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Abstract

Deep learning (DL) models require extensive data to achieve strong performance and
generalization. Deep generative models (DGMs) offer a solution by synthesizing data.
Yet current approaches for tabular data often fail to preserve feature correlations and
distributions during training, struggle with multi-metric hyperparameter selection, and lack
comprehensive evaluation protocols. We address this gap with a unified framework that
integrates training, hyperparameter tuning, and evaluation. First, we introduce a novel
correlation- and distribution-aware loss function that regularizes DGMs, enhancing their
ability to generate synthetic tabular data that faithfully represents the underlying data
distributions. Theoretical analysis establishes stability and consistency guarantees. To
enable principled hyper-parameter search via Bayesian optimization (BO), we also propose a
new multi-objective aggregation strategy based on iterative objective refinement Bayesian
optimization (IORBO), along with a comprehensive statistical testing framework. We
validate the proposed approach using a benchmarking framework with twenty real-world
datasets and ten established tabular DGM baselines. The correlation-aware loss function
significantly improves the synthetic data fidelity and downstream machine learning (ML)
performance, while IORBO consistently outperforms standard Bayesian optimization (SBO)
in hyper-parameter selection. The unified framework advances tabular generative modeling
beyond isolated method improvements.

1 Introduction

For a wide range of deep learning (DL) applications, large amounts of data are crucial to improve both model
performance and generalization. The fast-paced advancements in deep generative modeling have opened
exciting possibilities for data synthesis. Models trained on images and text effectively learn probability
distributions over complex data and generate high-quality, realistic samples (Karras et al., 2021; Team
et al., 2023). This success on structured data has fueled a surge in deep generative model (DGM)-based
methods (Goodfellow et al., 2014) for tabular data generation in recent years.

Yet tabular data poses unique challenges that resist direct transfer of techniques from other domains. Unlike
images or text, tabular data lacks clear structure and contains mixed continuous and discrete variables with
complex interactions, imbalances, and non-linear relationships. Recent hybrid approaches have explored
combining diffusion processes with flow-based models and gradient-boosted trees to boost synthesis fidelity
on tabular benchmarks (Jolicoeur-Martineau et al., 2024; Zein & Urvoy, 2022). However, these methods
still rely on unguided likelihood or adversarial objectives and do not explicitly enforce key statistics such as
feature correlations or higher-order moments.

This mismatch between tabular data complexity and current generative approaches cascades across the entire
modeling lifecycle. Existing deep neural network (DNN)-based generative models often struggle to reliably
capture correlations and other statistical dependencies in tabular data—sometimes failing to approximate
even basic statistics such as the mean and variance—particularly in limited-data settings (Xu et al., 2019).
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Current approaches to improve downstream machine learning (ML) analyses focus primarily on addressing
data imbalance (Xu et al., 2019; Sun et al., 2023; Zhao et al., 2021) while neglecting the equally crucial role
of feature distributions and correlations.

The cascade extends to hyper-parameter optimization. While Bayesian optimization (BO) is widely used,
standard approaches like standard Bayesian optimization (SBO) are ill-suited to aggregating the multiple
heterogeneous metrics required for synthetic data evaluation. Combining metrics with different ranges and
units, such as classification accuracy and regression error, via simple averaging can overweight individual
objectives and yield suboptimal parameter selections.

Finally, the cascade undermines evaluation itself, where rigorous assessment remains fragmented. Existing
methods often suffer from limited evaluation scopes that focus on narrow metric subsets, making it difficult to
assess model performance across the complexities of diverse datasets. This evaluation gap obscures whether
apparent improvements reflect genuine advances or artifacts of selective testing.

The central problem is the absence of a unified framework that addresses tabular generative modeling across
its full lifecycle: training, hyper-parameter tuning, and evaluation. Current approaches tackle these stages
independently, missing opportunities for integrated solutions that could amplify improvements at each step.

To address this gap, we propose a comprehensive unified framework that tackles training, hyper-parameter
tuning, and evaluation as interconnected challenges. First, we introduce a novel correlation- and distribution-
aware loss function for DGMs designed to enforce statistical properties that existing generative models
fail to capture reliably. Second, we develop iterative objective refinement Bayesian optimization (IORBO),
which aggregates multiple evaluation metrics through ranking to resolve inconsistencies caused by metrics
with different units or scales. Third, we establish a comprehensive benchmarking framework that evaluates
synthetic data across twenty datasets using statistical, regression, and classification metrics. By integrating
these components, we create a unified pipeline where training improvements and robust hyper-parameter
tuning work in concert with rigorous evaluation. The tight coupling between training, tuning, and evaluation
improves statistical fidelity, robust optimization, and benchmarking rigor across diverse datasets.

In summary, we provide:

1. A Correlation- and Distribution-Aware Loss Function: We propose a custom correlation-
and distribution-aware loss function that emphasizes the importance of feature correlations and
distributions in tabular data. This custom loss function is used as an auxiliary regularization term,
complementing the primary training objective. It significantly enhances the performance of DGMs,
including generative adversarial network (GAN), variational auto-encoder (VAE), and denoising
diffusion probabilistic model (DDPM), as demonstrated through extensive benchmark evaluations.

2. Iterative Objective Refinement Bayesian Optimization: We propose IORBO to aggregate
multiple objectives through ranking, resolving inconsistencies caused by metrics with different units
or scales.

3. Benchmarking Framework for Synthetic Data Generation Algorithms: We establish a
comprehensive open-source benchmarking framework that includes twenty tabular datasets and
various evaluation metrics based on statistical tests. This framework implements ten state-of-the-art
tabular DGMs and supports extensions with additional methods and datasets.

The rest of the manuscript is organized as follows: Section 2 reviews related work on DGMs for tabular data
and highlights recent developments motivating our approach. Section 3 presents the proposed correlation- and
distribution-aware loss function (Section 3.1), the IORBO (Section 3.2), and the benchmarking framework
(Section 3.3–3.6). Section 4 provides theoretical guarantees for the proposed loss functions, including stability
analysis, error bounds, and generalized approximation guarantees. In Section 5, we describe the datasets
and implementation details and training. Section 6 reports and discusses the results, including performance
improvements and ablation studies. Finally, Section 7 concludes the paper and outlines future directions.
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2 Related Work

Most existing methods to generate synthetic tabular data developed in the past decade model measurements
in a table as a joint parametric density and then sample from that parametric model. Different models
have been employed based on data characteristics: multivariate Gaussian (Frühwirth-Schnatter et al., 2018),
Bayesian networks (Aviñó et al., 2018; Zhang et al., 2017), and copulas (Patki et al., 2016) for non-linearly
correlated continuous variables. However, these methods rely on strong modeling assumptions and are limited
in their ability to generalize beyond those assumptions. As a result, they often fail to capture the complex
relationships present in real-world tabular data.

To overcome these limitations, recent approaches have turned to more expressive and flexible DGMs, such as
VAEs (Kingma & Welling, 2013), diffusion models (Sohl-Dickstein et al., 2015; Kotelnikov et al., 2023), and
GANs with their numerous extensions (Arjovsky et al., 2017; Gulrajani et al., 2017; Zhu et al., 2017; Yu et al.,
2017), have made them very appealing for data representation. This appeal extends to generating tabular
data, especially in the healthcare domain. For example, Yahi et al. (2017) leveraged GANs to create synthetic
continuous time-series medical records, and Camino et al. (2018) proposed to generate discrete tabular
healthcare data using GANs. CTGAN (Xu et al., 2019), DP-CGANS (Sun et al., 2023), and CTAB-GAN (Zhao et al.,
2021) were proposed to address the complexities of mixed-type tabular data and to address challenges when
generating realistic synthetic data, particularly for imbalanced datasets. More recently, TabDDPM (Kotelnikov
et al., 2023), a diffusion model designed specifically for tabular data, offers the flexibility to incorporate
various backbone architectures to model the reverse process. While these DGMs improve flexibility, they still
struggle to capture the diverse variable types, imbalances, and intricate dependencies inherent in real-world
tabular data.

Prior works in correlation and statistical regularization–most prominently CORAL by Sun et al. (2017)–focus
on aligning second-order statistics (covariance) between source and target domains for unsupervised domain
adaptation in computer vision. While effective for visual tasks, these methods typically assume continuous
features and perform full covariance alignment, which can be costly both computationally and statistically in
high-dimensional settings. By contrast, our correlation- and distribution-aware loss is tailored to tabular data
with mixed continuous and discrete variables: it leverages variance- (diagonal covariance) based statistics
for scalability, explicitly allows matching arbitrary higher-order moments (not just the second moment
as in CORAL), and thus avoids the expense of estimating full covariance matrices while retaining the
ability to capture richer distributional structure. Furthermore, our loss is integrated across multiple DGMs
and evaluated on extensive downstream ML tasks and statistical metrics, providing theoretical guarantees
alongside empirical improvements over standard baseline losses.

Beyond DGMs, several recent works have explicitly tackled the challenge of generating or imputing heteroge-
neous tabular data with mixed data types and missingness. Nazabal et al. (2020) proposed a variational
autoencoder framework tailored for incomplete heterogeneous data, demonstrating strong performance in
both imputation and generative tasks. Building on this direction, Ma et al. (2020) introduced VAEM, a
DGM capable of capturing complex dependencies in mixed-type data, providing a principled approach for
handling heterogeneous feature spaces. More recently, Peis et al. (2022) extended these ideas with deep
hierarchical models combined with Hamiltonian Monte Carlo, achieving state-of-the-art results in missing data
imputation and acquisition for structured heterogeneous datasets. These methods highlight the importance
of explicitly modeling heterogeneous variable types, a direction complementary to our proposed correlation-
and distribution-aware losses.

In parallel, BO has become an essential tool for hyper-parameter tuning in generative modeling. Classic
methods such as the tree-structured parzen estimator approach (TPE; Bergstra et al., 2011) have been widely
used for black-box optimization but often struggle with multi-metric objectives, treating metrics independently
or aggregating them naively, which can bias hyper-parameter selection. More recent approaches improve
multi-objective optimization and robustness, yet they still face challenges with heterogeneous, sometimes
conflicting evaluation metrics common in tabular generative modeling. Our proposed IORBO addresses these
issues by introducing a rank-based aggregation scheme that preserves metric relationships and supports fair,
robust hyper-parameter tuning, directly tackling the sensitivity and correlation-ignorance of prior methods
while improving model training and evaluation.
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3 Methods

DGMs learn to map a random noise vector, denoted by z, to an output sample. This allows them to generate
new data instances that resemble the training data. DGMs have found various applications, e.g., to generate
images (Goodfellow et al., 2014; Karras et al., 2020), multi-modal medical images (Zhu et al., 2017), or
vectors of tabular data (Xu et al., 2019; Sun et al., 2023). In this work, the focus was to generate tabular
data with continuous and discrete variables.

