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Abstract

Unified architectures in multimodal large language models (MLLM) have shown
promise in handling diverse tasks within a single framework. In the text-to-speech
(TTS) task, current MLLM-based approaches rely on discrete token representations,
which disregard the inherently continuous nature of speech and can lead to loss of
fine-grained acoustic information. In this work, we investigate the TTS within the
MLLM paradigm using continuous speech representations. We design a dual-head
architecture and implement two complementary training strategies for a robust
model. (1) A diffusion head generating continuous speech representations is
added on the MLLM, which is on frame-level and strictly autoregressive. (2) The
original language model head is retained to preserve multitask capability and to
control the start and end of speech synthesis. (3) Masked training is employed to
address exposure bias in autoregressive decoding. (4) To stabilize optimization,
we propose a two-stage scheme where the LM is frozen in the second stage,
ensuring the diffusion head learns from a fixed input distribution. Evaluations
on LibriSpeech(PC) test-clean show that our approach achieves state-of-the-art
autoregressive performance, with a WER of 1.95%, speaker similarity of 0.54, and
UTMOS of 4.00. The two-stage training yields a 46% relative WER reduction
over the one-stage training baseline. These results highlight the effectiveness of
combining autoregressive modeling with continuous-token diffusion, supported by
a two-stage training procedure.

1 Introduction

Recent advances in multimodal large language models (MLLMs) have enabled a single model to
perform diverse tasks across modalities in an autoregressive manner [8, 33, 37]. In text-to-speech
(TTS), the dominant approach converts speech into discrete tokens [11, 35], allowing TTS to be
framed as a sequence prediction problem within the LLM framework. While effective, discrete
quantization can discard fine-grained acoustic details, limiting naturalness and speech fidelity. In
contrast, continuous speech representations—often learned by variational autoencoders (VAEs) or
other self-supervised encoders [1, 6, 13]—better preserve the intrinsic properties of speech. Diffusion
models, originally successful in high-fidelity image generation [12, 32, 39], have recently achieved
state-of-the-art results for TTS by modeling such continuous representations in a non-autoregressive
manner [14, 25, 28]. However, the integration of continuous-token diffusion into an autoregressive
MLLM framework remains largely unexplored.

Building on this line, we propose to integrate diffusion directly into an autoregressive MLLM
framework, as shown in Fig. 1. Prior autoregressive diffusion methods either rely on intermediate
semantic tokens [34], or relax framewise causality in diffusion modules to predict multi-frame blocks
per AR step [15, 24]. In contrast, our approach implements a strictly frame-by-frame autoregressive,
continuous-representation diffusion head on top of an LLM backbone. This design enables the model
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Figure 1: Illustration of the proposed method. Compared to discrete token-based generation in
(a), our approach (b) adopts a dual-head MLLM with a diffusion head for frame-level autoregressive
generation, enabling continuous speech synthesis with natural and high-fidelity quality.

to directly generate high-fidelity speech in the continuous speech representation space, avoiding the
quantization bottleneck.

To maintain the MLLM’s multi-task consistency, we designed a dual-head architecture. The diffusion
head generates continuous speech embeddings each frame, which are then decoded to synthesize
waveforms. The language model (LM) head retained from the original LLM predicts the start and
end of speech tokens, enabling variable-length speech synthesis. This token-based control enables
seamless integration of speech generation with multimodal generation. Unlike prior TTS methods
[20, 26] introducing an external classifier module, our design preserves a single, unified framework
within the MLLM.

Our investigation into continuous-token autoregressive TTS revealed two major training challenges:
exposure bias and joint optimization instability. First, the mismatch between teacher-forced training
and free-running inference causes small frame-level deviations to accumulate over long sequences.
We mitigate this exposure bias [2] by introducing a masked training scheme inspired by audio
generation [36], where a proportion of ground-truth frames is masked during training. This bridges
the gap between training and inference conditions, improving robustness and temporal consistency in
generated speech.

Then we observed that jointly optimizing the diffusion head with the LLM is unstable. The LLM’s
output distribution evolves during training, causing instability in the diffusion learning process. To
address this, we employ a two-stage training strategy: in stage 1, train the LLM and diffusion head
jointly, allowing the LLM to learn speech token prediction and the diffusion head to adapt to evolving
inputs. In stage 2, we freeze the entire LLM side, including the backbone, the LM head, and the
speech-projection, thereby fixing the input distribution to the diffusion head. We then train only the
diffusion head. This allows the diffusion model to focus solely on refining the mapping from the
LLM outputs to the target speech space. This separation stabilizes training and significantly improves
generation quality.

