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ABSTRACT

We introduce Adaptive Momentum Scaling (AMS), a general optimization frame-
work that decouples the direction and magnitude of parameter updates by sep-
arately tracking the sign and scale of momentum. AMS unifies and extends
existing optimizers; in particular, we show that it recovers Adam and Cautious
Adam as special cases through appropriate hyperparameter choices. Building on
this framework, we develop Gradient Descent with Adaptive Momentum Scaling
(Grams), a novel optimizer that leverages gradient direction for updates while us-
ing momentum exclusively for adaptive magnitude scaling. This design enables
Grams to achieve more effective loss descent than conventional momentum-based
and cautious methods. We provide theoretical guarantees for Grams, including
discrete-time descent analysis , and further connect its dynamics to Hamiltonian
descent. Empirically, Grams consistently outperforms widely-used optimizers
such as Adam, Lion, and their cautious variants across a range of tasks, includ-
ing pre-training and fine-tuning large language models. Our results demonstrate
that AMS and Grams offers a principled and scalable solution for modern deep
learning optimization.

1 INTRODUCTION

Optimization plays a pivotal role in modern machine learning, serving as the cornerstone for train-
ing and fine-tuning models across diverse applications. Over the past decade, the introduction of
adaptive optimizers like Adam (Kingma & Ba, 2014) and its variant AdamW (Loshchilov & Hutter,
2017) has significantly shaped the landscape of optimization. These algorithms have become the de
facto choices for a variety of tasks, ranging from pre-training Large Language Models (LLMs) (Tou-
vron et al., 2023) to fine-tuning models for text-to-image diffusion (Rombach et al., 2022). Despite
the advent of new methods, AdamW has maintained its dominance, particularly in large-scale train-
ing regimes, thanks to its robust convergence properties and general applicability.

The era of LLMs has ushered in unprecedented scaling of model sizes, demanding billions or even
trillions of parameters (Achiam et al., 2023). This scaling places an immense burden on compu-
tational resources, intensifying the need for efficient optimization strategies. A faster optimizer
directly translates to the ability to process more training tokens within a fixed time budget, leading
to the development of more capable models (Kaplan et al., 2020). This necessity has rekindled in-
terest in identifying optimizers that can surpass AdamW in terms of speed, memory efficiency, and
convergence guarantees.

Recent innovations, such as SHAMPOO (Gupta et al., 2018), Schedule Free (Defazio et al., 2024),
Lion (Chen et al., 2024), SOAP (Vyas et al., 2024), and ADOPT (Taniguchi et al., 2024), have
pushed the boundaries of optimization by introducing novel update rules, momentum mechanisms,
and regularization techniques. These methods promise substantial improvements in training effi-
ciency and model performance, particularly in specialized scenarios. The cautious (Liang et al.,
2024) mechanism addresses optimization challenges by adaptively masking the momentum term ut
to align with the gradient gt, preventing conflicts that hinder training. This approach extends to
Adam and Lion, resulting in variants like Cautious Adam (C-Adam) and Cautious Lion (C-Lion).

In this paper, we propose Gradient Descent with Adaptive Momentum Scaling (Grams), a novel
optimization algorithm designed to address the limitations of existing methods. Unlike traditional
optimizers that directly couple momentum with gradient updates, Grams decouples the direction
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and magnitude of parameter updates. This approach allows the update direction to be derived solely
from current gradients while momentum is utilized to scale the update magnitude. Such decoupling
enhances stability and robustness, particularly in dynamic optimization landscapes.
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Figure 1: Convergence comparison on a simple convex function f(w) := (0.5w1)
2 + (0.1w2)

2.
Learning rate η = 0.01 for Grams, Adam, and C-Adam, and η = 0.001 for Lion and C-Lion. β1
and β2 are default values for all optimizers. The graph on the left is the optimizing trajectories; the
graph in the middle graph is the distance between current weight and optimum weight; the graph on
the right is the training objectives.

Figure 1 illustrates the superior convergence properties of Grams compared to other state-of-the-art
optimizers on a simple convex function. In the left graph, the optimization trajectories of Grams
exhibit a combination of characteristics observed in Lion and C-Adam. Specifically, Grams follows
a shortcut-like path similar to C-Adam while also demonstrating a zigzagging behavior reminiscent
of Lion. However, unlike Lion, which deviates significantly from the optimal path due to its pro-
nounced zigzagging updates, Grams maintains a more controlled trajectory, effectively balancing
stability and efficiency during optimization. The middle graph illustrates the logarithmic distance of
the weights w1 and w2 from the optimum. Here, Grams consistently demonstrates a faster descent
compared to other optimizers, indicating superior efficiency in reducing the distance to the optimal
solution. The right graph displays the convergence of the objective function value over training
steps, where Grams achieves a notably faster reduction and lower final objective value than its com-
petitors. These results collectively underscore Grams’ ability to navigate the optimization landscape
effectively, outperforming traditional and Cautious optimizers in terms of speed and precision, even
in a simple convex setting.

Our contributions are summarized as follows:

• We introduce Adaptive Momentum Scaling (AMS), which is a general framework that
tracks the sign and magnitude of the momentum. We proved that it can generalize Adam
and Cautious Adam by tuning hyperparameters.

• We introduce the Grams optimizer, which empirically outperforms existing methods such
as Adam (Loshchilov & Hutter, 2017), Lion (Chen et al., 2024), and their Cautious ver-
sion (Liang et al., 2024).

• We establish theoretical guarantees for Grams, including discrete-time descent analysis and
Hamiltonian descent analysis.

By integrating insights from momentum-based methods, adaptive optimizers, and sign-based up-
dates, Grams bridges the gap between theoretical rigor and practical performance, offering a promis-
ing direction for scalable and efficient optimization in modern machine learning.

Roadmap. In Section 2, we review related work and place our approach in the context of existing
optimization methods. In Section 3, we introduce our notation system and outline key preliminary
concepts necessary for understanding our method. In Section 4, we present a general framework that
tracks the sign and magnitude of the momentum. In Section 5, we present our main contribution,
Gradient Descent with Adaptive Momentum Scaling (Grams), and provide theoretical guarantees for
its performance. In Section 6, we evaluate the effectiveness of Grams through empirical experiments
on both pre-training and fine-tuning tasks, comparing its performance to state-of-the-art optimizers.
In Section 7, we conclude the paper and discuss future directions to enhance the capabilities of
Grams further.
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2 RELATED WORK

Adam Variants and Memory-Efficient Optimization Adam and its numerous variants have been
pivotal in addressing optimization challenges across diverse applications (Kingma & Ba, 2014; Liu
et al., 2019). Among these, AdamW (Liu et al., 2019) introduced a crucial modification by de-
coupling weight decay from gradient updates, restoring the original intent of weight regularization.
NAdam (Dozat, 2016) integrated Nesterov momentum, and AdaBelief (Zhuang et al., 2020) refined
the second moment estimation for improved generalization. Adan (Xie et al., 2024) extended these
advancements with an additional momentum term, balancing performance with memory overhead.
Schedule-free optimizers (Defazio et al., 2024) have further simplified the optimization process by
dynamically adjusting learning rates without pre-defined schedules, enhancing adaptability across
tasks. More recent efforts, such as ADOPT (Taniguchi et al., 2024), streamlined first-order momen-
tum updates through normalization.

Memory-efficient strategies have addressed the growing resource demands of large-scale models.
AdaFactor (Shazeer & Stern, 2018) factorize second-order statistics, achieving sublinear mem-
ory usage. K-Fac (Martens & Grosse, 2015) approximates the Fisher information matrix using
Kronecker-factored representations. Innovations such as fused gradient computation (Lv et al.,
2023) and GaLore (Zhao et al., 2024) leverage low-rank gradient structures to optimize memory
efficiency.