3.1 A Correlation- and Distribution-Aware Loss Function

Let the training dataset be X = {xi = (x(c)
i , x

(d)
i ) : ∀i ∈ {1, . . . , N}}, where N is the number of training

samples. The xi ∈ Rm denotes the i-th training sample from X, and x
(c)
i and x

(d)
i are continuous and discrete

features, respectively. Let pX̃ be the learned probability density over the synthetic data, x̃, such that x̃ ∈ Rm

is a sample from the DGM, G. Here, G is a learned mapping from a prior distribution p(z) to the data space
p(x | z).

Correlation-aware loss function. The correlation-aware loss function is defined as

Lcorrelation = 2
m(m − 1)

m∑
j=1

m∑
k=j+1

(gj,k − g̃j,k)2, (1)

where g is the sample correlation over the real data and g̃ is the sample correlation over the generated data,
such that

gj,k = 1
N

N∑
i=1

xi,j − µj

σj + ϵ
· xi,k − µk

σk + ϵ
, (2)

g̃j,k = 1
B

B∑
i=1

x̃i,j − µ̃j

σ̃j + ϵ
· x̃i,k − µ̃k

σ̃k + ϵ
, (3)

with B the size of the mini-batch used when training the DGM, and elements xi,j and x̃i,j belonging to
vectors xi ∈ X and x̃i ∈ X̃, respectively. A small positive value, ϵ = 1 · 10−5, was added to the denominators
of the correlation terms to avoid division by zero. The mean and standard deviation of the j-th column in a
tabular data set, X, were estimated as

µj = 1
N

N∑
i=1

xi,j and σj =

√√√√ 1
N

N∑
i=1

(xi,j − µj)2. (4)

Similarly, µ̃j and σ̃j were estimated as the mean and standard deviation of the generated data, {x̃i : ∀i ∈
{1, . . . , B}}. We discuss the theoretical guarantees for the correlation-aware loss function, including the
stability analysis, in Section 4.1.

Distribution-aware loss function. The distribution-aware loss function integrates the strengths of the method
of moments and maximum likelihood estimation (MLE) to align with the true distribution by capturing both
statistical moments and likelihood properties in order to enhance the model’s ability to learn accurate data
representations (Pearson, 1936; Rice, 2007). Additionally, the choice of moments over distance-based metrics,
such as Wasserstein, is motivated by their computational efficiency and stability, as lower-order moments
provide a robust approximation of the distribution while avoiding the high computational cost associated
with distance-based methods. To characterize the training data distribution, we employed the raw first and
central second moments,

S(1)
j = 1

N

N∑
i=1

xi,j = µj , (5)

S(2)
j = 1

N

N∑
i=1

(xi,j − µj)2 = σ2
j , (6)
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and for h ≥ 3 the standardized higher moments,

S(h)
j = 1

N

N∑
i=1

(
xi,j − µj

σj

)h

= γh. (7)

Similarly, the empirical moments were computed for the synthetic data, denoted as S̃(1)
j , S̃(2)

j , and S̃(h)
j , again

for h ≥ 3. In this case, B was used in place of N . Finally, the distribution loss was defined as

Ldistribution = 1
m

m∑
j=1

H∑
h=1

1
h

(
1 −

S̃(h)
j + ϵ

S(h)
j + ϵ

)2

, (8)

where the number of moments, H, was treated as a hyper-parameter. Instead of making the moments
equal, their quotient was made to be equal to one as a way to handle scale differences. By using a unified
distribution-aware loss, we handle continuous and discrete variables in the same manner, simplifying the
implementation and preventing imbalances that could arise from separate regularization terms for different
data types. We discuss the theoretical guarantees for the distribution-aware loss function, including the
numerical stability and consistency, in Section 4.2.

Custom loss function for DGMs. The correlation- and distribution-aware loss function was integrated into
three DGMs: GAN, VAE, and DDPM. For GANs, the proposed loss function was incorporated into the
generator’s loss

L̃G = Ez∼pz(z)
[

log(1 − D(G(z)))
]︸ ︷︷ ︸

LG

+αLcorrelation + βLdistribution, (9)

where LG is the original GAN’s generator loss, and G and D the generator and discriminator of the GAN,
respectively. The hyper-parameters, α and β, controlled the influence of the correlation and distribution
terms.

We extended the TVAE model (Xu et al., 2019) (a VAE designed for tabular data) with the proposed loss
function

L̃TVAE = Lreconstruction + LKLD︸ ︷︷ ︸
LTVAE

+αLcorrelation + βLdistribution, (10)

where LTVAE is the original TVAE’s loss, and Lreconstruction and LKLD are the reconstruction loss and the
Kullback–Leibler (KL) regularization term, respectively.

For the diffusion model, TabDDPM (Kotelnikov et al., 2023), the proposed loss function was integrated into the
total loss of the multinomial diffusions as

L̃TabDDPM = Lsimple
t +

∑
i≤C Li

t

C︸ ︷︷ ︸
LTabDDPM

+αL(d)
correlation + βL(d)

distribution + ζL(c)
distribution, (11)

where LTabDDPM denotes the original TabDDPM loss, comprising the mean-squared error for the Gaussian
diffusion term, Lsimple

t , and the KL divergence for all multinomial diffusion terms,
∑

i≤C
Li

t/C (Kullback &
Leibler, 1951).

Unlike other DGMs, TabDDPM handles continuous and discrete features separately. For continuous features,
TabDDPM predicts the Gaussian noise added through a forward Markov process. For discrete features, it
predicts their one-hot encoded representation. To align our proposed loss functions with this characteristic,
we adapted the correlation and distribution loss functions, L(d)

correlation and L(d)
distribution, to focus exclusively

on discrete features. For continuous features, the Gaussian input noise is treated as the real data and
the TabDDPM’s predicted noise component as the synthetic data. To encourage the model to capture the
distribution of the predicted noise, we introduce a distributional loss term L(c)

distribution for continuous features.
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A weighting parameter ζ is applied to this term to control its influence in the overall loss function, allowing to
balance the importance of distributional alignment between real and predicted noise against other objectives.

It is important to note that the proposed correlation- and distribution-aware loss functions are incorporated
as auxiliary regularization terms added to the primary training objective (e.g., likelihood or adversarial loss),
ensuring that the DGM remains guided by its standard optimization criterion while explicitly preserving
correlations and distributional properties.

Scope and applicability. The proposed correlation- and distribution-aware loss functions are specifically
designed for tabular data, where feature-level correlations and marginal distributions carry the most informative
signals. While the losses themselves are general, applying them directly to raw pixels or text is less meaningful
due to strong local structure and sequential dependencies. Nonetheless, the framework could be adapted
to work on learned embeddings from other modalities, such as image or text encoders, which provide a
structured representation suitable for correlation- and distribution-based regularization.

3.2 Iterative Objective Refinement Bayesian Optimization

Previous research on DNN often relied on tuning hyper-parameters based on a single metric or aggregating
multiple metrics with varying units in SBO. For example, the objective function guiding the BO process
could be the Dice score for medical segmentation (Vu et al., 2021), mean macro-accuracy for visual question
answering (Vu et al., 2020), or metrics like F-score (classification) and R-squared (regression) evaluated
with Catboost (Dorogush et al., 2018) on synthetic tabular data (Kotelnikov et al., 2023). A significant
challenge in SBO arises from managing diverse metrics, such as those used in statistical evaluations and ML
performance, that differ in units, complicating direct aggregation. This limitation can hinder the ability to
fully capture trade-offs between different objectives. To overcome the issues associated with aggregating
metrics with varying units in multi-objective SBO, we propose a ranking-based approach, named IORBO, to
enhance BO performance.

Algorithm 1 SBO
Initialize surrogate model
Initialize generative model Gi

Suggest initial hyper-parameters Θ1
Build and train Gi

Perform evaluation to obtain y1

Compute r1 = f(y1)

Fit surrogate model with (Θ1, r1)
for u← 2 to U do

Suggest Θu

Build and train Gi

Perform evaluation to obtain yu and ru

Update surrogate model with (Θu, ru)

end for
return Optimal hyper-parameters Θ∗

Algorithm 2 IORBO
Initialize surrogate model
Initialize generative model Gi

Suggest initial hyper-parameters Θ1
Build and train Gi

Perform evaluation to obtain y1

Compute r
(1)
1 = g(y1 | y1)

Fit surrogate model with (Θ1, r
(1)
1 )

for u← 2 to U do
Suggest Θu

Build and train Gi

Perform evaluation to obtain yu

Update ranks {r(u)
1 , r

(u)
2 , . . . , r

(u)
u } based on {y1, y2, . . . , yu}

Fit surrogate model with revised samples
(Θ1, r

(u)
1 ), (Θ2, r

(u)
2 ), . . . , (Θu, r

(u)
u )

end for
return Optimal hyper-parameters Θ∗

Comparison between SBO and IORBO algorithms.

To illustrate, consider optimizing a DGM. We define yu as the vector comprising all evaluated metrics where
u ∈ {1, . . . , U}, with U representing the number of samples used in the optimization. In the SBO, the
objective function of sample u is defined as ru = f(yu) where f is an aggregation function. As outlined in
Algorithm 1, the SBO holds ru constant throughout the optimization.

In contrast, IORBO defines the objective function as r
(p)
u , where u ≤ p and p ∈ {1, . . . , U} (see Algorithm 2).

Here, u represents the iteration where the objective is first generated, while p denotes when it is updated,
introducing iterative refinement into the process. In the IORBO, the objective function of sample u is defined
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as r
(p)
u = g(yu | y1, y2, . . . , yp) where g is a rank-based function. For example, at the second iteration, y2

is evaluated, then both r
(2)
1 and r

(2)
2 are computed. In the third iteration, y3 is added, allowing for the

computation of r
(3)
1 , r

(3)
2 , and r

(3)
3 , and so on. The objective functions are recalculated as the mean ranks of

all generated samples, yielding r
(u)
1 , r

(u)
2 , . . . , r

(u)
u based on y1, y2, . . . , yu. To compute the mean ranks, all

data points that are generated by the IORBO for each evaluated metric are first ranked and then the average
rank across metrics is calculated.

