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Abstract001

Vision-Language Models (VLMs) have002
achieved impressive performance across a003
wide range of multimodal tasks, yet they often004
exhibit inconsistent behavior when faced with005
semantically equivalent inputs—undermining006
their reliability and robustness. Recent bench-007
marks, such as MM-R3, highlight that even008
state-of-the-art VLMs can produce divergent009
predictions across semantically equivalent010
inputs, despite maintaining high average011
accuracy. Prior work addresses this issue by012
modifying model architectures or conducting013
large-scale fine-tuning on curated datasets. In014
contrast, we propose a simple and effective015
test-time consistency framework that enhances016
semantic consistency without supervised017
re-training. Our method is entirely post-hoc,018
model-agnostic, and applicable to any VLM019
with access to its weights. Given a single020
test point, we enforce consistent predictions021
via two complementary objectives: (i) a022
Cross-Entropy Agreement Loss that aligns023
predictive distributions across semantically024
equivalent inputs, and (ii) a Pseudo-Label025
Consistency Loss that draws outputs toward026
a self-averaged consensus. Our method is027
plug-and-play, and leverages information from028
a single test-input itself to improve consistency.029
Experiments on the MM-R3 benchmark show030
that our framework yields substantial gains031
in consistency across state-of-the-art models,032
establishing a new direction for inference-time033
adaptation in multimodal learning.034

1 Introduction035

Vision-Language Models (VLMs) (Liu et al.,036

2024a,b; Wang et al., 2024; Hurst et al., 2024) have037

achieved impressive performance across a wide038

range of multimodal tasks, including visual ques-039

tion answering (Antol et al., 2015), captioning (Lin040

et al., 2014; Sharma et al., 2018; Chen et al., 2015),041

and reasoning (Johnson et al., 2017; Zellers et al.,042

2019). While existing evaluations predominantly043
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Figure 1: Comparison between training-time (top) and
our test-time (bottom) consistency frameworks. While
prior work (e.g., (Chou et al., 2024)) needs large-scale
supervised fine-tuning with curated dataset to enforce
consistency, our method operates entirely post-hoc by
adapting to a single test point with few gradient steps at
test-time

focus on accuracy, a growing body of work high- 044

lights a critical shortcoming: semantic inconsis- 045

tency. That is, VLMs producing divergent outputs 046

when prompted with semantically equivalent in- 047

puts—undermining their reliability, interpretability, 048

and deployment in high-stakes settings. 049

Despite achieving strong accuracy on vision- 050

language tasks, modern VLMs often yield incon- 051

sistent responses when presented with semantically 052

equivalent variants of a test query. The MM-R3 053

benchmark, recently proposed in Chou et al. (2024), 054

highlights this issue by evaluating models under 055

three types of controlled perturbations: question 056

rephrasing, image restyling, and context masking. 057

Results reveal that even state-of-the-art models 058

show significant variance across these conditions, 059

illustrating that high accuracy does not imply se- 060

mantic consistency—a fundamental prerequisite 061

for robust multimodal reasoning. While Chou et al. 062

(2024) address consistency via adapter-based fine- 063

tuning, their approach requires intrusive architec- 064

tural modifications and access to a sizable training 065

dataset. 066
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In contrast, we study the problem of improving067

