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ABSTRACT

The one-hot vector has long been widely used in machine learning as a simple and
generic method for representing discrete data. However, this method increases the
number of dimensions linearly with the categorical data to be represented, which
is problematic from the viewpoint of spatial computational complexity in deep
learning, which requires a large amount of data. Recently, Analog Bits, a method
for representing discrete data as a sequence of bits, was proposed on the basis
of the high expressiveness of diffusion models. However, since the number of
category types to be represented in a generation task is not necessarily at a power
of two, there is a discrepancy between the range that Analog Bits can represent and
the range represented as category data. If such a value is generated, the problem
is that the original category value cannot be restored. To address this issue, we
propose Residual Bit Vector (ResBit), which is a hierarchical bit representation.
Although it is a general-purpose representation method, in this paper, we treat it as
numerical data and show that it can be used as an extension of Analog Bits using
Table Residual Bit Diffusion (TRBD), which is incorporated into TabDDPM, a
tabular data generation method. We experimentally confirmed that TRBD can
generate diverse and high-quality data from small-scale table data to table data
containing diverse category values faster than TabDDPM. Furthermore, we show
that ResBit can also serve as an alternative to the one-hot vector by utilizing ResBit
for conditioning in GANs and as a label expression in image classification.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), one of the deep generative
models, was proposed in the field of image generation, but it has been applied to other fields as
well (Yu et al., 2017; Guo et al., 2018; Pei et al., 2021; Jeha et al., 2022; Donahue et al., 2018; Engel
et al., 2019). Recently, however, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021) outperform GANs in the field of image generation (Dhariwal & Nichol, 2021; Saharia
et al., 2022; Ramesh et al., 2022; Balaji et al., 2023; Xue et al., 2023), but they have been successful
for other modalities (Austin et al., 2021; Li et al., 2022a; Chen et al., 2021; Kong et al., 2021; Li
et al., 2022b; Vignac et al., 2023; Shabani et al., 2023).

Tabular data generation is no exception, and models using GANs such as TGAN (Xu & Veeramacha-
neni, 2018) and CTGAN (Xu et al., 2019) have been proposed. Moreover, models using diffusion
models have also been proposed (Kotelnikov et al., 2023; Lee et al., 2023; Kim et al., 2023). In these
methods, models are trained by converting categorical data to a one-hot vector. The one-hot vector
is very widely used because of its high versatility and simplicity. However, as the type of categorical
values to be represented increases, the dimensions increase linearly, and the space complexity in-
creases accordingly. In addition, in our experiments that motivated us to begin this study, increasing
the dimensionality can cause model learning to fail. To address these issues, methods using label
encoding or sparse matrix are used in data analysis, but there are few studies using such methods in
generative modeling. On the other hand, Analog Bits (Chen et al., 2023) decreases the dimensions
by representing discrete values as binary bits. Also, on the basis of the high expressiveness of diffu-
sion models, by treating Analog Bits as numerical data, generative models can generate discrete data
without the need to devise a model for discrete data generation. While this method is very strong,
it places limits on the values that can be represented in simple binaries. If the range of values is
predetermined, such as the pixel values of an image, there is no problem. However, the categorical
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values of tabular data vary depending on the training data, and binary bits represent even extra parts.
One possible solution is to limit the number of categorical values in advance to the number that can
be represented in binary bits (FUCHI et al., 2023), but this approach sacrifices the original diversity
of the training data and is not a fundamental solution.

In this paper, we propose Residual Bit Vector (ResBit), which is fusion of the idea of Analog Bits
and Residual Vector Quantization (Juang & Gray, 1982). This is a method of representing data in a
hierarchical structure, which can deal with the problems of the linear increase of the dimensionality
in the one-hot vector and the extra expressiveness in binary bits. ResBit can be used not only for deep
learning but also machine learning in general, but in our experiments, we confirm its effectiveness
using Table Residual Bit Diffusion (TRBD), which incorporates Residual Analog Bits that treat
ResBit as numerical data into TabDDPM (Kotelnikov et al., 2023) as a motivating use case. We
also show that ResBit can be used as a conditioning method by incorporating it into CGAN (Mirza
& Osindero, 2014) to generate class-specified images. Finally, we show that ResBit can also be used
in image classification tasks. In summary, our contributions are as follows:

• We propose ResBit, which is a novel method for representing discrete/categorical data.