The objective function for the first set of hyper-parameters, Θ1, is iteratively updated: r
(1)
1 → r

(2)
1 → · · · →

r
(U)
1 . For the Θ2, we update: r

(2)
2 → r

(3)
2 → · · · → r

(U)
2 , and so on. The surrogate model is simultaneously

refitted with the revised samples, (Θ1, r
(u)
1 ), (Θ2, r

(u)
2 ), . . . , (Θu, r

(u)
u ). IORBO incurs a slight additional cost

for refitting the surrogate model with revised samples during the iterative refinement. However, this overhead
is negligible compared to the overall computational cost. Apart from this refinement step, the process is
essentially the same as SBO. For a numerical illustration, see Section 3.2.1.

3.2.1 Illustrative Example: SBO and IORBO in Practice Comparison

Table 1 and Table 2 illustrate the key difference between SBO and IORBO across three optimization iterations
using a toy example with four evaluation metrics: y = {a, b, c, d}. Each row in the tables corresponds to the
metric values obtained by evaluating a set of hyper-parameters at a given iteration.

Table 1: Example of SBO where the objective function is computed as the mean of all evaluated metrics.

Iteration 1 Iteration 2 Iteration 3

Metric / Sample 1 1 2 1 2 3

a 1 1 0.5 1 0.5 2.4
b 1 1 2.5 1 2.5 0.2
c 1 1 0.5 1 0.5 0.8
d 1 1 0.5 1 0.5 0.6

Objective function r1 = 1 r1 = 1 r2 = 1 r1 = 1 r2 = 1 r3 = 1

Table 2: Example of IORBO.

Iteration 1 Iteration 2 Iteration 3

Metric / Sample 1 1 2 1 2 3

a 1 1 0.5 1 0.5 2.4
b 1 1 2.5 1 2.5 0.2
c 1 1 0.5 1 0.5 0.8
d 1 1 0.5 1 0.5 0.6

Metric ranking /
Sample 1 1 2 1 2 3

a 1 2 1 2 1 3
b 1 1 2 2 3 1
c 1 2 1 3 1 2
d 1 2 1 3 1 2

Objective function r
(1)
1 = 1 r

(2)
1 = 1.75 r

(2)
2 = 1.25 r

(3)
1 = 2.5 r

(3)
2 = 1.5 r

(3)
3 = 2

In Table 1, the objective function is computed as the mean of all metric values for each evaluated sample. As
new samples are added, the objective values for previous samples remain fixed, meaning r1 = r2 = r3 = 1
across all iterations. This is because the SBO applies a static aggregation to each sample independently,
without revisiting or comparing across iterations.
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In contrast, Table 2 shows how IORBO iteratively refines the objective function. At each iteration, metric
values are ranked across all evaluated samples to compute the average rank per sample. This process results
in dynamic objective values: r

(3)
1 ̸= r

(3)
2 ≠ r

(3)
3 and r

(1)
1 ̸= r

(2)
1 ̸= r

(3)
1 . The key idea is that as more samples

are evaluated, the ranking context changes, and thus the relative standing of earlier samples is updated to
reflect the expanded information. For instance, the first sample has objective values r

(1)
1 = 1, r

(2)
1 = 1.75, and

r
(3)
1 = 2.5, demonstrating the refinement process.

This illustrative example highlights how IORBO uses cross-sample comparison to improve the fidelity of the
optimization signal, allowing it to better differentiate between competing hyper-parameter configurations.
In contrast, SBO may lead to flat or misleading optimization signals when metric values vary in scale or
importance. This rank-based refinement in IORBO enables more informed and robust surrogate model
updates throughout the optimization.

3.3 Evaluation

Statistical similarity. The statistical similarity evaluation focuses on how well the statistical properties of the
real training data are preserved in the synthetic data. Inspired by a previous review study (Goncalves et al.,
2020), we compared two aspects: (1) Individual variable distributions assess how closely the distributions of
each variable in the real and synthetic data sets resemble each other; and (2) pairwise correlations reveal the
differences in pairwise correlations between variables across the real and synthetic data (Step 1 in Figure 2).

We employed four key metrics to quantify how closely the real and synthetic data distributions resemble
each other. (1) The KL divergence (Hershey & Olsen, 2007): This method quantifies the information loss
incurred when approximating a true probability distribution with another one. (2) The Pearson’s Chi-Square
(CS) test (Pearson, 1992): This test focuses on categorical variables and assesses whether the distribution of
categories in the synthetic data matches the distribution in the real data. (3) The Kolmogorov–Smirnov (KS)
test (Massey Jr, 1951): This test is designed for continuous variables and measures the distance between the
cumulative distribution functions (CDFs) of the real and synthetic data. (4) The dimension-wise probability
(DWP): We leveraged the DWP (Armanious et al., 2020) to quantitatively assess the quality of the generated
data. This metric evaluates how well the model captures the distribution of each individual class or variable.
To calculate the DWP metric, we compute the average distance between scatter points and a perfect diagonal
line (y = x). Each scatter point represents either a class within a categorical variable or the mean value of a
continuous variable.

To assess how effectively the synthetic data captures the inherent relationships between variables observed in
the real data, we compare correlation coefficients between variable pairs. For continuous variables, we employ
the widely-used Pearson correlation coefficient, calculated from both the real and synthetic data matrices.
In the case of categorical variables, we leverage Cramer’s V coefficient to quantify the association strength
between each pair in both datasets (Frey, 2018).

While Pearson and Cramer’s V handle continuous-continuous and categorical-categorical correlations,
continuous-categorical dependencies are not explicitly measured. These can be partially captured by one-hot
encoding categorical variables or indirectly via the distribution-aware loss. Addressing this explicitly remains
a direction for future work.

ML performance. The ML performance evaluation is meant to enable researchers to leverage synthetic data
when developing ML methods in two key areas: Train-Synthetic-Test-Real (TSTR) (Lu et al., 2023) and
augmentation (see Figure 2 and Steps 2 and 3). In the TSTR task (Step 2 in Figure 2), the goal for ML
methods trained on synthetic data was to achieve performance comparable or identical to those trained on
real data.

In addition, we introduce the concept of an ML augmentation benchmark task (Step 3 in Figure 2), which, to
our knowledge, represents the first systematic application of augmentation for evaluating tabular synthetic
data. Here, models are trained on a combination of real and synthetic data, and the objective is to outperform
models trained solely on real data. While data augmentation with synthetic samples is a well-established
practice in machine learning, our contribution lies in formalizing it as a reproducible and domain-agnostic
benchmark for assessing DGMs across diverse tabular datasets. By incorporating synthetic data in this
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Training

Synthetic

KL div.
CS test
KS test

Cramer’s V
Pearson
DWP

Step 1: Statistical evaluation

Θ∗
Mp,Dj

Regression

SVM

Bagging

XGBoost

RFTest

Training

Synthetic

ML methods

Bal. accuracy
Precision
Recall
G-mean
F-score
AUC

Classification

MAE
MSE
R2

Regression

Step 2: ML TSTR evaluation

Θ∗
Mp,Dj

Training

Training
+

Synthetic

Regression

SVM

Bagging

XGBoost

RFTest

ML methods

Bal. accuracy
Precision
Recall
G-mean
F-score
AUC

Classification

MAE
MSE
R2

Regression

Step 3: ML augmentation evaluation

Optimal ML parameters

Train prediction models

Test prediction models

Figure 2: Evaluation pipeline. For dataset Dj and ML method Mp, the optimal hyper-parameters, Θ∗
Mp,Dj

,
were determined using five-fold cross-validation based on ML evaluation metrics (see Figure 4 in the Appendix).

standardized evaluation, models can learn from richer distributions, providing a practical measure of generative
model utility.

To comprehensively evaluate the performance of trained ML models on imbalanced classification datasets, we
employed a suite of metrics including balanced accuracy, precision, recall, geometric mean (G-mean), F-score,
and area under the ROC curve (AUC). For regression, we used metrics focused on capturing regression error:
mean absolute error (MAE), mean squared error (MSE), and the coefficient of determination, R-squared
(R2). This combined evaluation approach provides a nuanced understanding of model performance across
both classification and regression tasks.

To assess the ML performance in both the TSTR and augmentation tasks, we split the experimental datasets
into 80% training and 20% testing sets. First, we trained the DGMs on the real training data to produce
synthetic data. The real testing set served a critical role in assessing the generalizability of trained ML
models on unseen data. Subsequently, for TSTR, we trained various ML methods including logistic regression
(LG), support vector machine (SVM), random forest (RF), bagging (bootstrap aggregating) on top of LG,
and XGBoost independently on both the real and synthetic training sets. In the augmentation task, we
trained the same ML models independently on both the real training set and a combined set consisting of
real training and synthetic data.

3.4 Hyper-parameter Search

Hyper-parameters play a pivotal role in tailoring ML methods and DGMs to specific datasets and achieving
optimal performance. To systematically optimize the hyper-parameters, we employed BO, which was
introduced in Section 3.2. Specifically, we considered both SBO (baseline) and the proposed IORBO variant
for multi-objective aggregation. In practice, unless otherwise stated, all experiments are run with IORBO,
while SBO is included only for comparison.

We implemented BO using the TPE algorithm (Bergstra et al., 2011) within the Hyperopt1 library, which
efficiently explores black-box functions to identify optimal hyper-parameter configurations. This approach
enabled us to effectively navigate the complex hyper-parameter space and select suitable settings for each
experiment.

We conducted two distinct tuning processes. First, each ML method used in ML TSTR and augmentation
evaluation (Figure 2 and Step 2 and 3), was fine-tuned for each dataset using five-fold cross-validation on the
ML evaluation metrics (Figure 4 in the Appendix). Second, we optimized the hyper-parameters for each
combination of DGM, dataset, and loss function (Figure 3 in the Appendix).

3.5 Statistical Tests

In Table 3, the specifications are based on the commonly accepted interpretation of p-values in hypothesis
testing. A p-value less than or equal to 0.01 (p ≤ 0.01) indicates that the result is highly significant,

1https://hyperopt.github.io/hyperopt/
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Gi, Dj and Lk

Suggest
hyper-parameters

Hyper-parameters
ΘGi,Dj ,Lk

Build Gi Train Gi

Generative model

Evaluation
Stats./TSTR/Aug.

Iterative objective
refinement

Update
Gaussian model

Bayesian optimization

Θ∗
Gi,Dj ,Lk

Sufficient # trials

Input – generative model: Gi, dataset: Dj , loss function: Lk

Output – optimal hyper-parameters for Gi, Dj and Lk

Figure 3: Hyper-parameter search for a single generative model.

