making them accessible for budget-focused research
applications. For open-source alternatives, LLaMA-
3.3-70B-Instruct-Turbo and LLaMA-3.2-1B-Vision-
Instruct represent the only freely available models on
Together.ai’s platform’, ensuring consistent cloud-
based resource allocation critical for fair model com-
parison.

The system uses ChatPromptTemplate'® from
LangChain, a library designed for creating struc-
tured and concise prompt instructions. This tem-
plate formats the user’s question with the retrieved
context, creating a structured input that guides the
language model to provide accurate, contextually
grounded answers based on the NASA documen-
tation rather than relying solely on its pre-trained
knowledge.

For evaluation purposes, all four models are as-
sessed in the automated generation evaluation to
provide a comprehensive performance comparison.
However, given the limited participant count in the
user study, only GPT-40-mini and LLaMA-3.3-70B-
Instruct-Turbo are included in the user evaluation to
ensure sufficient statistical power while representing
both commercial and open-source model categories.

9https://www.together.ai/models
Ohttps://python.langchain.com/api_reference/
core/prompts/langchain_core.prompts.chat.
ChatPromptTemplate.html
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3.4 Evaluation Framework

The evaluation approach is built upon a our con-
structed test dataset consisting of 50 records that
are used for both retrieval and generation evalu-
ation. Each record contains a manually crafted
question created from randomly selected document
chunks, paired with expected answers derived from
the chunk content. For answer preparation, either
the complete chunk content was used or GPT-4 was
employed to extract only the parts relevant to the
specific problem, ensuring that evaluation answers
remained strictly grounded in the original NASA
documentation while avoiding potential human error
in test dataset creation. The expected answers are
standardized to 150-200 tokens in length, with each
record referencing 1-3 relevant document chunks. Ta-
ble 1 illustrates the structure of a typical evaluation
record.

Table 1. Example evaluation record from the test
dataset.
Question What issue was discovered with the ILT radiator during the
CALIPSO satellite-level thermal vacuum test?
Expected Answer | During the satellite-level thermal vacuum test of CALIPSO,

which aimed to demonstrate positive thermal control of all
payload components within their required temperature limits
under...

20070021525.pdf_11, 20070021525.pdf_12

Relevant Chunks

3.4.1 Automated Evaluation

Generation quality is evaluated using a multifaceted
approach that uses ROUGE scores, BERTScore for
estimating semantic similarity, and LLM-as-a-Judge
evaluation.

BERTScore computes semantic similarity by sum-
ming cosine similarities between token embeddings.
For reference sentence x and predicted sentence v,
the F1 measure is calculated as:

P xR

P+R @)

Fpeprr =2
where P and R represent precision and recall based
on maximum cosine similarities between tokens of
the generated and ground truth answer [29].

ROUGE metrics evaluate n-gram overlap between
generated and reference texts. The ROUGE-N score
is calculated as:

> oser EQES Countmaten(9)
Y oSer des Count(g)

where R represents reference summaries, g repre-
sents n-grams, and Count,,atcn(g) is the maximum
number of matching n-grams of the generated and
ground truth answer [30].

ROUGE-N = (2)

3.4.2 LLM-as-a-Judge Methodology

The LLM-as-a-Judge approach has emerged as a
promising method to replace traditional statistical

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

metrics and human evaluation with LLMs for assess-
ment tasks [31]. Compared to traditional evaluation
methods, LLM judges demonstrate significant ad-
vantages: they can adjust evaluation criteria based
on specific task context rather than relying on fixed
metrics, generate interpretive evaluations that of-
fer comprehensive feedback on model performance,
and provide a scalable and reproducible alternative
to human evaluation while significantly reducing
associated costs and time [31].

However, LLM-as-a-Judge approaches face sev-
eral critical challenges. Evaluation results are often
influenced by prompt templates, which can lead to
biased or inconsistent assessments [32]. Additionally,
LLMSs may inherit implicit biases from their training
data, impacting the fairness and reliability of their
evaluations, while distinct tasks and domains re-
quire specific evaluation criteria that make dynamic
adaptation challenging [33].

