
Under review as a conference paper at ICLR 2024

LOGIC-BASED ADAPTIVE REWARD SHAPING
FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

There is a growing interest in using formal languages such as Linear Temporal
Logic (LTL) to specify complex tasks and reward functions for reinforcement
learning (RL) precisely and succinctly. Nevertheless, existing methods often as-
sign sparse rewards, which may require millions of exploratory episodes to con-
verge to a quality policy. To address this limitation, we adopt the notion of task
progression to measure the degree to which a task specified by a co-safe LTL for-
mula is partially completed and design several reward functions to incentivize a
RL agent to satisfy the task specification as much as possible. We also develop
an adaptive reward shaping approach that dynamically updates reward functions
during the learning process. Experimental results on a range of benchmark RL en-
vironments demonstrate that the proposed approach generally outperforms base-
lines, achieving earlier convergence to a policy with a higher success rate of task
completion and a higher normalized expected discounted return.

1 INTRODUCTION

In reinforcement learning (RL), an agent’s behavior is guided by reward functions, which are often
difficult to specify manually when representing complex tasks. Alternatively, a RL agent can infer
the intended reward from demonstrations (Ng & Russell, 2000), trajectory comparisons (Wirth et al.,
2017), or human instructions (Fu et al., 2018). Recent years have witnessed a growing interest in
using formal languages such as Linear Temporal Logic (LTL) and automata to specify complex tasks
and reward functions for RL precisely and succinctly (Li et al., 2017; Icarte et al., 2018; Camacho
et al., 2019; De Giacomo et al., 2019; Jothimurugan et al., 2019; Bozkurt et al., 2020; Hasanbeig
et al., 2020; Jiang et al., 2021; Icarte et al., 2022; Cai et al., 2023).

Nevertheless, existing methods often assign rewards sparsely (e.g., an agent receives reward 1 only
if a task specification is satisfied or an accepting automaton state has been reached, and receives
reward 0 otherwise). Sparse rewards may necessitate millions of exploratory episodes for conver-
gence to a quality policy. Moreover, some prior works are only compatible with specific RL algo-
rithms tailored for their proposed reward structures, such as q-learning for reward machines (QRM)
described in (Camacho et al., 2019), counterfactual experiences for reward machines (CRM) devel-
oped in (Icarte et al., 2022), and the modular DDPG proposed in (Hasanbeig et al., 2020).

Reward shaping (Ng et al., 1999) is a paradigm where an agent receives some intermediate rewards
as it gets closer to the goal and has shown to be helpful for RL algorithms to converge more quickly.
Inspired by this idea, we develop a logic-based adaptive reward shaping approach in this work. We
use the syntactically co-safe fragment of LTL to specify complex RL tasks, such as “the agent should
collect an orange flag and a blue flag in any order while avoiding the yellow flag” and “the agent
should get coffee and mail before delivering them to the office”. We then translate a co-safe LTL
task specification into a deterministic finite automaton (DFA) and build a product of the DFA and the
environment model represented as a Markov decision process (MDP). We design reward functions
for the resulting product MDP that keeps track of the task completion status (e.g., a task is completed
if an accepting state of the DFA has been reached).

The principle underlying our approach is that we want to assign intermediate rewards to an agent as
it makes progress toward completing a task. A key challenge is how to measure the closeness to task
completion. To this end, we adopt the notion of task progression defined by Lacerda et al. (2019),

1



Under review as a conference paper at ICLR 2024

which measures each DFA state’s distance to acceptance. The smaller the distance, the higher degree
of task progression. The distance is zero when the task is fully completed.

Another challenge is what reward values to assign for various degrees of task progression. We design
three different reward functions. The naive reward function assigns reward 1 to each transition that
reduces the distance to acceptance. The progression reward function assigns reward values based
on the degree to which the distance to acceptance has been reduced in a transition. The hybrid
reward function balances the progression reward and the penalty for self-loops (i.e., staying in the
same DFA state). However, these reward functions may yield optimal policies where a task is only
partially completed.

To address this issue, we develop an adaptive reward shaping approach that dynamically updates
distance to acceptance values during the learning process, accounting for information obtained from
DFA executions in recent training episodes. We design two new reward functions, namely adaptive
progression and adaptive hybrid, which can leverage the updated distance to acceptance values. We
demonstrate via examples that an optimal policy satisfying the task specification can be learnt within
several rounds of updates.

We evaluate the proposed approach on a range of benchmark RL environments and compare with
two baselines (i.e., QRM (Camacho et al., 2019) and CRM (Icarte et al., 2022)). To demonstrate that
our approach is agnostic to RL algorithms, we use DQN (Mnih et al., 2015), DDQN (Van Hasselt
et al., 2016), DDPG (Lillicrap et al., 2016), A2C (Mnih et al., 2016), and PPO (Schulman et al.,
2017) in the experiments. Results show that the proposed approach generally outperforms baselines,
achieving earlier convergence to a policy with a higher success rate of task completion and a higher
normalized expected discounted return.