consistency at test time—using only the test in-068

put itself, without any access to model internals,069

training data, or loss functions. Unlike prior meth-070

ods that rely on supervised re-training, additional071

curated datasets, or adapter insertion (Chou et al.,072

2024), our framework makes no assumptions about073

training and operates entirely at inference. This is074

especially important in real-world where retrain-075

ing is infeasible due to proprietary models, limited076

compute, or lack of access to original training data.077

We propose a simple, general-purpose test-time078

consistency framework that can be applied to any079

probabilistic vision-language model (VLM) in a080

plug-and-play fashion. Our method leverages se-081

mantically equivalent variants of a given input and082

encourages agreement among the resulting predic-083

tions using two lightweight objectives: (1) a Cross-084

Entropy Agreement Loss, which penalizes diver-085

gence in output distributions, and (2) a Pseudo-086

Label Consistency Loss, which aligns predictions087

toward a consensus output. Crucially, our method088

requires no modifications to the model architecture089

and operates entirely at inference time. Intuitively,090

it encourages the model to generate invariant pre-091

dictions across different linguistic and visual re-092

alizations of the same query, thereby promoting093

robustness and semantic stability.094

Importantly, our method adapts model behav-095

ior at test time—even for a single input—by uti-096

lizing the information embedded in that input’s097

semantic variations. This departs from training-098

centric paradigms and instead exploits the rich sig-099

nal present in the test data itself, which prior work100

often overlooks. Because our framework requires101

no access to original training data, loss functions,102

or model internals, and avoids retraining or aux-103

iliary supervision, it can be seamlessly integrated104

into any VLM pipeline regardless of architecture.105

We evaluate our approach on the standard MM-106

R3 benchmark and demonstrate substantial im-107

provements in consistency across multiple open-108

source and proprietary VLMs. Our results show109

that even strong models benefit from targeted110

inference-time regularization, and we advocate for111

consistency—as well as accuracy—to be a central112

design goal in future multimodal learning systems.113

Our work makes the following contributions:114

• We address the underexplored problem of test-115

time consistency in VLMs by proposing a sim-116

ple, model-agnostic framework that improves117

consistency in VLM response across semanti-118

cally equivalent inputs. Our method operates en- 119

tirely post-hoc—requiring only access to model 120

weights and using information derived solely 121

from a single test input. It requires no training 122

dataset, no access to original loss functions or 123

training procedures, and no supervised retrain- 124

ing—making it broadly applicable across models 125

and practical deployment settings. 126

• Our framework leverages two complementary 127

objectives: (1) a Cross-Entropy Agreement Loss 128

to reduce divergence among predictions on per- 129

turbed inputs, and (2) a Pseudo-Label Consis- 130

tency Loss to align predictions towards a con- 131

sensus output. Unlike prior work focused on 132

training-time consistency or fine-tuning, our 133

method makes no assumptions about model train- 134

ing, and is plug-and-play, requiring only access 135

to model outputs. 136

• We show that our framework significantly im- 137

proves consistency across linguistic and visual 138

perturbations in the MM-R3 benchmark without 139

retraining or architectural changes. Our results 140

highlight that even a single test point contains 141

valuable signal that can be used to adapt model 142

behavior at inference, offering a new paradigm 143

for robust multimodal reasoning. 144

2 Related Works 145

Consistency in Vision-Language Models. 146

While existing evaluations of Vision-Language 147

Models (VLMs) predominantly focus on accuracy, 148

a growing body of work highlights a critical 149

shortcoming: semantic inconsistency (Chou 150

et al., 2024). That is, VLMs often produce diver- 151

gent outputs when prompted with semantically 152

equivalent inputs—undermining their reliability, 153

interpretability, and applicability in high-stakes 154

settings. The MM-R3 benchmark (Chou et al., 155

2024) systematically investigates this issue, intro- 156

ducing a suite of perturbation-based evaluations 157

across rephrased questions, stylized images, 158

and masked contexts. Their results show that 159

even state-of-the-art VLMs exhibit significant 160

inconsistency across these settings, despite high 161

accuracy—revealing a fundamental gap between 162

correctness and stable reasoning. 163

While prior efforts to improve consistency 164

(Chou et al., 2024) typically focus on modifying 165

training objectives, leveraging larger models, or 166

fine-tuning on curated data, these approaches are 167

computationally intensive and often impractical. 168
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In contrast, we address this challenge from a test-169

time perspective, proposing a lightweight, post-hoc170

framework that improves consistency without re-171

training or access to labels.172

Test-Time Adaptation. Test-time adaptation173

methods have progressed from entropy-based con-174

fidence maximization to efficient modular tun-175

ing. MEMO (Zhang et al., 2022) improves robust-176

ness by enforcing confident and consistent predic-177

tions across augmented test-time views. Test-Time178

Prompt Tuning (Shu et al., 2022) adapts CLIP by179

optimizing prompts at inference to better match180

shifted distributions. MedAdapter (Shi et al., 2024)181

steers pretrained LLMs toward domain-specific182

tasks by updating small adapter modules without183

full retraining. LoRA-TTT (Kojima et al., 2025)184

further reduces adaptation cost by fine-tuning low-185

rank adapters at test time. Karmanov et al. (2024)186

proposed a lightweight VLM adaptation strategy187

that freezes the core model and updates only a188

small projection head via entropy minimization.189

While most of these works focus on improving ac-190

curacy via test-time optimization, our work targets191

a complementary and underexplored axis: semantic192

consistency. Unlike methods that require retrain-193

ing, or architectural modifications, our approach194

is entirely post-hoc, model-agnostic, and leverages195

information from a single test input—making it196

lightweight, scalable, and broadly applicable.197

Pseudo-Labeling and Self-Training. Pseudo-198

labeling has been widely used in semi-supervised199

learning (Yarowsky, 1995; Lee et al., 2013; Berth-200

elot et al., 2019; Sohn et al., 2020; Zhang et al.,201

2021), often paired with augmentations or confi-202

dence thresholds. In vision-language models, it has203

been employed to generate pseudo-captions (Yang204

et al., 2022), region–phrase alignments (Chou205

et al., 2022), and visual-language prototypes (Ali206

et al., 2025). We adopt a test-time variant of207

pseudo-labeling, aggregating model outputs across208

perturbed inputs into a self-consistent consen-209

sus—encouraging stability without requiring ex-210

ternal supervision or retraining.211

Entropy-Based Adaptation. Entropy minimiza-212

tion has been a foundational strategy for improving213

robustness under distribution shift. Grandvalet and214

Bengio (Grandvalet and Bengio, 2004) introduced215

it as a regularization objective for unlabeled data,216

and TENT (Wang et al., 2021) applied it for test-217

time adaptation by optimizing batch norm param-218

eters. MEMO (Zhang et al., 2022) improved on 219

this by combining entropy minimization with multi- 220

view consistency during inference. Extensions to 221

large models include entropy-guided generation in 222

LLMs (Kuhn et al., 2023; Farquhar et al., 2024) 223

and efficient test-time tuning for vision-language 224

models by updating only lightweight projection 225

heads (Karmanov et al., 2024). Our method builds 226

on this line of work by extending entropy-based 227

objectives to open-ended multimodal settings—not 228

to improve accuracy, but to enhance semantic con- 229

sistency under perturbations, an underexplored yet 230

practically important aspect of reliability and inter- 231

pretability in multimodal reasoning. 232

3 Approach 233

3.1 Problem Setting 234

We follow the procedure and settings defined in the 235

MM-R3 benchmark to evaluate consistency under 236

diverse semantic variations. Given a test input x = 237

(I,Q), the benchmark provides K semantically 238

equivalent variants (Ik, Qk) constructed via: 239
• Question Rephrasing: Paraphrased variants of Q 240

generated using a language model keeps I fixed. 241

• Image Restyling: Stylized versions of I using 242

neural style transfer (e.g., Mosaic, Candy, Undie, 243

and Grayscale) with Q not altered. 244

• Context Reasoning: Variants of I with different 245

occlusions applied to a specific object region, 246

while keeping Q once again fixed. 247
Each perturbed pair (Ik, Qk) is passed through 248

the VLM to obtain response distributions: 249

pk = VLM(Ik, Qk), for k = 1, . . . ,K (1) 250

3.2 Method 251

Overview. We propose a lightweight, test-time 252

strategy to improve the semantic consistency of 253

Vision-Language Models (VLMs) by encouraging 254

agreement across semantically equivalent variants 255

of a single test input. Our method operates entirely 256

post-hoc and leverages only the information present 257

in the given test example. It performs a small num- 258

ber of inference-time updates (typically 1–4 steps), 259

requiring no access to training data, ground-truth 260

labels, or model internals. 261

Our approach combines two complementary ob- 262

jectives: (1) a Cross-Entropy Agreement Loss 263

that aligns token-level output distributions across 264

perturbed inputs, and (2) a Pseudo-Label Con- 265

sistency Loss that enforces convergence toward a 266

stable, consensus output prediction. These objec- 267

tives guide the model to become more consistent at 268
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Figure 2: Overview of our test-time consistency
framework. Given a test input with semantically equiv-
alent input variants (e.g., restyled images), we forward
them through a pretrained VLM to obtain predictions.
Two complementary objectives are used to improve con-
sistency: (1) Cross-Entropy Agreement Loss, which
aligns token-level output distributions across variants,
and (2) Pseudo-Label Consistency Loss, which encour-
ages agreement with a consensus pseudo-label. The
model is updated with few (1-4) steps using gradients
from these objectives, enabling consistent final predic-
tions without access to training data or model internals.

