
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DECOUPLING SIGN AND MAGNITUDE IN OPTIMIZA-
TION WITH ADAPTIVE MOMENTUM SCALING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Adaptive Momentum Scaling (AMS), a general optimization frame-
work that decouples the direction and magnitude of parameter updates by sep-
arately tracking the sign and scale of momentum. AMS unifies and extends
existing optimizers; in particular, we show that it recovers Adam and Cautious
Adam as special cases through appropriate hyperparameter choices. Building on
this framework, we develop Gradient Descent with Adaptive Momentum Scaling
(Grams), a novel optimizer that leverages gradient direction for updates while us-
ing momentum exclusively for adaptive magnitude scaling. This design enables
Grams to achieve more effective loss descent than conventional momentum-based
and cautious methods. We provide theoretical guarantees for Grams, including
discrete-time descent analysis , and further connect its dynamics to Hamiltonian
descent. Empirically, Grams consistently outperforms widely-used optimizers
such as Adam, Lion, and their cautious variants across a range of tasks, includ-
ing pre-training and fine-tuning large language models. Our results demonstrate
that AMS and Grams offers a principled and scalable solution for modern deep
learning optimization.

1 INTRODUCTION

Optimization plays a pivotal role in modern machine learning, serving as the cornerstone for train-
ing and fine-tuning models across diverse applications. Over the past decade, the introduction of
adaptive optimizers like Adam (Kingma & Ba, 2014) and its variant AdamW (Loshchilov & Hutter,
2017) has significantly shaped the landscape of optimization. These algorithms have become the de
facto choices for a variety of tasks, ranging from pre-training Large Language Models (LLMs) (Tou-
vron et al., 2023) to fine-tuning models for text-to-image diffusion (Rombach et al., 2022). Despite
the advent of new methods, AdamW has maintained its dominance, particularly in large-scale train-
ing regimes, thanks to its robust convergence properties and general applicability.

The era of LLMs has ushered in unprecedented scaling of model sizes, demanding billions or even
trillions of parameters (Achiam et al., 2023). This scaling places an immense burden on compu-
tational resources, intensifying the need for efficient optimization strategies. A faster optimizer
directly translates to the ability to process more training tokens within a fixed time budget, leading
to the development of more capable models (Kaplan et al., 2020). This necessity has rekindled in-
terest in identifying optimizers that can surpass AdamW in terms of speed, memory efficiency, and
convergence guarantees.

Recent innovations, such as SHAMPOO (Gupta et al., 2018), Schedule Free (Defazio et al., 2024),
Lion (Chen et al., 2024), SOAP (Vyas et al., 2024), and ADOPT (Taniguchi et al., 2024), have
pushed the boundaries of optimization by introducing novel update rules, momentum mechanisms,
and regularization techniques. These methods promise substantial improvements in training effi-
ciency and model performance, particularly in specialized scenarios. The cautious (Liang et al.,
2024) mechanism addresses optimization challenges by adaptively masking the momentum term ut
to align with the gradient gt, preventing conflicts that hinder training. This approach extends to
Adam and Lion, resulting in variants like Cautious Adam (C-Adam) and Cautious Lion (C-Lion).

In this paper, we propose Gradient Descent with Adaptive Momentum Scaling (Grams), a novel
optimization algorithm designed to address the limitations of existing methods. Unlike traditional
optimizers that directly couple momentum with gradient updates, Grams decouples the direction

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and magnitude of parameter updates. This approach allows the update direction to be derived solely
from current gradients while momentum is utilized to scale the update magnitude. Such decoupling
enhances stability and robustness, particularly in dynamic optimization landscapes.

0.05 0.00 0.05 0.10 0.15 0.20 0.25
w1

0.1

0.0

0.1

0.2

0.3

0.4

w
2

Optimization Trajectories

Adam
C-Adam
Lion
C-Lion
Grams
Optimum

20 15 10 5 0
Logarithmic Distance in w1 (log10)

20

15

10

5

0

Lo
ga

rit
hm

ic
 D

is
ta

nc
e

in
 w

2
(lo

g 1
0

)

Logarithmic Distance with Gradient Directions

Adam
C-Adam
Lion
C-Lion
Grams

0 100 200 300 400
Step t

10
40

10
34

10
28

10
22

10
16

10
10

10
4

O
bj

ec
tiv

e
f(w

t)

Convergence Plot

Adam
C-Adam
Lion
C-Lion
Grams

Figure 1: Convergence comparison on a simple convex function f(w) := (0.5w1)
2 + (0.1w2)

2.
Learning rate η = 0.01 for Grams, Adam, and C-Adam, and η = 0.001 for Lion and C-Lion. β1
and β2 are default values for all optimizers. The graph on the left is the optimizing trajectories; the
graph in the middle graph is the distance between current weight and optimum weight; the graph on
the right is the training objectives.

Figure 1 illustrates the superior convergence properties of Grams compared to other state-of-the-art
optimizers on a simple convex function. In the left graph, the optimization trajectories of Grams
exhibit a combination of characteristics observed in Lion and C-Adam. Specifically, Grams follows
a shortcut-like path similar to C-Adam while also demonstrating a zigzagging behavior reminiscent
of Lion. However, unlike Lion, which deviates significantly from the optimal path due to its pro-
nounced zigzagging updates, Grams maintains a more controlled trajectory, effectively balancing
stability and efficiency during optimization. The middle graph illustrates the logarithmic distance of
the weights w1 and w2 from the optimum. Here, Grams consistently demonstrates a faster descent
compared to other optimizers, indicating superior efficiency in reducing the distance to the optimal
solution. The right graph displays the convergence of the objective function value over training
steps, where Grams achieves a notably faster reduction and lower final objective value than its com-
petitors. These results collectively underscore Grams’ ability to navigate the optimization landscape
effectively, outperforming traditional and Cautious optimizers in terms of speed and precision, even
in a simple convex setting.

Our contributions are summarized as follows:

• We introduce Adaptive Momentum Scaling (AMS), which is a general framework that
tracks the sign and magnitude of the momentum. We proved that it can generalize Adam
and Cautious Adam by tuning hyperparameters.

• We introduce the Grams optimizer, which empirically outperforms existing methods such
as Adam (Loshchilov & Hutter, 2017), Lion (Chen et al., 2024), and their Cautious ver-
sion (Liang et al., 2024).

• We establish theoretical guarantees for Grams, including discrete-time descent analysis and
Hamiltonian descent analysis.

By integrating insights from momentum-based methods, adaptive optimizers, and sign-based up-
dates, Grams bridges the gap between theoretical rigor and practical performance, offering a promis-
ing direction for scalable and efficient optimization in modern machine learning.