Regularization Techniques Regularization plays a critical role in improving generalization and
robustness in optimization. Lion (Chen et al., 2024) introduced sign-based updates with uniform
magnitudes, offering inherent noise regularization (Neelakantan et al., 2017; Foret et al., 2021;
Chen et al., 2022). Earlier methods, such as signSGD (Bernstein et al., 2018), explored similar
ideas but focused on reducing communication costs in distributed optimization. Despite its effi-
ciency, signSGD often underperformed in deep learning tasks, such as ConvNet training, where
Lion demonstrated superior performance through advanced momentum mechanisms.

Building on these ideas, the Cautious mechanism (Liang et al., 2024) adaptively masks momentum
terms to ensure alignment with gradient directions, mitigating conflicts. This approach has led to
new variants, including Cautious Adam (C-Adam) and Cautious Lion (C-Lion), which combine
regularization benefits with robust convergence guarantees.

Hamiltonian Dynamics in Optimization Hamiltonian dynamics provides a robust theoretical
framework for understanding momentum-based optimization (Nesterov, 1983; Sutskever et al.,
2013; Nguyen et al., 2024; Anonymous, 2024). The seminal work of (Sutskever et al., 2013) pro-
vided a physical interpretation of momentum methods, linking the oscillatory behavior of algo-
rithms like Nesterov’s and Polyak’s methods (Nesterov, 1983) to principles of dynamical systems.
While traditional gradient descent guarantees a monotonic decrease in objective function values,
momentum-based methods exhibit non-monotonic dynamics that require more advanced analyti-
cal tools (Jin et al., 2018). This has motivated the development of Lyapunov-based approaches for
convergence analysis in convex optimization (Krichene et al., 2015; Wilson et al., 2016).

Recent studies have further formalized these connections by modeling optimization processes as
continuous-time ODEs, uncovering inherent Hamiltonian structures (Maddison et al., 2018; Nguyen
et al., 2024). These insights have significantly enhanced the theoretical understanding of classi-
cal momentum-based algorithms and provided a foundation for exploring new optimization frame-
works (Anonymous, 2024). Moreover, Hamiltonian principles have been extended to analyze con-
vergence rates for accelerated methods (Jin et al., 2018) and have inspired broader applications in
optimization. In parallel, Mirror Descent, while distinct from Hamiltonian dynamics, leverages vari-
ational principles and maintains efficiency with a mild dependence on the dimensionality of decision
variables, making it well-suited for large-scale problems (Krichene et al., 2015; Tzen et al., 2023).

3 PRELIMINARIES

In this section, we outline foundational concepts and notations that will be referenced through-
out the paper. In Section 3.1, we define some useful notations. In Section 3.4, we summarize
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the Hamiltonian dynamics framework, which provides a theoretical foundation for understanding
momentum-based optimization algorithms.

3.1 NOTATIONS

For two vectors u, v ∈ Rd, we use ⟨u, v⟩ to denote the standard inner product in the Euclidean
space. We use ∥u∥2 to denote the ℓ2-norm of u and use ∥u∥∞ to denote the ℓ∞-norm of u. For
a matrix A, we use ∥A∥F to denote the Frobenius norm of A. For a twice differentiable function
f : Rd → R, we use ∇f(x) and ∇2f(x) to denote the gradient and Hessian of f , respectively.
Given a vector x ∈ Rd, we use 1x≥0 ∈ Rd to denote the vector where each entry indicates whether
the corresponding entry of x is non-negative, i.e., for each i ∈ [d], (1x≥0)i = 1 if xi ≥ 0, and
(1x≥0)i = 0 otherwise.

3.2 SIGN FUNCTION

We formally define the sign function, which will be used later in our optimizer Grams.
Definition 3.1 (Sign function). Given a vector a = (a1, a2, . . . , an) ∈ Rn, the sign function of a,
denoted as sign(a), is defined component-wise as:

sign(a) = (sign(a1), sign(a2), . . . , sign(an)),

where the scalar sign function sign(ai) is given by:

sign(ai) =


1, if ai > 0,

0, if ai = 0,

−1, if ai < 0.

3.3 CAUTIOUS OPTIMIZERS

Cautious mechanism (Liang et al., 2024) addresses a key challenge in optimization dynamics: when
the momentum term ut moves in a different direction from the current gradient gt, it can potentially
impede training progress. To mitigate this issue, the Cautious mechanism introduces an adaptive
masking mechanism that modifies the momentum term based on its alignment with the gradient
direction. Cautious mechanism could apply to Adam and Lion, which form Cautious Adam (C-
Adam) and Cautious Lion (C-Lion).
Definition 3.2 (Cautious Mechanism Parameter Update). The general parameter update rule for the
Cautious mechanism is given by:

ût := ut ◦ 1ut◦gt≥0

η̂ :=
d

∥ût∥1
wt := wt−1 − η̂ût (1)

where wt is the weight at time step t, ◦ denotes Hadamard product. For C-Adam, ut is from Defini-
tion A.4; For C-Lion, ut is from Definition A.5. gt is the current gradient.

The Cautious mechanism in Definition 3.2 modifies the parameter updates to ensure they align with
the gradient direction, thereby reducing the risk of adverse updates that could impede convergence.
To analyze the impact of this mechanism, we introduce Definition 3.3, which quantifies the change
in the loss function after an update.
Definition 3.3. For any loss function L : Rd → R, we define

∆Lwt+1,wt := L(wt+1)− L(wt),

where wt+1 is updated from any update rule.

As shown in (Liang et al., 2024), the Cautious mechanism ensures that the updated parameters
result in a non-negative inner product with the gradient, leading to a monotonic decrease in the loss
function when the step size is sufficiently small. Specifically, using a Taylor approximation, it can
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be expressed as: ∆Lwt+1,wt
≈ −ηt(ut ◦ gt)⊤ϕ(ut ◦ gt) ≤ 0, where ϕ(·) represents the alignment

mask introduced by the Cautious mechanism. This guarantees that L(wt+1) ≤ L(wt), ensuring a
decrease in loss.

We formalize that the expected decrease in loss when updating the parameter w from optimization
step t to step t + 1 can be approximated using a first-order Taylor expansion, which indicates the
loss function will decrease monotonically when the step size is sufficiently small.
Lemma 3.4 (Informal version of Lemma D.1). Suppose that L : Rd → R is L-smooth. Let
∆LwC

t+1,wt
be defined in Definition 3.3, wC

t+1 is updated from wt using Definition 3.2. Then we
have the followings:

• Part 1. It holds that

∆LwC
t+1,wt

≤ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
Lη2t
2
∥ut∥22, (2)

• Part 2. It holds that ∆LwC
t+1,wt

≥ −ηt⟨ut ◦ gt,1ut◦gt≥0⟩.

• Part 3. If ηt ≤ 2
L∥ut∥2

2
⟨ut ◦ gt,1ut◦gt≥0⟩, then ∆LwC

t+1,wt
≤ 0.

Building on these findings, Theorem E.2 delves into the Hamiltonian properties of the Cautious
mechanism, providing deeper insights into its theoretical guarantees within continuous optimization
dynamics.

3.4 HAMILTONIAN DESCENT

Hamiltonian descent provides a theoretical framework for analyzing momentum-based optimization
algorithms by introducing an augmented objective function, the Hamiltonian. This framework al-
lows us to study optimization dynamics through the lens of continuous-time differential equations,
linking the monotonic descent of the Hamiltonian function to the stability and convergence of the op-
timization process. We formalize this concept as Definition E.1, based on the formulation presented
in Section 2.1 of (Liang et al., 2024).