inference, without altering its original architecture269

or parameters via supervised training.270

3.3 Cross-Entropy Agreement Loss271

To promote consistency across semantically equiv-272

alent input variants, we introduce a Cross-Entropy273

Agreement Loss that aligns their token-level out-274

put distributions. Given a test input, we generate275

VLM output for K perturbed variants and obtain276

token-level logits for each through a forward pass.277

Let zjk ∈ RV denote the logits over the vocab-278

ulary V at output token position j of the VLM279

response for the k-th input variant. Let Lk be the280

total number of valid output tokens in response for281

that variant. We compute the average logits across282

the decoded sequence for each variant k:283

z̄k =
1

Lk

Lk∑
j=1

zjk (2)284

We then apply softmax to obtain the normalized285

token distribution:286

pk = softmax(z̄k) (3)287

The agreement loss is defined as the average of288

all pairwise symmetric cross-entropies across the289

K output distributions:290

LCE =
2

K(K − 1)

∑
i<j

CE(pi,pj) + CE(pj ,pi) (4)291

This loss encourages alignment of the global out-292

put tokens across K input variants while ensuring293

the model’s generation is distributionally consis-294

tent, even if wording or phrasing changes.295

3.4 Pseudo-Label Consistency Loss 296

To complement distributional alignment, we in- 297

troduce a Pseudo-Label Consistency Loss that en- 298

forces consistency at the output level by aligning 299

each variant’s predicted sequence to a common 300

consensus output prediction. 301

Let {y1, . . . ,yK} be the decoded textual out- 302

puts from the K semantically equivalent input vari- 303

ants, generated using greedy decoding. To com- 304

pute a consensus label, we define a string similarity 305

function sim(·, ·) based on normalized Levenshtein 306

distance (e.g., token set ratio). We cluster the K 307

output responses by assigning two responses yi 308

and yj to the same cluster if 309

sim(yi,yj) ≥ τ, (5) 310

where τ ∈ [0, 1] is a fixed similarity threshold (i.e., 311

τ = 0.85). Among all clusters, we identify the 312

largest one, and from within it, select the most 313

frequent response as the pseudo-label: 314

ŷpseudo = mode (Cmax) , (6) 315

where Cmax is the largest similarity-based cluster. 316

We then tokenize ŷpseudo and use it as the super- 317

vision target for all K variants. Let pk denote the 318

token-level predicted distribution from variant k 319

(i.e., the model’s output logits after softmax). The 320

Pseudo-Label Consistency Loss is defined as: 321

LPL =
1

K

K∑
k=1

CE(ŷpseudo,pk), (7) 322

where CE(·, ·) denotes the cross-entropy loss be- 323

tween pseudo-label tokens and predicted distri- 324

bution. This loss encourages all variants to con- 325

verge to the dominant semantic response, enhanc- 326

ing answer-level consistency of perturbed inputs. 327

Complementarity of Losses. The Cross-Entropy 328

Agreement Loss encourages token-level alignment 329

by smoothing output distributions across input vari- 330

ants, while the Pseudo-Label Consistency Loss en- 331

forces prediction-level convergence by aligning de- 332

coded outputs with a dominant consensus response. 333

Together, these losses regularize both the internal 334

generation process and final output, yielding im- 335

proved semantic consistency at test time using only 336

the information in single-test point without modi- 337

fying the underlying model. 338

3.5 Final Objective and Inference 339

Given a test input with K semantically equivalent 340

variants (Ik, Qk) (e.g., via question rephrasing, im- 341

age restyling, or context masking), we adapt the 342
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model using gradients from two complementary ob-343

jectives: the Cross-Entropy Agreement Loss LCE344

and the Pseudo-Label Consistency Loss LPL.345

The total loss at each update step is computed as346

a weighted sum:347

Ltotal = α · LCE + β · LPL, (8)348

where α and β are hyperparameters balancing dis-349

tributional agreement and semantic convergence.350

We optimize this objective for a small number of351

gradient-based updates—typically between 1 and352

4—using only the current test example, without353

access to any labeled data or training corpus.354

Adaptive Step Selection Different test inputs355

may benefit from different numbers of adaptation356

steps—while some improve with a few updates,357

others may degrade due to over-adaptation. To358

address this, we introduce an adaptive mechanism359

that dynamically selects the optimal number of360

steps for each test point.361

After each update step t ∈ {0, 1, . . . , T}, we362

decode the model’s output responses for the K363

input variants. To assess internal consistency,364

we compute the average pairwise token-set sim-365

ilarity—based on normalized Levenshtein dis-366

tance—among the K decoded answers and the pre-367

viously generated pseudo-label (used in the Pseudo-368

Label Consistency Loss). The similarity score for369

step t is given by:370

scoret =
1

K(K − 1)