Roadmap. In Section 2, we review related work and place our approach in the context of existing
optimization methods. In Section 3, we introduce our notation system and outline key preliminary
concepts necessary for understanding our method. In Section 4, we present a general framework that
tracks the sign and magnitude of the momentum. In Section 5, we present our main contribution,
Gradient Descent with Adaptive Momentum Scaling (Grams), and provide theoretical guarantees for
its performance. In Section 6, we evaluate the effectiveness of Grams through empirical experiments
on both pre-training and fine-tuning tasks, comparing its performance to state-of-the-art optimizers.
In Section 7, we conclude the paper and discuss future directions to enhance the capabilities of
Grams further.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Adam Variants and Memory-Efficient Optimization Adam and its numerous variants have been
pivotal in addressing optimization challenges across diverse applications (Kingma & Ba, 2014; Liu
et al., 2019). Among these, AdamW (Liu et al., 2019) introduced a crucial modification by de-
coupling weight decay from gradient updates, restoring the original intent of weight regularization.
NAdam (Dozat, 2016) integrated Nesterov momentum, and AdaBelief (Zhuang et al., 2020) refined
the second moment estimation for improved generalization. Adan (Xie et al., 2024) extended these
advancements with an additional momentum term, balancing performance with memory overhead.
Schedule-free optimizers (Defazio et al., 2024) have further simplified the optimization process by
dynamically adjusting learning rates without pre-defined schedules, enhancing adaptability across
tasks. More recent efforts, such as ADOPT (Taniguchi et al., 2024), streamlined first-order momen-
tum updates through normalization.

Memory-efficient strategies have addressed the growing resource demands of large-scale models.
AdaFactor (Shazeer & Stern, 2018) factorize second-order statistics, achieving sublinear mem-
ory usage. K-Fac (Martens & Grosse, 2015) approximates the Fisher information matrix using
Kronecker-factored representations. Innovations such as fused gradient computation (Lv et al.,
2023) and GaLore (Zhao et al., 2024) leverage low-rank gradient structures to optimize memory
efficiency.

Regularization Techniques Regularization plays a critical role in improving generalization and
robustness in optimization. Lion (Chen et al., 2024) introduced sign-based updates with uniform
magnitudes, offering inherent noise regularization (Neelakantan et al., 2017; Foret et al., 2021;
Chen et al., 2022). Earlier methods, such as signSGD (Bernstein et al., 2018), explored similar
ideas but focused on reducing communication costs in distributed optimization. Despite its effi-
ciency, signSGD often underperformed in deep learning tasks, such as ConvNet training, where
Lion demonstrated superior performance through advanced momentum mechanisms.

Building on these ideas, the Cautious mechanism (Liang et al., 2024) adaptively masks momentum
terms to ensure alignment with gradient directions, mitigating conflicts. This approach has led to
new variants, including Cautious Adam (C-Adam) and Cautious Lion (C-Lion), which combine
regularization benefits with robust convergence guarantees.

Hamiltonian Dynamics in Optimization Hamiltonian dynamics provides a robust theoretical
framework for understanding momentum-based optimization (Nesterov, 1983; Sutskever et al.,
2013; Nguyen et al., 2024; Anonymous, 2024). The seminal work of (Sutskever et al., 2013) pro-
vided a physical interpretation of momentum methods, linking the oscillatory behavior of algo-
rithms like Nesterov’s and Polyak’s methods (Nesterov, 1983) to principles of dynamical systems.
While traditional gradient descent guarantees a monotonic decrease in objective function values,
momentum-based methods exhibit non-monotonic dynamics that require more advanced analyti-
cal tools (Jin et al., 2018). This has motivated the development of Lyapunov-based approaches for
convergence analysis in convex optimization (Krichene et al., 2015; Wilson et al., 2016).

Recent studies have further formalized these connections by modeling optimization processes as
continuous-time ODEs, uncovering inherent Hamiltonian structures (Maddison et al., 2018; Nguyen
et al., 2024). These insights have significantly enhanced the theoretical understanding of classi-
cal momentum-based algorithms and provided a foundation for exploring new optimization frame-
works (Anonymous, 2024). Moreover, Hamiltonian principles have been extended to analyze con-
vergence rates for accelerated methods (Jin et al., 2018) and have inspired broader applications in
optimization. In parallel, Mirror Descent, while distinct from Hamiltonian dynamics, leverages vari-
ational principles and maintains efficiency with a mild dependence on the dimensionality of decision
variables, making it well-suited for large-scale problems (Krichene et al., 2015; Tzen et al., 2023).

3 PRELIMINARIES

In this section, we outline foundational concepts and notations that will be referenced through-
out the paper. In Section 3.1, we define some useful notations. In Section 3.4, we summarize

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the Hamiltonian dynamics framework, which provides a theoretical foundation for understanding
momentum-based optimization algorithms.

3.1 NOTATIONS

For two vectors u, v ∈ Rd, we use ⟨u, v⟩ to denote the standard inner product in the Euclidean
space. We use ∥u∥2 to denote the ℓ2-norm of u and use ∥u∥∞ to denote the ℓ∞-norm of u. For
a matrix A, we use ∥A∥F to denote the Frobenius norm of A. For a twice differentiable function
f : Rd → R, we use ∇f(x) and ∇2f(x) to denote the gradient and Hessian of f , respectively.
Given a vector x ∈ Rd, we use 1x≥0 ∈ Rd to denote the vector where each entry indicates whether
the corresponding entry of x is non-negative, i.e., for each i ∈ [d], (1x≥0)i = 1 if xi ≥ 0, and
(1x≥0)i = 0 otherwise.

3.2 SIGN FUNCTION

We formally define the sign function, which will be used later in our optimizer Grams.
Definition 3.1 (Sign function). Given a vector a = (a1, a2, . . . , an) ∈ Rn, the sign function of a,
denoted as sign(a), is defined component-wise as:

sign(a) = (sign(a1), sign(a2), . . . , sign(an)),

where the scalar sign function sign(ai) is given by:

sign(ai) =


1, if ai > 0,

0, if ai = 0,

−1, if ai < 0.

3.3 CAUTIOUS OPTIMIZERS

Cautious mechanism (Liang et al., 2024) addresses a key challenge in optimization dynamics: when
the momentum term ut moves in a different direction from the current gradient gt, it can potentially
impede training progress. To mitigate this issue, the Cautious mechanism introduces an adaptive
masking mechanism that modifies the momentum term based on its alignment with the gradient
direction. Cautious mechanism could apply to Adam and Lion, which form Cautious Adam (C-
Adam) and Cautious Lion (C-Lion).
Definition 3.2 (Cautious Mechanism Parameter Update). The general parameter update rule for the
Cautious mechanism is given by:

ût := ut ◦ 1ut◦gt≥0

η̂ :=
d

∥ût∥1
wt := wt−1 − η̂ût (1)

where wt is the weight at time step t, ◦ denotes Hadamard product. For C-Adam, ut is from Defini-
tion A.4; For C-Lion, ut is from Definition A.5. gt is the current gradient.