2 RELATED WORK

Li et al. (2017) presented one of the first works applying temporal logic to reward function design. A
variant of temporal logic called truncated LTL was proposed for specifying tasks. Reward functions
are obtained via checking robustness degrees of satisfying truncated LTL formulas. This method is
limited to Markovian rewards, while our approach can generate non-Markovian rewards.

There is a line of work on reward machines (RM) (Icarte et al., 2018), which is a type of finite
state machine that takes labels representing environment abstractions as input, and outputs reward
functions. Camacho et al. (2019) showed that LTL and other regular languages can be automatically
translated into RMs via the construction of DFAs; they also presented a technique named QRM
with reward shaping, which tailors q-learning for RMs and computes a potential function over RM
states for reward shaping. Icarte et al. (2022) developed another tailored method named CRM, which
generates synthetic experiences for learning via counterfactual reasoning. We adopt QRM and CRM
(with reward shaping) as baselines for comparison in our experiments. As we will show in Section 5,
the performance of these methods suffers from reward sparsity.

De Giacomo et al. (2019) used a fragment of LTL for finite traces (called LTLf ) to encode RL
rewards. There are also several methods seeking to learn optimal policies that maximize the prob-
ability of satisfying a LTL formula (Hasanbeig et al., 2019; Bozkurt et al., 2020; Hasanbeig et al.,
2020). However, none of these methods assigns intermediate rewards for task progression.

Jothimurugan et al. (2019) proposed a new specification language which can be translated into re-
ward functions. Their method uses a task monitor to track the degree of specification satisfaction
and assign intermediate rewards. But they require users to encode atomic predicates into quantitative
values for reward assignment. By contrast, our approach automatically assigns intermediate rewards
using DFA states’ distance to acceptance values, eliminating the need for user-provided functions.

Jiang et al. (2021) presented a reward shaping framework for average-reward learning in continuing
tasks. Their method automatically translates a LTL formula encoding domain knowledge into a
function that provides additional reward throughout the learning process. This work has a different
problem setup and thus is not directly comparable with our approach.

Cai et al. (2023) proposed a model-free RL method for minimally-violating an infeasible LTL spec-
ification. Their method also considers the assignment of intermediate rewards, but their definition
of task progression requires additional information about the environment (e.g., geometric distance

2



Under review as a conference paper at ICLR 2024

from each waypoint to the destination). By contrast, we define task progression based on the task
specification only, following (Lacerda et al., 2019) which is a work on robotic planning with MDPs
(but not RL).

3 BACKGROUND

3.1 REINFORCEMENT LEARNING

We consider a RL agent that interacts with an unknown environment modeled as an episodic MDP
where each learning episode terminates within a finite horizon H . Formally, an MDP is denoted
as a tuple M = (S, s0, A, T,R, γ,AP,L) where S is a finite set of states, s0 ∈ S is an initial
state, A is a finite set of actions, T : S × A × S → [0, 1] is a probabilistic transition function, R
is a reward function, γ ∈ [0, 1] is a discount factor, AP is a finite set of atomic propositions, and
L : S → 2AP is a labeling function. At each time t of an episode, the agent selects an action at in
state st following a policy π, ends in state st+1 drawn from the probability distribution T (·|st, at)
and receives a reward rt. The agent seeks to learn an optimal policy π∗ that maximizes the expected
discounted return Eπ[

∑H−t
i=0 γirt+i|st = s] when starting from any state s ∈ S at time t.

The reward function can be Markovian, denoted by R : S × A × S → R, or non-Markovian (i.e.,
history dependent), denoted by R : (S × A)∗ → R. The reward function is unknown to the agent,
but it can be specified by the designer to achieve desired agent behavior. In this work, we specify
complex RL tasks and design reward functions using temporal logic described below.

3.2 TASK SPECIFICATIONS

Co-safe LTL. LTL (Pnueli, 1981) is a modal logic that extends the propositional logic with temporal
operators. In this work, we use the syntactically co-safe fragment of LTL with the following syntax:

φ := α | ¬α | φ1∧φ2 | φ1∨φ2 | ⃝φ | φ1Uφ2 | ♢φ
where α ∈ AP is an atomic proposition, ¬ (negation), ∧ (conjunction), and ∨ (disjunction) are
Boolean operators, while ⃝ (next), U (until), and ♢ (eventually) are temporal operators. Intuitively,
⃝φ means that φ has to hold in the next step; φ1Uφ2 means that φ1 has to hold at least until φ2

becomes true; and ♢φ means that φ becomes true at some time eventually.

We can convert a co-safe LTL formula φ into a DFA Aφ that accepts exactly the set of good prefixes
for φ, that is, the set of finite sequences satisfying φ regardless of how they are completed with
any suffix (Kupferman & Vardi, 2001). Let Aφ = (Q, q0, QF , 2

AP , δ) denote the converted DFA,
where Q is a finite set of states, q0 is the initial state, QF ⊆ Q is a set of accepting states, 2AP is the
alphabet, and δ : Q× 2AP → Q is the transition function.