∑
i<j

sim(ati, a
t
j), (9)371

where ati and atj denote either one of the K decoded372

answers or the shared pseudo-label. The step t∗373

with the highest score is selected as the final out-374

put, reflecting the most consistent model behavior375

during adaptation.376

t∗ = argmax
t

scoret. (10)377

This selection mechanism is fully unsupervised378

and relies solely on model outputs without using379

ground-truth annotations. It enables per-instance,380

test-time adaptation that is both robust and efficient,381

ensuring that predictions remain semantically con-382

sistent while avoiding over-updating.383

Method Variants. We report results for two vari-384

ants of our method. In the first, we use a fixed385

number of adaptation steps (T = 2) for all sam-386

ples, which we refer to as Test-time (constant T ).387

In the second, we use the adaptive step selection388

mechanism described above to dynamically choose389

the optimal number of updates per input. We refer 390

to this variant as Test-time (adapt. T ). This com- 391

parison allows us to assess the trade-offs between 392

simplicity and input-specific adaptivity. 393

4 Experiments 394

Dataset. We evaluate our method on the standard 395

MM-R3 dataset (Chou et al., 2024), which con- 396

sists of three test-time consistency tasks: question 397

rephrasing, image restyling, and context reason- 398

ing. The question rephrasing task assesses whether 399

VLMs produce consistent answers to semantically 400

equivalent questions phrased differently. The im- 401

age restyling task evaluates consistency under vi- 402

sual domain shifts by presenting stylized versions 403

of the image. The context reasoning task tests the 404

model’s ability to reason under partial occlusion. 405

Our evaluations are conducted on MM-R3 test set. 406

Models. We evaluate our method on 407

widely used state-of-the-art open-source 408

Vision-Language Models (VLMs). Specif- 409

ically, LLaVA 1.5M (Liu et al., 2024a) 410

(llava-v1.5-7b version), LLaVA-Next (Liu 411

et al., 2024b) (llava-v1.6-mistral-7b check- 412

point), and Qwen2-VL (Wang et al., 2024) 413

(Qwen2-VL-7B-Instruct variant). These are all 414

strong VLM models, with Qwen2-VL broadly 415

considered the strongest among the three, 416

Our choice of these models is motivated by the 417

fact that these models are widely used as founda- 418

tions for downstream applications and frequently 419

serve as initialization points for developing more 420

advanced VLMs. Since our method involves mod- 421

ifying model parameters at test time, we restrict 422

our evaluation to open-source models and exclude 423

proprietary systems such as GPT-4V or Gemini. 424

Evaluating on these representative models enables 425

us to assess the generality, practical utility, and 426

broader impact of test-time consistency improve- 427

ments across VLMs. 428

Implementation Details. Please refer to the Ap- 429

pendix A.3. 430

Evaluation Metrics. Since VLM responses are 431

open-ended and linguistically diverse, we adopt 432

evaluation metrics similar to those introduced in 433

MM-R3 (Chou et al., 2024), in order to capture both 434

correctness and consistency. We briefly introduce 435

the core evaluation metrics used to assess correct- 436

ness and consistency; full metric definitions and 437

implementation details are provided in Appendix. 438

5



Table 1: Overall results. We highlight our approach in
orange color and the overall results in gray color. The
best-performing method is in bold for each models.

Models Acc SGT Con SC Oall

Q
ue

st
io

n
R

ep
hr

as
in

g LLaVa 1.5M 36.18 62.96 48.55 64.10 52.73
+ Constant T 38.00 65.05 77.67 84.65 63.03
+ Adapt. T 39.58 65.10 79.11 86.10 64.08

LLaVa-Next 42.89 64.89 49.18 65.69 55.61
+ Constant T 44.48 68.74 83.39 88.47 68.25
+ Adapt. T 44.74 68.67 85.18 89.92 68.83

Qwen2-VL 66.72 79.69 65.78 76.16 72.07
+ Constant T 70.79 82.66 90.44 93.52 83.66
+ Adapt. T 72.14 83.27 93.6 95.64 85.33

Im
ag

e
R

es
ty

lin
g

LLaVa 1.5M 9.61 34.85 18.96 56.91 28.03
+ Constant T 12.09 35.62 20.14 59.01 29.77
+ Adapt. T 17.94 40.15 33.90 64.46 36.52

LLaVa-Next 17.57 41.47 55.34 71.36 40.27
+ Constant T 18.99 42.49 88.25 91.25 45.80
+ Adapt. T 18.71 42.52 91.85 93.16 46.00

Qwen2-VL 21.13 39.25 61.67 75.85 41.96
+ Constant T 22.60 42.32 98.30 98.97 48.85
+ Adapt. T 22.58 46.40 99.14 99.45 51.20

C
on

te
xt

R
ea

so
ni

ng

LLaVa 1.5M 16.11 42.69 65.64 75.08 41.47
+ Constant T 22.88 49.49 88.89 93.45 51.81
+ Adapt. T 31.04 55.14 72.11 81.90 55.26

LLaVa-Next 30.24 27.43 32.11 58.44 35.23
+ Constant T 32.50 50.84 89.91 90.16 56.97
+ Adapt. T 32.29 53.85 95.24 96.66 59.45

Qwen2-VL 29.09 40.03 34.58 53.70 38.77
+ Constant T 29.60 50.11 91.17 91.75 55.52
+ Adapt. T 30.42 53.00 99.53 99.66 58.80

• Accuracy (Acc): Measures correctness using439

fuzzy string matching, accounting for minor lex-440

ical variations. A similarity threshold of 85 is441

used to determine a match.442

• Similarity with Ground Truth (SGT): Com-443

putes semantic similarity between the model’s444

response and the reference answer using BERT445

sentence embeddings, offering a more flexible446

alternative to exact match.447

• Consistency Accuracy (Con): Evaluates seman-448

tic agreement across responses to semantically449

equivalent inputs. Responses are considered450

consistent if their pairwise similarity exceeds a451

threshold of 0.7.452

• Consistency Similarity (SC): Computes the av-453

erage pairwise similarity across all response vari-454

ations, providing a smoother measure of output455

invariance.456

• Overall Score (Oall): The harmonic mean of457

correctness and consistency metrics.458

Hmean(mean(Acc,SGT),mean(Con,SC)). (11)459
We use the harmonic mean to emphasize models460