The Cautious mechanism in Definition 3.2 modifies the parameter updates to ensure they align with
the gradient direction, thereby reducing the risk of adverse updates that could impede convergence.
To analyze the impact of this mechanism, we introduce Definition 3.3, which quantifies the change
in the loss function after an update.
Definition 3.3. For any loss function L : Rd → R, we define

∆Lwt+1,wt := L(wt+1)− L(wt),

where wt+1 is updated from any update rule.

As shown in (Liang et al., 2024), the Cautious mechanism ensures that the updated parameters
result in a non-negative inner product with the gradient, leading to a monotonic decrease in the loss
function when the step size is sufficiently small. Specifically, using a Taylor approximation, it can

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

be expressed as: ∆Lwt+1,wt
≈ −ηt(ut ◦ gt)⊤ϕ(ut ◦ gt) ≤ 0, where ϕ(·) represents the alignment

mask introduced by the Cautious mechanism. This guarantees that L(wt+1) ≤ L(wt), ensuring a
decrease in loss.

We formalize that the expected decrease in loss when updating the parameter w from optimization
step t to step t + 1 can be approximated using a first-order Taylor expansion, which indicates the
loss function will decrease monotonically when the step size is sufficiently small.
Lemma 3.4 (Informal version of Lemma D.1). Suppose that L : Rd → R is L-smooth. Let
∆LwC

t+1,wt
be defined in Definition 3.3, wC

t+1 is updated from wt using Definition 3.2. Then we
have the followings:

• Part 1. It holds that

∆LwC
t+1,wt

≤ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
Lη2t
2
∥ut∥22, (2)

• Part 2. It holds that ∆LwC
t+1,wt

≥ −ηt⟨ut ◦ gt,1ut◦gt≥0⟩.

• Part 3. If ηt ≤ 2
L∥ut∥2

2
⟨ut ◦ gt,1ut◦gt≥0⟩, then ∆LwC

t+1,wt
≤ 0.

Building on these findings, Theorem E.2 delves into the Hamiltonian properties of the Cautious
mechanism, providing deeper insights into its theoretical guarantees within continuous optimization
dynamics.

3.4 HAMILTONIAN DESCENT

Hamiltonian descent provides a theoretical framework for analyzing momentum-based optimization
algorithms by introducing an augmented objective function, the Hamiltonian. This framework al-
lows us to study optimization dynamics through the lens of continuous-time differential equations,
linking the monotonic descent of the Hamiltonian function to the stability and convergence of the op-
timization process. We formalize this concept as Definition E.1, based on the formulation presented
in Section 2.1 of (Liang et al., 2024).

4 ADAPTIVE MOMENTUM SCALING

We propose Adaptive Momentum Scaling (AMS), a general framework that tracks the sign and
magnitude of the momentum separately. See Algorithm 1 for definition.

We then show that for some specific hyperparameters, AMS is equivalent to Adam. Formally, we
have the following corollary.
Corollary 4.1 (Informal version of Corollary B.1). By choosing β3 = β1 or λ = 1, AMD is
equivalent with Adam.

Then, we show that we can also let AMS equivalent to Cautious Adam by set hyperparameters.
Corollary 4.2 (Informal version of Corollary B.2). By choosing β3 = 0 and λ = 0, AMS is equiva-
lent with Cautious Adam.

5 GRADIENT DESCENT WITH ADAPTIVE MOMENTUM SCALING

A special case of AMS, where β3 = 0 and λ = −1, we name it Gradient Descent with Adaptive Mo-
mentum Scaling, or simply Grams. This section formalizes the update rule of Grams, introduces its
key components, and provides theoretical guarantees in both loss descent and Hamiltonian dynamics
for its performance.

5.1 DEFINITIONS

We define the Grams optimizer formally in Definition 5.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive Momentum Scaling (AMS)

Require: parameter w, step sizes {ηt}, dampening factors β1, β2, β3 ∈ [0, 1), ϵ > 0, weight decay
γ ≥ 0, negative momentum scaling factor λ ∈ R.

1: Initialize t = 0, m0 = v0 = s0 = 0
2: while wt not converged do
3: t← t+ 1
4: gt ← ∇wLt(wt−1)
5: mt ← β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)g2t
7: st ← β3st−1 + (1− β3)gt ▷ Track the sign
8: m̂t ← mt/(1− βt1)
9: v̂t ← vt/(1− βt2)

10: ut ← m̂t/(
√
v̂t + ϵ)

11: ϕt ← 1ut◦st≥0 ▷ Mask for same signs
12: ψt ← λ · 1ut◦st<0 ▷ Mask and scale for different signs
13: η̂ ← η d

∥ϕt∥1+|∥ψt∥1| ▷ Scale η
14: ût ← (ϕt + ψt) ◦ ut
15: wt ← wt−1 − η̂tût
16: wt ← wt − η̂tγwt ▷ Add weight decay
17: end while

Definition 5.1 (Grams Optimizer). Grams optimizer is a special case of AMS (Algorithm 1) by set
β3 = 0 and λ = −1.

Corollary 5.2 (Informal version of Corollary B.3). By choosing β3 = 0 and λ = −1, the update rule
of AMS is equivalent with: Part 1. mt := β1mt−1+(1−β1)gt, Part 2. vt := β2vt−1+(1−β2)g2t ,
Part 3. m̂t :=

mt

1−βt
1

, Part 4. v̂t := vt
1−βt

2
, Part 5. ut := m̂t√

v̂t+ϵ
, Part 6. ût := sign(gt) ◦ |ut|, Part 7.

wt := wt−1 − ηtût.

5.2 LOSS DESCENT

In this subsection, we analyze the loss descent properties of the Grams algorithm. Understanding
how the loss function decreases over optimization steps provides insights into the efficiency and
stability of the method. Below, we formalize the relationship between the step size, gradients,
and the resulting decrease in the loss value, leveraging the L-smoothness property of the objective
function.

Lemma 5.3 (Informal version of Lemma D.2). Suppose that L : Rd → R is L-smooth. Let
∆LwGrams

t+1 ,wt
be defined in Definition 3.3, wGrams

t+1 is updated from wt using Definition 5.1. Then we
have the following:

• Part 1. It holds that

∆LwGrams
t+1 ,wt

≤ −ηt⟨|gt|, |ut|⟩+
Lη2t
2
∥ut∥22. (3)

• Part 2. It holds that ∆LwGrams
t+1 ,wt

≥ −ηt⟨|gt|, |ut|⟩.

• Part 3. If ηt ≤ 2
L∥ut∥2 ⟨|gt|, |ut|⟩, then we have ∆LwGrams

t+1 ,wt
≤ 0.

Then, we compare the loss descent between Grams and C-Adam.