Our main contributions are as follows:

• We introduce a frame-by-frame continuous-token diffusion head into an autoregressive
MLLM for speaker-referenced TTS, distinguishing it from block-wise multi-frame designs.

• We propose a dual-head architecture where LM head supports variable-length speech and
keeps unified multimodal framework.

• We mitigate autoregressive exposure bias via masked training, improving temporal consis-
tency and model robustness.

• We stabilize training with a two-stage strategy, yielding large performance gains and cutting
WER by 46%, reaching SOTA AR on LibriSpeech(PC) test-clean.1

1The models and results described in this paper are intended for research purposes only.
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2 Related Work

Zero-shot TTS. Zero-shot text-to-speech (TTS) refers to synthesizing speech for previously un-
seen speakers by leveraging a short reference utterance as conditioning, thereby enabling speaker
generalization without explicit speaker-specific training. Inspired by advances in large language
models (LLMs) [4], zero-shot TTS is often formulated as a language modeling task [3, 40], where
speech waveforms are transformed into sequences of tokens and synthesized via next-token pre-
diction. Existing methods can be broadly categorized into multi-stage and single-stage pipelines.
Multi-stage systems, such as VALL-E [35] and SALAD [34], autoregressively predict coarse units
such as semantic [3] or codec tokens [38], which are then refined into waveforms. This decomposition
improves stability but often discards fine-grained acoustic details. In contrast, single-stage approaches,
exemplified by MegaTTS [16] and NaturalSpeech [17], directly generate high-information continuous
representations, offering higher fidelity while facing greater challenges in robustness. Our method
follows this single-stage paradigm.

Autoregressive Diffusion. Autoregressive language models were originally developed for discrete
symbol sequences, whereas diffusion models are particularly effective for continuous data distribu-
tions [12]. Recent work has explored combining these paradigms for sequence generation. Several
studies modify the diffusion process to behave autoregressively, for example by adjusting denoising
schedules so earlier tokens are predicted before later ones [5, 9]. TransFusion [42] exemplifies this
strategy with a shared transformer that applies causal attention to discrete tokens and bidirectional
attention to continuous features, though it still struggles with strictly causal generation of contin-
uous signals. Other efforts replace discrete codec units with continuous-valued tokens modeled
directly through diffusion losses [21, 36]. By avoiding quantization, these approaches preserve fine-
grained semantic and acoustic detail, positioning diffusion as a compelling alternative to conventional
autoregressive modeling.

3 Proposed Method

We aim to autoregressively generate speech in the space of continuous acoustic embeddings. Our
framework builds upon a large language model backbone and introduces a dual-head architecture.
The first part of the method addresses how continuous speech tokens are generated: Section 3.1
introduces continuous-token generation with a diffusion head, and Section 3.2 presents EOS control
in the dual-head architecture, which together form the foundation for continuous speech generation
within a multitask unified foundation model setting. The second part focuses on improving robustness
and overall performance: Section 3.3 describes masked autoregressive learning, which exposes
the model to imperfect histories, and Section 3.4 details a two-stage optimization scheme, which
stabilizes training by mitigating distribution drift.

3.1 Continuous-token Generation with Diffusion Head

With the inherent continuous nature of speech, recent work has begun to adopt continuous representa-
tion for speech generation in TTS. Compared to discrete codebook tokens, continuous representations
preserve fine-grained characteristics, while decreasing the potential information loss [22]. Inspired
by image [21] and audio [36] generation, we introduce a lightweight diffusion head on top of a causal
foundation model to generate high-fidelity speech from continuous embeddings.

Formally, the target is a sequence of continuous speech embeddings at frame level x = {x1, . . . , xN},
where xi ∈ Rd denotes the speech embedding in frame i. An off-the-shelf variational autoencoder
V = {VE , VD} provides the waveform-embedding mapping: the encoder VE extracts embeddings
from waveform w, and the decoder VD reconstructs audio from predicted embedding x̂.

Inference. Fig. 1 (b) illustrates the framework. Given a prompt p with transcription and reference
audio, multi-modal causal LLM Cθ takes p and past predictions x̂<i to autoregressively produce a
hidden state as condition zi = Cθ(p, x̂<i). This vector zi conditions a diffusion head with MLP
denoiser Mϕ, which starts from Gaussian noise xt

i ∼ N (0, I) and iteratively denoises to produce the
next embedding x̂i = x0

i .