Mp and Dj

Suggest
hyper-parameters

Hyper-parameters
ΘMi,Dj

Build Mp
Train Mp

on 5-fold CV

ML algorithm

Evaluation
on 5-fold CV

Iterative objective
refinement

Update
Gaussian model

Bayesian optimization

Θ∗
Mp,Dj

Sufficient # trials

Input – ML algorithm: Mp, dataset: Dj

Output – optimal hyper-parameters for Mp and Dj

Figure 4: Hyper-parameter search for an ML algorithm.

meaning that the null hypothesis can be rejected with high confidence. A p-value between 0.01 and 0.05
(0.01 < p ≤ 0.05) indicates significant results, where there is still a reasonable level of evidence against the
null hypothesis, though not as strong as for the highly significant results. For p-values greater than 0.05, we
consider the result not to be significant, indicating insufficient evidence to reject the null hypothesis.

Regarding the two-sided test, the Nemenyi post-hoc test used in our analysis is based on the Friedman test,
which is a non-parametric test for repeated measures. The Nemenyi test performs pairwise comparisons
between the groups following the Friedman test and is a two-sided test. This means that the test evaluates
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whether the differences between the groups are statistically significant in both directions, i.e., it considers
whether one group is significantly better or worse than another group.

To compare loss functions across DGMs and datasets, we used the Friedman test (Friedman, 1937; 1940) to
rank the loss functions independently. For non-parametric analysis of repeated-measures data, the Friedman
test offers an alternative to the widely used repeated-measures ANOVA (Fisher, 1919). We used the Friedman
test with equivalence on two ML efficacy problems for test set predictions and statistical similarity between
training and synthetic data (detailed in Section 3.6). Following Demšar (2006), we further explored significant
differences between methods using the Nemenyi post-hoc test (Nemenyi, 1963). Table 3 shows the p-values
divided into three positive and three negative differences.

Table 3: Ranges of p-values and specification obtained from statistical tests.

Notation Rank Range of p-value Specification

++ Better p ≤ 0.01 Highly significantly better
+ Better 0.01 < p ≤ 0.05 Significantly better
0 Better p > 0.05 Not significantly better
0 Worse p > 0.05 Not significantly worse
− Worse 0.01 < p ≤ 0.05 Significantly worse

−− Worse p ≤ 0.01 Highly significantly worse

3.6 Benchmarking Framework

Figure 5 provides an overview of the proposed benchmarking framework consisting the following core
components:

Θ∗
Gi,Dj ,L Train Gi on Dj

using L
Synthetic data

X̃Gi,Dj ,L

Evaluate
X̃Gi,Dj ,L

Concatenate

Θ∗
Gi,Dj ,L̃ Train Gi on Dj

using L̃
Synthetic data

X̃Gi,Dj ,L̃

Evaluate
X̃Gi,Dj ,L̃

Concatenate

Friedman test

Nemenyi test

Vanilla loss function

Proposed loss function

Statistical tests

Θ∗
Mp,Dj

Figure 5: Proposed benchmarking framework. The Gi, Dj , Lk and Mp denote a DGM, a dataset, a loss
function, and an ML method, respectively. Θ∗ denotes the optimal set of hyper-parameters. See Figure 3
and Figure 4 in the Appendix to see how we determined Θ∗

Gi,Dj ,Lk
and Θ∗

Mp,Dj
.

Generative models. DGMs are used to generate synthetic data. We evaluated six models. Three models
that leverage conditional GANs for data synthesis: CTGAN (Xu et al., 2019), CTAB-GAN (Zhao et al., 2021),
and DP-CGANS (Sun et al., 2023). A model that combines Gaussian Copula with the CTGAN architecture:
CopulaGAN. A model that utilizes VAEs (Kingma & Welling, 2013) for data generation: TVAE (Xu et al.,
2019). Finally, a model that employs DDPM: TabDDPM (Kotelnikov et al., 2023). To explore the impact
of the conditional element, we additionally evaluated versions of CTGAN, CopulaGAN, and DP-CGANS with
conditioning disabled. We also used two backbones for TabDDPM: a simple multilayer perceptron (MLP) and a
ResNet.

Custom loss function. During training, each evaluated DGM utilized either the custom loss function defined in
Equation 9 (for GAN models), the one presented in Equation 10 (for TVAE model) or the one in Equation 11
(for TabDDPM model). We subsequently fixed α, β, and ζ to specific values of 0 or a positive value, resulting
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in two different experiments: vanilla loss function (L with α = β = ζ = 0) and the proposed loss function, L̃,
with at least one non-zero hyper-parameters.

Statistical tests. We used the Friedman test on all evaluated metrics, followed by the Nemenyi post-hoc test
detailed in Section 3.5 for comparative analyses. These analyses can be divided into three categories: (1)
General-purpose loss function assesses which loss function—between the vanilla (original loss function used
in the evaluated DGM) and the proposed—performs better for general applications; (2) Dataset-specific
loss determines which loss function is more effective for each evaluated dataset; and (3) Method-specific
loss identifies the superior loss function for each evaluated DGM architecture. For each category, we based
the evaluations on either statistical similarity, ML TSTR performance, ML augmentation performance, or a
combination of evaluated metrics.

4 Theoretical guarantees

4.1 Correlation-aware loss function

We now analyze the theoretical properties of the proposed correlation-aware loss function, including its
stability during optimization. This analysis provides justification for its robustness in practice. The following
remark clarifies how we implement the correlation loss in a stochastic optimization setting.
Remark 4.1 (Optimization details). During the stochastic optimization of Lcorrelation, the running estimates
µ̃j (raw first moment) and σ̃j (central second moment) are treated as fixed constants within each mini-batch.
To ensure numerical stability and avoid division by zero, a small constant ϵ > 0 is added to the denominator,
i.e., we use σ̃j + ϵ.

To quantify how well matching the first H moments controls the overall density approximation error, we now
state our main result.
Proposition 4.2 (Stability). Assume the standardized synthetic data points

Zi,k := x̃i,k − µ̃k

σ̃k + ϵ

have tails that decay at least sub-Gaussian; that is, there exist constants K, ν > 0 such that

Pr
(
|Zi,k| > t

)
≤ M e−νt2

,

for all t > 0. Fix δ ∈ (0, 1) and set

tδ =
√

1
ν

ln
(M

δ

)
.

Then, with probability at least 1 − δ, the gradient of Lcorrelation with respect to any x̃i,j satisfies∣∣∣∣∂Lcorrelation

∂x̃i,j

∣∣∣∣ ≤ 8
m(m − 1) · tδ

B ϵ
,

where B is the batch size and ϵ > 0 is the smoothing constant.

Proof. To analyze the gradient of Lcorrelation with respect to x̃i,j , consider a single pair (j, k). The gradient
can be expressed as:

∂Lcorrelation

∂x̃i,j
= 4

m(m − 1)(gj,k − g̃j,k) · ∂g̃j,k

∂x̃i,j
.

Recall that the synthetic correlation term is given by:

g̃j,k = 1
B

B∑
i=1

x̃i,j − µ̃j

σ̃j + ϵ
· x̃i,k − µ̃k

σ̃k + ϵ
.
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Since the statistics µ̃j and σ̃j are treated as constants during stochastic optimization (Remark 4.1), the
derivative simplifies to:

∂g̃j,k

∂x̃i,j
= 1

B
· 1

σ̃j + ϵ
· x̃i,k − µ̃k

σ̃k + ϵ
.

Taking the absolute value and using the property |ab| = |a||b|, we obtain:∣∣∣∣∂Lcorrelation

∂x̃i,j

∣∣∣∣ = 4
m(m − 1) |gj,k − g̃j,k| ·

∣∣∣∣ 1
B(σ̃j + ϵ) · x̃i,k − µ̃k

σ̃k + ϵ

∣∣∣∣
≤ 4

m(m − 1) |gj,k − g̃j,k| · 1
B(σ̃j + ϵ) ·

∣∣∣∣ x̃i,k − µ̃k

σ̃k + ϵ

∣∣∣∣ .
Here, the inequality follows because the absolute value of a product is the product of the absolute values.
Since the correlations are bounded (i.e., |g̃j,k| ≤ 1 and |gj,k| ≤ 1, implying |gj,k − g̃j,k| ≤ 2) and by the
bounded data assumption we have∣∣∣∣∂Lcorrelation

∂x̃i,j

∣∣∣∣ ≤ 4
m(m − 1) · 2 · 1

B(σ̃j + ϵ) · |Zi,k|.

By the sub-Gaussian tail bound,
Pr (|Zi,k| > tδ) ≤ Me−ν t2

δ = δ.

Thus with probability at least 1 − δ we have |Zi,k| ≤ tδ, and noting that σ̃j + ϵ ≥ ϵ > 0, it follows that∣∣∣∣∂Lcorrelation

∂x̃i,j

∣∣∣∣ ≤ 8
m(m − 1) · tδ

B ϵ
.

This completes the proof.

4.2 Distribution-aware loss function

We now establish theoretical guarantees for the proposed distribution-aware loss function.
Assumption 4.3 (High-Probability Moment Matching). For any confidence level 1 − δ, there exist constants
Bh(δ) ≥ 0 such that, with probability at least 1 − δ,∣∣µ̂h − µh

∣∣ ≤ Bh(δ) for all h = 0, 1, . . . , H.

Proposition 4.4 (Numerical stability). Under Assumption 4.3, for any fixed confidence level, 1 − δ, there
exist constants Bh(δ) > 0 such that, with probability at least 1 − δ, the empirical moments satisfy∣∣∣S(h)

j

∣∣∣ ≤ Bh(δ) and
∣∣∣S̃(h)

j

∣∣∣ ≤ Bh(δ) ∀ j ∈ {1, . . . , m}, h = 1, . . . , H.

Then for each feature index j and moment order h, the partial derivative of

Ldistribution = 1
m

m∑
j=1

H∑
h=1

1
h

(
1 −

S̃(h)
j + ϵ

S(h)
j + ϵ

)2

with respect to the synthetic moment S̃(h)
j obeys, with probability at least 1 − δ,∣∣∣∣∣∂Ldistribution

∂S̃(h)
j

∣∣∣∣∣ ≤ 4 Bh(δ)
h ϵ2 .

Note: We do not allow ϵ to go to zero. Instead, we treat ϵ as a small constant that maintains S(h)
j + ϵ ≥ ϵ.

That way, the bound remains finite and numerically reasonable.
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Proof. Recall that the distribution-aware loss function is defined as:

Ldistribution = 1
m

m∑
j=1

H∑
h=1

1
h

(
1 −

S̃(h)
j + ϵ

S(h)
j + ϵ

)2

,

where ϵ > 0 is a smoothing term that ensures numerical stability by preventing division by zero.

To analyze the stability of Ldistribution, we compute its gradient with respect to the synthetic moment S̃(h)
j :

∂Ldistribution

∂S̃(h)
j

= 2
h

(
1 −

S̃(h)
j + ϵ

S(h)
j + ϵ

)
·

(
− 1

S(h)
j + ϵ

)
.