that are balanced in both accuracy and consis-461

tency, as it penalizes performance when either462

component is low. This provides a unified mea-463

sure of overall model quality.464

4.1 Main Results465

Overview. Table 1 presents the performance of466

our test-time consistency framework across three467

tasks in the MM-R3 benchmark. We report results 468

for each base model with two variants: Test-time 469

(constant T ) and Test-time (adaptive T ). Across 470

all tasks, our method consistently improves seman- 471

tic consistency and overall performance, with the 472

adaptive variant yielding the best results. 473

Question Rephrasing. In the rephrasing task, 474

our adaptive test-time method yields substantial 475

gains in consistency and overall score across all 476

three models while preserving accuracy. For in- 477

stance, on LLaVA-1.5M, Oall improves from 52.73 478

(base) to 64.08, with consistency rising from 48.55 479

to 79.11 and Acc increasing from 36.18 to 39.58. 480

LLaVA-Next and Qwen2-VL also show notable 481

gains, with the adaptive variant achieving the best 482

Oall for each model: 68.83 and 85.33, respectively. 483

These results validate the ability of our method to 484

enforce semantic invariance across linguistic per- 485

turbations without reducing accuracy. 486

Image Restyling. This task poses a significant 487

domain shift challenge due to stylized visual in- 488

puts. Our method leads to especially large improve- 489

ments in consistency for all models. On LLaVA- 490

Next, consistency improves from 55.34 (base) to 491

91.85 (Test-time) and further to 91.85 (Adaptive), 492

with Oall reaching 46.00. Qwen2-VL sees the high- 493

est performance overall, with the adaptive variant 494

achieving Oall = 51.20 and nearly perfect consis- 495

tency (99.14). These results demonstrate the robust- 496

ness of our framework under visual perturbations. 497

Context Reasoning. Our approach also improves 498

model behavior in the context reasoning task, 499

which requires stable answers under partial infor- 500

mation. Our method delivers both higher consis- 501

tency and improved accuracy. Specifically, LLaVA- 502

1.5M shows a dramatic gain in Oall from 41.47 to 503

55.26 (adaptive), while LLaVA-Next reaches the 504

highest score of 59.45. Interestingly, even though 505

Qwen2-VL starts from a stronger baseline, our 506

method boosts its Oall to 58.80 and consistency to 507

99.53. These results suggest that test-time consis- 508

tency not only stabilizes outputs but also improves 509

factual grounding under ambiguity. 510

4.2 Comparison with Fine-Tuning 511

To contextualize the effectiveness of our approach, 512

we compare it against the fully fine-tuned model 513

from MM-R3 (Chou et al., 2024), which retrains 514

LLaVA-1.5M through large-scale supervised train- 515

ing using task-specific data from the curated MM- 516
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Table 2: Comparison of our approach with super-
vised fine-tuned model on LLaVa 1.5M model.

Models Acc SGT Con SC Oall

Question Rephrasing

LLaVa 1.5M 36.18 62.96 48.55 64.1 52.73
+ Finetuning

(Chou et al., 2024)
42.55 69.03 63.79 75.83 62.02

+ Adapt. T 39.58 65.10 79.11 86.10 64.08

Image Restyling

LLaVa 1.5M 9.61 34.85 18.96 56.91 28.03
+ Finetuning

(Chou et al., 2024)
25.45 50.67 50.94 66.06 46.11

+ Adapt. T 17.94 40.15 33.90 64.46 36.52

Context Reasoning

LLaVa 1.5M 16.11 42.69 65.64 75.08 41.47
+ Finetuning

(Chou et al., 2024)
63.93 76.62 75.00 83.91 74.58

+ Adapt. T 31.04 55.14 72.11 81.9 55.26

Table 3: Ablation Studies on contribution of different
loss functions we use in our approach

LCE LPL Acc SGT Con SC Oall

Q
ue

st
io

n
R

ep
hr

as
in

g 61.44 69.71 52.29 66.86 62.43
59.48 71.70 52.94 66.36 62.48
66.67 76.21 85.62 88.90 78.56
66.01 77.18 90.20 93.10 80.39

Im
ag

e
R

es
ty

lin
g 14.16 38.36 54.33 70.77 36.99

16.12 39.86 61.86 74.10 39.65
17.93 40.73 83.97 89.86 43.86
19.25 40.35 84.94 90.40 44.48

C
on

te
xt

R
ea

so
ni

ng 32.68 27.23 31.37 55.81 35.51
28.10 52.19 55.56 71.80 49.25
32.77 56.13 97.14 97.1 60.99
33.33 55.76 98.69 99.26 61.44

Table 4: Hyper-parameter search on LLaVa-Next.

α β Acc SGT Con SC Oall

Q
ue

st
io

n
R

ep
hr

as
in

g 0.1 1 66.01 76.38 86.27 89.81 78.73
0.5 1 66.01 77.18 90.20 93.10 80.39
1 1 64.71 75.63 83.00 87.82 77.04
1 0.5 64.71 75.68 83.01 87.88 77.07
1 0.1 65.36 75.61 79.08 84.83 75.79

Im
ag

e
R

es
ty

lin
g 0.1 1 17.91 40.23 86.22 91.01 43.78

0.5 1 19.25 40.35 84.94 90.4 44.48
1 1 17.93 40.28 85.24 90.13 43.70
1 0.5 17.93 40.28 85.26 90.47 43.73
1 0.1 17.84 40.60 82.37 87.19 43.46

C
on

te
xt

R
ea

so
ni

ng

0.1 1 32.68 55.32 97.39 98.11 60.68
0.5 1 33.33 55.76 98.69 99.26 61.44
1 1 33.33 55.69 97.39 98.30 61.19
1 0.1 32.68 55.17 96.08 97.25 60.4
1 0.5 32.68 55.21 94.77 96.30 60.20

R3 training set. In contrast, our method adapts the517

model using only a single test point and two test-518

time gradient steps, without access to labeled data,519

training code, or model internals.520

Table 2 presents the results on three MM-R3521

tasks. Despite being significantly lighter in terms522

of computational cost and supervision, our method523
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Figure 3: We show effect of different number of update
steps for each task.

achieves competitive—and in some cases supe- 524

rior—performance compared to full fine-tuning. 525

Specifically, on the Question Rephrasing task, it 526

achieves an Oall score of 64.08, outperforming the 527

fine-tuned model (62.02) by a notable margin. 528

On Context Reasoning, although full fine-tuning 529

achieves the highest score (74.58), our method still 530

improves substantially over the base model (55.26 531

vs. 41.47), again without any retraining. For Image 532

Restyling, our method narrows the gap consider- 533

ably (36.52 vs. 46.11), demonstrating strong robust- 534

ness to visual perturbations even without additional 535

training data. Notably, our method underperforms 536

on these tasks in overall score because full fine- 537

tuning jointly learns the novel task (unsupported 538

by the base VLM) through curated training dataset 539

and improves consistency. It can be seen that the 540

performance of our approach on consistency (i.e 541

Con) is nearly equivalent to that of full-finetuning, 542

while on accuracy the improvement drops. This is 543

not surprising as (Chou et al., 2024) learns from 544

voluminous training data, which our model is not 545

designed to do being a test-time approach. 546

4.3 Ablation Study 547

All experiments in the ablation studies are per- 548

formed on the LLaVA-Next model, unless specified 549

otherwise. 550

4.3.1 Contribution of each component in our 551

test-time consistency framework 552

To understand the contribution of each compo- 553

nent in our test-time consistency framework, we 554

perform an ablation study by selectively enabling 555

the Cross-Entropy Agreement Loss (LCE) and the 556

Pseudo-Label Consistency Loss (LPL). Table 3 557

reports results across all three MM-R3 tasks. 558

Complementary Benefits. We observe that both 559

losses independently contribute to improving con- 560

sistency and overall performance. Applying only 561

LCE improves consistency over the base model in 562

all tasks, while LPL alone often yields stronger 563

gains in Acc. 564
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Best Results with Combined Loss. The full565