Example 1. Consider an agent navigating in a grid world envrionment shown in Figure 1a. The
agent’s task is to collect an orange flag and a blue flag (in any order) while avoiding the yellow flag.
A learning episode ends when the agent completes the task, hits the yellow flag, or reaches 25 steps.
We can specify this task with a co-safe LTL formula φ = (¬y)U((o∧((¬y)Ub))∨(b∧((¬y)Uo))),
where o, b and y represent collecting orange, blue and yellow flags, respectively. Figure 1b shows
the corresponding DFA Aφ, which has five states including the initial state q0 (depicted with an
incoming arrow) and the accepting state QF = {q4} (depicted with double circle). A transition is
enabled when its labelled Boolean formula holds. For instance, the transition q0 → q4 is enabled
when both the orange and blue flags have been collected (i.e., b∧o is true). Starting from the initial
state q0, a path ending in the accepting state q4 represents a good prefix of satisfying φ (i.e., the task
is completed); and a path ending in the trap state q3 represents that φ is violated (i.e., the yellow flag
is reached before the task completion). ■

Task progression. We adopt the notion of task progression defined by Lacerda et al. (2019) to
measure the degree to which a co-safe LTL formula is partially satisfied. Intuitively, we would want
to encourage the agent to complete as much of the task as possible.

Given a DFA Aφ = (Q, q0, QF , 2
AP , δ) for a co-safe LTL formula φ, let Sucq ⊆ Q denote the set

of successors of state q and let |δq,q′ | ∈ {0, . . . , 2|AP |} denote the number of possible transitions

3



Under review as a conference paper at ICLR 2024

(a) Grid world (b) DFA Aφ

Figure 1: An example grid world environment and a DFA corresponding to a co-safe LTL formula
φ = (¬y)U((o∧((¬y)Ub))∨(b∧((¬y)Uo))).

from q to q′. A distance to acceptance function dφ : Q → R≥0 is defined as:

dφ(q) =


0 if q ∈ QF

min
q′∈Sucq

dφ(q
′) + h(q, q′) if q ̸∈ QF and QF is reachable from q

|AP | · |Q| otherwise

(1)

where h(q, q′) := log2

({
2|AP |

|δq,q′ |

})
represents the difficulty of moving from q to q′ in the DFA Aφ.

The progression function ρφ : Q×Q → R≥0 is then defined as follows:

ρφ(q, q
′) =

{
max{0, dφ(q)− dφ(q

′)} if q′ ∈ Sucq and q′ ̸→∗ q

0 otherwise
(2)

where q′ ̸→∗ q represents that there does not exist a path from q′ to q in the DFA Aφ (to avoid cycles
in Aφ with non-zero progression values).

Example 2. Each state in the DFA Aφ shown in Figure 1b is annotated with its distance to acceptance
function value. We have dφ(q4) = 0 because q4 is an accepting state, and dφ(q3) = 3 × 5 = 15
because q3 is a trap state. We compute the distance to acceptance values for the rest of the states
recursively following Equation 1, and obtain dφ(q0) = 2, dφ(q1) = 1, and dφ(q2) = 1. The
progression value ρφ(q0, q1) = max{0, dφ(q0)−dφ(q1)} = 1, indicating that a positive progression
has been made toward the task completion; while ρφ(q0, q3) = max{0, dφ(q0)−dφ(q3)} = 0, since
moving to the trap state q3 does not result in any task progression. ■

MDP-DFA product. Given an MDP M = (S, s0, A, T,R, γ,AP,L) and a DFA Aφ =
(Q, q0, QF , 2

AP , δ) corresponding to a co-safe LTL formula φ, we define their product MDP as
M⊗ = M⊗Aφ = (S⊗, s⊗0 , A, T⊗, R⊗, γ, AP,L⊗) where S⊗ = S×Q, s⊗0 = ⟨s0, δ(q0, L(s0))⟩,

T⊗ (⟨s, q⟩, a, ⟨s′, q′⟩) =
{
T (s, a, s′) if q′ = δ(q, L(s))

0 otherwise

and L⊗(⟨s, q⟩) = L(s).

We design Markovian reward functions R⊗ : S⊗ × A × S⊗ → R for the product MDP, whose
projection onto the MDP M yields non-Markovian reward functions. The projected reward function
R is Markovian only if |Q| = 1 (i.e., the DFA has one state only).

4



Under review as a conference paper at ICLR 2024

4 APPROACH

We present a range of reward functions to incentivize the RL agent to complete a task specified
by a co-safe LTL formula as much as possible (cf. Section 4.1), and develop an adaptive reward
shaping approach that dynamically updates the reward functions during the learning process (cf.
Section 4.2).

4.1 REWARD FUNCTIONS FOR PARTIALLY SATISFIABLE TASK SPECIFICATIONS

Naive reward function. First, we consider a naive way of rewarding each transition that reduces the
distance to acceptance. We define a naive reward function for the product MDP M⊗ = M⊗Aφ:

R⊗
nv (⟨s, q⟩, a, ⟨s′, q′⟩) =

{
1 if dφ(q) > dφ(q

′) and QF is reachable from q′

0 otherwise
(3)

Example 3. Consider the following candidate policies for the RL agent navigating in the grid world
environment shown in Figure 1a. Let gij denote the grid in row i and column j. Suppose the agent’s
initial location is g85.