4 ADAPTIVE MOMENTUM SCALING

We propose Adaptive Momentum Scaling (AMS), a general framework that tracks the sign and
magnitude of the momentum separately. See Algorithm 1 for definition.

We then show that for some specific hyperparameters, AMS is equivalent to Adam. Formally, we
have the following corollary.
Corollary 4.1 (Informal version of Corollary B.1). By choosing β3 = β1 or λ = 1, AMD is
equivalent with Adam.

Then, we show that we can also let AMS equivalent to Cautious Adam by set hyperparameters.
Corollary 4.2 (Informal version of Corollary B.2). By choosing β3 = 0 and λ = 0, AMS is equiva-
lent with Cautious Adam.

5 GRADIENT DESCENT WITH ADAPTIVE MOMENTUM SCALING

A special case of AMS, where β3 = 0 and λ = −1, we name it Gradient Descent with Adaptive Mo-
mentum Scaling, or simply Grams. This section formalizes the update rule of Grams, introduces its
key components, and provides theoretical guarantees in both loss descent and Hamiltonian dynamics
for its performance.

5.1 DEFINITIONS

We define the Grams optimizer formally in Definition 5.1.

5
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Algorithm 1 Adaptive Momentum Scaling (AMS)

Require: parameter w, step sizes {ηt}, dampening factors β1, β2, β3 ∈ [0, 1), ϵ > 0, weight decay
γ ≥ 0, negative momentum scaling factor λ ∈ R.

1: Initialize t = 0, m0 = v0 = s0 = 0
2: while wt not converged do
3: t← t+ 1
4: gt ← ∇wLt(wt−1)
5: mt ← β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)g2t
7: st ← β3st−1 + (1− β3)gt ▷ Track the sign
8: m̂t ← mt/(1− βt1)
9: v̂t ← vt/(1− βt2)

10: ut ← m̂t/(
√
v̂t + ϵ)

11: ϕt ← 1ut◦st≥0 ▷ Mask for same signs
12: ψt ← λ · 1ut◦st<0 ▷ Mask and scale for different signs
13: η̂ ← η d

∥ϕt∥1+|∥ψt∥1| ▷ Scale η
14: ût ← (ϕt + ψt) ◦ ut
15: wt ← wt−1 − η̂tût
16: wt ← wt − η̂tγwt ▷ Add weight decay
17: end while

Definition 5.1 (Grams Optimizer). Grams optimizer is a special case of AMS (Algorithm 1) by set
β3 = 0 and λ = −1.

Corollary 5.2 (Informal version of Corollary B.3). By choosing β3 = 0 and λ = −1, the update rule
of AMS is equivalent with: Part 1. mt := β1mt−1+(1−β1)gt, Part 2. vt := β2vt−1+(1−β2)g2t ,
Part 3. m̂t :=

mt

1−βt
1

, Part 4. v̂t := vt
1−βt

2
, Part 5. ut := m̂t√

v̂t+ϵ
, Part 6. ût := sign(gt) ◦ |ut|, Part 7.

wt := wt−1 − ηtût.

5.2 LOSS DESCENT

In this subsection, we analyze the loss descent properties of the Grams algorithm. Understanding
how the loss function decreases over optimization steps provides insights into the efficiency and
stability of the method. Below, we formalize the relationship between the step size, gradients,
and the resulting decrease in the loss value, leveraging the L-smoothness property of the objective
function.

Lemma 5.3 (Informal version of Lemma D.2). Suppose that L : Rd → R is L-smooth. Let
∆LwGrams

t+1 ,wt
be defined in Definition 3.3, wGrams

t+1 is updated from wt using Definition 5.1. Then we
have the following:

• Part 1. It holds that

∆LwGrams
t+1 ,wt

≤ −ηt⟨|gt|, |ut|⟩+
Lη2t
2
∥ut∥22. (3)

• Part 2. It holds that ∆LwGrams
t+1 ,wt

≥ −ηt⟨|gt|, |ut|⟩.

• Part 3. If ηt ≤ 2
L∥ut∥2 ⟨|gt|, |ut|⟩, then we have ∆LwGrams

t+1 ,wt
≤ 0.

Then, we compare the loss descent between Grams and C-Adam.

Theorem 5.4 (Loss Descent Comparison, informal version of Theorem D.3). Suppose that L :
Rd → R is L-smooth. For any parameter vector w at optimization step t, let wGrams

t and wC
t be

the update of Grams in Definition 5.1 and Cautious optimizers in Definition 3.2, respectively. If
the stepsize ηt satisfies ηt ≤ 2

L∥ut∥2 · min{⟨ut ◦ gt,1ut◦gt≥0⟩, ⟨ut ◦ gt,1ut◦gt<0⟩}, then we have
∆LwGrams

t+1 ,wt
≤ ∆LwC

t+1,wt
≤ 0.

6
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Remark 5.5. Theorem 5.4 shows that Grams achieves strictly better descent in the loss landscape
in the discrete analysis compared to Cautious optimizers. This theoretical guarantee suggests that
Grams may converge faster and achieve better minima in practice.

5.3 HAMILTONIAN DYNAMICS

In this subsection, we present the Grams Hamiltonian dynamics, which builds upon the augmented
Hamiltonian framework to analyze optimization algorithms. By leveraging this framework, we show
that the Grams optimizer achieves a monotonic descent of the Hamiltonian and the loss function,
with a descent speed that is provably equal to or faster than C-Adam. This highlights Grams’ effi-
ciency and robustness in dynamic optimization landscapes. The formal definition is provided below.
Definition 5.6 (Grams Hamiltonian Dynamics). We could modify Hamiltonian dynamics with
Grams’ optimizing scheme,

d

dt
wt := − sign(∇L(wt) ◦ |∇K(st)| − Φt(∇L(wt)),

d

dt
st :=∇L(wt)−Ψt(∇K(st)),

where | · | denotes element-wise absolute value, ◦ is the Hadamard product, and Φt,Ψt are scaling
functions.

The convergence properties of Grams within the Hamiltonian dynamics framework are formalized
in the theorem below.
Theorem 5.7 (Convergence of Grams Hamiltonian Dynamics, informal version of Theorem E.3).
Following the dynamics in Definition 5.6, we have

∆Grams
H (wt, st) :=

d

dt
H(wt, st) ≤ 0,

∆Grams
L (wt) :=

d

dt
L(wt) ≤ −∆L(wt, st),

where ∆Ht
(wt, st) and ∆Lt

(wt, st) represent the decreasing rates of H and L in accordance with
the system in Definition E.1.

Based on this theorem, we compare the convergence rates of Grams and Cautious optimizers in
the context of Hamiltonian dynamics. The following theorem demonstrates that Grams achieves a
faster or equal rate of loss descent compared to Cautious optimizers, highlighting its efficiency in
optimization.
Theorem 5.8 (Convergence Comparison of Hamiltonian Dynamics between Grams and Cautious
Optimizers, informal version of Theorem E.4). From Theorem 5.7 and E.2, recall ∆Grams

L (wt) and
∆C

L(wt), we have ∆Grams
L (wt) ≤ ∆C

L(wt).

Remark 5.9. Theorem 5.8 illustrates the faster loss decreasing speed in the Grams Hamiltonian
dynamic system, compared to Cautious’s counterpart.