Training. During training, we sample a total timestep t∼U {1, . . . , T} for adding noise and noise
ε∼N (0, I), and form a noised target xt

i =
√
ᾱtxi +

√
1− ᾱtε, where ᾱt defines a noise schedule
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Figure 2: Training and design details of our method. (a) Dual-head architecture: The LM head
predicts speech boundaries (<s-bos> and <eos>) and the special token <continuous_speech_gen>,
while the diffusion head generates continuous frame-level speech embeddings. (b) Masked training
strategy: A portion of speech inputs is masked to bridge the gap between teacher-forcing training and
auto-regressive inference. (c) Two-stage training: In the first stage, all components are trained jointly;
in the second stage, only the Diffusion head is further optimized.

[12, 27]. A small MLP denoiser Mϕ predicts the noise ε̂ = Mϕ

(
xt
i, t, zi

)
, where xt

i, t, zi denotes the
current state, the timestep, and the LLM condition zi. We minimize the standard noise-prediction loss

Ldiff(θ, ϕ) = Et

[
∥ε− ε̂∥2

]
,

which backpropagates through zi. This diffusion loss can be jointly optimized with the objective of
the language model head. Further details are provided in the following sections.

3.2 EOS Control in Dual-Head Architecture

Prior speech generation approaches [35] typically rely on an auxiliary classifier or a fixed-length
constraint to determine the endpoint of speech output. In contrast, our framework delegates boundary
control to the LM head, enabling seamless integration into a unified multi-task backbone.

Inference. Generation proceeds under the control of the LM head. The model begins in the textual
phase until the LM head emits a special token <speech_bos>, which triggers the speech generation
phase. At each subsequent step, the LM head produces a control token. If it emits <cont_speech_gen>,
this token is not added to the output sequence; instead, it signals the diffusion head to generate the
next speech embeddings. Otherwise when LM head predicts <eos>, the speech generation phase
terminates. This token-based mechanism provides a unified and modality-agnostic interface for
switching between text and speech without additional architectural components.

Training. As shown in Fig 2, in order to supervise this control process, we extend the vocabulary
with a special token <cont_speech_gen> in addition to <speech_bos> and <eos>. Although
<cont_speech_gen> is not emitted during inference, its explicit supervision during training provides
dense learning signals throughout the speech segment. This design reduces the risk of the LM head
prematurely predicting <eos> in variable-length sequences, compared with supervising only the
boundary tokens. The LM head is trained with the standard cross-entropy LLM over the control
tokens, while the diffusion head is trained with the noise-prediction loss Ldiff (Sec. 3.1). The overall
objective is the sum of the LM cross-entropy loss and the diffusion loss:

L = LLM + Ldiff

3.3 Masked Autoregressive Learning

Autoregressive generation is affected by exposure bias [2], where models are trained on ground-truth
histories but must rely on its own potentially erroneous predictions during inference, resulting in
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error accumulation. To mitigate this issue, various strategies such as masking have been explored in
text generation [10] and audio generation [36]. Motivated by these advances, we adapt masking to
continuous frame-level speech generation.

During training, before feeding the acoustic embedding sequence x = {x1, . . . , xN} into the causal
predictor Cθ, we apply zero embedding masking to simulate imperfect histories. We define a
binary mask v = {v1, . . . , vN}, vt ∈ {0, 1}, where each entry is sampled independently as
vt ∼ Bernoulli(1− pmask). Thus, with probability pmask, the corresponding frame is masked and
replaced by the zero vector. The corrupted sequence is then x̃ = x⊙v, where ⊙ denotes element-wise
multiplication, so masked positions are replaced by the zero vector. This zero embedding masking
strategy can be viewed as input-level masking, where the masking ratio pmask explicitly controls the
level of corruption in the autoregressive history. The training masking is shown in Fig. 2 (b). At
inference time, no masking is applied. The model operates autoregressively on its own predictions.
By training under such corrupted contexts, the model is encouraged to handle imperfect histories more
robustly, thereby mitigating exposure bias and improving stability in long-form speech synthesis.