• π1: The agent moves 10 steps to collect the blue flag in g21 while avoiding the yellow flag
in g71. But it fails to reach the orange flag in g34 before the episode time-out (25 steps).

• π2: The agent moves 16 steps to collect the orange flag in g34 and then moves 4 more steps
to collect the blue flag in g65. The task is completed.

• π3: The agent moves directly to the yellow flag in 5 steps. The episode ends.

Suppose the grid world is deterministic (i.e., T (s, a, s′) is a Dirac distribution) and the discount
factor is γ = 0.9. The initial state of the product MDP is s⊗0 = ⟨g85, q0⟩. With the naive reward
function, we have V π1

nv (s⊗0 ) = 0.99 ≈ 0.39, V π2
nv (s⊗0 ) = 0.915 + 0.919 ≈ 0.34, and V π3

nv (s⊗0 ) = 0.
Thus, the agent would choose π1 as the optimal policy because of the maximal expected discounted
return, but it only satisfies the task partially. ■

Progression reward function. Next, we define a progression reward function based on the task
progression function introduced in Equation 2, to account for the degree to which the distance to
acceptance has been reduced.

R⊗
pg (⟨s, q⟩, a, ⟨s′, q′⟩) = ρφ(q, q

′) =

{
max{0, dφ(q)− dφ(q

′)} if q′ ∈ Sucq and q′ ̸→∗ q

0 otherwise
(4)

Example 4. We evaluate the three policies described in Example 3 with the progression reward
function. We have V π1

pg (s⊗0 ) = 0.99 ≈ 0.39, V π2
pg (s⊗0 ) = 0.915 + 0.919 ≈ 0.34, and V π3

pg (s⊗0 ) = 0.
Thus, the agent would choose the optimal policy π1. ■

Hybrid reward function. So far, we have only considered rewarding transitions that progress
toward acceptance and do not penalize transitions that remain in the same DFA state. To address
this issue, we define a hybrid reward function for the product MDP M⊗ = M⊗Aφ as follows:

R⊗
hd (⟨s, q⟩, a, ⟨s

′, q′⟩) =
{
η · −dφ(q) if q = q′

(1− η) · ρφ(q, q′) otherwise
(5)

where η ∈ [0, 1] is a parameter to balance the trade-offs between penalties and progression rewards.

Example 5. We evaluate policies in Example 3 with the hybrid reward function (suppose η = 0.1).
We have V π1

hd (s⊗0 ) = −2η ·
∑8

i=0 γ
i + (1 − η) · γ9 − η ·

∑24
i=10 γ

i ≈ −1.15, V π2

hd (s⊗0 ) = −2η ·∑14
i=0 γ

i+(1−η)·γ15−η·
∑18

i=16 γ
i+(1−η)·γ19 ≈ −1.33, and V π3

hd (s⊗0 ) = −2η·
∑3

i=0 γ
i ≈ −0.69.

Thus, the agent would choose π3 as the optimal policy, under which it bumps into the yellow flag
directly to avoid further penalties. Increasing the value of η would weight more on penalties and not
change the optimal policy in this example, while decreasing the value of η tends to the progression
reward function (special case with η = 0). ■

5



Under review as a conference paper at ICLR 2024

4.2 ADAPTIVE REWARD SHAPING

Although reward functions proposed in Section 4.1 incentivize the RL agent to complete a task
specified with a co-safe LTL formula as much as possible, Examples 3, 4 and 5 show that optimal
policies chosen by the agent may not satisfy the co-safe LTL specification. One possible reason
is that the distance to acceptance function dφ (cf. Equation 1) may not accurately represent the
difficulty to trigger the desired DFA transitions in a given environment. To tackle this limitation,
we develop an adaptive reward shaping approach that dynamically updates distance to acceptance
values and reward functions during the learning process.

Updating the distance to acceptance values. After every N learning episodes where N is a
domain-specific parameter, we check the average success rate of task completion (i.e., an episode is
successful if it ends in an accepting state of the DFA Aφ). If the average success rate drops below a
certain threshold λ, we update the distance to acceptance values. We obtain the initial values d0φ(q)
for each DFA state q ∈ Q based on Equation 1. We compute the distance to acceptance values for
the k-th round of updates recursively as follows:

dkφ(q) =

{
µ · dk−1

φ (q) + θ if q is a trap state
µ · dk−1

φ (q) + θ · Pr(q|σ) otherwise
(6)

where µ ∈ [0, 1] is a weight value indicating the extent to which the current distance values should
be preserved, Pr(q|σ) is the probability of state q occurring in the DFA executions σ during the
past N learning episodes (which can be obtained via frequency counting), and θ ≥

∑
q∈Q d0φ(q)

is a domain-specific parameter. Intuitively, the agent would experience more difficulty to reach
accepting states if it is stuck in state q more often as indicated by a greater value of Pr(q|σ).