Building on this comparison, we now state a corollary from (Liang et al., 2024) that establishes
the convergence of bounded solutions in Hamiltonian systems to stationary points of the augmented
loss.
Corollary 5.10 (Corollary 2.4 in (Liang et al., 2024)). Assume that ⟨x,Ψ(x)⟩ is positive definite
for all x ∈ Rd, Ψ(0) = 0, and that H(w, s) = L(w) + K(s) is differentiable. Then, the bounded
solutions of the original system Eq. (15) converge to a stationary point of H(w, s). Similarly, the
bounded solutions of Definition 5.6 also converge to a stationary point of H(w, s).

6 EXPERIMENTS

We conducted comprehensive experiments across both pre-training and fine-tuning stages to eval-
uate the performance of our proposed Grams optimizer. Comparisons were made against several
baseline optimizers, including Adam (Kingma & Ba, 2014), Lion (Chen et al., 2024), C-Adam,
C-Lion (Liang et al., 2024), and, in some experiments, RMSprop (Hinton et al., 2012; Ruder, 2016).

The details and hyperparameters of our experiments can be found in Section F.
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6.1 HYPERPARAMETERS

We conduct a hyperparameter grid search to evaluate Grams’ sensitivity to β1 and β2 by training
a VAE (Kingma & Welling, 2013) on the CIFAR-10 (Krizhevsky, 2009) dataset. Each model is
trained for 10 epochs, and the mean squared error (MSE) loss is reported as the evaluation metric.
See Figure 2 for the results.
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Figure 2: Evaluation loss for VAE training experiments with grid search.

From Figure 2, we observe that for each hyperparameter configuration, Grams achieves the lowest
MSE loss, indicating superior reconstruction quality. It also attains the lowest overall MSE across
all setups when β1 = 0.9, β2 = 0.99, and η = 3 × 10−3. These results demonstrate that Grams
consistently outperforms both Adam and C-Adam across all tested β configurations.

6.2 PRE-TRAINING

We train the Llama 60M model (Dubey et al., 2024) using the first 2, 048, 000 rows of data from
English subset of the C4 dataset (Raffel et al., 2020) to assess Grams’ optimization capability for
Transformer-based (Vaswani et al., 2017) natural language generation (NLG) tasks. Moreover, we
trained and evaluated the WideResNet-50-2 model (Zagoruyko & Komodakis, 2016) on the CIFAR-
10 dataset (Krizhevsky, 2009). See Table 1 for experiment results.

Table 1 reports the validation results of pre-training experiments, where the Grams optimizer
achieves the lowest perplexity on the Llama language model and the highest accuracy on WideRes-
Net. These results highlight the effectiveness of Grams in both language and vision domains. While
C-Adam and C-Lion show improvements over their respective baselines, Adam and Lion, Grams
consistently outperforms all variants, indicating superior convergence and generalization. Notably,
as the AMS parameter λ decreases from 1 to −1, WRN accuracy steadily improves, suggesting that
smaller λ values enhance adaptation in vision tasks.
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Table 1: Validation results of Llama and WideResNet (WRN) pre-training. Llama results are re-
ported in perplexity (lower is better), and WRN results in accuracy (higher is better). For all AMS,
β3 = 0.

Optimizer Llama PPL↓ WRN Acc↑
RMSprop N/A 84.47%
AMS λ = 1 (Adam) 49.83 87.56%
AMS λ = 0.5 N/A 88.10%
AMS λ = 0 (C-Adam) 43.21 88.78%
AMS λ = −0.5 N/A 89.34%
AMS λ = −1 (Grams) 38.60 90.55%
Lion 50.25 89.21%
C-Lion 53.21 89.42%

6.3 FINE-TUNING

We performed full fine-tuning (FT) experiments on the Llama 3.2 1B model (Dubey et al., 2024),
and SORSA method (Cao, 2024) for parameter efficient fine-tuning (PEFT) experiments on Llama
3.2 3B model, both using the first 100,000 rows of data from the MetaMathQA dataset (Yu et al.,
2023). To evaluate the models, we measured accuracy on the GSM-8K dataset (Cobbe et al., 2021)
and MATH dataset (Hendrycks et al., 2021), respectively. The results are reported in Table 2.

Table 2: Evaluation results for Llama fine-tuning experiments. Results are reported using Pass@1
accuracy, where higher values indicate better performance.

Optimizer GSM-8K MATH

AMS λ = 1 (Adam) 48.90% 17.80%
AMS λ = 0 (C-Adam) 49.81% 16.62%
AMS λ = −1 (Grams) 51.02% 17.80%

The results in Table 2 showcase the performance of different optimizers during the fine-tuning ex-
periments on the Llama models using the MetaMathQA dataset. Among the optimizers, Grams
achieved the highest or tied-highest accuracy on both experiments. These results highlight the ef-
fectiveness of Grams in fine-tuning tasks, particularly in improving the model’s ability to handle
complex datasets like GSM-8K. The superior performance of Grams demonstrates its capacity to
achieve better generalization and optimization efficiency in fine-tuning scenarios.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced Gradient Descent with Adaptive Momentum Scaling (Grams), a novel
optimization algorithm designed to decouple the direction and magnitude of parameter updates.
By leveraging this decoupling, Grams demonstrated superior performance in both theoretical con-
vergence guarantees and empirical evaluations, outperforming state-of-the-art optimizers such as
Adam (Loshchilov & Hutter, 2017), Lion (Chen et al., 2024), and their Cautious variants (Liang
et al., 2024). The results across various tasks highlight Grams’ potential as a transformative ap-
proach for efficiently training large language models.

Building on the promising results of Grams, future work will focus on integrating ideas from recent
advancements such as ADOPT (Taniguchi et al., 2024), Schedule Free (Defazio et al., 2024), and
SOAP-Muon (Vyas et al., 2025) methods. Incorporating the ADOPT and schedule-free learning
rate adjustment strategies might improve Grams’ robustness and performance across diverse tasks
and architectures. By blending these complementary innovations with the core principles of Grams,
we aim to develop an even more versatile and efficient optimization framework for large language
model training and fine-tuning.

9
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Appendix
Roadmap. In the appendix, we first provide more context on optimization in Section A. Then, we
show the formal version of equivalence of AMS frameworks in Section B. We then provide some
useful facts in Section C, which are utilized in the results. Section D presents a formal analysis of
loss descent for Grams optimizers. In Section E, we illustrate the the property of Grams optimizer in
the landscape of Hamiltonian dynamics. Finally, we list the details of our experiments in Section F.

A PRELIMINARY

In this section, we provide more context on optimization.

A.1 BACKGROUNDS ON OPTIMIZATION

We define the L-smoothness of functions as below.
Definition A.1 (L-smooth). We say that a function f : Rd → R is L-smooth if ∥∇f(x1) −
∇f(x2)∥2 ≤ L∥x1 − x2∥2 for all x1, x2 ∈ Rd.

We state a common fact of L-smooth functions as follow.
Fact A.2. If a function f : Rd → R is L-smooth, then we have

f(x2) ≤ f(x1) + ⟨∇f(x1), x2 − x1⟩+
L

2
∥x2 − x1∥22,

f(x2) ≥ f(x1) + ⟨∇f(x1), x2 − x1⟩ −
L

2
∥x2 − x1∥22.

We also define PL-condition as below.
Definition A.3 (PL-condition). A function f : Rd → R satisfies the µ-Polyak–Łojasiewicz (PL)
condition with constant µ > 0 if the following inequality holds for all x ∈ Rd:

∥∇f(x)∥2 ≥ 2µ(f(x)− f∗),

where f∗ is the minimum value of the function f , i.e., f∗ = infx∈Rd f(x).