method—using both LCE and LPL—achieves the566

highest overall performance across all tasks. For567

instance, in the question rephrasing task, the com-568

bination yields Oall = 80.39 and consistency of569

90.20, outperforming both individual losses. Simi-570

lar trends are observed in image restyling and con-571

text reasoning, where the joint objective achieves572

the best Oall scores of 44.48 and 61.44, respec-573

tively. These results show the complementary roles574

of two losses: LCE promotes token-level alignment575

of outputs across input perturbations, while LPL576

anchors model predictions to a consensus output.577

4.3.2 Ablation on number of updated steps.578

Figure 3 shows the impact of varying the number579

of gradient update steps (T ) in our Test-time (con-580

stant T ) variant, where a fixed number of updates581

is applied to all test inputs. We observe that per-582

formance improves initially but degrades beyond583

a certain point, revealing a trade-off between ef-584

fective adaptation and overfitting. Across all three585

tasks, setting T = 2 yields the best score (Oall).586

The performance drop beyond T = 2 is most587

pronounced in the Question Rephrasing and Con-588

text Reasoning tasks, likely due to over-adaptation589

and overfitting on linguistic variations or ambigu-590

ous inputs. In contrast, the Image Restyling task is591

relatively robust to the number of updates, suggest-592

ing greater stability under visual perturbations.593

This ablation is specific to the Test-time (con-594

stant T ) setup. Our alternative variant, Test-time595

(adapt. T ), automatically selects the optimal num-596

ber of updates per instance using the adaptive step597

selection mechanism described in Section 3.5. As598

such, it does not require manual tuning or per-task599

sensitivity analysis. Together, these two variants600

allow us to assess the trade-offs between simplicity601

and input-specific adaptability.602

4.3.3 Ablation on Loss Weighting Coefficients603

We ablate the loss weighting coefficients α and β604

in our total loss Ltotal = α · LCE + β · LPL, using605

LLaVA-Next across the MM-R3 tasks. Results in606

Table 4 show that our method is robust to a range607

of settings, but performance is highest when both608

objectives are appropriately balanced.609

The best results are obtained with α = 0.5 and610

β = 1, yielding top Oall scores across all tasks:611

80.39 (Rephrasing), 44.48 (Restyling), and 61.44612

(Reasoning). Performance drops slightly when ei-613

ther loss dominates—for example, using β = 0.1614

reduces consistency and overall score.615

Table 5: Results on original OKVQA dataset task.

Acc LLaVA 1.5M LLaVA-Next Qwen2-VL

Original 55.09 54.69 54.13
+ Constant T 53.98 56.10 58.61

4.3.4 Preservation of Base Model Capabilities 616

To ensure that our test-time consistency framework 617

does not degrade the model’s original capabili- 618

ties, we evaluate performance on the unperturbed 619

OKVQA dataset (Marino et al., 2019) before and 620

after adaptation. For this experiment, we generate 621

three semantically equivalent rephrasings of each 622

original question using GPT-4V. These rephrasings 623

are used during adaptation, while the final eval- 624

uation is performed on the original (unmodified) 625

question from OKVQA dataset. 626

Results are shown in Table 5. Both LLaVA-Next 627

and Qwen2-VL improve in accuracy on original un- 628

perturbed input after test-time adaptation—rising 629

from 54.69 to 56.10 and from 54.13 to 58.61, re- 630

spectively. This indicates that our method not only 631

preserves but can even enhance model performance 632

on standard benchmarks. LLaVA 1.5M shows a 633

minor drop (55.09 → 53.98), suggesting slightly 634

higher sensitivity in smaller models. Overall, these 635

results show that our approach does not degrade on 636

the original task distribution, and instead enables 637

consistency improvements. 638

4.3.5 Ablation on Decoding Temperature. 639

The ablation studies on different decoding temper- 640

atures, τ = 0, 0.5, 1 are shown in Appendix A.1. 641

4.3.6 Qualitative Results. 642

We show qualitative results for three tasks in the 643

Appendix (see Appendix A.4 for more details). 644

5 Conclusion. 645

We present a simple yet effective test-time consis- 646

tency framework for vision–language models that 647

requires no access to curated training data, model 648

internals, or supervised fine-tuning. By leverag- 649

ing semantically equivalent variants of each input 650

and enforcing agreement through two lightweight 651

losses, our method seamlessly adapts VLMs at 652

inference-time using inherent information in single 653

test-input. Experiments on the MM-R3 benchmark 654

show that our approach significantly improves con- 655

sistency while preserving or enhancing accuracy. 656

We advocate for consistency as a core evaluation 657

criterion for building reliable, real-world VLM sys- 658

tems in future work. 659

8



Limitations660

Our analysis is limited by the scope of the MM-R3661

dataset and its predefined perturbations, which may662

not fully capture the diversity of real-world consis-663

tency challenges. While our method improves con-664

sistency without access to training data or model in-665

ternals, it requires multiple forward and backward666

passes per test input, which increases inference-667

time latency. However, it remains significantly668

more efficient and scalable overall compared to669

full fine-tuning, as it avoids large-scale training670

and need for supervision. Additionally, since adap-671

tation is performed locally on a single test point,672

it may not correct broader model deficiencies or673

systematic biases. Finally, because our approach674

updates model parameters during inference, it may675

not be suitable for deployment in strictly frozen or676

closed-source model environments.677
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A Appendix803

A.1 Ablation on Decoding Temperature804

Table 6: Different temperature on LLaVa-Next.