Theorem 5.4 (Loss Descent Comparison, informal version of Theorem D.3). Suppose that L :
Rd → R is L-smooth. For any parameter vector w at optimization step t, let wGrams

t and wC
t be

the update of Grams in Definition 5.1 and Cautious optimizers in Definition 3.2, respectively. If
the stepsize ηt satisfies ηt ≤ 2

L∥ut∥2 · min{⟨ut ◦ gt,1ut◦gt≥0⟩, ⟨ut ◦ gt,1ut◦gt<0⟩}, then we have
∆LwGrams

t+1 ,wt
≤ ∆LwC

t+1,wt
≤ 0.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Remark 5.5. Theorem 5.4 shows that Grams achieves strictly better descent in the loss landscape
in the discrete analysis compared to Cautious optimizers. This theoretical guarantee suggests that
Grams may converge faster and achieve better minima in practice.

5.3 HAMILTONIAN DYNAMICS

In this subsection, we present the Grams Hamiltonian dynamics, which builds upon the augmented
Hamiltonian framework to analyze optimization algorithms. By leveraging this framework, we show
that the Grams optimizer achieves a monotonic descent of the Hamiltonian and the loss function,
with a descent speed that is provably equal to or faster than C-Adam. This highlights Grams’ effi-
ciency and robustness in dynamic optimization landscapes. The formal definition is provided below.
Definition 5.6 (Grams Hamiltonian Dynamics). We could modify Hamiltonian dynamics with
Grams’ optimizing scheme,

d

dt
wt := − sign(∇L(wt) ◦ |∇K(st)| − Φt(∇L(wt)),

d

dt
st :=∇L(wt)−Ψt(∇K(st)),

where | · | denotes element-wise absolute value, ◦ is the Hadamard product, and Φt,Ψt are scaling
functions.

The convergence properties of Grams within the Hamiltonian dynamics framework are formalized
in the theorem below.
Theorem 5.7 (Convergence of Grams Hamiltonian Dynamics, informal version of Theorem E.3).
Following the dynamics in Definition 5.6, we have

∆Grams
H (wt, st) :=

d

dt
H(wt, st) ≤ 0,

∆Grams
L (wt) :=

d

dt
L(wt) ≤ −∆L(wt, st),

where ∆Ht
(wt, st) and ∆Lt

(wt, st) represent the decreasing rates of H and L in accordance with
the system in Definition E.1.

Based on this theorem, we compare the convergence rates of Grams and Cautious optimizers in
the context of Hamiltonian dynamics. The following theorem demonstrates that Grams achieves a
faster or equal rate of loss descent compared to Cautious optimizers, highlighting its efficiency in
optimization.
Theorem 5.8 (Convergence Comparison of Hamiltonian Dynamics between Grams and Cautious
Optimizers, informal version of Theorem E.4). From Theorem 5.7 and E.2, recall ∆Grams

L (wt) and
∆C

L(wt), we have ∆Grams
L (wt) ≤ ∆C

L(wt).

Remark 5.9. Theorem 5.8 illustrates the faster loss decreasing speed in the Grams Hamiltonian
dynamic system, compared to Cautious’s counterpart.

Building on this comparison, we now state a corollary from (Liang et al., 2024) that establishes
the convergence of bounded solutions in Hamiltonian systems to stationary points of the augmented
loss.
Corollary 5.10 (Corollary 2.4 in (Liang et al., 2024)). Assume that ⟨x,Ψ(x)⟩ is positive definite
for all x ∈ Rd, Ψ(0) = 0, and that H(w, s) = L(w) + K(s) is differentiable. Then, the bounded
solutions of the original system Eq. (15) converge to a stationary point of H(w, s). Similarly, the
bounded solutions of Definition 5.6 also converge to a stationary point of H(w, s).

6 EXPERIMENTS

We conducted comprehensive experiments across both pre-training and fine-tuning stages to eval-
uate the performance of our proposed Grams optimizer. Comparisons were made against several
baseline optimizers, including Adam (Kingma & Ba, 2014), Lion (Chen et al., 2024), C-Adam,
C-Lion (Liang et al., 2024), and, in some experiments, RMSprop (Hinton et al., 2012; Ruder, 2016).

The details and hyperparameters of our experiments can be found in Section F.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6.1 HYPERPARAMETERS

We conduct a hyperparameter grid search to evaluate Grams’ sensitivity to β1 and β2 by training
a VAE (Kingma & Welling, 2013) on the CIFAR-10 (Krizhevsky, 2009) dataset. Each model is
trained for 10 epochs, and the mean squared error (MSE) loss is reported as the evaluation metric.
See Figure 2 for the results.

log10 (η)

0.0475

0.0500

0.0525

0.0550

0.0575

0.0600

M
S

E

β2 = 0.99

β
1
=

0
.9

log10 (η)
M

S
E

β2 = 0.999

log10 (η)

M
S

E

β2 = 0.9999

log10 (η)

0.0475

0.0500

0.0525

0.0550

0.0575

0.0600

M
S

E

β
1
=

0.
95

log10 (η)

M
S

E

log10 (η)
M

S
E

4 3 2 1
log10 (η)

0.0475

0.0500

0.0525

0.0550

0.0575

0.0600

M
S

E

β
1
=

0.
99

4 3 2 1
log10 (η)

M
S

E

4 3 2 1
log10 (η)

M
S

E

Adam
Best Adam

C­Adam
Best C­Adam

Grams
Best Grams

Figure 2: Evaluation loss for VAE training experiments with grid search.

From Figure 2, we observe that for each hyperparameter configuration, Grams achieves the lowest
MSE loss, indicating superior reconstruction quality. It also attains the lowest overall MSE across
all setups when β1 = 0.9, β2 = 0.99, and η = 3 × 10−3. These results demonstrate that Grams
consistently outperforms both Adam and C-Adam across all tested β configurations.

6.2 PRE-TRAINING

We train the Llama 60M model (Dubey et al., 2024) using the first 2, 048, 000 rows of data from
English subset of the C4 dataset (Raffel et al., 2020) to assess Grams’ optimization capability for
Transformer-based (Vaswani et al., 2017) natural language generation (NLG) tasks. Moreover, we
trained and evaluated the WideResNet-50-2 model (Zagoruyko & Komodakis, 2016) on the CIFAR-
10 dataset (Krizhevsky, 2009). See Table 1 for experiment results.

Table 1 reports the validation results of pre-training experiments, where the Grams optimizer
achieves the lowest perplexity on the Llama language model and the highest accuracy on WideRes-
Net. These results highlight the effectiveness of Grams in both language and vision domains. While
C-Adam and C-Lion show improvements over their respective baselines, Adam and Lion, Grams
consistently outperforms all variants, indicating superior convergence and generalization. Notably,
as the AMS parameter λ decreases from 1 to −1, WRN accuracy steadily improves, suggesting that
smaller λ values enhance adaptation in vision tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Validation results of Llama and WideResNet (WRN) pre-training. Llama results are re-
ported in perplexity (lower is better), and WRN results in accuracy (higher is better). For all AMS,
β3 = 0.