This work utilizes two LLM-as-a-Judge methods:
the first uses OpenAI’s GPT-40-mini model for eval-
uation, while the second implements G-Eval [34],
a framework that uses a chain-of-thought (CoT)
approach to evaluate the quality of generated text
through structured evaluation forms. The main
LLM-as-a-Judge scores are Correctness, Relevance,
Accuracy, and Groundedness. Correctness measures
factual correctness and completeness, Relevance as-
sesses how well the answer addresses the question,
Accuracy assesses technical detail alignment, and
Groundedness verifies that the context is indeed
obtained from the source documents.

The custom GPT-4o0-mini evaluation uses a single
prompt'! requesting scores on a 0-10 scale for three
criteria (relevance, factual accuracy, groundedness)
with direct numerical output, while G-Eval employs
a more structured CoT approach that decomposes
evaluation into explicit reasoning steps for four crite-
ria (correctness, relevance, accuracy, groundedness).
This dual approach enables evaluation using both
single-prompt and multi-prompt methodologies for
comprehensive RAG system assessment.

3.4.3 User Study Design

The user study was conducted with 20 participants
from diverse non-technical backgrounds, with only
3 participants having IT experience, ensuring evalu-
ation from the general audience perspective. Each
session lasted 15-25 minutes, during which each par-
ticipant was asked to complete five distinct engi-
neering tasks designed to simulate realistic scenarios
requiring specialized aerospace knowledge retrieval.

Task Design and Implementation. The five
tasks covered critical aerospace domains: (1) Engine
Rollback Investigation, requiring analysis of Propul-

1 GPT-40-mini
prompts.

uses custom ChatPromptTemplate
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sion Systems Laboratory data on ice particle effects;
(2) Satellite Thermal System Evaluation, focusing
on CALIPSO payload thermal performance; (3) Air-
craft Noise Profile Assessment, examining noise com-
ponents across different flight conditions; (4) Critical
Power System Design, investigating Uninterruptible
Power Supply applications; and (5) Electronics Sys-
tem Safety Review, identifying analytical methods
for circuit problem detection. Tasks were created
by randomly choosing document chunks, manually
creating problems from those chunks. GPT model
was only used for acquiring supplementary infor-
mation such as creating scenarios to assist users
in understanding the problem. Each task required
participants to find at least three of seven prede-
fined keywords to demonstrate successful knowledge
acquisition. Figure 3 illustrates the structure and
complexity of a typical user study task.

Task 1: Engine Rollback Investigation

You're an aerospace engineer analyzing engine performance in
icing conditions. Your team needs to understand what particle
characteristics lead to engine rollback events. Research the
Propulsion Systems Laboratory (PSL) test data findings to
determine critical ice particle sizes and temperature
conditions that contribute to these events.

Expected findings should include:

+ Analysis of Propulsion Systems Laboratory (PSL) data

points on the LF11 engine model

+ Critical particle size requirements for engine rollback

(when thrust unexpectedly decreases)

s Relevant wet bulb temperature range in the Low Pressure

Compressor (LPC) region

Figure 3. Example of Task 1 in User Evaluation
Study: Engine Rollback Investigation interface show-
ing the structured engineering scenario presented to
participants.

Study Protocol and Bias Mitigation. Par-
ticipants received authentication credentials and ac-
cessed a web application that provided clear instruc-
tions and system descriptions. To prevent cheating
and ensure authentic interaction with the RAG sys-
tem, copy functionality was disabled for task descrip-
tions, requiring users to reformulate queries in their
own words. The system randomly assigned different
models (LLaMA-3.3-70B-Instruct-Turbo or GPT-
4o-mini) to each task per user, ensuring balanced
model comparison. Upon completion, participants
provided feedback through the System Usability
Scale'? (SUS) questionnaire supplemented with cus-
tom questions addressing task difficulty, Al assistant

2https://www.surveylab.com/blog/
system-usability-scale-sus/
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helpfulness, and system improvement suggestions.

4 Results

Retrieval Performance. The retrieval system
demonstrates strong capability in addressing the
core knowledge discovery challenge presented in the
introduction. Table 2 presents the evaluation re-
sults, showing that the system successfully retrieves
relevant NASA documentation with a recall of 0.66
and hit rate of 0.68, meaning it finds the majority
of expected documents and successfully locates at
least one relevant document for most queries.