Example 6. Suppose N = 1, µ = 0.5 and θ = 25. The initial distance to acceptance values
are d0φ(q0) = 2, d0φ(q1) = d0φ(q2) = 1, d0φ(q3) = 15, and d0φ(q4) = 0 following Example 2.
Suppose the agent’s movement during the first episode follows policy π1. We update the distance
to acceptance values as d1φ(q0) = 0.5 × 2 + 25 × 9

25 = 10, d1φ(q1) = 0.5 × 1 + 25 × 16
25 = 16.5,

d1φ(q2) = 0.5× 1 + 0 = 0.5, d1φ(q3) = 0.5× 15 + 25 = 32.5, and d1φ(q4) = 0.5× 0 + 0 = 0. ■

The ordering of DFA states based on the updated distance to acceptance values may change from
round to round. In the above example, d0φ(q0) > d0φ(q1), but d1φ(q0) < d1φ(q1). Thus, we cannot
use reward functions proposed in Section 4.1 directly for adaptive reward shaping. To this end, we
present two new reward functions as follows.

Adaptive progression reward function. Given the updated distance to acceptance values dkφ(q) for
each DFA state q ∈ Q, we apply the progression function defined in Equation 2 and obtain

ρkφ(q, q
′) =

{
max{0, dkφ(q)− dkφ(q

′)} if q′ ∈ Sucq and q′ ̸→∗ q

0 otherwise
(7)

Then, we define an adaptive progression reward function for the k-th round of updates as:

R⊗
ap,k (⟨s, q⟩, a, ⟨s

′, q′⟩) = max{ρ0φ(q, q′), ρkφ(q, q′)} (8)

When k = 0, the adaptive progression reward function R⊗
ap,0 coincides with the progression reward

function R⊗
pg defined in Equation 4.

Example 7. We compute R⊗
ap,1 for k = 1 using distance to acceptance values obtained in Example 6.

For instance, R⊗
ap,1 (⟨g31, q0⟩,north, ⟨g21, q1⟩) = max{ρ0φ(q0, q1), ρ1φ(q0, q1)} = max{1, 0} = 1

and R⊗
ap,1 (⟨g33, q0⟩, east , ⟨g34, q2⟩) = max{ρ0φ(q0, q2), ρ1φ(q0, q2)} = max{1, 9.5} = 9.5. We

evaluate policies described in Example 3 with the adaptive progression reward function. We have
V π1
ap,1(s

⊗
0 ) = 0.99 ≈ 0.39, V π2

ap,1(s
⊗
0 ) = 9.5× 0.915 + 1× 0.919 ≈ 2.09, and V π3

ap,1(s
⊗
0 ) = 0. Thus,

the agent would choose the optimal policy π2 which not only maximizes the expected discounted
return but also completes the task specified by the co-safe LTL formula φ. ■

6



Under review as a conference paper at ICLR 2024

Adaptive hybrid reward function. We define an adaptive hybrid reward function for the k-th round
of updates as:

R⊗
ah,k (⟨s, q⟩, a, ⟨s

′, q′⟩) =
{
ηk · −dkφ(q) if q = q′

(1− ηk) ·max{ρ0φ(q, q′), ρkφ(q, q′)} otherwise
(9)

where η0 ∈ [0, 1] and ηk = ηk−1

2θ . We adjust the weight value ηk in each round of updates to prevent
undesired agent behavior due to the increased penalty for self-loops. When k = 0, the adaptive
hybrid reward function R⊗

ah,0 coincides with the hybrid reward function R⊗
hd defined in Equation 5.

Example 8. Suppose N = 1, µ = 0.5, θ = 25, and η0 = 0.1. The initial distance to acceptance
values d0φ are the same as in Example 6. Suppose the agent’s movement during the first episode
follows policy π3, which is the optimal policy obtained using the hybrid reward function in Ex-
ample 5. We update the distance to acceptance values as d1φ(q0) = 0.5 × 2 + 25 × 4

5 = 21,
d1φ(q1) = d1φ(q2) = 0.5, d1φ(q3) = 32.5, and d1φ(q4) = 0. We compute R⊗

ah,1 with η1 = 0.002,
which yields V π1

ah,1(s
⊗
0 ) ≈ 7.41, V π2

ah,1(s
⊗
0 ) ≈ 3.68, and V π3

ah,1(s
⊗
0 ) ≈ −0.28. We continue the pro-

cess of learning with the adaptive reward shaping until the 4th round of updates where we obtain
d4φ(q0) = 28.88, d4φ(q1) = 14.65, d4φ(q2) = 0.06, d4φ(q3) = 47.81, d4φ(q4) = 0 and η4 close to 0.
We compute R⊗

ah,4 and obtain V π1

ah,4(s
⊗
0 ) ≈ 5.51, V π2

ah,4(s
⊗
0 ) ≈ 6.07, and V π3

ah,4(s
⊗
0 ) ≈ 0, which lead

to the optimal policy π2 being chosen by the agent. ■

In summary, an optimal policy that maximizes the expected discounted return does not necessarily
satisfy the task specification (cf. Examples 3, 4 and 5). Examples 7 and 8 show that an optimal policy
under which the task is completed could be learnt within several updates of adaptive progression and
adaptive hybrid reward functions, respectively.