3.4 Two-Stage Scheme

When training the MLLM and diffusion head jointly in an end-to-end manner, we observed instability
caused by distribution drift. The MLLM output distribution pθ(z | p) evolves as the parameters θ
are updated. The diffusion head Mϕ is expected to learn a mapping from z to continuous speech
embeddings x. However, since the source distribution pθ(z) is non-stationary during training, Mϕ

must adapt to a shifting input space, making convergence unreliable and degrading generation quality.
We hypothesize that freezing θ to fix pθ(z) yields a stationary input distribution, allowing the diffusion
head Mϕ to focus on modeling a stable transformation, thereby improving optimization stability and
synthesis fidelity.

To implement this idea, we adopt a two-stage training strategy, as shown in Fig. 2(c). In Stage 1, we
jointly train the causal LM Cθ and the diffusion head Mϕ in an end-to-end manner by minimizing
the sum of the cross-entropy loss and the diffusion loss. This stage enables the model to align the LM
outputs with the target distribution and to produce coarse speech embeddings. However, we observe
that although the overall training objective consistently decreases, autoregressive evaluation metrics
exhibit a non-monotonic trend, improving initially but then deteriorating. This is consistent with our
hypothesis that distribution drift hinders stable refinement.

In Stage 2, we freeze the MLLM and LM head parameters θ and train only the diffusionMϕ. With
pθ(z) fixed, the input distribution to the diffusion head remains stationary, allowing it to focus on
refining LM outputs into high-fidelity acoustic frames. This stage stabilizes optimization, mitigates
the instability observed in joint training, and leads to improved synthesis quality.

4 Experiments

To evaluate our dual-head continuous speech generation framework, we conduct TTS experiments
under different settings, comparing intelligibility, speaker identity preservation, and speech natural-
ness. We first introduce the datasets and evaluation protocols in Sec. 4.1, then present implementation
details in Sec. 4.2, and finally describe the baselines in Sec. 4.3.

4.1 Dataset and Metrics

Datasets We adopt the LibriVox corpus as the training source. Specifically, we use a 50k-hour
subset (derived from the Libri-Light collection [18]), which consists of read English audiobooks from
thousands of speakers. For evaluation, we use the Librispeech (PC) test-clean dataset. Following the
protocol of NaturalSpeech [17], we randomly select one utterance from each of 40 speakers and use
an additional 3-second clip as the speaker reference.

Evaluation metrics

We evaluate our system on three aspects: intelligibility, speaker identity preservation, and speech
quality. (1) Word error rate (WER) measures intelligibility, about how accurately the synthesized
speech conveys the reference text. The generated speech is transcribed by Whisper-Large [30],
and WER is calculated from insertions, substitutions, and deletions. (2) Speaker similarity is
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measured as cosine similarity between embeddings extracted by ECAPA-TDNN [7]. We report
SIM-R (to reference prompt) and SIM-G (to ground-truth speech). (3) Speech quality is estimated
with UTMOS [31], an objective MOS predictor trained on large-scale human ratings.

4.2 Implementation Details

Speech Representation. Our system relies on two types of speech representations: one for speaker
reference prompting and another for generation targets. For speaker reference prompting, we extract
a 768-dimensional embedding from a three-second reference clip using LAM [29]. This embedding
encodes speaker identity and is projected into the LLM input space as conditioning information.

For generation targets, we adopt a pretrained VAE-based vocoder that encodes speech into 64-
dimensional embeddings at 25 frames per second. Given a stereo waveform sampled at 48 kHz,
the encoder applies a pre-convolutional projection to 128 channels, followed by five downsampling
ResNet blocks, producing frame-level features at 25 Hz. A post-convolutional projection and VAE
bottleneck is then applied to yield frame-level 64-dimensional latent vectors.

Model Details Our architecture builds on an autoregressive LLM backbone and extends it with
projection modules for multi modality and a diffusion head for speech generation. We adopt
OPT-125M [41] as the LLM backbone. For multi-modality, we add two projectors: one maps the
768-dimensional reference embedding extracted from the speaker prompt into the LLM input space,
and the other maps the 64-dimensional continuous acoustic tokens into the LLM input space. With
these projections, the backbone functions as a multimodal language model (MLLM) rather than a
purely text-based LLM.

We use the final hidden state from the LLM decoder as the input to the diffusion module. Before
entering the diffusion process, this hidden representation is projected through the third linear layer to
768 dimensions as the diffusion condition. The diffusion head is implemented as a stack of MLP
layers and operates with a DDPM-based denoising process, similar to [21, 36].