Temp Acc SGT Con SC Oall

Question Rephrasing

LLaVa-NEXT, τ = 0 42.89 64.89 49.18 65.69 55.61
+ Constant T 44.48 68.74 83.39 88.47 68.25

LLaVa-NEXT, τ = 0.5 42.06 65.29 52.02 66.52 56.33
+ Constant T 44.48 68.74 83.39 88.47 68.25

LLaVa-NEXT, τ = 1 42.06 65.29 52.02 66.52 56.33
+ Constant T 44.48 68.74 83.39 88.47 68.25

Image Restyling

LLaVa-NEXT, τ = 0 17.57 41.47 55.34 71.36 40.27
+ Constant T 18.99 42.49 88.25 91.25 45.80

LLaVa-NEXT, τ = 0.5 17.57 41.47 55.34 71.36 40.27
+ Constant T 17.64 40.64 82.80 76.64 42.68

LLaVa-NEXT, τ = 1 17.57 41.47 55.34 71.36 40.27
+ Constant T 17.64 40.64 82.80 76.64 42.68

Context Reasoning

LLaVa-NEXT, τ = 0 30.24 27.43 32.11 58.44 35.23
+ Constant T 32.50 50.84 89.91 90.16 56.97

LLaVa-NEXT, τ = 0.5 30.07 51.99 52.09 66.68 48.53
+ Constant T 32.31 53.84 93.4 95.31 59.15

LLaVa-NEXT, τ = 1 30.07 51.99 52.09 66.68 48.53
+ Constant T 32.31 53.84 93.4 95.31 59.15

We conduct an ablation to assess the impact of805

decoding temperature τ on our test-time consis-806

tency framework using LLaVA-NEXT across three807

perturbation types: Question Rephrasing, Image808

Restyling, and Context Reasoning (Table 6).809

Across all perturbations, our method improves810

consistency and overall robustness regardless of811

the temperature setting. Notably:812

• Question Rephrasing: Our test-time strategy813

consistently boosts performance to a peak Oall =814

68.25 for all values of τ , indicating stable per-815

formance across decoding scales and strong re-816

silience to linguistic variations.817

• Image Restyling: While baseline performance818

is lower due to visual perturbations, our method819

still yields significant improvements. The best820

result is observed at τ = 0, where Oall improves821

from 40.27 to 45.80, a gain of 5.5 points.822

• Context Reasoning: This task benefits most823

from our consistency framework. The best perfor-824

mance, Oall = 59.15, is achieved at both τ = 0.5825

and τ = 1, indicating that our method improves826

reasoning-heavy tasks.827

These results demonstrate that our approach is828

robust to temperature variation and consistently en-829

hances consistency and semantic alignment across830

all perturbation categories.831

A.2 Evaluation Metrics 832

To systematically assess the performance of VLMs, 833

we use four distinct evaluation metrics, on similar 834

lines as previous work (Chou et al., 2024), each 835

capturing different aspects of model performance. 836

Accuracy (Acc). To evaluate accuracy we assess 837

the responses from VLMs based on an fuzzy string 838

matching with the ground truth annotations, ac- 839

counting for minor lexical variations. A similarity 840

threshold of 85 is used to determine a match. The 841

accuracy score is then calculated as the average 842

of correct responses across the benchmark test-set. 843

Similarity with GT (SGT). Given the limitations 844

of exact match criteria—which may penalize se- 845

mantically correct responses for minor lexical dif- 846

ferences—we employ a semantic similarity metric 847

to better evaluate alignment between model out- 848

puts and ground truth. For example, terms like per- 849

son, man, and woman are semantically related but 850

would be treated as mismatches under strict accu- 851

racy metrics. To address this, we use BERT-based 852

Sentence Similarity (Reimers and Gurevych, 2019), 853

which leverages contextual language model encod- 854

ings to assess the semantic alignment between pre- 855

dictions and reference answers. This metric re- 856

wards semantic correctness over surface-form sim- 857

ilarity. Final scores are computed as the average 858

similarity across the dataset. 859

Consistency Accuracy (Con). This metric quan- 860

tifies the proportion of responses that exhibit a pre- 861

defined level of semantic consistency. We compute 862

pairwise similarity scores between outputs using 863

the same semantic similarity metric as in SGT , and 864

consider a pair consistent if its similarity exceeds a 865

threshold of 0.7—motivated by observations from 866

the Semantic Textual Similarity benchmark (Cer 867

et al., 2017). A response is deemed consistent if it 868

meets this threshold with its paired counterpart. 869

The final score is calculated as the average pro- 870

portion of consistent pairs across the dataset, pro- 871

viding an aggregate measure of the model’s seman- 872

tic stability across perturbed inputs. 873

Consistency Similarity (SC). Similar to the Con- 874

sistency Accuracy metric, this measure computes 875

pairwise semantic similarity scores between re- 876

sponses to assess consistency. However, instead of 877

applying a threshold, we take the average of these 878

similarity scores across the dataset. This provides a 879

more continuous assessment of the model’s coher- 880

ence, capturing fine-grained variations in semantic 881

consistency across perturbed inputs. 882
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Ans) roundabout  = 1:  
A1) 13th street 
A2) roundabout  
A3) roundabout

T

R1) What does this sign signify in terms of the road or intersection?  
R2) What type of road feature does this sign indicate?  
R3) Can you identify the type of road or intersection this sign is warning you about?

 = 2:  
A1) roundabout 
A2) roundabout  
A3) roundabout

T

Pseudo Label) roundabout

 = 0: (Base model prediction)  
A1) 13th street 
A2) roundabout  
A3) roundabout

T

Ans) udder  = 1:  
A1) udder 
A2) udder  
A3) uterus

T

R1) What part of the cow is used for milk production?  
R2) Which body part is unique to female cows and used for nursing their young?  
R3) What is the name of the organ found only in female cows that secretes milk?

 = 2:  
A1) udder 
A2) udder  
A3) udder

T

Pseudo Label) udder

 = 0: (Base model prediction)  
A1) udder 
A2) udders  
A3) uterus

T

Ans) bus lane  = 1:  
A1) bus lane 
A2) buses can travel 
independently on bus lanes  
A3) bus lanes

T

R1) What designation do certain roads have that allow only buses to use them? 
R2) On which routes can buses travel independently from other vehicular traffic?  
R3) Which special lanes are reserved exclusively for buses to travel on in order to bypass 
congested areas?