5 EXPERIMENTS

RL domains. We empirically evaluate the proposed approach with the following benchmark RL
domains. The taxi domain is taken from OpenAI gym (Brockman et al., 2016), while the other three
domains are adapted from (Icarte et al., 2022).

• Office world: The agent navigates in a 12×9 grid world to complete the following task: get
coffee and mail (in any order) and deliver them to the office while avoiding obstacles. The
test environment assigns reward 1 for each subgoal: (i) get coffee, (ii) get coffee and mail,
and (iii) deliver coffee and mail to office, during all of which obstacles should be avoided.

• Taxi world: The agent drives around a 5× 5 grid world to pickup and drop off a passenger.
The agent starts off at a random location. There are five possible pickup locations and four
possible destinations. The task is completed when the passenger is dropped off at the target
destination. The test environment assigns reward 1 for each subgoal: (i) pickup a passenger,
(ii) reach the target destination with the passenger, and (iii) drop off the passenger.

• Water world: The agent moves in a continuous two-dimensional box with floating balls in
six colors. The agent’s velocity toward one of the four cardinal directions may change at
each step. The task is to touch red and green in strict order without touching other colored
balls, followed by touching blue balls. The test environment assigns reward 1 for touching
each target ball.

• HalfCheetah: The agent is a cheetah-like robot with a continuous action space and learns
to control six joints to move forward or backward. The task is completed when the agent
reaches the farthest location. The test environment assigns reward 1 for reaching each of
the five locations along the way.

For each domain, we consider three types of environments: (1) deterministic environments, where
MDP transitions follow Dirac distributions; (2) noisy environments, where each action has certain
control noise; and (3) infeasible environments, where some subgoals are infeasible to complete (e.g.,
a blocked office not accessible by the agent, or missing blue balls in the water world).

7



Under review as a conference paper at ICLR 2024

Figure 2: Results in deterministic environments.

Baselines and metrics. We compare the proposed approach with two baseline methods: Q-learning
for reward machines (QRM) with reward shaping (Camacho et al., 2019) and counterfactual ex-
periences for reward machines (CRM) with reward shaping (Icarte et al., 2022). We use the code
accompanying publications.

We use DQN (Mnih et al., 2015) for learning in discrete domains (office world and taxi world),
DDQN (Van Hasselt et al., 2016) for water world with continuous state space, and DDPG (Lillicrap
et al., 2016) for HalfCheetah with continuous action space. Note that QRM does not work with
DDPG, so we only use CRM as the baseline for HalfCheetah. We also apply A2C (Mnih et al.,
2016) and PPO (Schulman et al., 2017) to HalfCheetah (none of the baselines is compatible with
these RL algorithms) and report results in the appendix due to the page limit.

We evaluate the performance with two metrics: success rate of task completion and normalized ex-
pected discounted return. We pause the learning process for every 100 training steps in the office
world and every 1, 000 training steps in other domains, and evaluate the current policy in the test
environment over 5 episodes. We compute the success rate via frequency counting of successful
episodes where the task is completed, and calculate the average expected discounted return which is
normalized using the maximum discounted return possible on that task. The only exception is taxi
world where the maximum discounted return varies for different initial states. We pick a normaliza-
tion factor by averaging the maximum discounted return of all possible initial states. We report the
performance of 10 independent trials for each method.

Results. Figures 2, 3 and 4 plot the mean performance with 95% confidence interval (the shadowed
area) in deterministic, noisy, and infeasible environments, respectively. We omit to plot the success
rate in Figure 4 because they are all zero (i.e., the task is infeasible to complete). Hyperparameters
used in experiments are included in the appendix.

We find that the proposed approach using naive, adaptive progression, or adaptive hybrid reward
functions generally outperform baselines, achieving earlier convergence to policies with a higher
success rate of task completion and a higher normalized expected discounted return. The only
outlier is the noisy office world where QRM and CRM outperform our approach. One possible
reason is that our approach gets stuck with a suboptimal policy, which goes for fetching coffee in a
closer location due to the uncertainty introduced by noisy actions.

The significant advantage of our approach is best illustrated in Figure 4. The baselines are not very
effective for learning in infeasible environments, because they assign sparse rewards (e.g. the agent
only receives a large reward when it completes the task, which is infeasible due to the environment
constraints). By contrast, our approach rewards the agent for partially completing a task. Thus, the
agent can still learn to complete a task as much as possible.

8



Under review as a conference paper at ICLR 2024

Figure 3: Results in noisy environments

Figure 4: Results in infeasible environments

Comparing among the proposed reward functions, we observe that adaptive hybrid reward function
has the best performance in general. Adaptive progression reward function outperforms naive reward
function in most environments, while having comparable performance in others.

6 CONCLUSION

We have developed a logic-based adaptive reward shaping approach for RL. Our approach utilizes
reward functions that are designed to incentivize an agent to complete a task specified by a co-
safe LTL formula as much as possible, and dynamically updates these reward functions during the
learning process. We also demonstrate via experiments that our approach is compatible with many
different RL algorithms, and can outperform state-of-the-art baselines.