• We propose TRBD, which is incorporated into TabDDPM by treating ResBit as numerical
data. Experiments show that TRBD performs as well as TabDDPM and can be trained and
generated at higher speed.

• We experimentally confirm that ResBit can be used for conditioning and labeling as an
alternative to the one-hot vector.

2 RELATED WORKS AND PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015) are one of the deep generative models defined from
forward and reverse Markov processes. In the forward process, real data x0 is added noise until it ap-
proximates pure noise xT . This process is represented as q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI),

whereN (µ, Σ) denotes a Gaussian distribution with mean µ and variance Σ and βt ∈ R determines
the strength of added noise and satisfies 0 < β1 < β2 < . . . < βT < 1. The model trains the
reverse process represented as pθ(xt−1|xt) = N (xt−1|µθ(xt, t), Σθ(xt, t)). In Denoising Diffu-
sion Probabilistic Models (DDPM) (Ho et al., 2020), variance is fixed as σtI where αt = 1−αt−1

1−αt
βt

with αt = Πt
i=1αi and αi = 1− βi. The model is trained to maximize the variational lower-bound

on log pθ and equation 1 is used as the simplified objective function.

Lsimple
t = Et,x0, ε[‖ε− εθ(xt, t)‖2] (1)

Here, εθ denotes the neural network and predicts added noise ε ∼ N (0, I).

2.2 TABDDPM

To our knowledge, TabDDPM (Kotelnikov et al., 2023) is the first study in the world to introduce
diffusion models to tabular data generation and outperforms existing deep generative models for
tabular data (Xu et al., 2019; Xu & Veeramachaneni, 2018; Zhao et al., 2021) in terms of quality of
sampling. TabDDPM consists of Gaussian diffusion models for numerical data and multinomial dif-
fusion models (Hoogeboom et al., 2021) for categorical ones, and it uses equation 2 as the objective
function for learning.

LTabDDPM
t = Lsimple

t +

∑
i≤C L

i
t

C
(2)

Here, C denotes the number of categorical features. The predefined distributions for categorical data
are represented as q(xt|xt−1) = Cat(xt; (1− βt)xt−1 + βt/K) when the number of classes is K.
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Figure 1: TabDDPM scheme. This is cited from
Kotelnikov et al. (2023)

Figure 2: Example of failure case

Figure 1 shows the scheme of TabDDPM. The preprocessing of TabDDPM is divided into two parts:
numerical and categorical data, which are preprocessed by Quantile Transformer and One-Hot En-
coder, respectively. The preprocessed data is the input to the model. Table 1 shows whether a mode
collapse-like phenomenon, as shown Figure 2, occurred when we randomly sampled 55,000 cases
from IBM’s synthetic credit card data1 and changed the number of unique values for the data of each
category. The percentage here is the percentage of the total training data, and data with frequencies
lower than this percentage are masked2. Although the dataset used here is only a partial selection, it
contains a very large number of categorical values. In this experiment, the hyperparameters except
the value indicating the masking ratio are fixed, so changes in this ratio are linked to changes in
the dimensionality of the one-hot vector given as input to the multinomial diffusion models. On the
basis of this experiment, we hypothesize that the increase in the dimensionality of the one-hot vector
affects the success or failure of training.

Table 1: Success or failure when rate of masking was changed in experiment

Threshold (Rate) Success or Failure

0.00038 Success
0.00028 Failure
0.00019 Failure
0.00010 Failure

2.3 ANALOG BITS

Analog Bits is a preprocessing method proposed for handling discrete data in Bit Diffusion (Chen
et al., 2023). Normally, discrete data is represented as a one-hot vector, but Analog Bits represents
it as bit strings. Furthermore, by treating bit strings as numerical data, continuous state diffusion
models can be applied to discrete data without devising a specific architecture for discrete data.