A.2 ADAM OPTIMIZER

Adam (Adaptive Moment Estimation) (Kingma & Ba, 2014) is a widely-used optimizer that com-
bines the benefits of RMSprop (Hinton et al., 2012) and momentum by maintaining both first and
second moment estimates of the gradients. The algorithm adapts the learning rates for each param-
eter using these estimates. See Algorithm 2 for the pseudo-code of Adam.

Algorithm 2 Adam (Kingma & Ba, 2014)

Require: parameter w, step sizes {ηt}, dampening factors β1, β2 ∈ [0, 1), ϵ > 0, weight decay
γ ≥ 0

1: Initialize t = 0, m0 = v0 = 0
2: while wt not converged do
3: t← t+ 1
4: gt ← ∇wLt(wt−1)
5: mt ← β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)g2t
7: m̂t ← mt/(1− βt1)
8: v̂t ← vt/(1− βt2)
9: ut ← m̂t/(

√
v̂t + ϵ)

10: wt ← wt−1 − ϵtut
11: wt ← wt − ϵtγwt ▷ Add weight decay (Loshchilov & Hutter, 2017)
12: end while

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Definition A.4 (Adam). The parameter update rule for Adam is given by:

mt := β1mt−1 + (1− β1)gt
vt := β2vt−1 + (1− β2)g2t
m̂t :=

mt

1− βt1
v̂t :=

vt
1− βt2

ut :=
m̂t√
v̂t + ϵ

wt+1 := wt − ηtut,
where wt is the weight at time step t, mt and vt are the first and second momentum estimates
respectively, gt = ∇wLt(wt−1) is the current gradient, β1 and β2 are decay rates for the moment
estimates, ϵ is a small constant for numerical stability, and ηt is the learning rate at step t.

A.3 LION OPTIMIZER

Evolved Sign Momentum (Lion) (Chen et al., 2024) is an efficient optimizer that leverages momen-
tum and sign-based updates. Lion’s key innovation lies in its update rule, which combines both
current and momentum gradients through sign operations.
Definition A.5 (Lion Parameter Update). The parameter update rule for Lion is given by:

ut := sign(β1mt−1 + (1− β1)gt)
wt := wt−1 − ηt · ut
mt := β2mt−1 + (1− β2)gt,

where wt is the weight at time step t, mt−1 is the momentum term, gt = ∇wLt(wt−1) is the current
gradient, β1 and β2 are the momentum coefficients, ηt is the learning rate at step t, and sign is
defined in Definition 3.1,

Lion’s efficiency stems from its memory-efficient design - it only needs to maintain a single mo-
mentum term and operates primarily through sign operations. This makes it particularly suitable
for large-scale training where memory constraints are significant. The optimizer has demonstrated
strong performance in training large language models and vision transformers, often achieving com-
parable or better results than Adam while using less memory.

B EQUIVALENCE OF ADAPTIVE MOMENTUM SCALING

Corollary B.1 (Formal version of Corollary 4.1). By choosing β3 = β1, AMS is equivalent with
Adam (Definition A.4).

Proof. Case 1. β3 = β1,

st = β3st−1 + (1− β3)gt
= β1mt−1 + (1− β1)gt
=mt, (4)

Then, by the definition of ϕt,

ϕt = 1ut◦st≥0

= 1ut◦mt≥0

= 1 mt
(1−βt

1)(
√

v̂+ϵ)
◦mt≥0

= 1d,

where the first step follows the definition of ϕ, the second step follows from Eq. (4), the third step
follows the definition of ut, and the last step holds because (1− βt1)(

√
v̂ + ϵ)i ≥ 0 ∀i ∈ d.
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Likewise, we show,

ψt = λ · 1ut◦st<0

= 1 mt
(1−βt

1)(
√

v̂+ϵ)
◦mt<0

= 0d,

where the first step follows the definition of ψ, second step follows from Eq. (4), the last step holds
because (1− βt1)(

√
v̂ + ϵ)i ≥ 0 ∀i ∈ d.

By the definition of ût,

ût = (ϕt + ψt) ◦ ut
= (1d + 0d) ◦ ut
= ut,

where the second step substitute ϕt and ψt.

By the definition of η̂t,

η̂ = η
d

∥ϕt∥1 + |∥ψt∥1|

= η
d

∥1d∥1 + |∥0d∥1|

= η
d

d+ 0

= η,

where the second step substitute ϕ and ψ, the third step follows the definition of ℓ1 norm.

Case 2. λ = 1.

By the definition of ût,

ût = (ϕt + ψt) ◦ ut
= (1ut◦st≥0 + 1ut◦st<0) ◦ ut
= ut,

where the second step follows from the definition of ϕt and ψt, the third step holds because the fact
that 1ut◦st≥0 + 1ut◦st<0 = 1d.

By the definition of η̂t,

η̂ = η
d

∥ϕt∥1 + |∥ψt∥1|

= η
d

∥1ut◦st≥0∥1 + |∥1ut◦st<0∥1|

= η
d

d
= η.

Thus we complete the proof.

Corollary B.2 (Formal version of Corollary 4.2). By choosing β3 = 0 and λ = 0, AMS is equivalent
with Cautious Adam (Definition 3.2).

Proof. When β3 = 0,

st = β3st−1 + (1− β3)gt
= gt. (5)
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Then, by the definition of ϕt,

ϕt = 1ut◦st≥0

= 1ut◦gt≥0

where the second step follows Eq. (5).

Likewise, since λ = 0, by the definition of ψt, we show

ψt = λ · 1ut◦st<0

= 0 · 1ut◦gt<0

= 0d.

By the definition of ût,

ût = (ϕt + ψt) ◦ ut
= 1ut◦gt≥0 ◦ ut,

where the second step substitutes ϕt and ψt.

By the definition of η̂,

η̂ = η
d

∥ϕt∥1 + |∥ψt∥1|

= η
d

∥ϕt∥1
where the second step follows ψt = 0d and the definition of ℓ1 norm.

Thus we complete the proof.

Corollary B.3 (Formal version of Corollary 5.2). By choosing β3 = 0 and λ = −1, the update rule
of AMS is equivalent with:

mt := β1mt−1 + (1− β1)gt,
vt := β2vt−1 + (1− β2)g2t ,

m̂t :=
mt

1− βt1
,

v̂t :=
vt

1− βt2
,

ut :=
m̂t√
v̂t + ϵ

,

ût := sign(gt) ◦ |ut|,
wt := wt−1 − ηtût, (6)

Proof. When β3 = 0, Eq. (5) holds.

Then, by the definition of ϕt,

ϕt = 1ut◦st≥0

= 1ut◦gt≥0,

where the second step follows from Eq. (5).

Since λ = −1, by definition of ψt,

ψt = λ · 1ut◦st<0

= − 1ut◦gt<0,

where the second step follows from Eq. (5).

Next, by the definition of ût,

ût = (ϕt + ψt) ◦ ut
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= (1ut◦gt≥0 − 1ut◦gt<0) ◦ ut,
= 1ut◦gt≥0 ◦ ut + 1ut◦gt<0 ◦ (−ut)
= sign(ut ◦ gt) ◦ ut
= sign(gt) ◦ |ut|.

where the second step substitutes ϕt and ψt.

By the definition of η̂,

η̂ = η
d

∥ϕt∥1 + |∥ψt∥1|

= η
d

∥ϕt∥1 − ∥ψt∥1
= η.

where the second step follows the fact that λ = −1, and the last step from definition of ℓ1-norm.

Thus we complete the proof.