Table 2. Retrieval evaluation results across 50 test
questions, where each question has one or several ex-
pected answer chunks from potentially different source
files.

Metric Score
Precision 0.23
Recall 0.66
MRR 0.64
Hit Rate 0.68
NDCG 0.64

The MRR of 0.64 indicates that relevant docu-
ments consistently appear in top positions, crucial
for engineers who need quick access to historical
information. While the 0.23 precision score appears
low, this may reflect the system’s ability to find ad-
ditional relevant documents beyond those manually
marked in the test dataset. Across all test questions,
the system retrieved 150 documents (we use top 3
retrieved documents only) with 53 identified as rele-
vant, demonstrating its effectiveness in navigating
NASA’s extensive 10,0004+ document collection.

Generation Capabilities. The generation eval-
uation demonstrates that the RAG system success-
fully addresses the core challenge of providing accu-
rate, contextually grounded responses from NASA
documentation. Table 3 presents the results using
only queries for which at least one relevant document
was retrieved (34 of 50 questions), corresponding to
the 68% hit rate. Performance across all four models
is remarkably consistent, underscoring the critical
role of high-quality retrieval in RAG systems.

The results show strong semantic performance
with BERTScore F1 values between 0.78-0.80, in-
dicating that generated answers are semantically
very close to ground truth. ROUGE-1 scores of
0.46-0.48 demonstrate strong unigram overlap, con-
sidered very good for domain-specific datasets. Most
importantly, the LLM-as-a-judge metrics reveal that
all models generate highly relevant and accurate
answers, with factual accuracy and groundedness
scores of 0.87-0.90, demonstrating that responses
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Table 3. Generation evaluation results on the retrieved documents (34 questions).

Metric GPT40-mini GPT3.5-turbo Llama-70b Llama-vision
Semantic Metrics

BERTScore Precision 0.74 0.78 0.75 0.75
BERTScore Recall 0.83 0.82 0.83 0.83
BERTScore F1 0.78 0.80 0.79 0.78
Semantic Similarity 0.85 0.85 0.85 0.82
ROUGE Metrics

ROUGE-1 0.46 0.48 0.46 0.47
ROUGE-2 0.26 0.29 0.26 0.29
ROUGE-L 0.45 0.48 0.45 0.47
LLM-as-judge Metrics

Answer Relevance 0.86 0.85 0.87 0.84
Factual Accuracy 0.89 0.88 0.90 0.89
Groundedness 0.88 0.87 0.88 0.88
GFEval Metrics

GEval Correctness 0.79 0.75 0.79 0.74
GEval Relevance 0.98 0.97 0.97 0.96
GEval Accuracy 0.85 0.81 0.84 0.81
GEval Groundedness 0.87 0.86 0.87 0.87

are not only correct but well-supported by retrieved
context.

The comparative analysis between custom LLM-
as-a-Judge and G-Eval metrics reveals important
methodological insights for RAG evaluation. While
the custom GPT-4o0-mini approach yields higher
factual accuracy scores (0.88-0.90) compared to G-
Eval accuracy scores (0.81-0.85), this difference may
reflect the inherent limitations of single-prompt eval-
uation. The custom approach’s reliance on a sin-
gle, comprehensive prompt could potentially make
it more susceptible to prompt-specific biases and
may oversimplify complex evaluation criteria into di-
rect numerical outputs. In contrast, G-Eval’s multi-
prompt CoT methodology decomposes evaluation
into explicit reasoning steps, possibly providing more
nuanced and reliable assessments despite lower abso-
lute scores. The remarkably high G-Eval relevance
scores (0.96-0.98) compared to custom relevance
scores (0.84-0.87) further suggest that structured
multi-prompt approaches might offer more granular
analysis capabilities, while single-prompt evaluation
may conflate different evaluation dimensions.