2.4 RESIDUAL VECTOR QUANTIZATION

Vector Quantization is the process of approximating a set of data represented by a vector into a finite
number of representative patterns. Residual Vector Quantization (RVQ) (Juang & Gray, 1982) rep-
resents the original vector as a hierarchical structure. This enables high precision quantization with
small errors from the original vector and reduce the size of the set of codes required for quantization.

2.5 CONDITIONAL GAN

Conditional GAN (CGAN) (Mirza & Osindero, 2014) is a method to control the generation in GANs
by conditioning. The objective function is represented as equation 3, where x,y and z denote im-
age, conditional information, and noise respectively. For example, in image generation, conditional

1https://ibm.ent.box.com/v/tabformer-data
2This is represented as cat min frequency in the official TabDDPM implementation.
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information is connected to the input image or noise to be input to two models, a generator and
discriminator.

min
G

max
D

V (D, G) = Ex∼p(x)[logD(x|y)] + Ez∼p(z)[log(1−D(G(z|y)))] (3)

3 PROPOSED METHOD AND APPLICATION EXAMPLE

In this section, we introduce Residual Bit Vector (ResBit) and an application example, Table Resid-
ual Bit Diffusion (TRBD), which incorporates ResBit into TabDDPM.

3.1 OUT OF INDEX

We consider representing categorical values as binary bits. Unlike the one-hot vector, binary bits
can limit the increase in dimensionality to a logarithmic increase, but it may produce values that
cannot be represented in the task of generating categorical values. As an example of this problem,
we consider the representation of the states of the United States. There are 50 states in the U.S.
If we use a one-hot vector, state j is represented as a 50-dimensional vector e(j). On the other
hand, in the binary bits case, 0 to 49 are represented as binary numbers 000000(2) to 110001(2). The
dimension of this is 6. The generative model generates 0/1 for each element. Therefore, it is possible
to generate 110010(2) = 50 to 111111(2) = 63, which is greater than 49 in these 6 dimensions. The
values in this range cannot be converted to categorical values. This is an important challenge for
this generation task. We call this problem out of index for convenience. A simple solution is to
limit the number of categories in the training data by 2n− 1 for each column and mask the rest with
a special string (FUCHI et al., 2023). In the example above, 31 states and the remaining number
of states would be represented as 32 category values. However, this approach limits the number
of category values and the model’s ability to generate these values. Other possible solutions are
to clip values outside the range or to correct values within the appropriate range by normalizing
the values. However, the former causes a change in the distribution after generation, and the latter
causes correctly generated values to be incorrect.

3.2 RESIDUAL BIT VECTOR

To overcome the out of index problem mentioned above, we propose ResBit, which is inspired by
RVQ. In ResBit, we consider obtaining layered binary bits like RVQ. We consider an integer M
represented by ResBit. M has an integer b1 greater than or equal to zero and satisfies inequality 4.
If 2b1 − 1 is represented as binary bits, all elements are 1, and its length is b1.

2b1 − 1 ≤M < 2b1+1 − 1 (4)

In this state, only values between 0 to 2b1 − 1 can be represented, but the values between 2b1 to M
cannot be represented. Next, we consider obtaining the binary bits of the difference, M − (2b1 − 1).
In this case, there exists an integer b2 greater than or equal to 0 that satisfies inequality 5.