Diffusion Hyperparameters During training, we use a diffusion process with T = 1000 steps and
adopt the cosine noise schedule [27],where derives βt implicitly from the cumulative product ᾱt. The
diffusion head is an MLP with residual blocks; we experimented with 3, 6, and 12 layers, and report
12-layer results unless otherwise noted. Each block consists of layer normalization, linear layers, and
SiLU activation with adaptive layer normalization modulation, with no dropout. During inference, we
reduce the denoising process to 100 steps and apply a sampling temperature of 0.9. CFG is set to 1.

Training Configuration. All experiments are conducted on NVIDIA A100 GPUs with a global batch
size of 2048. We use the Adam optimizer without weight decay and employ FP16 mixed precision
for efficiency. In stage 1, the learning rate is linearly warmed up from 3× 10−5 to 3× 10−4 over the
first steps and then decayed to zero using a cosine schedule, for a total of 300k steps. In stage 2, the
model is further trained for 300k steps with a constant learning rate of 2× 10−4.

4.3 Baseline

We use the model from the first-stage joint training of all components, including the MLLM backbone,
LM head and diffusion head, as our baseline. During training, the loss decreases monotonically,
but the evaluation WER first decreases and then increases because of the dynamic condition for the
diffusion head. We therefore apply the early stopping and select the checkpoint with the lowest
validation WER as the baseline model, from which the stage-2 training is initialized.

5 Results

We first present the main results by comparing our model with representative baselines. We then
provide ablations and analyses of key design choices and inference settings to understand their impact
on intelligibility, speaker similarity, and naturalness.

5.1 Main Results

Table 1 reports the comparison between our model and representative hybrid autoregressive baselines.
VALL-E, which relies on discrete tokens, yields a WER of 6.11% and a speaker similarity of 0.47,
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Table 1: Objective evaluation on LibriSpeech(PC) test-clean. Results are reported for WER (%),
speaker similarity (cosine SIM), and UTMOS. † denotes results reproduced by NaturalSpeech3. Our
method outperforms larger hybrid AR+NAR baselines while using fewer parameters.

Method Modeling Token # Params WER(%)↓ SIM↑ UTMOS↑
Ground Truth - - - 2.84 0.69 4.16
Vocoder - - - 2.56 0.61 3.82

VALL-E† ( [35]) AR+NAR Discrete 400M 6.11 0.47 3.68
Mega TTS† ( [16]) AR+NAR Continuous 500M 2.32 0.53 4.02
Voicebox† ( [19]) NAR Continuous 400M 2.14 0.48 3.73
StyleTTS2† ( [23]) NAR Continuous 700M 2.49 0.38 3.94

Stage-1 Baseline AR Continuous 160M 3.61 0.49 3.21
Proposed Method AR Continuous 160M 1.95 0.54 4.00

illustrating the limitations of quantization in preserving fine-grained acoustic details. MegaTTS, a
continuous-token model with 500M parameters, achieves stronger results with a WER of 2.32% and
a similarity of 0.53. By contrast, our model attains a WER of 1.95% and a similarity of 0.54, while
maintaining competitive perceptual quality (UTMOS 4.00 compared with 4.02 for MegaTTS). Despite
using only 160M parameters, our system consistently outperforms larger models, demonstrating the
efficiency of combining an autoregressive backbone with a continuous diffusion head. For additional
context, we also include ground-truth speech and vocoder reconstructions in the table for reference.

We further analyze the effect of our two-stage training strategy. The Stage-1 baseline achieves a
WER of 3.61%, a speaker similarity of 0.49, and a UTMOS of 3.21, indicating that the diffusion
head initially suffers from unstable input distributions. After Stage-2 training, the WER is reduced
by 46% relative (from 3.61% to 1.95%), while speaker similarity increases from 0.49 to 0.54 and
UTMOS rises from 3.21 to 4.00. These improvements show that stabilizing the diffusion head’s input
distribution in Stage-2 not only reduces recognition errors but also enhances both speaker consistency
and perceived naturalness.

5.2 Ablation and Analysis

To better understand the contributions of different components and design choices, we conduct a
series of ablation and analysis experiments. We first investigate the effect of masked training, which
aims to mitigate exposure bias during autoregressive decoding. We then examine the role of diffusion
head capacity and the impact of our two-stage training strategy. Finally, we analyze the influence
of stopping criteria and inference hyperparameters, highlighting how these factors jointly affect
intelligibility, speaker similarity, and naturalness.