There are several directions to explore for possible future work. First, we will evaluate the proposed
approach on a wide range of RL domains, beyond those benchmarks considered in the experiments.
Second, we will explore an extension to multi-agent RL. Finally, we would like to apply the proposed
approach to RL tasks in real-world scenarios (e.g., autonomous driving).

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we conduct evaluation experiments on benchmark RL
domains and describe the experimental details in Section 5 and the appendix. We will make the
code for our work publicly available in GitHub after the double-blind review process. We plan on
providing a link to an anonymous repository by posting a comment directed to the reviewers and
area chairs once the discussion forum is open, as suggested by the ICLR 2024 author guide.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Alper Kamil Bozkurt, Yu Wang, Michael M Zavlanos, and Miroslav Pajic. Control synthesis from
linear temporal logic specifications using model-free reinforcement learning. In IEEE Interna-
tional Conference on Robotics and Automation, pp. 10349–10355. IEEE, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Mingyu Cai, Makai Mann, Zachary Serlin, Kevin Leahy, and Cristian-Ioan Vasile. Learning
minimally-violating continuous control for infeasible linear temporal logic specifications. In
American Control Conference, pp. 1446–1452. IEEE, 2023.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen, Richard Anthony Valenzano, and Sheila A
McIlraith. Ltl and beyond: Formal languages for reward function specification in reinforcement
learning. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, volume 19, pp. 6065–6073, 2019.

Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. Foundations for restrain-
ing bolts: Reinforcement learning with ltlf/ldlf restraining specifications. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 29, pp. 128–136, 2019.

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to goals: In-
verse reinforcement learning for vision-based instruction following. In International Conference
on Learning Representations, 2018.

Mohammadhosein Hasanbeig, Yiannis Kantaros, Alessandro Abate, Daniel Kroening, George J Pap-
pas, and Insup Lee. Reinforcement learning for temporal logic control synthesis with probabilis-
tic satisfaction guarantees. In 2019 IEEE 58th Conference on Decision and Control (CDC), pp.
5338–5343. IEEE, 2019.

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Deep reinforcement learn-
ing with temporal logics. In International Confernece on Formal Modeling and Analysis of Timed
Systems, pp. 1–22. Springer, 2020.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward ma-
chines for high-level task specification and decomposition in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2107–2116. PMLR, 2018.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward ma-
chines: Exploiting reward function structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73:173–208, 2022.

Yuqian Jiang, Suda Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu, and Peter Stone. Temporal-logic-
based reward shaping for continuing reinforcement learning tasks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 7995–8003, 2021.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language for
reinforcement learning tasks. Advances in Neural Information Processing Systems, 32, 2019.

Orna Kupferman and Moshe Y Vardi. Model checking of safety properties. Formal Methods in
System Design, 19:291–314, 2001.

Bruno Lacerda, Fatma Faruq, David Parker, and Nick Hawes. Probabilistic planning with formal
performance guarantees for mobile service robots. The International Journal of Robotics Re-
search, 38(9):1098–1123, 2019.

Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3834–3839. IEEE,
2017.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

10



Under review as a conference paper at ICLR 2024

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937. PMLR, 2016.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, pp. 663–670, 2000.

Andrew Y Ng, Daishi Harada, and Stuart J Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning, pp.
278–287, 1999.

Amir Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science, 13
(1):45–60, 1981.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22:1–8, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46,
2017.

11



Under review as a conference paper at ICLR 2024

A APPENDIX

We show additional experimental results of the HalfCheetah domain in Section A.1 and describe
hyperparameters used in experiments in Section A.2.

A.1 EXPERIMENTAL RESULTS OF HALFCHEETAH DOMAIN

We have applied the proposed adaptive reward shaping approach to the HalfCheetah Domain using
different RL algorithms, including DDPG (Lillicrap et al., 2016), PPO (Schulman et al., 2017) and
A2C (Mnih et al., 2016). Since none of the baselines is compatible with PPO and A2C, we only
report the results of DDPG in Section 5. Here we provide additional results as shown in Figure 5.
We use the same normalization factors (i.e., the maximum discounted return possible on a task) for
all three algorithms.

Figure 5: Results of using different RL algorithms (top row: DDPG, middle row: PPO, bottom row:
A2C) in various HalfCheetah environments.

Comparing results of the three RL algorithms, we observe that DDPG exhibits relatively higher vari-
ance than others. One possible explanation for this phenomenon is rooted in the training process.
DDPG is an off-policy RL algorithm, relying heavily on a replay buffer and exploration driven by
control noise. In our experiments, we used a replay buffer with a capacity of 106 while sampling
only 100 experiences for each update. This can introduce significant randomness during the training,
since the majority of samples within the large replay buffer does not yield positive rewards. Explo-
ration also contributes to the randomness. By contrast, PPO and A2C are on-policy RL algorithms,
where updates depend solely on the current policy. Consequently, these algorithms tend to maintain
their behavior once the current policy achieves partial completion of the assigned task. Additionally,
PPO incorporates a stabilizing technique which can help reduce the variance.