2b2 − 1 ≤M − (2b1 − 1) < 2b2+1 − 1 (5)

By repeating this operation, a set of several binary bits is obtained. If all bits in the set were 1, this
would representM , and therefore no value greater thanM can be represented in ResBit. This makes
it possible to the avoid out of index problem. The overall algorithm consists of two parts: one part
to find the length of each element of binary bits, i.e. b1, b2, · · · , and the other part to find the ResBit
of an integer M . The pseudo code for the former part is shown in Algorithm 1, and the latter part is
shown in Algorithm 2.
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Algorithm 1 Get b1, b2 . . . Algorithm.

def get_length_ResBit(kind_of_cat: int):
# get length of ResBit for unique category

size kind_of_cat
res = []

# 0-index
max_num = kind_of_cat - 1

while True:
bits = bin(max_num)[2:]

# in case of M == 2ˆm
if "0" not in bits:

res.append(len(bits))
break

else:
s = "1" * (len(bits) - 1)
max_num -= int(s, base=2)
res.append(len(s))

return res

Algorithm 2 Get ResBit Algorithm for M .

def int_to_ResBit(M, l):
# l is returns of algorithm 1
res = []
for i in range(len(l)):

if M == 0:
res += [0 for _ in range(l[i])]
continue

bits = "1" * l[i]
X = int(bits, base=2)
if X <= M:

res += [int(z) for z in bits]
M -= X

else:
bits_M = bin(N)[2:]
bits_M = "0" * (l[i] - len(bits_M)

) + bits_M
res += [int(z) for z in bits_M]
M = 0

return res

At the end of this section, we reconsider an example of for representation of the states of the U.S.
illustrated in Section 3.1. To represent the 50 states, Algorithm 1 gives b1 = 5, b2 = 4, b3 = 2.
Here, ResBit is given by:

xj = (y[0,25),y[0,24),y[0,22). (6)

When j = 38 = 31 + 7 for example, it is represented by:

x38 = ((1, 1, 1, 1, 1), (0, 1, 1, 1), (0, 0)) = (1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0). (7)

3.3 TRBD

In this section, we introduce Table Residual Bit Diffusion (TRBD) as an application case of ResBit.
TRBD is based on the architecture of TabDDPM, but the preprocessing part for categorical data of
TabDDPM was changed. Specifically, One-Hot Encoder is replaced by Residual Bit Encoder, and
its outputs are treated as numerical data following the idea of Analog Bits. After converting each
categorical value to its ResBit, the process described in equation 8 is performed. This is the same
process as that of TabDDPM. Here, ResBit encoder converts the category values to ResBit, and
xcati is the i-th category column.

xresbitcati = log(max(ResBit encoder(xcati), 10−30)) (8)

The numerical data are combined with those obtained by equation 8, transformed by Quantile Trans-
former, and then input into the model.

xin = QuantileTransformer(concat(xnum, x
resbit
cat1 , xresbitcat2 , · · · )) (9)

By performing this process, all data is treated as numerical data. At the time of generation, label rep-
resentations are obtained by equation 10, and each one is converted to a category value as generated
data. Here, ResBit decoder converts ResBit to a categorical value.

xsyn catout = ResBit decoder(round(exp(xresbitout ))) (10)

4 EXPERIMENTS AND EVALUATIONS

In this section, as an application example of ResBit, we conducted three types of experiments:
tabular data generation, image generation, and image classification. All experiments were conducted
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Table 2: Name of category column and dataset size for each dataset

Dataset Abbreviation Categorical Column Name Data Size

Credit Card CC Use Chip, Merchant City, Merchant State 2.4M
Airlines AR Airline, Flight, AirportFrom, AirportTo 600k

Insurance IS sex, smoker, region 1338
Buddy BD condition, color type, X1, X2, pet category 18834

Adult AD
Workclass, Education, Marital Status, Occupation,

Relationship, Race, Sex, Native-Country 48842

using a single Quadro RTX6000 GPU. The environments of the experiments used Ubuntu18.04, the
CPU was an AMD EPYC 7502P 32-Core CPU at 2.5GHz. We used Python3.10.8, PyTorch1.13.1,
CUDA10.1, and scikit-learn 1.1.2, but the versions sometimes differed for some experiments. In
such cases, we report the version name.