 = 2:  
A1) bus lane 
A2) bus lane  
A3) bus lane

T

Pseudo Label) bus lane

 = 0: (Base model prediction)  
A1) bus lane 
A2) buses can travel 
independently on bus lanes  
A3) bus lanes

T

Ans) t-shirt  = 1:  
A1) shirt 
A2) shirt  
A3) yes

T

R1) What is the name of the article of clothing worn by this athlete? 
R2) What type of top is this person sporting? 
R3) Can you identify the shirt this individual is wearing during the competition?

 = 2:  
A1) shirt 
A2) shirt  
A3) shirt is white

T

Pseudo Label) shirt

 = 0: (Base model prediction)  
A1) shirt  
A2) tennis  
A3) yes

T

Figure 4: Qualitative results on the question rephrasing task.

Prompt: Please describe the place in the image in very-short answer.

S1) Candy S2) Mosaic S3) Udnie S4) Grayscale

GT: warehouse

 = 1:  
A1) warehouse with shelves and boxes 
A2) warehouse  
A3) warehouse with tall shelves and boxes 
A4) warehouse with tall shelves and racks

T

Pseudo Label)  warehouse with shelves and boxes

 = 0: (Base model prediction)  
A1) warehouse with shelves and boxes 
A2) the image shows a colorful stained glass window 
depicting a building with shelves and a staircase 
A3) warehouse with tall shelves and aisles 
A4) warehouse with tall metal shelves

T

 = 2:  
A1) warehouse with shelves and boxes  
A2) warehouse with shelves 
A3) warehouse with high shelves and boxes 
A4) warehouse with tall shelves and racks

T

Prompt: Please describe the place in the image in very-short answer.

S1) Candy S2) Mosaic S3) Udnie S4) Grayscale

GT: hospital room

 = 1:  
A1) hospital room 
A2) hospital room  
A3) hospital room 
A4) hospital room

T

Pseudo Label)  hospital room

 = 0: (Base model prediction)  
A1) hospital room 
A2) hospital room with bed, chair, and stool 
A3) hospital room with bed, couch, and medical 
equipment 
A4) hospital room

T

 = 2:  
A1) hospital room 
A2) hospital room  
A3) hospital room 
A4) hospital room

T

Prompt: Please describe the place in the image in very-short answer.

S1) Candy S2) Mosaic S3) Udnie S4) Grayscale

GT: tv studio

 = 1:  
A1) living room with chairs, tv, and bookshelf 
A2) living room with bookshelf, chair, and television 
A3) living room with chairs, tv, and bookshelf 
A4) studio with camera, lights, and chairs.

T

Pseudo Label) living room with 
chairs, tv, and bookshelf

 = 0: (Base model prediction)  
A1) living room with chairs, tv, and bookshelf 
A2) living room 
A3) office with bookshelf, chairs, and television 
A4) studio with camera, lights, and chairs

T

 = 2:  
A1) living room with chairs, tv, and bookshelf 
A2) living room with books, tv, and chairs 
A3) living room with chairs, tv, and bookshelf 
A4) living room with books, chairs, and tv

T

Prompt: Please describe the place in the image in very-short answer.

S1) Candy S2) Mosaic S3) Udnie S4) Grayscale

GT: central hong kong

 = 1:  
A1) city  
A2) city  
A3) city  
A4) city

T

Pseudo Label)  city

 = 0: (Base model prediction)  
A1) city  
A1) city  
A1) cityscape with tall buildings 
A1) city with tall buildings and flags

T

 = 2:  
A1) city  
A2) city  
A3) city  
A4) city

T

Figure 5: Qualitative results on the image restyling task.

Overall Performance (Oall). We report over-883

all model performance using the harmonic mean884

(Hmean) of correctness and consistency scores.885

Specifically, we first compute the average of Acc886

and SGT to assess correctness, and the average887

of Con and SC to assess consistency. These two888

averages are then combined using the harmonic889

mean:890

Hmean(mean(Acc,SGT),mean(Con,SC)). (12)891
We use the harmonic mean to balance correctness892

and consistency, as it penalizes models that per-893

form well on only one aspect, thereby encouraging 894

robust performance across both dimensions. 895

A.3 Implementation Details. 896

We use the pre-trained VLMs as the base models 897

and only fine-tune the language modelling head 898

(LM-head) layer. We set updated steps T = 2 899

for the test-time experiments and maximum up- 900

dated steps to T = 4 for the adaptive test-time 901

experiments. The learning rate is set to 5e−4. All 902

experiments are conducted on NVIDIA A40 with 903

batch size 1 on all three models. 904
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Prompt:  What kind of object is in the masked region?
GT: sandwich

M1 M2 M3

 = 1:  
A1) sandwich  
A2) sandwich  
A3) sandwich

T

Pseudo Label)  sandwich

 = 0: (Base model prediction)  
A1) sandwich  
A2) blue circle  
A3) sandwich 

T

 = 2:  
A1) sandwich  
A2) sandwich  
A3) sandwich

T

Prompt:  What kind of object is in the masked region?
GT: horse

M1 M2 M3

 = 1:  
A1) horse  
A2) horse  
A3) horse

T

Pseudo Label)  horse

 = 0: (Base model prediction)  
A1) horse  
A2) yellow circles 
A3) nothing 

T

 = 2:  
A1) horse  
A2) horse  
A3) horse

T

Prompt:  What kind of object is in the masked region?
GT: hot dog

M1 M2 M3

 = 1:  
A1) hot dog  
A2) hot dog  
A3) hot dog

T

Pseudo Label)  hot dog

 = 0: (Base model prediction)  
A1) hot dog  
A2) corn dog 
A3) rectangle 

T

 = 2:  
A1) hot dog  
A2) hot dog  
A3) hot dog

T

Prompt:  What kind of object is in the masked region?
GT: backpack

M1 M2 M3

 = 1:  
A1) backpack  
A2) document  
A3) rectangle

T

Pseudo Label)  backpack

 = 0: (Base model prediction)  
A1) backpack  
A2) paper 
A3) rectangle 

T

 = 2:  
A1) backpack  
A2) backpack  
A3) backpack

T

Figure 6: Qualitative results on the context reasoning task.

A.4 Qualitative Results905

We show qualitative results for the question rephras-906

ing task in Figure 4, image restyling in Figure 5,907

and context reasoning in Figure 6. Across all three908

tasks, even when the base model predictions are909

inconsistent, our method is able to further improve910

consistency and thus overall score (as also sup-911

ported by quantitative results in Main manuscript).912
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