Comparing among the proposed reward functions, we find that the Naive reward function achieves
comparable performance with the other two in all HalfCheetah environments. Recall from Section 5
that Naive reward function usually yields the worst performance in some other domains. One pos-
sible explanation is that the HalfCheetah task has a special structure, where each subgoal requires
moving forward by the same distance. Naive reward function assigns reward 1 for completing each
subgoal, which helps to keep the consistency of the learning process.

12



Under review as a conference paper at ICLR 2024

A.2 HYPERPARAMETERS OF EXPERIMENTS

For baseline methods, we used the same setup described in (Camacho et al., 2019) for QRM
and (Icarte et al., 2022) for CRM.

Our implementation was built upon OpenAI Stable-Baselines3 (Raffin et al., 2021). We used their
default settings of RL algorithms unless mentioned below.

Office World. We set the discount factor as γ = 0.95 and terminate the episode after 100 steps if
the task was not completed. We set N = 25, µ = 0.5, θ = 36 and η0 = 0.01 for the adaptive reward
shaping. We used linear-DQN without bias for RL using hyperparameters as follows.

• (Naive, Adaptive Progression) RL agent was trained with the initial learning rate 1. Only
the final learning rate was set differently: 0.5 and 1 for Naive and Adaptive Progression,
respectively. In each step, the network was updated using 1 sampled experience from a
replay buffer of size 1 for one time.

• (Adaptive Hybrid) RL agent was trained with the initial learning rate 1 and the final learning
rate 0.5. In each step, the network was updated using 8 sampled experience from a replay
buffer of size 8 for three time.

Taxi World. We set the discount factor as γ = 0.9 and terminate the episode after 200 steps if the
task was not completed. We set N = 100, µ = 0.5, θ = 26.83 and η0 = 0.005 for the adaptive
reward shaping. We used linear-DQN without bias for RL using hyperparameters as follows.

• (Naive, Adaptive Progression) RL agent was trained with the same initial and final learning
rate of 1. In each step, the network was updated using 2 sampled experience from a replay
buffer of size 2 for three time.

• (Adaptive Hybrid) RL agent was trained with the initial learning rate 1 and the final learning
rate 10−5. In each step, the network was updated using 32 sampled experience from a
replay buffer of size 32 for three time.

Water World. We set the discount factor as γ = 0.9 and terminate the episode after 600 steps if the
task was not completed. We set N = 1000, µ = 0.5, θ = 36 and η0 = 0.005 for the adaptive reward
shaping. We used DDQN for RL using hyperparameters as follows.

• (Naive, Adaptive Progression) RL agent was trained with the initial learning rate 10−5 and
the final learning rate 10−6. We used a feed-forward network with 2 hidden layers and 256
units with ReLU activation function per layer. In each step, the network was updated using
32 sampled experience from a replay buffer of size 50, 000 for four time. We updated the
target network every 1, 000 step.

• (Adaptive Hybrid) In each step, the network was updated using 1024 sampled experience.
All other settings are the same as naive and adaptive progression.

HalfCheetah. We set the discount factor as γ = 0.99 and terminate the episode after 1, 000 steps
if the task was not completed. For the adaptive reward shaping, we set N = 1000 for DDPG,
N = 100 for PPO, N = 500 for A2C, and µ = 0.5, θ = 15 and η0 = 0.005 for all. We describe
hyperparameters used for each RL algorithm as follows.

• (DDPG) RL agent was trained with the initial learning rate 10−3, the final learning rate
10−4, and Polyak update coefficient 0.01. We used a feed-forward network with 2 hidden
layers and 256 units with ReLU activation function per layer. We used the same setting for
naive, adaptive progression, and adaptive hybrid reward functions.

• (PPO) RL agent was trained with the initial learning rate 3 × 10−4, the final learning rate
10−5, entropy coefficient 10−3, and maximum gradient norm 0.1. We used a feed-forward
network with 2 hidden layers. The first layer has 300 units, and the second layer has
400 units with ReLU activation function per layer. We used batch size 128 for Naive and
Adaptive Progression, and batch size 256 for Adaptive Hybrid. Other settings are the same
for all three reward functions.

13



Under review as a conference paper at ICLR 2024

• (A2C) RL agent was trained with the initial learning rate 7 × 10−4, the final learning rate
10−5, entropy coefficient 10−3, and maximum gradient norm 0.1. We used a feed-forward
network with 2 hidden layers. The first layer has 200 units, and the second layer has 300
units with ReLU activation function per layer. With Naive and Adaptive Progression reward
functions, we trained the RL agent with 1024 number of steps to run for each environment
per update, and used batch size 128. With Adaptive Hybrid reward function, we used 2048
number of steps per update and batch size 256. Other settings are the same for all three
reward functions.

14


	Introduction
	Related Work
	Background
	Reinforcement Learning
	Task Specifications

	Approach
	Reward Functions for Partially Satisfiable Task Specifications
	Adaptive Reward Shaping

	Experiments
	Conclusion
	Appendix
	Experimental Results of HalfCheetah Domain
	Hyperparameters of Experiments