C USEFUL FACTS

Fact C.1. Given vectors a, b, c ∈ Rd, we have

⟨a, b ◦ c⟩ = ⟨a ◦ b, c⟩.

Fact C.2. Let two vectors a, b ∈ Rn, then:

⟨a,−sign(a) ◦ |b|⟩ = − ⟨|a|, |b|⟩

Proof. For the left side of the equation:

⟨a,−sign(a) ◦ |b|⟩ =
n∑
i=1

−aisign(ai)|b|i

= −
n∑
i=1

|a|i|b|i

= − ⟨|a|, |b|⟩

where the first step comes from the definition of inner product, the second step uses Fact C.5, and
the final step uses the definition of inner product again.

Fact C.3. Let two vectors a, b ∈ Rn, then:

⟨a, b⟩ − ⟨|a|, |b|⟩ ≤ 0.

Proof.

⟨a, b⟩ − ⟨|a|, |b|⟩ =
n∑
i=1

aibi − |a|i|b|i

=

n∑
i=1

{
0 if ai and bi have the same sign
−2|ai||bi| if ai and bi have opposite signs

≤ 0,

where the first step uses the definition of inner product, the second step discusses the only two cases
we have for signs, and the final inequality comes from basic algebra.

Fact C.4. Let x = a ◦ b be an element-wise product of two vectors a, b ∈ Rn, then:

⟨a, b⟩ − ⟨|a|, |b|⟩ − ⟨a ◦ b,1− 1a◦b>0⟩ ≤ 0

17
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Proof.
⟨a, b⟩ − ⟨|a|, |b|⟩ − ⟨a ◦ b,1− 1a◦b>0⟩

=

n∑
i=1

aibi −
n∑
i=1

|ai||bi| − (

n∑
i=1

aibi −
n∑

i:aibi>0

aibi)

=

n∑
i:aibi>0

aibi −
n∑
i=1

|ai||bi|,

where the first step expands the terms, and the second step simplifies by splitting the sum based on
the sign of aibi.

If all aibi ≥ 0, then
∑n
i:aibi>0 aibi =

∑n
i=1 |ai||bi|, so the expression is 0. Otherwise,∑n

i=1 |ai||bi| >
∑n
i:aibi>0 aibi, so the expression is negative.

Thus,

⟨a, b⟩ − ⟨|a|, |b|⟩ − ⟨a ◦ b,1d − 1a◦b>0⟩ =
n∑

i:aibi>0

aibi −
n∑
i=1

|ai||bi| ≤ 0.

The proof is complete.

Fact C.5. Given a scalar a ∈ R, we have:
a · sign(a) = |a|.

Proof. Let a ∈ R. By Definition 3.1:

sign(a) =


1, if a > 0,

0, if a = 0,

−1, if a < 0.

Consider the following cases:

• If a > 0, then sign(a) = 1, so:
a · sign(a) = a · 1 = a = |a|.

• If a = 0, then sign(a) = 0, so:
a · sign(a) = 0 · 0 = 0 = |a|.

• If a < 0, then sign(a) = −1, so:
a · sign(a) = a · (−1) = −a = |a|.

Thus, in all cases, a · sign(a) = |a|.

Fact C.6. Given a vector a = (a1, a2, . . . , an) ∈ Rn, we have:
a ◦ sign(a) = |a|,

where the operations are applied component-wise.

Proof. Let a = (a1, a2, . . . , an) ∈ Rn. By Definition 3.1, the sign function is applied component-
wise:

sign(a) = (sign(a1), sign(a2), . . . , sign(an)).

Expanding the Hadamard product a ◦ sign(a) component-wise:
a ◦ sign(a) = (a1 · sign(a1), a2 · sign(a2), . . . , an · sign(an)).

By Fact C.5 (the scalar version), for each i:
ai · sign(ai) = |ai|.

Thus:
a ◦ sign(a) = (|a1|, |a2|, . . . , |an|) = |a|,

where the absolute value |a| is applied component-wise.

18
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D LOSS DESCENT

Lemma D.1 (Formal version of Lemma 3.4). Suppose that L : Rd → R is L-smooth. Let
∆LwC

t+1,wt
be defined in Definition 3.3, wC

t+1 is updated from wt using Definition 3.2. Then we
have the followings:

• Part 1. It holds that

∆LwC
t+1,wt

≤ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
Lη2t
2
∥ut∥22, (7)

• Part 2. It holds that

∆LwC
t+1,wt

≥ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩.

• Part 3. If ηt ≤ 2
L∥ut∥2

2
⟨ut ◦ gt,1ut◦gt≥0⟩, then ∆LwC

t+1,wt
≤ 0.

Proof. Proof of Part 1. We can show that

∆LwC
t+1,wt

= L(wt+1)− L(wt)

≤ L(wt) + ⟨gt, wt+1 − wt⟩+
L

2
∥wt+1 − wt∥22 − L(wt)

= ⟨gt, wt+1 − wt⟩+
L

2
∥wt+1 − wt∥22

= ⟨gt,−ηtut ◦ 1ut◦gt≥0⟩+
L

2
∥ηtut ◦ 1ut◦gt≥0∥22

= − ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
L

2
∥ηtut ◦ 1ut◦gt≥0∥22

≤ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
Lη2t
2
∥ut∥22 (8)

where the first step follows from Definition 3.3, the second step follows from that L is L-smooth
and Fact A.2, the third step follows from basic algebra, the fourth step follows from Definition 3.2,
the fifth step follows from Fact C.1, and the last step follows from basic algebra.

Proof of Part 2. Next, we can show that

∆LwC
t+1,wt

= L(wt+1)− L(wt)

≥ L(wt) + ⟨gt, wt+1 + wt⟩ −
L

2
∥wt+1 − wt∥22 − L(wt)

≥ ⟨gt, wt+1 − wt⟩
= ⟨gt,−ηtut ◦ 1ut◦gt≥0⟩
= − ηt⟨ut ◦ gt,1ut◦gt≥0⟩ (9)

where the first step follows from Definition 3.3, the second step follows from that L is L-smooth
and Fact A.2, the third step follows from basic algebra, the fourth step follows from Definition 3.2,
the last step follows from Fact C.1.

Proof of Part 3. By rearranging the Eq. (8), it is clear that if ηt ≤ 2
L∥ut∥2

2
⟨ut ◦ gt,1ut◦gt≥0⟩, then

we have ∆LwC
t+1,wt

≤ 0.

Lemma D.2 (Formal version of Lemma 5.3). Suppose that L : Rd → R is L-smooth. Let
∆LwGrams

t+1 ,wt
be defined in Definition 3.3, wGrams

t+1 is updated from wt using Definition 5.1. Then we
have the following:

• Part 1. It holds that

∆LwGrams
t+1 ,wt

≤ −ηt⟨|gt|, |ut|⟩+
Lη2t
2
∥ut∥22. (10)
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• Part 2. It holds that

∆LwGrams
t+1 ,wt

≥ −ηt⟨|gt|, |ut|⟩.

• Part 3. If ηt ≤ 2
L∥ut∥2 ⟨|gt|, |ut|⟩, then we have ∆LwGrams

t+1 ,wt
≤ 0.