The smoothing term ϵ > 0 ensures that the denominator S(h)
j + ϵ is bounded away from zero. Taking the

absolute value of this partial derivative, we obtain:

∣∣∣∣∣∂Ldistribution

∂S̃(h)
j

∣∣∣∣∣ = 2
h

·

∣∣∣∣1 − S̃(h)
j

+ϵ

S(h)
j

+ϵ

∣∣∣∣
S(h)

j + ϵ
= 2

h
·

∣∣∣S(h)
j − S̃(h)

j

∣∣∣(
S(h)

j + ϵ
)2 .

Under the high-probability bound in the Proposition 4.4, |S(h)
j | ≤ Bh(δ) and |S̃(h)

j | ≤ Bh(δ), we have∣∣∣S(h)
j − S̃(h)

j

∣∣∣ ≤ 2 Bh(δ), S(h)
j + ϵ ≥ ϵ.

Therefore, with probability at least 1 − δ,∣∣∣∣∣∂Ldistribution

∂S̃(h)
j

∣∣∣∣∣ ≤ 2
h

· 2 Bh(δ)
ϵ2 = 4 Bh(δ)

h ϵ2 .

Since the bound depends only on h, ϵ, and Bh(δ)—all of which are independent of the feature index j—this
implies that the partial derivatives are uniformly bounded across all j and h. This completes the proof.

Remark 4.5 (Empirical moment consistency). After training on N real samples, we can draw B synthetic
samples from the learned model to estimate any feature moment. By the Law of Large Numbers:

1
N

N∑
i=1

(xi,j − µj)h P−−−−→
N→∞

E
[
(Xj − µj)h

]
,

1
B

B∑
i=1

(x̃i,j − µ̃j)h P−−−−→
B→∞

E
[
(Xj − µj)h

]
.

Since the model’s moments cannot typically be computed in closed form, we estimate them by averaging over
B synthetic samples. Larger values of B lead to more accurate moment estimates. In practice, setting B
comparable to or larger than N (e.g., B ∈ [N, 10N ]) typically yields sufficiently accurate moment estimates.

5 Experiments

5.1 Datasets

Two datasets come from the UCI Machine Learning Repository (Dua & Graff, 2017) (Adult and News) and
feature tabular structures with separate columns for attributes and labels. Thirteen additional datasets were
preprocessed and shared by Kotelnikov et al. (2023) including Abalone, Buddy, California, Cardio, Churn2,
Diabetes-ML, Gesture, Higgs-Small, House-16h, Insurance, King, Miniboone, and Wilt. We sourced the
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remaining datasets from Kaggle2 (Credit, Diabetes, Balanced Diabetes, and House). To investigate the
proposed method’s behavior on high-dimensional binary data as in (Xu et al., 2019), we transformed the
Modified National Institute of Standards and Technology database (MNIST) dataset (LeCun & Cortes, 2010).
Specifically, we binarized the original 28 × 28 images, converted each sample into a 784-dimensional vector,
and added a label column. The images were then resized to 12 × 12, reducing them to 144-dimensional
vectors. We refer to this dataset as MNIST12.

Table 4 provides a comprehensive overview of the datasets evaluated in this study. It includes a diverse set of
datasets, encompassing various data types and tasks to thoroughly test the proposed methods. The datasets
range from small, specialized datasets like Diabetes-ML with 768 rows and 8 continuous variables, to large,
extensive datasets such as Credit with 277 640 rows and 29 continuous variables. Tasks represented include
regression, binary classification, and multiclass classification, showcasing the breadth of application scenarios
covered. For instance, Abalone and California are used for regression tasks, while Adult, Cardio, and
Churn2 are employed for binary classification tasks. Multiclass classification tasks are represented by datasets
such as Buddy and MNIST12.

Table 4: Description of experimented datasets.

Dataset #Rows #Continuous #Discrete Task

Abalone 4 177 7 1 Regression
Adult 48 813 6 8 Binclass
Buddy 18 834 4 5 Multiclass
California 20 640 8 0 Regression
Cardio 70 000 5 6 Binclass
Churn2 10 000 7 4 Binclass
Credit 277 640 29 0 Binclass
Diabetes 234 245 0 21 Binclass
Diabetes-ML 768 8 0 Binclass
Diabetes Bal. 69 515 0 21 Binclass
Gesture 9 873 32 0 Multiclass
Higgs-Small 98 049 28 0 Binclass
House 21 613 10 8 Regression
House-16h 22 784 16 0 Regression
Insurance 1 338 3 3 Regression
King 21 613 17 3 Regression
Miniboone 130 064 50 0 Binclass
MNIST12 70 000 0 144 Multiclass
News 39 644 45 14 Regression
Wilt 4 839 5 0 Binclass

Additionally, the datasets exhibit a range of characteristics in terms of the number of continuous and discrete
variables. For example, Gesture has a high number of continuous variables (32) with no discrete variables,
whereas Diabetes features a substantial number of discrete variables (21) with no continuous variables. The
varied nature of these datasets allows for a robust evaluation of the proposed methods across different types of
data and tasks, providing insights into their generalizability and effectiveness. The inclusion of datasets with
different characteristics, such as Higgs-Small with 28 continuous variables and MNIST12 with 144 discrete
variables, ensures a comprehensive assessment of performance and applicability.

Our benchmarking framework evaluates the proposed methods across twenty diverse real-world tabular
datasets, spanning a range of scales to assess performance under varying conditions. These include small-
scale datasets with thousands of rows, as well as mid- to large-scale ones, such as the Credit dataset with
approximately 277 000 rows. This selection allows us to test the methods on datasets representative of

2https://www.kaggle.com/datasets
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practical scenarios, though we note that even larger datasets (e.g., millions of rows) are common in industrial
applications and warrant future exploration.

5.2 Implementation Details and Training

Implementation Details and Training. We implemented all DGMs (CTGAN, CTAB-GAN, DP-CGANS, CopulaGAN,
TVAE, and TabDDPM) and the proposed losses using PyTorch 1.13. To ensure replicability, we maintained
the DGMs’ original framework structures and adopted the model parameters specified in their publications.
We disabled conditional elements within evaluated DGMs by reimplementing their data samplers. This
modification removed the conditional vector from the training process, effectively transforming them into
unconditional DGMs. For all DGMs, we employed the Adam optimizer (Kingma & Ba, 2015). We used
the proposed IORBO approach introduced in Section 3.2 to fine-tune the hyper-parameters in two tuning
processes (Section 3.4).

The experiments ran on a high-performance computing cluster equipped with NVIDIA A100 Tensor Core
graphical processing units (GPUs) (40GB RAM each) and Intel(R) Xeon(R) Gold 6338 CPUs (256GB DDR4
RAM). Training time per model varied significantly by dataset and DGM, ranging from one hour to two
weeks.

To accelerate the ML performance evaluation, we used the cuML library (Raschka et al., 2020). This library
provides a Python API largely compatible with scikit-learn (Pedregosa et al., 2011) and allows seamless
execution of traditional tabular ML tasks on GPUs. We used scikit-learn for classification and regression
metrics, scipy for statistical evaluation metrics, and scikit-posthocs for the statistical tests, ensuring
consistency throughout the evaluation process.

6 Results and Discussion

Loss function. To analyze the performance of the proposed loss function against the vanilla version, we
employed the proposed benchmarking framework (Section 3.6) across four key tasks: statistical evaluation
(Stat.), TSTR evaluation, augmentation evaluation (Aug.), and a comprehensive evaluation (Comp.) combining
all three. The statistical tests evaluated the performance of the proposed loss function compared to the
vanilla loss. In addition, we define the win rate as the proportion of evaluated metrics where the proposed loss
function exceeds the vanilla loss function, relative to the total number of metrics assessed. A win rate of 1
indicates that the proposed loss function performed better than the vanilla version across all evaluated metrics,
while a value of 0 signifies that it performed worse in every metric. A win rate greater than 0.5 indicates that
the proposed loss function was “better” more often than it was “worse.” We also report standard errors for
each metric, estimated from 1 000 bootstrap rounds.

It is important to note that throughout the reported experiments, the “proposed loss function” corresponds
to the vanilla training objective augmented with the auxiliary correlation- and distribution-aware regularizer.
This ensures that the results reflect improvements attributable to the added regularization term rather than
replacing the underlying optimization criterion (see Section 3.1). Furthermore, unless otherwise stated, all
experiments are conducted using the proposed IORBO for hyper-parameter search, with SBO included solely
as a baseline for comparison.

Table 5: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses) comparing
the proposed against the vanilla loss function on all DGMs and datasets. Loss functions were evaluated for
statistical similarity (Stat.), TSTR, augmentation (Aug.), and a comprehensive evaluation (Comp.) combining
all metrics. For details on p-value ranges, refer to Table 3.

Statistical Tests Win Rate

Comparison Stat. TSTR Aug. Comp. Stat. TSTR Aug. Comp.

Proposed vs.
Vanilla 0 ++ ++ ++ 0.484 (0.012) 0.611 (0.007) 0.551 (0.007) 0.567 (0.004)
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General-purpose loss function. Table 5 presents the results of a comprehensive analysis comparing the
performance of the proposed loss function against the vanilla loss function across all DGMs and datasets.
The table highlights the influence of loss function selection for general purposes. First, the two loss functions
performed statistically similarly (zero (0) in the “Stat.” column in Table 5). However, this metric does not
fully capture performance in downstream tasks. In contrast, in the ML TSTR evaluation, the proposed loss
function significantly outperformed the vanilla version, with a win rate of 0.611 and a standard error of
0.007, suggesting that the proposed loss function better captures the complexities of real-world tabular data
during synthetic data generation. Similarly, the augmentation evaluation consistently favored the proposed
loss function (win rate 0.551), demonstrating its ability to enhance the performance of predictive models
trained on a mix of real and synthetic data. Finally, the comprehensive evaluation (win rate 0.567), which
combined all prior evaluations, continues this trend, indicating the proposed loss function’s potential to
improve model generalizability. A possible reason for this superiority is that the proposed loss function
provides a regularizing effect, which reduces overfitting on unseen data and positions it as a strong candidate
for general-purpose use in generative modeling tasks.

Table 6: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses) comparing
the proposed against the vanilla loss function across various DGMs on all datasets. Evaluations include
TSTR, augmentation (Aug.), statistical similarity (Stat.), and a comprehensive measure (Comp.) combining
all evaluated metrics. Models denoted with an asterisk (*) have disabled conditioning. For details on p-value
ranges, refer to Table 3.