Optimizer Llama PPL↓ WRN Acc↑
RMSprop N/A 84.47%
AMS λ = 1 (Adam) 49.83 87.56%
AMS λ = 0.5 N/A 88.10%
AMS λ = 0 (C-Adam) 43.21 88.78%
AMS λ = −0.5 N/A 89.34%
AMS λ = −1 (Grams) 38.60 90.55%
Lion 50.25 89.21%
C-Lion 53.21 89.42%

6.3 FINE-TUNING

We performed full fine-tuning (FT) experiments on the Llama 3.2 1B model (Dubey et al., 2024),
and SORSA method (Cao, 2024) for parameter efficient fine-tuning (PEFT) experiments on Llama
3.2 3B model, both using the first 100,000 rows of data from the MetaMathQA dataset (Yu et al.,
2023). To evaluate the models, we measured accuracy on the GSM-8K dataset (Cobbe et al., 2021)
and MATH dataset (Hendrycks et al., 2021), respectively. The results are reported in Table 2.

Table 2: Evaluation results for Llama fine-tuning experiments. Results are reported using Pass@1
accuracy, where higher values indicate better performance.

Optimizer GSM-8K MATH

AMS λ = 1 (Adam) 48.90% 17.80%
AMS λ = 0 (C-Adam) 49.81% 16.62%
AMS λ = −1 (Grams) 51.02% 17.80%

The results in Table 2 showcase the performance of different optimizers during the fine-tuning ex-
periments on the Llama models using the MetaMathQA dataset. Among the optimizers, Grams
achieved the highest or tied-highest accuracy on both experiments. These results highlight the ef-
fectiveness of Grams in fine-tuning tasks, particularly in improving the model’s ability to handle
complex datasets like GSM-8K. The superior performance of Grams demonstrates its capacity to
achieve better generalization and optimization efficiency in fine-tuning scenarios.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced Gradient Descent with Adaptive Momentum Scaling (Grams), a novel
optimization algorithm designed to decouple the direction and magnitude of parameter updates.
By leveraging this decoupling, Grams demonstrated superior performance in both theoretical con-
vergence guarantees and empirical evaluations, outperforming state-of-the-art optimizers such as
Adam (Loshchilov & Hutter, 2017), Lion (Chen et al., 2024), and their Cautious variants (Liang
et al., 2024). The results across various tasks highlight Grams’ potential as a transformative ap-
proach for efficiently training large language models.

Building on the promising results of Grams, future work will focus on integrating ideas from recent
advancements such as ADOPT (Taniguchi et al., 2024), Schedule Free (Defazio et al., 2024), and
SOAP-Muon (Vyas et al., 2025) methods. Incorporating the ADOPT and schedule-free learning
rate adjustment strategies might improve Grams’ robustness and performance across diverse tasks
and architectures. By blending these complementary innovations with the core principles of Grams,
we aim to develop an even more versatile and efficient optimization framework for large language
model training and fine-tuning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility on both theoretical and empirical fronts. For theory, we include all for-
mal assumptions, definitions, and complete proofs in the appendix. For experiments, we describe
model architectures, datasets, preprocessing steps, hyperparameters, and training details in the main
text and appendix. Code and scripts are provided in the supplementary materials to replicate the
empirical results.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anonymous. Improving adaptive moment optimization via preconditioner diagonalization. In Sub-
mitted to The Thirteenth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NdNuKMEv9y. under review.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018.

Yang Cao. Sorsa: Singular values and orthonormal regularized singular vectors adaptation of large
language models. arXiv preprint arXiv:2409.00055, 2024.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. In International Conference on Learning Rep-
resentations, 2022.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
Ashok Cutkosky. The road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Timothy Dozat. Incorporating nesterov momentum into adam, 2016.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

10

https://openreview.net/forum?id=NdNuKMEv9y

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent. In Conference On Learning Theory, pp. 1042–1085. PMLR,
2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in continuous
and discrete time. Advances in neural information processing systems, 28, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

Kaizhao Liang, Lizhang Chen, Bo Liu, and Qiang Liu. Cautious optimizers: Improving training
with one line of code. arXiv preprint arXiv:2411.16085, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 364, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qi jie Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2023. URL https://api.semanticscholar.org/
CorpusID:259187846.

Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet. Hamil-
tonian descent methods. arXiv preprint arXiv:1809.05042, 2018.

James Martens and Roger Baker Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In International Conference on Machine Learning, 2015. URL https:
//api.semanticscholar.org/CorpusID:11480464.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Lukasz Kaiser, Karol Kurach, Ilya Sutskever, and
James Martens. Adding gradient noise improves learning for very deep networks, 2017.

Yurii Evgen’evich Nesterov. A method for solving the convex programming problem with conver-
gence rate o (1/κˆ 2). In Dokl. akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Son Nguyen, Lizhang Chen, Bo Liu, and Qiang Liu. H-fac: Memory-efficient optimization with
factorized hamiltonian descent. arXiv preprint arXiv:2406.09958, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

11

https://api.semanticscholar.org/CorpusID:259187846
https://api.semanticscholar.org/CorpusID:259187846
https://api.semanticscholar.org/CorpusID:11480464
https://api.semanticscholar.org/CorpusID:11480464

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara,
Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified adam
can converge with any β2 with the optimal rate. arXiv preprint arXiv:2411.02853, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Belinda Tzen, Anant Raj, Maxim Raginsky, and Francis Bach. Variational principles for mirror
descent and mirror langevin dynamics. IEEE Control Systems Letters, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Nikhil Vyas, Rosie Zhao, Depen Morwani, Mujin Kwun, and Sham Kakade. Improving soap using
iterative whitening and muon. 2025.

Ashia C Wilson, Benjamin Recht, and Michael I Jordan. A lyapunov analysis of momentum methods
in optimization. arXiv preprint arXiv:1611.02635, 2016.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Procedings of the British
Machine Vision Conference 2016, 2016.

Jiawei Zhao, Zhenyu (Allen) Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar,
and Yuandong Tian. Galore: Memory-efficient llm training by gradient low-rank projec-
tion. ArXiv, abs/2403.03507, 2024. URL https://api.semanticscholar.org/
CorpusID:268253596.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795–18806, 2020.

12

https://api.semanticscholar.org/CorpusID:268253596
https://api.semanticscholar.org/CorpusID:268253596

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In the appendix, we first provide more context on optimization in Section A. Then, we
show the formal version of equivalence of AMS frameworks in Section B. We then provide some
useful facts in Section C, which are utilized in the results. Section D presents a formal analysis of
loss descent for Grams optimizers. In Section E, we illustrate the the property of Grams optimizer in
the landscape of Hamiltonian dynamics. Finally, we list the details of our experiments in Section F.

A PRELIMINARY

In this section, we provide more context on optimization.