Proof. Proof of Part 1. We can show that

∆LwGrams
t+1 ,wt

= L(wt+1)− L(wt)

≤ L(wt) + ⟨gt, wt+1 − wt⟩+
L

2
∥wt+1 − wt∥22 − L(wt)

= ⟨gt, wt+1 − wt⟩+
L

2
∥wt+1 − wt∥22

= ⟨gt,−ηt · sign(gt) ◦ |ut|⟩+
L

2
∥ηt · sign(gt) ◦ |ut|∥22

= − ηt⟨gt ◦ sign(gt), |ut|⟩+
L

2
∥ηtut∥22

≤ − ηt⟨|gt|, |ut|⟩+
Lη2t
2
∥ut∥22 (11)

where the first step follows from Definition 3.3, the second step follows from that L is L-smooth
and Fact A.2, the third step follows from basic algebra, the fourth step follows from Definition 5.1,
the fifth step follows from the Fact C.1, and the last step follows from gt ◦ sign(gt) = |gt|.
Proof of Part 2. Next, we can show that

∆LwGrams
t+1 ,wt

= L(wt+1)− L(wt)

≥ L(wt) + ⟨gt, wt+1 + wt⟩ −
L

2
∥wt+1 − wt∥22 − L(wt)

≥ ⟨gt, wt+1 − wt⟩
= ⟨gt,−ηt · sign(gt) ◦ |ut|⟩
= − ηt⟨|gt|, |ut|⟩ (12)

where the first step follows from Definition 3.3, the second step follows from that L is L-smooth
and Fact A.2, the third step follows from basic algebra, the fourth step follows from Definition 5.1,
the last step follows from the Fact C.1 and Fact C.6.

Proof of Part 3. By rearranging the Eq. (11), it is clear that if ηt ≤ 2
L∥ut∥2

2
⟨|gT |, |ut|⟩, then we have

∆LwGrams
t+1 ,wt

≤ 0.

Theorem D.3 (Loss Descent Comparison, formal version of Theorem 5.4). Suppose that L : Rd →
R is L-smooth. For any parameter vector w at optimization step t, let wGrams

t and wC
t be the update

of Grams in Definition 5.1 and Cautious optimizers in Definition 3.2, respectively. If the stepsize ηt
satisfies

ηt ≤
2

L∥ut∥2
·min{⟨ut ◦ gt,1ut◦gt≥0⟩, ⟨ut ◦ gt,1ut◦gt<0⟩},

then we have

∆LwGrams
t+1 ,wt

≤ ∆LwC
t+1,wt

≤ 0.

Proof. We define the index sets:

I+ = {i ∈ [d] : ut,i, gt,i ≥ 0};
I− = {i ∈ [d] : ut,i, gt,i < 0}.

By Part 1. of Lemma D.2, we have

∆LwGrams
t+1 ,wt

≤ −ηt⟨|gt|, |ut|⟩+
Lη2t
2
∥ut∥22. (13)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

By Part 2. of Lemma D.1, we have

∆LwC
t+1,wt

≥ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩. (14)

Then we can show that

∆LwGrams
t+1 ,wt

−∆LwC
t+1,wt

≤ − ηt⟨|gt|, |ut|⟩+ ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
Lη2t
2
∥ut∥22

= − ηt
d∑
i=1

|ut,i||gt,i|+ ηt
∑
i∈I+

ut,igt,i +
Lη2t
2
∥ut∥22

= − ηt
∑
i∈I+
|ut,i||gt,i| − ηt

∑
i∈I−
|ut,i||gt,i|+ ηt

∑
i∈I+

ut,igt,i +
Lη2t
2
∥ut∥22

= − ηt
∑
i∈I+

ut,igt,i − ηt
∑
i∈I−
|ut,i||gt,i|+ ηt

∑
i∈I+

ut,igt,i +
Lη2t
2
∥ut∥22

= − ηt
∑
i∈I−
|ut,i||gt,i|+

Lη2t
2
∥ut∥22

where the first step follows from Eq. (14) and Eq. (13), the second step expands vectors element-
wise, the third step follows from that [d] is the disjoint union of I+ and I−, the fourth step follows
from that |ut,i||gt,i| = ut,igt,i for i ∈ I+, and the last step follows from basic algebra.

To ensure ∆LwGrams
t+1 ,wt

−∆LwC
t+1,wt

≤ 0, it suffices to have

−ηt
∑
i∈I−
|ut,i||gt,i|+

Lη2t
2
∥ut∥22 ≤ 0.

Rearranging the above inequality gives

ηt ≤
2

L∥ut∥22

∑
i∈I−
|ut,i||gt,i|

=
2

L∥ut∥22
⟨gt ◦ ut,1ut◦gt<0),

where the last step follows from the definition of I− and basic algebra.

Note that by Part 3 of Lemma D.1, if ηt ≤ 2
L∥ut∥2

2
⟨gt ◦ ut,1gt◦ut≥0⟩, we have LwC

t+1,wt
≤ 0.

E HAMILTONIAN DYNAMICS

Definition E.1 (Section 2.1 from (Liang et al., 2024)). Momentum-based algorithms can be typi-
cally viewed as monotonic descending algorithms on an augmented loss H(W,S), which satisfies
minS H(W,S) = L(W ), so that minimizing L(W ) is equivalent to minimizing H(W,S). A typical
choice is

H(w, s) = L(w) +K(s),

where K(·) is any lower bounded function. The continuous-time form of most momentum-based
algorithms can be written into a Hamiltonian descent form:

d

dt
wt = −∇K(st)− Φt(∇L(wt))

d

dt
st = ∇L(wt)−Ψt(∇K(st)) (15)

where H(W,S) is a Hamiltonian (or Lyapunov) function that satisfies

min
S
H(W,S) = L(W ), ∀W,
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so that minimizing L(W ) reduces to minimizing H(W,S); and Φ(·),Ψ(·) are two monotonic map-
pings satisfying

⟨x,Φ(x)⟩ ≥ 0, ⟨x,Ψ(x)⟩ ≥ 0, ∀x ∈ X.

With Φ(X) = Ψ(X) = 0, the system in (15) reduces to the standard Hamiltonian system that keeps
H(Wt, St) = const along the trajectory. When adding the descending components with Φ and Ψ,
the system then keeps H(W,S) monotonically decreasing:

d

dt
H(wt, st) = −∆H(wt, st) ≤ 0,

where

∆H(wt, st) := ⟨∇L(wt),Φ(∇L(wt))⟩+ ⟨K(st),Ψ(K(st))⟩. (16)

On the other hand, L(w), which is the true objective, is not necessarily decreasing monotonically.

d

dt
L(wt) = −∆L(wt, st),

where

∆L(wt, st) := ⟨∇L(wt),∇K(st)⟩+ ⟨∇L(wt),Φt(∇L(wt)⟩. (17)

Theorem E.2 (Theorem 2.3 in (Liang et al., 2024)). For Hamiltonian dynamics of Cautious opti-
mizer (in Definition 3.2), we have:

∆C
H(wt, st) :=

d

dt
H(wt, st) = ⟨xt,1− 1xt≥0⟩ −∆H(wt, st).

∆C
L(wt) :=

d

dt
L(wt) = − ⟨xt,1xt≥0⟩ − ⟨∇L(wt),Φt(∇L(wt))⟩

= ⟨xt,1− 1xt≥0⟩ −∆L(wt, st).

where ∆H(wt, st) and ∆L(wt) represent the decreasing rates of H and L in accordance with the
system in Definition E.1.

Hence:

• If ⟨xt, (1d − sign(xt))⟩ ≤ 0 for any x ∈ Rd, then both H and L decrease faster than the
original system:

∆C
H(wt, st) ≤ −∆H(wt, st) ≤ 0,

∆C
L(wt) ≤ −∆L(wt, st).

• If ⟨xt, sign(∇L(wt))⟩ ≥ 0 for any x ∈ Rd, then L decreases monotonically:

∆C
L(wt) ≤ 0.