This performance directly addresses the “knowl-
edge gap” problem from the introduction by enabling
engineers to access verified information with direct
source references. The high groundedness scores
(0.87-0.88) confirm that the system successfully lever-
ages NASA documentation rather than relying on
pre-trained knowledge, ensuring factual accuracy
and traceability. The consistency across models
suggests that when provided with high-quality re-
trieved context, all evaluated models are capable
of producing accurate and relevant answers to tech-

nical questions, validating the RAG approach for
specialized aerospace documentation.

User Evaluation Results. The user evaluation
provides crucial validation that the RAG system
successfully addresses the challenge of knowledge
discovery from the introduction. Figure 4 shows the
completion times of tasks in different models, while
Figure 5 shows the number of attempts by users to
complete various tasks.
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LLaMA-3.3-70B-Instruct-Turbo
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Figure 4. Comparison of GPT-40-mini and LLaMA-
3.3-70B-Instruct-Turbo models showing average task
completion times in minutes. Each bar represents the
mean completion time, with n indicating the number
of users who completed each task. Vertical black lines
show the minimum and maximum completion times for
each model and task combination.

Most notably, the low attempt counts reveal that
users with no aerospace domain experience success-
fully solved relatively complex aerospace engineering
scenarios in just a few tries. The first three tasks
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Figure 5. Comparison of GPT-40-mini and LLaMA-3.3-70B-Instruct-Turbo models showing the average number
of attempts users required to complete each task. Each bar displays the mean number of attempts, with n
indicating the number of users who completed each task. Vertical black lines show the minimum and maximum
number of attempts for each model and task combination.

required in average only 1.3 attempts to complete,
demonstrating that the system effectively bridges
the knowledge gap where valuable insights from past
missions previously remained isolated.

These user evaluation results correspond closely
with the generation evaluation findings, where all
models performed very similarly when provided with
high-quality retrieved context. This consistency vali-
dates the RAG approach: engineers can now quickly
access verified information with direct source refer-
ences. The evaluation with 20 participants complet-
ing realistic engineering scenarios provides strong
evidence of the system’s practical utility for NASA
engineers.

5 Conclusion

In this study, we introduced a specialized RAG sys-
tem designed to address the critical knowledge dis-
covery challenge faced by large organizations with
extensive historical documentation. Our approach
processes over 10,000 NASA technical documents
and lessons-learned reports, offering engineers quick
access to verified information with direct source ref-
erences, addressing a significant need for efficient
knowledge retrieval in high-stakes aerospace envi-
ronments.

The system demonstrated effectiveness across mul-

tiple evaluation dimensions, achieving a recall of
0.66 and hit rate of 0.68 across the vast document
collection. All four evaluated models achieved con-
sistent generation quality (BERTScore F1 0.78-0.80,
groundedness scores 0.87-0.88) when provided with
high-quality retrieved context, suggesting that re-
trieval quality, rather than model choice, deter-
mines RAG performance. The 20-participant user
study validated practical utility, showing that non-
technical users can solve complex aerospace engineer-
ing problems with minimal attempts, indicating the
system’s potential to bridge knowledge gaps where
valuable historical insights previously remained iso-
lated.

Future work should test different chunking ap-
proaches such as recursive and semantic chunking,
which were barely explored in this paper, and in-
vestigate whether LLMs have already been trained
on NASA documentation data, as this may affect
evaluation validity.
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A Appendix 820

A.1 System Interface Design 821

The RAG system was implemented as a web-based application to facilitate user evaluation and ensure 822
consistent interaction experiences across all participants. Figure A.1 demonstrates the dual-panel interface s23
design that integrates task management with conversational ATl interaction. 824

Task 3: Aircraft Noise Profile Assessment Hey, | am working on noise reduction for a new aircraft design. | would like to understand how

: . . . : engine power settings affect different noise components. Could you look into how noise
You're working on noise reduction for a new aircraft

. . . profiles vary between approach and takeoff conditions? Try to include these main points: Inlet
design. Your task is to understand how engine power

) ) . broadband component behavior, relationship between flight velocity and airframe noise,
settings affect different noise components. Research how

) ) comparative noise levels at high takeoff power.
noise profiles vary between approach and takeoff
conditiens to inferm your design recommendations.