A.1 BACKGROUNDS ON OPTIMIZATION

We define the L-smoothness of functions as below.
Definition A.1 (L-smooth). We say that a function f : Rd → R is L-smooth if ∥∇f(x1) −
∇f(x2)∥2 ≤ L∥x1 − x2∥2 for all x1, x2 ∈ Rd.

We state a common fact of L-smooth functions as follow.
Fact A.2. If a function f : Rd → R is L-smooth, then we have

f(x2) ≤ f(x1) + ⟨∇f(x1), x2 − x1⟩+
L

2
∥x2 − x1∥22,

f(x2) ≥ f(x1) + ⟨∇f(x1), x2 − x1⟩ −
L

2
∥x2 − x1∥22.

We also define PL-condition as below.
Definition A.3 (PL-condition). A function f : Rd → R satisfies the µ-Polyak–Łojasiewicz (PL)
condition with constant µ > 0 if the following inequality holds for all x ∈ Rd:

∥∇f(x)∥2 ≥ 2µ(f(x)− f∗),

where f∗ is the minimum value of the function f , i.e., f∗ = infx∈Rd f(x).

A.2 ADAM OPTIMIZER

Adam (Adaptive Moment Estimation) (Kingma & Ba, 2014) is a widely-used optimizer that com-
bines the benefits of RMSprop (Hinton et al., 2012) and momentum by maintaining both first and
second moment estimates of the gradients. The algorithm adapts the learning rates for each param-
eter using these estimates. See Algorithm 2 for the pseudo-code of Adam.

Algorithm 2 Adam (Kingma & Ba, 2014)

Require: parameter w, step sizes {ηt}, dampening factors β1, β2 ∈ [0, 1), ϵ > 0, weight decay
γ ≥ 0

1: Initialize t = 0, m0 = v0 = 0
2: while wt not converged do
3: t← t+ 1
4: gt ← ∇wLt(wt−1)
5: mt ← β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)g2t
7: m̂t ← mt/(1− βt1)
8: v̂t ← vt/(1− βt2)
9: ut ← m̂t/(

√
v̂t + ϵ)

10: wt ← wt−1 − ϵtut
11: wt ← wt − ϵtγwt ▷ Add weight decay (Loshchilov & Hutter, 2017)
12: end while

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Definition A.4 (Adam). The parameter update rule for Adam is given by:

mt := β1mt−1 + (1− β1)gt
vt := β2vt−1 + (1− β2)g2t
m̂t :=

mt

1− βt1
v̂t :=

vt
1− βt2

ut :=
m̂t√
v̂t + ϵ

wt+1 := wt − ηtut,
where wt is the weight at time step t, mt and vt are the first and second momentum estimates
respectively, gt = ∇wLt(wt−1) is the current gradient, β1 and β2 are decay rates for the moment
estimates, ϵ is a small constant for numerical stability, and ηt is the learning rate at step t.

A.3 LION OPTIMIZER

Evolved Sign Momentum (Lion) (Chen et al., 2024) is an efficient optimizer that leverages momen-
tum and sign-based updates. Lion’s key innovation lies in its update rule, which combines both
current and momentum gradients through sign operations.
Definition A.5 (Lion Parameter Update). The parameter update rule for Lion is given by:

ut := sign(β1mt−1 + (1− β1)gt)
wt := wt−1 − ηt · ut
mt := β2mt−1 + (1− β2)gt,

where wt is the weight at time step t, mt−1 is the momentum term, gt = ∇wLt(wt−1) is the current
gradient, β1 and β2 are the momentum coefficients, ηt is the learning rate at step t, and sign is
defined in Definition 3.1,

Lion’s efficiency stems from its memory-efficient design - it only needs to maintain a single mo-
mentum term and operates primarily through sign operations. This makes it particularly suitable
for large-scale training where memory constraints are significant. The optimizer has demonstrated
strong performance in training large language models and vision transformers, often achieving com-
parable or better results than Adam while using less memory.

B EQUIVALENCE OF ADAPTIVE MOMENTUM SCALING

Corollary B.1 (Formal version of Corollary 4.1). By choosing β3 = β1, AMS is equivalent with
Adam (Definition A.4).

Proof. Case 1. β3 = β1,

st = β3st−1 + (1− β3)gt
= β1mt−1 + (1− β1)gt
=mt, (4)

Then, by the definition of ϕt,

ϕt = 1ut◦st≥0

= 1ut◦mt≥0

= 1 mt
(1−βt

1)(
√

v̂+ϵ)
◦mt≥0

= 1d,

where the first step follows the definition of ϕ, the second step follows from Eq. (4), the third step
follows the definition of ut, and the last step holds because (1− βt1)(

√
v̂ + ϵ)i ≥ 0 ∀i ∈ d.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Likewise, we show,

ψt = λ · 1ut◦st<0

= 1 mt
(1−βt

1)(
√

v̂+ϵ)
◦mt<0

= 0d,

where the first step follows the definition of ψ, second step follows from Eq. (4), the last step holds
because (1− βt1)(

√
v̂ + ϵ)i ≥ 0 ∀i ∈ d.

By the definition of ût,

ût = (ϕt + ψt) ◦ ut
= (1d + 0d) ◦ ut
= ut,

where the second step substitute ϕt and ψt.

By the definition of η̂t,

η̂ = η
d

∥ϕt∥1 + |∥ψt∥1|

= η
d

∥1d∥1 + |∥0d∥1|

= η
d

d+ 0

= η,

where the second step substitute ϕ and ψ, the third step follows the definition of ℓ1 norm.

Case 2. λ = 1.

By the definition of ût,

ût = (ϕt + ψt) ◦ ut
= (1ut◦st≥0 + 1ut◦st<0) ◦ ut
= ut,

where the second step follows from the definition of ϕt and ψt, the third step holds because the fact
that 1ut◦st≥0 + 1ut◦st<0 = 1d.

By the definition of η̂t,

η̂ = η
d

∥ϕt∥1 + |∥ψt∥1|

= η
d

∥1ut◦st≥0∥1 + |∥1ut◦st<0∥1|

= η
d

d
= η.

Thus we complete the proof.

Corollary B.2 (Formal version of Corollary 4.2). By choosing β3 = 0 and λ = 0, AMS is equivalent
with Cautious Adam (Definition 3.2).

Proof. When β3 = 0,

st = β3st−1 + (1− β3)gt
= gt. (5)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Then, by the definition of ϕt,

ϕt = 1ut◦st≥0

= 1ut◦gt≥0

where the second step follows Eq. (5).

Likewise, since λ = 0, by the definition of ψt, we show

ψt = λ · 1ut◦st<0

= 0 · 1ut◦gt<0

= 0d.

By the definition of ût,

ût = (ϕt + ψt) ◦ ut
= 1ut◦gt≥0 ◦ ut,

where the second step substitutes ϕt and ψt.