Statistical Tests Win Rate

Method Stat. TSTR Aug. Comp. Stat. TSTR Aug. Comp.

CTGAN 0 ++ ++ ++ 0.478 (0.034) 0.639 (0.020) 0.583 (0.021) 0.593 (0.014)
CTGAN* 0 ++ ++ ++ 0.459 (0.036) 0.726 (0.018) 0.611 (0.020) 0.640 (0.013)

TVAE 0 0 ++ ++ 0.519 (0.034) 0.501 (0.021) 0.593 (0.020) 0.543 (0.013)
CopulaGAN 0 ++ + ++ 0.491 (0.033) 0.633 (0.020) 0.547 (0.022) 0.577 (0.013)

CopulaGAN* 0 ++ + ++ 0.447 (0.034) 0.684 (0.019) 0.554 (0.020) 0.595 (0.013)
DP-CGANS 0 ++ ++ ++ 0.500 (0.051) 0.669 (0.028) 0.683 (0.028) 0.651 (0.018)

DP-CGANS* 0 ++ 0 ++ 0.587 (0.054) 0.798 (0.023) 0.538 (0.030) 0.656 (0.019)
CTAB-GAN −− −− 0 −− 0.391 (0.033) 0.418 (0.020) 0.497 (0.020) 0.448 (0.014)

TABDDPM-MLP 0 ++ 0 ++ 0.516 (0.035) 0.617 (0.020) 0.482 (0.021) 0.545 (0.014)
TABDDPM-ResNet 0 + 0 0 0.512 (0.033) 0.547 (0.021) 0.487 (0.021) 0.517 (0.013)

Method-specific loss function. Table 6 compares the performance of the proposed loss function against the
vanilla loss functions across all datasets and different DGM selections. Models denoted with an asterisk
(*) have disabled conditioning. For most models, the proposed loss function demonstrates significant
improvements in ML TSTR performance and augmentation effectiveness. For instance, CTGAN, CTGAN*,
CopulaGAN, and DP-CGANS consistently show highly significant gains (++) in TSTR, augmentation, and
comprehensive evaluation. For example, DP-CGANS* achieved the highest win rate across the TSTR metric,
0.798, indicating that the proposed loss function significantly enhanced its ability to generate synthetic
data that boosts downstream ML performance. Interestingly, the statistical similarity (Stat.) evaluation
reveals no significant differences between the proposed and vanilla loss functions for most models, suggesting
that both loss functions perform similarly in terms of generating synthetic data that statistically match the
real data distributions. However, the CTAB-GAN model stands out as an exception, showing a statistically
significant decrease (−−) in performance across most evaluations when using the proposed loss function.
This result suggests that the CTAB-GAN may require a more specialized loss function or optimization strategy
to fully benefit from the proposed approach. The comprehensive evaluation (Comp.), which combines all
three metrics, underscores the effectiveness of the proposed loss function on eight out of ten evaluated DGMs.
Models including CTGAN, CopulaGAN, DP-CGANS, and their non-conditioned variants, consistently outperform
the vanilla loss function with win rates exceeding 0.5. These results imply that the proposed loss function
offers a well-rounded improvement across various aspects of synthetic data generation, specifically in terms of
enhancing ML utility and model augmentation performance.

Dataset-specific loss function. Table 7 compares the proposed loss function to the vanilla loss function
across various datasets on all DGMs. The results demonstrate the effectiveness of the proposed loss function
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across diverse datasets. The statistical tests reveal that the proposed loss function achieves statistically
significant improvements in TSTR performance for 14 out of 20 datasets, as indicated by the total count
of (+) and (++). Additionally, the proposed loss function exhibits a consistent advantage in augmentation
(Aug.). Specifically, datasets such as Insurance and MNIST12 show marked improvements in win rates (0.7).
Conversely, the proposed loss function shows variable performance in statistical similarity (Stat.) across
datasets. While it significantly improves TSTR and augmentation tasks for many datasets, its impact
on statistical similarity is less consistent, with some datasets like Cardio, Higgs-Small, and Miniboone
exhibiting inferior results compared to the vanilla loss function. From Table 7 we see that the proposed loss
function demonstrates significant improvement over the vanilla loss function in 15 out of 20 datasets, as
indicated by the comprehensive evaluation (Comp.) in the statistical tests column. Among the remaining
datasets, four show no significant difference (0) and only one shows a statistically significant disadvantage
(−).

Table 7: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses) comparing
the proposed against the vanilla loss function across various datasets on all evaluated DGMs. Evaluations
include TSTR, augmentation (Aug.), statistical similarity (Stat.), and a comprehensive measure (Comp.)
combining all three. For details on p-value ranges, refer to Table 3.

Statistical Tests Win Rate

Dataset Stat. TSTR Aug. Comp. Stat. TSTR Aug. Comp.

Abalone 0 ++ −− 0 0.594 (0.059) 0.633 (0.043) 0.375 (0.045) 0.523 (0.027)
Adult 0 ++ 0 ++ 0.538 (0.052) 0.622 (0.025) 0.553 (0.025) 0.582 (0.017)
Buddy 0 ++ 0 ++ 0.500 (0.051) 0.607 (0.022) 0.552 (0.022) 0.570 (0.014)

California 0 0 0 + 0.500 (0.045) 0.583 (0.044) 0.583 (0.043) 0.566 (0.027)
Cardio − ++ ++ ++ 0.387 (0.054) 0.577 (0.027) 0.590 (0.027) 0.560 (0.019)
Churn2 0 ++ 0 + 0.500 (0.059) 0.637 (0.025) 0.460 (0.026) 0.543 (0.018)
Credit 0 0 0 + 0.500 (0.057) 0.544 (0.027) 0.554 (0.030) 0.543 (0.018)

Diabetes 0 ++ 0 ++ 0.413 (0.031) 0.620 (0.027) 0.533 (0.027) 0.557 (0.018)
Diabetes-ML 0 ++ 0 ++ 0.469 (0.057) 0.719 (0.029) 0.479 (0.033) 0.584 (0.020)

Diabetes Bal. 0 ++ 0 ++ 0.438 (0.032) 0.717 (0.022) 0.538 (0.025) 0.605 (0.016)
Gesture 0 0 0 0 0.609 (0.056) 0.562 (0.032) 0.450 (0.029) 0.518 (0.021)

Higgs-Small − + ++ ++ 0.359 (0.055) 0.575 (0.031) 0.635 (0.032) 0.576 (0.021)
House 0 ++ ++ ++ 0.438 (0.049) 0.667 (0.039) 0.667 (0.038) 0.618 (0.025)

House-16h 0 0 0 0 0.500 (0.044) 0.442 (0.044) 0.500 (0.046) 0.477 (0.027)
Insurance 0 ++ ++ ++ 0.494 (0.052) 0.693 (0.037) 0.700 (0.037) 0.654 (0.025)

King 0 ++ 0 ++ 0.519 (0.055) 0.673 (0.039) 0.567 (0.039) 0.599 (0.026)
Miniboone − −− 0 − 0.359 (0.054) 0.402 (0.031) 0.512 (0.026) 0.446 (0.020)

MNIST12 0 ++ ++ ++ 0.484 (0.040) 0.756 (0.023) 0.700 (0.024) 0.699 (0.016)
News + ++ 0 ++ 0.612 (0.052) 0.607 (0.040) 0.553 (0.042) 0.587 (0.024)
Wilt 0 0 0 0 0.469 (0.056) 0.538 (0.025) 0.552 (0.026) 0.536 (0.016)

Bayesian optimization method. The performance of the IORBO was compared to that of the SBO using
two aggregation methods: mean and median aggregation. For each dataset, we fine-tuned each generative
model (DGM) across two loss functions and employed three distinct BO approaches. To assess the performance
of these methods, statistical tests were conducted, focusing on comparing the effectiveness of each approach.
The results are summarized in Table 8, which presents the win rates and standard errors, as well as the
outcomes of the Nemenyi post-hoc test that compares the methods shown in the rows against those in the
columns. The findings from the Nemenyi post-hoc test clearly show that the IORBO significantly outperforms
both SBO-Mean and SBO-Median. Specifically, the win rates for the IORBO compared to SBO-Mean and
SBO-Median were 0.591 and 0.561, respectively. These results demonstrate that the IORBO is not only more
effective but also more robust in handling datasets with metrics that have different units, which often pose
challenges in optimization tasks. The consistent superiority of IORBO highlights its potential as a reliable
and broadly applicable BO method, suggesting it could be a valuable tool in a wide range of optimization
tasks involving diverse types of data and models.

Bayesian optimization computational cost. Figure 6 compares the per-iteration computational cost of
IORBO and SBO across different numbers of evaluated metrics. Each iteration measures the time required
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Table 8: Results of the Nemenyi post-hoc test and win rate (with standard error in parentheses) comparing
the row to column method. For details on p-value ranges, refer to Table 3.

Statistical Tests Win Rate

BO method SBO-Mean SBO-Median IORBO SBO-Mean SBO-Median IORBO

SBO-Mean −− −− 0.461 (0.004) 0.409 (0.004)
SBO-Median ++ −− 0.539 (0.004) 0.439 (0.004)

IORBO ++ ++ 0.591 (0.004) 0.561 (0.004)
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Figure 6: Per-iteration computational time of IORBO versus standard SBO across different numbers of
evaluated metrics. Both methods show nearly identical timings, confirming that IORBO introduces no
significant computational overhead.

to update the surrogate model (see Algorithms 1 and 2). The analysis shows that both IORBO and SBO
have the same asymptotic computational complexity, scaling linearly with the number of metrics. As shown
in the timing comparison, execution times for both methods largely overlap across metric counts of 1, 10, 30,
and 100, with observed differences remaining negligible. Thus, IORBO achieves its improved optimization
performance without incurring additional computational cost in practice.

Ablation studies. The ablation study results presented in Table 9 evaluate the impact of different loss
function variants combined with two optimization strategies: SBO and IORBO (denoted IOR). In our
experiments, the loss function variants are defined as follows: V represents the vanilla loss; C denotes the
addition of the correlation loss; D indicates the addition of the distribution loss; and CD corresponds to
the combination of both correlation and distribution losses (i.e., the proposed loss function). The table is
organized with comparisons vs. Mean and vs. Median to succinctly present the performance metrics.