Expected findings should include: . . o . . . . .
1. Brief Answer: Engine power settings significantly impact the noise profiles of an aircraft, with

« Inlet broadband component behavior (noise variations between approach and takeoff conditions. At low engine power settings, such as

distributed across many frequencies) at low power
settings

s Relationship between flight velocity and airframe

during approach, inlet broadband component levels and airframe neise are relatively low
due to lower flight velocities. In contrast, high takeoff power results in higher levels of both

inlet and airframe neise compoenents.

neise (noise from the aircraft body) 2. Key Points:

* Comparative noise levels at high takeoff power

+ Inlet broadband component levels are relatively low at low engine power settings (approach)

Submit your findings: and higher at high engine power settings (takeoff).

Your answer + Airframe noise is influenced by flight velocity, with lower velocities resulting in lower airframe

components are at their highest levels due to high noise levels.

engine settings and flight velocities. * At high takeoff power, both inlet and airframe noise components are at their highest levels

The relationship between engine power settings, due to high engine settings and flight velocities.
flight velocity, and noise components s crucial for + The relationship between engine power settings, flight velocity, and noise components is
understanding and addressing noise reduction in

) crucial for understanding and addressing noise reduction in aircraft design.
aircraft design.
4. Sources:

ST «  20200002461.pdF: https://ntrs.nasa.gov/api/citations/20200002461 /

downloads/20200002461.pdf?attachment=true

s 20170008825.pdf: https://ntrs.nasa.gov/api/citations/20170008825/
downloads/20170008825.pdf?attachment=true

* 20150030361.pdf: hitps://ntrs.nasa.gov/api/citations/20190030361/
downloads/20190030361.pdf7attachment=true

Task Progress

Task 1: |74 Completed successfully

Figure A.1. Complete user interface of the RAG system showing the integrated evaluation environment. The left
panel displays the current task description, answer submission area, and task progress tracker, while the right
panel provides the interactive chat interface where users can query the AT assistant, receive contextually grounded
responses, and navigate through retrieved source documents with direct links to original NASA materials.

A.2 User Evaluation Questionnaire Details 825

After users completed all tasks and gained familiarity with the system, a comprehensive questionnaire was 826
administered consisting of System Usability Scale (SUS) questions and additional questions to assess Al s27
performance and user experience. 828
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mmm Strongly Disagree s Disagree mmm Neutral B Agree W Strongly Agree

Q1. | think that | BEC7R 12 30% 30% 25%
would like to use this SESEy (n=2)

system frequently.

Q2. | found the
system unnecessarily
complex.

Q3. | thought the
system was easy to
use.

Q4. | think that |
would need the 10% 5%
support of a technical — =
person to be able to (nSZIin=1

use this system.

Q5. | found the
various functions in 20%
this system were well (n=4)
integrated.

Q6. | thought there
was too much
inconsistency in this
system.

Q7. | would imagine
that most people 45%
would learn to use (GEL))
this system very
quickly.

Q8. | found the 15% 10%
system very (n=3) (n=2)
cumbersome to use.

Q9. | felt very 30%
confident using the (n=6)

system.
[ E-)) n=1jn=1
0 20 40 60 80

Percentage of Responses

Q10. | needed to
learn a lot of things
before | could get
going with this
system.

5%
n=1

100

Figure A.2. System Usability Scale (SUS) questionnaire responses showing the distribution of user ratings across
all ten SUS questions. Each horizontal bar represents one SUS question with response percentages and participant
counts (n) for each rating level from Strongly Disagree to Strongly Agree.
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User Feedback Analysis
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Figure A.3. User feedback analysis across four custom evaluation questions assessing Al system performance. The
visualization shows response distributions for questions evaluating system accuracy, response quality, information
usefulness, and overall satisfaction with percentage breakdowns and participant counts for each response category.

Difficulty Level
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taskl task2 task3
Task

Figure A.4. Task difficulty assessment showing user-reported difficulty levels for each of the five evaluation tasks.

The stacked bar chart displays the percentage distribution

Hmm Challenging B Too Difficult

task4 task5

of difficulty ratings (Very Easy to Very Hard) with

participant counts, providing insights into task complexity from the user perspective.
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