By the definition of η̂,

η̂ = η
d

∥ϕt∥1 + |∥ψt∥1|

= η
d

∥ϕt∥1
where the second step follows ψt = 0d and the definition of ℓ1 norm.

Thus we complete the proof.

Corollary B.3 (Formal version of Corollary 5.2). By choosing β3 = 0 and λ = −1, the update rule
of AMS is equivalent with:

mt := β1mt−1 + (1− β1)gt,
vt := β2vt−1 + (1− β2)g2t ,

m̂t :=
mt

1− βt1
,

v̂t :=
vt

1− βt2
,

ut :=
m̂t√
v̂t + ϵ

,

ût := sign(gt) ◦ |ut|,
wt := wt−1 − ηtût, (6)

Proof. When β3 = 0, Eq. (5) holds.

Then, by the definition of ϕt,

ϕt = 1ut◦st≥0

= 1ut◦gt≥0,

where the second step follows from Eq. (5).

Since λ = −1, by definition of ψt,

ψt = λ · 1ut◦st<0

= − 1ut◦gt<0,

where the second step follows from Eq. (5).

Next, by the definition of ût,

ût = (ϕt + ψt) ◦ ut

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

= (1ut◦gt≥0 − 1ut◦gt<0) ◦ ut,
= 1ut◦gt≥0 ◦ ut + 1ut◦gt<0 ◦ (−ut)
= sign(ut ◦ gt) ◦ ut
= sign(gt) ◦ |ut|.

where the second step substitutes ϕt and ψt.

By the definition of η̂,

η̂ = η
d

∥ϕt∥1 + |∥ψt∥1|

= η
d

∥ϕt∥1 − ∥ψt∥1
= η.

where the second step follows the fact that λ = −1, and the last step from definition of ℓ1-norm.

Thus we complete the proof.

C USEFUL FACTS

Fact C.1. Given vectors a, b, c ∈ Rd, we have

⟨a, b ◦ c⟩ = ⟨a ◦ b, c⟩.

Fact C.2. Let two vectors a, b ∈ Rn, then:

⟨a,−sign(a) ◦ |b|⟩ = − ⟨|a|, |b|⟩

Proof. For the left side of the equation:

⟨a,−sign(a) ◦ |b|⟩ =
n∑
i=1

−aisign(ai)|b|i

= −
n∑
i=1

|a|i|b|i

= − ⟨|a|, |b|⟩

where the first step comes from the definition of inner product, the second step uses Fact C.5, and
the final step uses the definition of inner product again.

Fact C.3. Let two vectors a, b ∈ Rn, then:

⟨a, b⟩ − ⟨|a|, |b|⟩ ≤ 0.

Proof.

⟨a, b⟩ − ⟨|a|, |b|⟩ =
n∑
i=1

aibi − |a|i|b|i

=

n∑
i=1

{
0 if ai and bi have the same sign
−2|ai||bi| if ai and bi have opposite signs

≤ 0,

where the first step uses the definition of inner product, the second step discusses the only two cases
we have for signs, and the final inequality comes from basic algebra.

Fact C.4. Let x = a ◦ b be an element-wise product of two vectors a, b ∈ Rn, then:

⟨a, b⟩ − ⟨|a|, |b|⟩ − ⟨a ◦ b,1− 1a◦b>0⟩ ≤ 0

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof.
⟨a, b⟩ − ⟨|a|, |b|⟩ − ⟨a ◦ b,1− 1a◦b>0⟩

=

n∑
i=1

aibi −
n∑
i=1

|ai||bi| − (

n∑
i=1

aibi −
n∑

i:aibi>0

aibi)

=

n∑
i:aibi>0

aibi −
n∑
i=1

|ai||bi|,

where the first step expands the terms, and the second step simplifies by splitting the sum based on
the sign of aibi.

If all aibi ≥ 0, then
∑n
i:aibi>0 aibi =

∑n
i=1 |ai||bi|, so the expression is 0. Otherwise,∑n

i=1 |ai||bi| >
∑n
i:aibi>0 aibi, so the expression is negative.

Thus,

⟨a, b⟩ − ⟨|a|, |b|⟩ − ⟨a ◦ b,1d − 1a◦b>0⟩ =
n∑

i:aibi>0

aibi −
n∑
i=1

|ai||bi| ≤ 0.

The proof is complete.

Fact C.5. Given a scalar a ∈ R, we have:
a · sign(a) = |a|.

Proof. Let a ∈ R. By Definition 3.1:

sign(a) =


1, if a > 0,

0, if a = 0,

−1, if a < 0.

Consider the following cases:

• If a > 0, then sign(a) = 1, so:
a · sign(a) = a · 1 = a = |a|.

• If a = 0, then sign(a) = 0, so:
a · sign(a) = 0 · 0 = 0 = |a|.

• If a < 0, then sign(a) = −1, so:
a · sign(a) = a · (−1) = −a = |a|.

Thus, in all cases, a · sign(a) = |a|.

Fact C.6. Given a vector a = (a1, a2, . . . , an) ∈ Rn, we have:
a ◦ sign(a) = |a|,

where the operations are applied component-wise.

Proof. Let a = (a1, a2, . . . , an) ∈ Rn. By Definition 3.1, the sign function is applied component-
wise:

sign(a) = (sign(a1), sign(a2), . . . , sign(an)).

Expanding the Hadamard product a ◦ sign(a) component-wise:
a ◦ sign(a) = (a1 · sign(a1), a2 · sign(a2), . . . , an · sign(an)).

By Fact C.5 (the scalar version), for each i:
ai · sign(ai) = |ai|.

Thus:
a ◦ sign(a) = (|a1|, |a2|, . . . , |an|) = |a|,

where the absolute value |a| is applied component-wise.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D LOSS DESCENT

Lemma D.1 (Formal version of Lemma 3.4). Suppose that L : Rd → R is L-smooth. Let
∆LwC

t+1,wt
be defined in Definition 3.3, wC

t+1 is updated from wt using Definition 3.2. Then we
have the followings:

• Part 1. It holds that

∆LwC
t+1,wt

≤ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
Lη2t
2
∥ut∥22, (7)

• Part 2. It holds that

∆LwC
t+1,wt

≥ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩.

• Part 3. If ηt ≤ 2
L∥ut∥2

2
⟨ut ◦ gt,1ut◦gt≥0⟩, then ∆LwC

t+1,wt
≤ 0.

Proof. Proof of Part 1. We can show that

∆LwC
t+1,wt

= L(wt+1)− L(wt)

≤ L(wt) + ⟨gt, wt+1 − wt⟩+
L

2
∥wt+1 − wt∥22 − L(wt)

= ⟨gt, wt+1 − wt⟩+
L

2
∥wt+1 − wt∥22

= ⟨gt,−ηtut ◦ 1ut◦gt≥0⟩+
L

2
∥ηtut ◦ 1ut◦gt≥0∥22

= − ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
L

2
∥ηtut ◦ 1ut◦gt≥0∥22

≤ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
Lη2t
2
∥ut∥22 (8)

where the first step follows from Definition 3.3, the second step follows from that L is L-smooth
and Fact A.2, the third step follows from basic algebra, the fourth step follows from Definition 3.2,
the fifth step follows from Fact C.1, and the last step follows from basic algebra.