4.1 TABULAR DATA GENERATION USING TRBD

4.1.1 DATASET

In this experiment, we selected 5 datasets, and they are listed in Table 2. For training TRBD, we
used 600k pieces of training data for CC, 350k for AR, 856 for IS, 12,053 for BD, and 16,261 for
AD. The sources of the data used in this experiment are given in Appendix D.

4.1.2 TRAINING PROCESS

Following Kotelnikov et al. (2023), we tuned hyperparameters by using Optuna (Akiba et al., 2019).
Values evaluated by CatBoost (Prokhorenkova et al., 2018) were used for tuning. The tuning settings
also conformed to those of Kotelnikov et al. (2023), but only the number of trials was changed to
30. The hyperparameter search spaces used throughout this experiment are shown in Appendix A.

4.1.3 EVALUATION METHODS

We used two metrics for evaluating TRBD.

Number of Types of Categorical Values Generated We compared the number of category values
contained in the generated data for each category column. We confirmed by using this metric that
the model can generate a wide variety of categorical data. The quality of the generated data was
evaluated by the next metric.

TSTR Train on Synthesis, Test on Real (TSTR) (Esteban et al., 2017; Yoon et al., 2019) is one of the
evaluation methods in tabular data generation that trains machine learning models with generated
data and tests them with real data. Existing studies (Lee et al., 2023; Kim et al., 2023) use this
method to measure the quality of sampling. We trained classifiers such as CatBoost and evaluated
them using F1 and AUROC for classification tasks and R2 and RMSE for regression tasks. We used
5 generated samples, evaluated each one in the TSTR framework, and report the means and standard
deviations. We used scikit-learn 1.0.2 only for the training and generation phases of TRBD.

4.1.4 RESULTS AND DISCUSSION

Table 3 shows the results of TRBD evaluations using CatBoost. The number of generated samples
was 300k for CC and AR and 10k for the others. The order of the number of categories generated in
Table 3 corresponds to the order of the category column name in Table 2 from the left. The results
for the TSTR framework are rounded to the 4th decimal place. The results using the other classifiers
are shown in Appendix B. Regarding the TSTR framework, where we trained on synthetic data,
we report the results of training on real data, which is referred to as Identity. We note here that
TabDDPM tuning failed for CC and AR, so several cases were tested manually to show the best
results. In the cases where tuning failed, the loss exploded or disappeared during the training phase,
confirming that it was not backpropagated correctly. This is probably due to the very large number
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Table 3: Result of experiments. For all metrics without RMSE, higher scores indicate better perfor-
mance.

Dataset Methods Number of category types F1(R2) AUROC(RMSE)

CC
Identity (3, 7515, 153) 0.684±0.067 0.971±0.009

TabDDPM (3, 3579, 153) 0.000±0.000 0.376±0.075
TRBD (ours) (3, 7513, 153) 0.000±0.000 0.746±0.051

AR
Identity (18, 6,571, 292, 293) 0.587±0.004 0.727±0.004

TabDDPM (18, 5,369, 291, 291) 0.279± 0.134 0.528± 0.013
TRBD (ours) (18, 6,571, 292, 293) 0.482±0.010 0.638±0.003

IS
Identity (2, 2, 4) 0.861±0.034 4,475.287±390.028

TabDDPM (2, 2, 4) 0.894±0.003 4,050.754±47.229
TRBD (ours) (2, 2, 4) 0.908±0.003 3,785.253±69.238

BD
Identity (3, 56, 19, 10, 4) 0.987±0.000 0.931±0.001

TabDDPM (3, 49, 15, 9, 4) 0.907±0.003 0.984±0.001
TRBD (ours) (3, 55, 17, 9, 4) 0.901±0.007 0.983±0.001

AD
Identity (9, 16, 7, 15, 6, 5, 2, 42) 0.716±0.003 0.927±0.002

TabDDPM (9, 16, 7, 15, 6, 5, 2, 42) 0.673±0.002 0.909±0.003
TRBD (ours) (9, 16, 7, 15, 6, 5, 2, 42) 0.676±0.004 0.906±0.000