Masked Ratio. Table 2 shows the impact of different masking rates in the masked training scheme.
Without masking (0%), the model suffers from severe exposure bias, leading to a WER of 15.06%.
Introducing moderate masking improves robustness, with the best performance at 30% masking
(WER 6.17%, UTMOS 3.21). However, excessive masking (50%) degrades both intelligibility
and naturalness, as too much corruption disrupts semantic alignment. This confirms that moderate
masking helps bridge the gap between training and inference conditions.

Table 2: Performance with different masking rates, using a 3-layer MLP diffusion head.

Masking Rate(%) WER (%)↓ SIM-R↑ SIM-G↑ UTMOS ↑
0 15.06 0.45 0.42 2.00
15 12.65 0.45 0.42 1.39
30 6.17 0.46 0.43 3.21
50 8.13 0.46 0.43 2.84

Diffusion Head Depth. Table 3 compares different diffusion head depths with and without the
proposed two-stage training. Increasing the depth from 3 to 12 layers progressively improves WER
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and speaker similarity, demonstrating the benefit of a stronger decoder. More importantly, enabling
two-stage training further reduces WER to 1.95% and boosts similarity and naturalness, highlighting
the effectiveness of stabilizing the diffusion head with a fixed input distribution.

Table 3: Comparison of different numbers of MLP layers in the diffusion head, with dropout rate set
to 30%. Stage-2 FT indicates whether two-stage fine-tuning is applied.

# MLP Stage-2 FT # Params WER (%)↓ SIM-R↑ SIM-G↑ UTMOS ↑
3 w/o 148.7M 6.17 0.46 0.43 3.10
6 w/o 164.4M 5.12 0.50 0.46 3.10

12 w/o 159.9M 3.61 0.49 0.46 3.21
12 w 159.9M 1.95 0.54 0.50 4.00

Stopping Criteria. Table 4 compares different stopping strategies. Using ground-truth durations
causes unstable outputs (WER 29.36%), while oracle endpoint supervision achieves low WER but
requires non-causal labels. Our EOS-token design achieves comparable WER and UTMOS without
relying on oracle information, while maintaining stable generation speed, making it a practical choice
for unified MLLM-based TTS.

Table 4: Performance with different stopping criteria. GT-Dur.: using oracle duration; GT-EP.: using
oracle end-of-speech (oracle stopping point); EOS Token: our method, where the LM head predicts
an end-of-sequence token during inference.

Stopping Criteria WER (%)↓ SIM-R↑ SIM-G↑ UTMOS↑
GT-Dur. 29.36 0.48 0.43 2.55
GT-EP. 3.46 0.49 0.46 3.21
EOS Token 3.61 0.49 0.46 3.21

Inference Hyperparameters. Table 5 analyzes the influence of diffusion inference parameters.
Lower temperatures tend to produce cleaner but truncated outputs, leading to higher WER and lower
similarity. Conversely, higher temperatures improve diversity but may reduce naturalness. We find
that a temperature of 0.9 with 100 denoising steps achieves the best trade-off, yielding the lowest
WER (1.95%), highest similarity (0.54), and best UTMOS (4.00).

Table 5: Performance under different inference parameters.

Temperature Inference Steps WER(%)↓ SIM-R↑ SIM-G↑ UTMOS↑
1 200 15.06 0.47 0.44 2.40
1 100 7.53 0.48 0.44 3.27

0.9 100 1.95 0.54 0.50 4.00
0.8 100 16.11 0.45 0.41 3.01
0.8 80 19.88 0.44 0.39 4.07

6 Conclusion

In this work, we present a dual-head multimodal language model that integrates a frame-level
continuous-token diffusion head with an autoregressive LLM backbone for speaker-referenced TTS.
By combining continuous speech representations, our approach avoids the quantization bottleneck
and achieves high-fidelity and natural speech. To overcome exposure bias and improve training
performance, we adapt masked training and a two-stage optimization scheme, which together substan-
tially improve robustness and quality. Evaluations on LibriSpeech(PC) demonstrate significant gains,
including a 46% relative WER reduction over our baseline, along with higher speaker similarity
and audio quality. These results highlight the effectiveness of bridging autoregressive modeling
with diffusion-based refinement for continuous speech generation. Looking ahead, this framework
provides a path toward unified foundation models that can support multiple speech and multimodal
tasks within a single framework.
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