In the vs. Mean comparison, adding the correlation loss (C) to the vanilla setting (SBO-V) increases the
win rate from 0.500 to 0.563, making it the most impactful individual component. In contrast, adding only
the distribution loss (D) results in a smaller improvement from 0.500 to 0.508. However, the distribution
loss should not be underestimated—it targets the overall data distribution, ensuring that the synthetic
data not only capture pairwise correlations but also match higher-order statistical properties. When both
loss components are combined in SBO-CD, the win rate reaches 0.542, indicating that the distribution loss
provides complementary information that can enhance robustness and generalization, even though its impact
is most pronounced when used in tandem with the correlation loss.
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Table 9: Ablation study results of the Nemenyi post-hoc test and win rate (with standard error in parentheses)
comparing row to column methods. The table presents performance across different configurations using
baseline methods with SBO and IORBO (denoted IOR). The loss function variations are as follows: V
represents the vanilla loss, C adds the correlation loss, D adds the distribution loss, and CD adds both
distribution and correlation losses, forming the proposed loss function. Both Mean and Median aggregation
strategies are evaluated. For details on p-value ranges, refer to Table 3.

Statistical Tests

vs. Mean SBO-V IOR-V SBO-C IOR-C SBO-D IOR-D SBO-CD IOR-CD

SBO-V −− −− −− 0 −− −− −−
IOR-V ++ ++ −− ++ 0 ++ −−
SBO-C ++ −− −− ++ −− 0 −−
IOR-C ++ ++ ++ ++ ++ ++ 0
SBO-D 0 −− −− −− −− −− −−
IOR-D ++ 0 ++ −− ++ ++ −−
SBO-CD ++ −− 0 −− ++ −− −−
IOR-CD ++ ++ ++ 0 ++ ++ ++

Win Rate

vs. Mean SBO-V IOR-V SBO-C IOR-C SBO-D IOR-D SBO-CD IOR-CD

SBO-V 0.428 (0.005) 0.437 (0.005) 0.364 (0.005) 0.492 (0.005) 0.419 (0.005) 0.458 (0.005) 0.377 (0.005)
IOR-V 0.572 (0.005) 0.538 (0.005) 0.451 (0.005) 0.579 (0.005) 0.526 (0.005) 0.547 (0.005) 0.427 (0.005)
SBO-C 0.563 (0.004) 0.462 (0.005) 0.400 (0.005) 0.555 (0.005) 0.457 (0.005) 0.520 (0.005) 0.399 (0.005)
IOR-C 0.636 (0.005) 0.549 (0.005) 0.600 (0.005) 0.639 (0.005) 0.564 (0.005) 0.614 (0.005) 0.478 (0.005)
SBO-D 0.508 (0.005) 0.421 (0.005) 0.445 (0.005) 0.361 (0.005) 0.425 (0.005) 0.455 (0.005) 0.375 (0.005)
IOR-D 0.581 (0.005) 0.474 (0.005) 0.543 (0.005) 0.436 (0.005) 0.575 (0.005) 0.544 (0.005) 0.429 (0.005)
SBO-CD 0.542 (0.005) 0.453 (0.005) 0.480 (0.005) 0.386 (0.005) 0.545 (0.005) 0.456 (0.005) 0.390 (0.005)
IOR-CD 0.623 (0.005) 0.573 (0.005) 0.601 (0.005) 0.522 (0.005) 0.625 (0.005) 0.571 (0.005) 0.610 (0.005)

Statistical Tests

vs. Median SBO-V IOR-V SBO-C IOR-C SBO-D IOR-D SBO-CD IOR-CD

SBO-V −− −− −− 0 −− −− −−
IOR-V ++ 0 −− ++ 0 ++ −−
SBO-C ++ 0 −− ++ ++ ++ −−
IOR-C ++ ++ ++ ++ ++ ++ 0
SBO-D 0 −− −− −− −− −− −−
IOR-D ++ 0 −− −− ++ 0 −−
SBO-CD ++ − −− −− ++ 0 −−
IOR-CD ++ ++ ++ 0 ++ ++ ++

Win Rate

vs. Median SBO-V IOR-V SBO-C IOR-C SBO-D IOR-D SBO-CD IOR-CD

SBO-V 0.454 (0.005) 0.442 (0.005) 0.401 (0.005) 0.486 (0.005) 0.457 (0.005) 0.466 (0.005) 0.414 (0.005)
IOR-V 0.546 (0.005) 0.495 (0.005) 0.451 (0.005) 0.541 (0.005) 0.526 (0.005) 0.517 (0.005) 0.427 (0.005)
SBO-C 0.558 (0.005) 0.505 (0.005) 0.442 (0.005) 0.558 (0.005) 0.514 (0.005) 0.524 (0.005) 0.450 (0.005)
IOR-C 0.599 (0.005) 0.549 (0.005) 0.558 (0.005) 0.593 (0.005) 0.564 (0.005) 0.562 (0.005) 0.478 (0.005)
SBO-D 0.514 (0.005) 0.459 (0.005) 0.442 (0.005) 0.407 (0.005) 0.458 (0.005) 0.474 (0.005) 0.409 (0.005)
IOR-D 0.543 (0.005) 0.474 (0.005) 0.486 (0.005) 0.436 (0.005) 0.542 (0.005) 0.506 (0.005) 0.429 (0.005)
SBO-CD 0.534 (0.005) 0.483 (0.005) 0.476 (0.005) 0.438 (0.005) 0.526 (0.005) 0.494 (0.005) 0.426 (0.005)
IOR-CD 0.586 (0.005) 0.573 (0.005) 0.550 (0.005) 0.522 (0.005) 0.591 (0.005) 0.571 (0.005) 0.574 (0.005)

The effect of IOR-based optimization is even more substantial. Replacing SBO with IOR (IOR-V) boosts the
win rate from 0.500 to 0.572, already surpassing most SBO variants except SBO-C. Further adding correlation
loss (IOR-C) significantly improves performance, increasing the win rate from 0.572 to 0.636. Although
adding only the distribution loss (IOR-D) results in a modest increase to 0.581, its contribution becomes
crucial when combined with the correlation loss: the full combination (IOR-CD) achieves a win rate of 0.623,
which, while slightly lower than IOR-C alone, offers more consistent performance across both vs. Mean
and vs. Median evaluations. Notably, IOR-CD maintains a stable win rate of 0.522 in both comparisons,
suggesting that the distribution loss enhances the overall robustness and consistency of the optimization
process.
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A similar pattern emerges in the vs. Median results. The addition of C to SBO-V improves performance
from 0.500 to 0.558, while adding D results in a smaller gain to 0.514. The combined loss SBO-CD achieves
0.534, again slightly lower than SBO-C, which underscores that while the correlation loss is the dominant
factor in boosting win rates, the distribution loss contributes to a more reliable performance. When switching
to IOR, IOR-V increases the win rate from 0.500 to 0.546, and adding C further boosts performance to 0.599,
making it the best-performing individual term. Although adding D alone results in a slight drop to 0.543, the
full IOR-CD configuration achieves 0.586—again, slightly lower than IOR-C alone but with the added benefit
of improved generalization across evaluation criteria.

Overall, these results highlight three key findings. First, among the two loss components, the correlation
loss (C) has the strongest impact on performance. Second, while the distribution loss (D) provides only
modest gains when used alone, it plays a crucial complementary role when combined with C, ensuring that
both pairwise relationships and higher-order statistical properties are effectively captured. Third, IOR-based
optimization consistently enhances performance across all variants, with the best overall results achieved
using the full combination (IOR-CD), which balances high win rates with robust generalization.

While our work focuses on tabular datasets, we note that the proposed losses could potentially be applied
to embeddings derived from images or text. Such embeddings capture feature-level structure in a way
that preserves meaningful correlations and distributions, making them suitable targets for correlation- and
distribution-aware regularization. Exploring this direction represents a promising avenue for future research.

A key limitation of our current evaluation is that it focuses on datasets up to approximately 277,000 rows,
whereas real-world tabular applications often involve millions of samples. This limitation is primarily due to
computational time constraints rather than the scalability of the methods themselves. Specifically, training
DGMs and performing extensive hyper-parameter optimization across multiple baselines becomes prohibitively
time-consuming on very large datasets. In our super-computing environment, we impose a 7-day maximum
training time per experiment, which effectively caps the dataset sizes we can explore. Theoretically, our
correlation- and distribution-aware loss functions scale linearly with the number of features (m) and batch size
(B), with time complexities of O(m2B) for the correlation term (due to pairwise computations) and O(mHB)
for the distribution term (where H is the number of moments). Since these losses operate on mini-batches
rather than the full dataset, they remain efficient as dataset size grows. Similarly, IORBO adds negligible
overhead, with its ranking and surrogate refitting steps scaling, which is minor compared to DGM training
costs. We expect our approach to behave robustly on larger scales: the losses should continue to enforce
statistical fidelity effectively and may offer even greater benefits in high-volume scenarios where capturing
complex dependencies is more challenging. Nonetheless, practical bottlenecks—particularly computational
time, memory requirements for large batches, and the need for distributed training—may limit experiments
on extremely large datasets.

7 Conclusion

We presented a unified framework for tabular generative modeling that integrates training, tuning, and
evaluation. While tightly integrated, each component is also designed to be applied independently, making the
framework modular. First, we introduced a novel correlation- and distribution-aware loss function designed
as a regularizer for DGMs in tabular data synthesis, which outperforms the vanilla loss function across most
DGMs. To ensure its robustness, we provided theoretical guarantees, including stability and consistency.
The results suggest that the proposed loss function effectively captures the complexities of arbitrary DGMs.
Future research could focus on developing a tailored loss function for the CTAB-GAN family to match the
strong performance seen with other DGMs. Second, we introduced a novel IORBO approach that leverages
rank-based aggregation to ensure more meaningful comparisons between multiple objectives with varying
units, providing a more robust optimization process. Last, we developed a comprehensive benchmarking
system evaluating statistical similarity, ML TSTR performance, and ML augmentation performance, with
robust statistical tests, offering a valuable tool for future research.

21



Under review as submission to TMLR

References
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In

International Conference on Machine Learning, 2017.

Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Tobias Hepp, Konstantin Nikolaou,
Sergios Gatidis, and Bin Yang. MedGAN: Medical image translation using GANs. Computerized Medical
Imaging and Graphics, 79:101684, 2020.

Laura Aviñó, Matteo Ruffini, and Ricard Gavaldà. Generating Synthetic but Plausible Healthcare Record
Datasets. In KDD workshop on Machine Learning for Medicine and Healthcare, 2018.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter Opti-
mization. In Advances in Neural Information Processing Systems, pp. 2546–2554, 2011.

Ramiro Camino, Christian Hammerschmidt, and Radu State. Generating Multi-Categorical Samples with
Generative Adversarial Networks. In ICML workshop on Theoretical Foundations and Applications of Deep
Generative Models, 2018.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006. ISSN 15337928.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. CatBoost: gradient boosting with categorical
features support. arXiv preprint arXiv:1810.11363, 2018.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017. URL http://archive.ics.uci.
edu/ml.