Theorem E.3 (Convergence of Grams Hamiltonian Dynamics, formal version of Theorem 5.7).
Following the dynamics in Definition 5.6, we have

∆Grams
H (wt, st) :=

d

dt
H(wt, st) ≤ 0,

∆Grams
L (wt) :=

d

dt
L(wt) ≤ −∆L(wt, st),

where ∆H(wt, st) and ∆L(wt, st) represent the decreasing rates of H and L in accordance with
the system in Definition E.1.

Proof. Following the dynamics in Definition 5.6, we can calculate ∆Grams
H (wt, st) :=

d
dtH(wt, st):

∆Grams
H (wt, st)

= ⟨∇L(wt),
d

dt
wt⟩+ ⟨∇K(st),

d

dt
st⟩
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= ⟨∇L(wt),−sign(∇L(wt)) ◦ |∇K(st)| − Φt(∇L(wt))⟩
+ ⟨K(st),∇L(wt)−Ψt(∇K(st))⟩

= ⟨∇L(wt),−sign(∇L(wt)) ◦ |∇K(st)|⟩+ ⟨∇K(st),∇L(wt)⟩ − ⟨∇L(wt),Φt(∇L(wt))⟩
− ⟨∇K(st),Ψt(∇K(st))⟩

= ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ −∆H(wt, st)

≤ 0,

where the first step follows from the chain rule for the time derivative of the Hamiltonian H , the
second step substitutes the dynamics from Definition 5.6, the third step separates the inner products
for clearer analysis, the fourth step follows the definition of ∆H(wt, st) and Fact C.2, and the last
step follows Fact C.3, and −∆H(wt, st) ≤ 0.

Then, we calculate ∆Grams
L (wt) :=

d
dtL(wt):

∆Grams
L (wt) = ⟨∇L(wt),−sign(∇L(wt)) ◦ |∇K(st)| − Φt(∇L(wt))⟩

= ⟨∇L(wt),−sign(∇L(wt)) ◦ |∇K(st)|⟩ − ⟨∇L(wt),Φt(∇L(wt))⟩
= − ⟨|∇L(wt)|, |∇K(st)|⟩ − ⟨∇L(wt),Φt(∇L(wt))⟩
= ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩
− (⟨∇L(wt),Φt(∇L(wt))⟩+ ⟨∇L(wt),∇K(st)⟩)

= ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ −∆L(wt, st)

where the first step follows from the chain rule, and the second step separates the inner products.
The third step follows Fact C.2, the fourth step adds and subtracts the term ⟨∇L(wt),∇K(st)⟩
simultaneously, the fifth step follows the definition of ∆L(wt, st) from Eq. (2).

Since we know ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ ≤ 0 from Fact C.3,

⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ ≤ −∆L(wt, st)

Thus we complete the proof.

Theorem E.4 (Convergence Comparison of Hamiltonian Dynamics between Grams and Cautious
Optimizers, formal version of Theorem 5.8). From Theorem E.3 and E.2, recall ∆Grams

L (wt) and
∆C

L(wt):

∆Grams
L (wt) ≤ ∆C

L(wt).

Proof. We calculate the difference between ∆Grams
L (wt) and ∆C

L(wt):

∆Grams
L (wt)−∆C

L(wt) = ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇L(wt)|⟩ − ⟨xt,1− 1xt≥0⟩,
where xt = ∇L(wt) ◦ ∇K(st).
By applying Fact C.4, we know:

⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ − ⟨xt,1− 1xt≥0⟩ ≤ 0,

with equality if all components of∇L(wt) ◦ ∇K(st) ≥ 0.

Thus:

∆Grams
L (wt)−∆C

L(wt) ≤ 0,

which implies:

∆Grams
L (wt) ≤ ∆C

L(wt).

Thus we complete the proof.

F EXPERIMENTS DETAILS

For the Lion and C-Lion optimizers, we set the learning rate to 1
10 × Adam learning rate, as recom-

mended in (Chen et al., 2024).
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F.1 PRE-TRAINING

For the pre-training experiments with Llama 3.2 60M (Dubey et al., 2024), we used the first
2, 048, 000 rows of training data from the English section of the C4 dataset (Raffel et al., 2020). Due
to the limited computing resources, we trained 1, 000 steps using constant with warm-up scheduler,
in order to simulate the beginning part of regular pre-training.We used the first 10, 000 rows of val-
idation data from the English section of the C4 dataset for evaluation. Table 3 provides a detailed
summary of the hyperparameters employed.

Table 3: Hyperparameters for Llama 3.2 60M pre-training experiments.

Optimizers Grams/AdamW/CAdamW Lion/CLion
Training

Epoch 1 1
Learning Rate 6e-3 6e-4
Weight Decay 0.0 0.0

Batch Size 2048 2048
Model Precision BF16 BF16
Mix Precision BF16&TF32 BF16&TF32

Scheduler Constant with warm-up Constant with warm-up
Warm-up Steps 50 50
Grad Clipping 1.0 1.0

β1 0.9 0.9
β2 0.95 0.95
ϵ 1e-6 1e-6

Seq-len 256 256

Evaluating
Precision BF16
Seq-len 256

For the computer vision experiments, we used the CIFAR-10 dataset (Krizhevsky, 2009) to train
and evaluate the WideResNet-50-2 model (Zagoruyko & Komodakis, 2016). Table 4 outlines the
corresponding hyperparameters.

Table 4: Hyperparameters for WideResNet-50-2 pre-training experiments.

Optimizers Grams/AdamW/CAdamW Lion/CLion
Training

Epoch 10 10
Learning Rate 2e-3 2e-4
Weight Decay 0.0 0.0

Batch Size 128 128
Model Precision FP32 FP32
Mix Precision None None

Scheduler Linear Linear
Warm-up Steps 100 100
Grad Clipping 1.0 1.0

β1 0.9 0.9
β2 0.999 0.99
ϵ 1e-6 1e-6

Evaluating
Precision FP32
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F.2 FINE-TUNING

For fine-tuning experiments of the Llama 3.2 1B model, Table 5 provides the detailed hyperparam-
eters.

Table 5: Hyperparameters for Llama 3.2 1B fine-tuning experiments.

Optimizers Grams/AdamW/CAdamW
Training

Epoch 1
Learning Rate 1e-4
Weight Decay 0.0

Batch Size 64
Model Precision BF16
Mix Precision BF16&TF32

Scheduler Cosine
Warm-up Ratio 0.03
Grad Clipping 1.0

β1 0.9
β2 0.999
ϵ 1e-6

Seq-len 512

Evaluating
Precision BF16
Seq-len 1024

For PEFT of the Llama 3.2 3B model, Table 5 provides the detailed hyperparameters.

Table 6: Hyperparameters for Llama 3.2 3B PEFT experiments.

Optimizers Grams/AdamW/CAdamW
Training

Epoch 1
Learning Rate 1e-4
Weight Decay 0.0

Batch Size 128
Model Precision BF16
Mix Precision BF16&TF32

Scheduler Cosine
Warm-up Ratio 0.03
Grad Clipping 1.0

β1 0.9
β2 0.999
ϵ 1e-6

Seq-len 512
Rank 128

SORSA (Cao, 2024) γ 1e-3

Evaluating
Precision BF16
Seq-len 2048
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G IMPACT STATEMENT

Grams advances optimization efficiency by decoupling update direction and magnitude, offering
faster and more stable convergence. This has the potential to significantly reduce training costs and
energy consumption for large-scale models, making deep learning more accessible and sustainable.
We do not foresee any negative potential societal impact of this work.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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