Table 4: Comparison of training and sampling time

Dataset Method input dim model layer train sample #params

CH
TabDDPM 16 [256, 1024, 1024, 1024, 512] 567s 42s 3M

TRBD (ours) 12 [512, 1024, 1024, 1024] 264s 21s 2.7M

IS
TabDDPM 12 [256, 512, 512, 512, 512, 256] 407s 30s 1.1M

TRBD (ours) 8 [1024, 512, 512, 1024] 173s 17s 1.5M

of dimensions. The input dimensions of CC were 7,676 in TabDDPM. On the other hand, TRBD
succeeded in reducing the input dimensions to 75, which can be considered a successful learning
process. Table 3 shows that AR, which had many category values for training data, could generate
many types of category values compared with TabDDPM, and it outperformed in the quantitative
evaluation. The results also show that TRBD is competitive with or outperforms TabDDPM not
only in the case of large data but also small data. On the other hand, the F1 of CC does not show
any performance at all. This may be related to the fact that CC is unbalanced data. The difference
between CC and AR is whether it is balanced or unbalanced data, as the number of categorical values
of CC is comparable to that of AR. The ratio of positive data to negative data, is almost 1:1 in AR and
0.001:0.999 in CC, which means that anomaly data with a high F1 score was not generated.

4.1.5 RUNTIME

TRBD is based on TabDDPM without the preprocessing part for category data. We confirmed
how much it contributes to runtime. Runtime depends on the dataset and hyperparameters as well
as TabDDPM. In this experiment, we used IS and the Churn Modeling (CH) dataset. We used
T = 1000 and a batch size of 4096. The number of generated samples was 30k for IS and 26k
for CH. Table 4 shows the results. By treating all data as numerical data, the input dimension was
reduced, and the training and sampling time shortened simultaneously. The IS results also show that
the model was faster even when the number of parameters increased, indicating that the multinomial
diffusion part, which deals with categorical data, is a bottleneck in TabDDPM.

4.2 USE FOR CONDITIONING

ResBit also can be used for conditioning. In this section, we confirm this by using CGAN. We
changed the conditioning part of CGAN from the one-hot vector to ResBit. Following the original
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(a) One-hot conditioning (b) ResBit conditioning (ours)

Figure 3: Class conditioned MNIST sample

Table 5: Results of two labeling methods on CIFAR-10

Model Labeling method acc (%)

MobileNetV3-small One-hot 65.52
ResBit (ours) 66.70

MobileNetV3-large One-hot 74.63
ResBit (ours) 72.55

CGAN work, a condition label is connected to a noise vector or image before each model input.
Note that we do not use ResBit to represent pixels in an image because this has already experi-
mented on and proven effective by Chen et al. (2023). We used the architecture of InfoGAN (Chen
et al., 2016), whose noise dimension is 100. We experimented on the MNIST (LeCun et al., 2010),
CIFAR-10 (Krizhevsky, 2009), and Food101 (Bossard et al., 2014) datasets and used the Adam
optimizer (Kingma & Ba, 2017), whose hyperparameters were α = 0.0002, β1 = 0, β2 = 0.999.
For stable training, we used SNGAN (Miyato et al., 2018) on only the Food101 dataset. Since
achieving quality with GANs is not the purpose of our paper, various methods of improving quality
such as Heusel et al. (2017); Salimans et al. (2016); Gulrajani et al. (2017) are not incorporated.
Figure 3 shows the samples generated using MNIST. One-hot and ResBit conditioning show that
conditioning was successful. We show evaluations on CIFAR-10 and Food101 in Appendix C.