RA Fisher. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions
of the Royal Society of Edinburgh, 52(2):399–433, 1919.

Bruce B Frey. The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation. SAGE
Publications, 2018.

M Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance.
Journal of the American Statistical Association, 1937.

Milton Friedman. A Comparison of Alternative Tests of Significance for the Problem of m Rankings. The
Annals of Mathematical Statistics, 11(1):86–92, 1940.

Sylvia Frühwirth-Schnatter, Gilles Celeux, and Christian P Robert. Handbook of Mixture Analysis, 2018.

A Goncalves, P Ray, B Soper, J Stevens, L Coyle, and AP Sales. Generation and evaluation of synthetic
patient data. BMC Medical Research Methodology, 20(1):108–108, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 2,
pp. 2672–2680. Curran Associates, Inc., 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of wasserstein gans. In Advances in Neural Information Processing Systems, 2017.

John R Hershey and Peder A Olsen. Approximating the Kullback Leibler divergence between Gaussian mixture
models. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07,
volume 4, pp. IV–317. IEEE, 2007.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data via
diffusion and flow-based gradient-boosted trees. In International Conference on Artificial Intelligence and
Statistics, pp. 1288–1296. PMLR, 2024.

22

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Under review as submission to TMLR

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8107–8116, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Alias-Free Generative Adversarial Networks. Advances in Neural Information Processing Systems, 34:
852–863, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 7th International
Conference on Learning Representations (ICLR), 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations, 2013.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling tabular
data with diffusion models. In International Conference on Machine Learning, pp. 17564–17579. PMLR,
2023.

S Kullback and RA Leibler. On Information and Sufficiency. The Annals of Mathematical Statistics, 22(1):
79–86, 1951.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010. URL http://yann.lecun.com/
exdb/mnist/.

Yingzhou Lu, Minjie Shen, Huazheng Wang, Xiao Wang, Capucine van Rechem, and Wenqi Wei. Machine
learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062, 2023.

Chao Ma, Sebastian Tschiatschek, Richard Turner, José Miguel Hernández-Lobato, and Cheng Zhang. VAEM:
a deep generative model for heterogeneous mixed type data. In Advances in Neural Information Processing
Systems, volume 33, pp. 11237–11247, 2020.

Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical
Association, 1951.

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incomplete heterogeneous
data using VAEs. Pattern Recognition, 107:107501, 2020.

Peter Bjorn Nemenyi. Distribution-free multiple comparisons. Princeton University, 1963.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The Synthetic Data Vault. In International Conference
on Data Science and Advanced Analytics. IEEE, 2016.

Karl Pearson. Method of moments and method of maximum likelihood. Biometrika, 28(1/2):34–59, 1936.

Karl Pearson. On the Criterion that a Given System of Deviations from the Probable in the Case of a
Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random
Sampling. Breakthroughs in Statistics: Methodology and Distribution, pp. 11–28, 1992.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Iker Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing data imputation and acquisition with deep
hierarchical models and Hamiltonian Monte Carlo. In Advances in Neural Information Processing Systems,
volume 35, pp. 35839–35851, 2022.

Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine Learning in Python: Main developments
and technology trends in data science, machine learning, and artificial intelligence. arXiv preprint
arXiv:2002.04803, 2020.

23

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Under review as submission to TMLR

John A Rice. Mathematical statistics and data analysis, volume 371. Thomson/Brooks/Cole Belmont, CA,
2007.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised Learning
using Nonequilibrium Thermodynamics. In International Conference on Machine Learning, pp. 2256–2265.
PMLR, 2015.

Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation Alignment for Unsupervised Domain Adaptation.
Domain Adaptation in Computer Vision Applications, pp. 153, 2017.

Chang Sun, Johan van Soest, and Michel Dumontier. Generating synthetic personal health data using
conditional generative adversarial networks combining with differential privacy. Journal of Biomedical
Informatics, pp. 104404, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Minh H Vu, Tommy Löfstedt, Tufve Nyholm, and Raphael Sznitman. A Question-Centric Model for Visual
Question Answering in Medical Imaging. IEEE Transactions on Medical Imaging, 39(9):2856–2868, 2020.

Minh H Vu, Gabriella Norman, Tufve Nyholm, and Tommy Löfstedt. A Data-Adaptive Loss Function for
Incomplete Data and Incremental Learning in Semantic Image Segmentation. IEEE Transactions on
Medical Imaging, 41(6):1320–1330, 2021.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular data using
conditional GAN. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, pp. 7335–7345, 2019.

Alexandre Yahi, Rami Vanguri, Noémie Elhadad, and Nicholas P Tatonetti. Generative Adversarial Networks
for Electronic Health Records: A Framework for Exploring and Evaluating Methods for Predicting
Drug-Induced Laboratory Test Trajectories. In NIPS workshop on machine learning for health care, 2017.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets with
policy gradient. In AAAI Conference on Artificial Intelligence, 2017.

EL Hacen Zein and Tanguy Urvoy. Tabular data generation: Can we fool xgboost? In NeurIPS 2022 First
Table Representation Workshop, 2022.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao. Privbayes: Private
data release via bayesian networks. ACM Transactions on Database Systems, 42(4):25, 2017.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. CTAB-GAN: Effective Table Data Synthesizing.
In Asian Conference on Machine Learning, pp. 97–112. PMLR, 2021.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-Image Translation Using
Cycle-Consistent Adversarial Networks. In 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2242–2251, 2017.

24



Under review as submission to TMLR

A Hyper-Parameter Search Spaces

Table 10: Logistic Regression search space for classification dataset.

Parameter Distribution

C LogUniform (−4, 4)
max_iter IntUniform (50, 200)
l1_ratio Uniform (0, 1)
algorithm {“svd”, “eig”, “qr”, “svd-qr”, “svd-jacobi”}
solver {“newton-cg”, “lbfgs”, “liblinear”, “sag”, “saga”}
class_weight {“balanced”, None}

number of tuning iterations 30

Table 11: ElasticNet search space for regression dataset.

Parameter Distribution

alpha Uniform (1, 10)
max_iter IntUniform (100, 2000)
l1_ratio Uniform (0, 1)
tol LogUniform (10−5, 10−1)
fit_intercept {True, False}
normalize {True, False}

number of tuning iterations 30

Table 12: Bagging for Logistic Regression search space for classification dataset.

Parameter Distribution

C LogUniform (−4, 4)
max_iter IntUniform (50, 200)
l1_ratio Uniform (0, 1)
algorithm {“svd”, “eig”, “qr”, “svd-qr”, “svd-jacobi”}
solver {“qn”}
class_weight {“balanced”, None}

number of tuning iterations 30

For hyper-parameter search related to TabDDPM, please refer to the work by Kotelnikov et al. (2023).
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Table 13: Bagging for ElasticNet search space for regression dataset.

Parameter Distribution

alpha Uniform (1, 10)
max_iter IntUniform (100, 2000)
l1_ratio Uniform (0, 1)
tol LogUniform (10−5, 10−1)
fit_intercept {True, False}
normalize {True, False}

number of tuning iterations 30

Table 14: SVM search space for classification dataset (LinearSVC).

Parameter Distribution

C LogUniform (0.1, 10)
max_iter IntUniform (100, 1500)
tol LogUniform (−5, −1)
penalty {“hinge”, “squared_hinge”}
loss {True, False}
fit_intercept {True, False}
penalized_intercept {True, False}
class_weight {“balanced”, None}

number of tuning iterations 30

Table 15: SVM search space for regression dataset (LinearSVR).

Parameter Distribution

C LogUniform (0.1, 10)
max_iter IntUniform (100, 1500)
tol LogUniform (−5, −1)
epsilon Uniform (0, 1)
fit_intercept {True, False}
penalized_intercept {True, False}

number of tuning iterations 30

Table 16: RF search space for classification and regression dataset (RandomForestClassifier and RandomFore-
stRegressor).

Parameter Distribution

n_estimators IntUniform (50, 500)
max_depth IntUniform (10, 100)
min_samples_split IntUniform (2, 20)
min_samples_leaf IntUniform (1, 20)
max_features {“sqrt”, “log2”}

number of tuning iterations 30
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Table 17: XGBoost search space for classification and regression dataset (XGBClassifier and XGBRegressor).

Parameter Distribution

n_estimators IntUniform (50, 500)
max_depth IntUniform (3, 15)
learning_rate Uniform (0.01, 0.3)
subsample Uniform (0.5, 1)
colsample_bytree Uniform (0.5, 1)
gamma Uniform (0, 5)
reg_alpha Uniform (0, 1)
reg_lambda Uniform (0, 1)
scale_pos_weight Uniform (1, 10)

number of tuning iterations 30

Table 18: CTGAN, CopulaGAN and DP-CGANS search space.

Parameter Distribution

epochs IntUniform (100, 2 000, 100)
batch_size IntUniform (500, 30 000, 100)
embedding_dim {32, 64, 128, 256}
generator_dim {32, 64, 128, 256}
discriminator_dim {32, 64, 128, 256}
generator_learning_rate Uniform (10−5, 10−3)
generator_decay Uniform (10−7, 10−5)
discriminator_learning_rate Uniform (10−5, 10−3)
discriminator_decay Uniform (10−7, 10−5)

α Uniform (10−2, 104)
β Uniform (10−10, 101)
number of moments {1,2,3,4}

number of tuning iterations 30

Table 19: TVAE search space.

Parameter Distribution

epochs IntUniform (100, 2 000, 100)
batch_size IntUniform (500, 30 000, 100)
embedding_dim {32, 64, 128, 256}
compress_dims {32, 64, 128, 256}
decompress_dim {32, 64, 128, 256}
loss_factor {0.25, 0.5, 1, 2, 4}
l2scale Uniform (10−6, 10−4)

α Uniform (10−2, 104)
β Uniform (10−10, 101)
number of moments {1,2,3,4}

number of tuning iterations 30
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Table 20: CTAB-GAN search space.

Parameter Distribution

epochs IntUniform (100, 2 000, 100)
batch_size IntUniform (500, 4 000, 100)
test_ratio {0.1, 0.2, 0.3, 0.4, 0.5}
n_class_layer {1, 2, 3, 4}
class_dim {32, 64, 128, 256}
random_dim {16, 32, 64, 128}
num_channels {16, 32, 64}

α Uniform (10−2, 104)
β Uniform (10−10, 101)
number of moments {1,2,3,4}

number of tuning iterations 30
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