4.3 USE FOR CLASSIFICATION LABELS

We showed that ResBit can be used for conditioning in Section 4.2. In addition, we also show that
it can also be used as a label for classification tasks in this section. We used MobileNetV3 (Howard
et al., 2017), a follow-up study to MobileNets (Howard et al., 2019), a lightweight, high-performance
model intended for use in smartphones and other devices. The output of the model was treated sim-
ilarly to multi-label classification. We used the CIFAR-10 dataset with a batch size of 64, Adam
optimizer, and accuracy for the evaluation metric. We note that this experiment, like the GAN ex-
periment, was also not designed to improve accuracy. Table 5 shows the results. Since the accuracy
of ResBit corresponds to the total accuracy of multi-label classification, we consider the accuracy of
ResBit to sometimes be lower than that of the one-hot method due to the increased difficulty of the
task.

4.4 REDUCTION IN NUMBER OF DIMENSIONS

In Sections 4.2 and 4.3, we experimentally showed that ResBit can be used for conditioning and label
representation with a limited number of classes. In this section, we compare the dimensionality of
the one-hot vector and ResBit with increasing dimensionality. Figure 4 shows a comparison of
the dimensionality of the one-hot vector and ResBit when the number of classes is increased. The
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increase the dimensionality was linear for the one-hot vector, but the increase was very suppressed
for ResBit. This is similar to what we confirmed with CC in Section 4.1.4. Combining this reduction
with the uses of ResBit shown in Sections 4.2 and 4.3, ResBit can be used with a very small number
of dimensions even if the number of classes increases. The demonstration of this is a subject for
future work.

(a) to 1,000 classes (b) to 106 classes

Figure 4: Comparison of number of dimensions

5 CONCLUSION

In this paper, we proposed ResBit, which is inspired by Analog Bits and Residual Vector Quantiza-
tion, as a method for representing discrete data. TRBD, which incorporates ResBit into TabDDPM
and was our motivating use case was competitive or even superior in performance to TabDDPM,
and it generated various categorical values and accelerated the speed of the process. Furthermore,
we showed that ResBit can be used for conditioning and label representation by incorporating it into
CGAN and MobileNetV3, demonstrating the high versatility of the proposed method. In addition,
when the dimensionality of a one-hot vector is extremely large, ResBit can be used to dramatically
reduce the dimensionality, which can be expected to shorten the training time in such a case. Future
verification using other methods that use the one-hot vector is desirable.
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A HYPERPARAMETERS SEARCH SPACE

We show the hyperparameter search spaces in Tables 6 and 7

Table 6: TRBD hyperparameter spaces from Kotelnikov et al. (2023). Only number of tuning trials
is changed to 30.

Parameters Distribution

Learning rate LogUniform[0.00001, 0.003]
Batch size Cat{256, 4096}

Diffusion timesteps Cat{100, 1000}
Training iterations Cat{5000, 10000, 20000}

# MLP layers Int{2, 4, 6, 8}
Width of MLP layers Int{128, 256, 512, 1024}
Proportion of samples Float{0.25, 0.5, 1, 2, 4, 8}

Number of tuning trials 30

B ADDITIONAL RESULTS ON TSTR FRAMEWORK

We show the results using XGBoost (Chen & Guestrin, 2016) and RandomForest (Breiman, 2001)
for the TSTR Framework. We used XGBoost library version 1.7.6 and scikit-learn 1.2.2. We note
that this version of scikit-learn was used only in the TSTR evaluation stage, while 1.0.2 is used
in the TRBD experiments. Tables 8 and 9 show the results using RandomForest and XGBoost,
respectively.
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Table 7: Hyperparameter space of classifier models from Kim et al. (2023); Lee et al. (2023)
and Kotelnikov et al. (2023)

Models Parameters Distribution

CatBoost

Learning rate LogUniform[0.001, 1]
Depth UniformInt[3, 10]

L2 leaf reg Uniform[0.1, 10.0]
Bagging temperature Uniform[0, 1]

Leaf estimation iterations UniformInt[1, 10]

XGBoost

n estimators Int{10, 50, 100}
min child weight Int{1, 10}

max depth Int{5, 10}
gamma Float{0.0, 1.0}
nthreads -1

RandomForest

max depth Int{8, 16, Inf}
min samples split Int{2, 4}
min samples leaf Int{1, 3}

n jobs -1

Common settings
Iterations 350

Early stopping rounds 20
Number of tuning trials 20

Table 8: Result of TSTR framework using RandomForest

Dataset Methods F1(R2) AUROC(RMSE)

CC
Identity 0.597± 0.040 0.887± 0.185

TabDDPM 0.000± 0.000 0.511± 0.054
TRBD (ours) 0.000±0.000 0.615±0.054

AR
Identity 0.572± 0.003 0.721± 0.001

TabDDPM 0.136± 0.087 0.499± 0.018
TRBD (ours) 0.479±0.002 0.637±0.002

IS
Identity 0.858± 0.021 4,737.314±330.580

TabDDPM 0.903± 0.006 3,880.795±115.701
TRBD (ours) 0.913±0.003 3,676.466±69.751

BD
Identity 0.930± 0.004 0.987± 0.001

TabDDPM 0.790±0.013 0.978±0.002
TRBD (ours) 0.751± 0.050 0.975± 0.002

AD
Identity 0.689± 0.004 0.916± 0.002

TabDDPM 0.661±0.007 0.906±0.001
TRBD (ours) 0.661±0.003 0.903± 0.001

C MORE RESULTS ON CGAN

We show the qualitative evaluation for CIFAR-10. We used Fréchet Inception Distance
(FID) (Heusel et al., 2017) using the pytorch-fid (Seitzer, 2020) library. The FID results are shown
in Table 10, and the generated samples are shown in Figure 5. There was no significant quality loss
due to the change in the conditioning method. Next, we show the results for the Food101 dataset
using SNGAN for stable training. Please see the paper in Miyato et al. (2018) for architecture de-
tails. For simplicity, we selected 40 classes out of 101 and created a dataset. Following the SNGAN
experimental setup, we updated Discriminator 5 times for each Generator update. The number of
training iterations was 15,000, and the batch size was 64. Generated examples are shown in Fig-
ure 6. The fact is that ResBit can be considered architecture-independent since it is able to generate
the same results as before for both conditioning methods.
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Table 9: Result of TSTR framework using XGBoost

Dataset Methods F1(R2) AUROC(RMSE)

CC
Identity 0.620± 0.066 0.948± 0.011

TabDDPM 0.000± 0.000 0.429± 0.138
TRBD (ours) 0.000±0.000 0.643±0.014

AR
Identity 0.595± 0.002 0.725± 0.001

TabDDPM 0.353± 0.095 0.514± 0.007
TRBD (ours) 0.485±0.004 0.619±0.002

IS
Identity 0.831± 0.052 4, 777.171± 690.880

TabDDPM 0.903± 0.008 3, 872.860± 156.814
TRBD (ours) 0.915±0.003 3,630.228±69.255

BD
Identity 0.927± 0.005 0.986± 0.002

TabDDPM 0.573±0.002 0.935±0.007
TRBD (ours) 0.568± 0.002 0.922± 0.002

AD
Identity 0.689± 0.004 0.926± 0.002

TabDDPM 0.661±0.003 0.902±0.001
TRBD (ours) 0.663±0.002 0.901±0.001

Table 10: Comparison on CIFAR-10 dataset

conditioning method one-hot ResBit (ours)

FID 95.52 82.21

(a) One-hot conditioning (b) ResBit conditioning (ours)

Figure 5: Class conditioned samples from InfoGAN trained on CIFAR-10
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(a) One-hot conditioning (b) ResBit conditioning (ours)

Figure 6: Generated samples from SNGAN trained on Food101

D TABULAR DATA SOURCES

• CC: https://ibm.ent.box.com/v/tabformer-data
• AR: https://www.openml.org/search?type=data&sort=runs&id=
1169&status=active

• IS: https://www.kaggle.com/datasets/mirichoi0218/insurance
• BD: https://www.kaggle.com/datasets/akash14/adopt-a-buddy
• AD: Kohavi (1996)
• CH: https://www.kaggle.com/datasets/shrutimechlearn/
churn-modelling
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