Proof of Part 2. Next, we can show that

∆LwC
t+1,wt

= L(wt+1)− L(wt)

≥ L(wt) + ⟨gt, wt+1 + wt⟩ −
L

2
∥wt+1 − wt∥22 − L(wt)

≥ ⟨gt, wt+1 − wt⟩
= ⟨gt,−ηtut ◦ 1ut◦gt≥0⟩
= − ηt⟨ut ◦ gt,1ut◦gt≥0⟩ (9)

where the first step follows from Definition 3.3, the second step follows from that L is L-smooth
and Fact A.2, the third step follows from basic algebra, the fourth step follows from Definition 3.2,
the last step follows from Fact C.1.

Proof of Part 3. By rearranging the Eq. (8), it is clear that if ηt ≤ 2
L∥ut∥2

2
⟨ut ◦ gt,1ut◦gt≥0⟩, then

we have ∆LwC
t+1,wt

≤ 0.

Lemma D.2 (Formal version of Lemma 5.3). Suppose that L : Rd → R is L-smooth. Let
∆LwGrams

t+1 ,wt
be defined in Definition 3.3, wGrams

t+1 is updated from wt using Definition 5.1. Then we
have the following:

• Part 1. It holds that

∆LwGrams
t+1 ,wt

≤ −ηt⟨|gt|, |ut|⟩+
Lη2t
2
∥ut∥22. (10)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Part 2. It holds that

∆LwGrams
t+1 ,wt

≥ −ηt⟨|gt|, |ut|⟩.

• Part 3. If ηt ≤ 2
L∥ut∥2 ⟨|gt|, |ut|⟩, then we have ∆LwGrams

t+1 ,wt
≤ 0.

Proof. Proof of Part 1. We can show that

∆LwGrams
t+1 ,wt

= L(wt+1)− L(wt)

≤ L(wt) + ⟨gt, wt+1 − wt⟩+
L

2
∥wt+1 − wt∥22 − L(wt)

= ⟨gt, wt+1 − wt⟩+
L

2
∥wt+1 − wt∥22

= ⟨gt,−ηt · sign(gt) ◦ |ut|⟩+
L

2
∥ηt · sign(gt) ◦ |ut|∥22

= − ηt⟨gt ◦ sign(gt), |ut|⟩+
L

2
∥ηtut∥22

≤ − ηt⟨|gt|, |ut|⟩+
Lη2t
2
∥ut∥22 (11)

where the first step follows from Definition 3.3, the second step follows from that L is L-smooth
and Fact A.2, the third step follows from basic algebra, the fourth step follows from Definition 5.1,
the fifth step follows from the Fact C.1, and the last step follows from gt ◦ sign(gt) = |gt|.
Proof of Part 2. Next, we can show that

∆LwGrams
t+1 ,wt

= L(wt+1)− L(wt)

≥ L(wt) + ⟨gt, wt+1 + wt⟩ −
L

2
∥wt+1 − wt∥22 − L(wt)

≥ ⟨gt, wt+1 − wt⟩
= ⟨gt,−ηt · sign(gt) ◦ |ut|⟩
= − ηt⟨|gt|, |ut|⟩ (12)

where the first step follows from Definition 3.3, the second step follows from that L is L-smooth
and Fact A.2, the third step follows from basic algebra, the fourth step follows from Definition 5.1,
the last step follows from the Fact C.1 and Fact C.6.

Proof of Part 3. By rearranging the Eq. (11), it is clear that if ηt ≤ 2
L∥ut∥2

2
⟨|gT |, |ut|⟩, then we have

∆LwGrams
t+1 ,wt

≤ 0.

Theorem D.3 (Loss Descent Comparison, formal version of Theorem 5.4). Suppose that L : Rd →
R is L-smooth. For any parameter vector w at optimization step t, let wGrams

t and wC
t be the update

of Grams in Definition 5.1 and Cautious optimizers in Definition 3.2, respectively. If the stepsize ηt
satisfies

ηt ≤
2

L∥ut∥2
·min{⟨ut ◦ gt,1ut◦gt≥0⟩, ⟨ut ◦ gt,1ut◦gt<0⟩},

then we have

∆LwGrams
t+1 ,wt

≤ ∆LwC
t+1,wt

≤ 0.

Proof. We define the index sets:

I+ = {i ∈ [d] : ut,i, gt,i ≥ 0};
I− = {i ∈ [d] : ut,i, gt,i < 0}.

By Part 1. of Lemma D.2, we have

∆LwGrams
t+1 ,wt

≤ −ηt⟨|gt|, |ut|⟩+
Lη2t
2
∥ut∥22. (13)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

By Part 2. of Lemma D.1, we have

∆LwC
t+1,wt

≥ − ηt⟨ut ◦ gt,1ut◦gt≥0⟩. (14)

Then we can show that

∆LwGrams
t+1 ,wt

−∆LwC
t+1,wt

≤ − ηt⟨|gt|, |ut|⟩+ ηt⟨ut ◦ gt,1ut◦gt≥0⟩+
Lη2t
2
∥ut∥22

= − ηt
d∑
i=1

|ut,i||gt,i|+ ηt
∑
i∈I+

ut,igt,i +
Lη2t
2
∥ut∥22

= − ηt
∑
i∈I+
|ut,i||gt,i| − ηt

∑
i∈I−
|ut,i||gt,i|+ ηt

∑
i∈I+

ut,igt,i +
Lη2t
2
∥ut∥22

= − ηt
∑
i∈I+

ut,igt,i − ηt
∑
i∈I−
|ut,i||gt,i|+ ηt

∑
i∈I+

ut,igt,i +
Lη2t
2
∥ut∥22

= − ηt
∑
i∈I−
|ut,i||gt,i|+

Lη2t
2
∥ut∥22

where the first step follows from Eq. (14) and Eq. (13), the second step expands vectors element-
wise, the third step follows from that [d] is the disjoint union of I+ and I−, the fourth step follows
from that |ut,i||gt,i| = ut,igt,i for i ∈ I+, and the last step follows from basic algebra.

To ensure ∆LwGrams
t+1 ,wt

−∆LwC
t+1,wt

≤ 0, it suffices to have

−ηt
∑
i∈I−
|ut,i||gt,i|+

Lη2t
2
∥ut∥22 ≤ 0.

Rearranging the above inequality gives

ηt ≤
2

L∥ut∥22

∑
i∈I−
|ut,i||gt,i|

=
2

L∥ut∥22
⟨gt ◦ ut,1ut◦gt<0),

where the last step follows from the definition of I− and basic algebra.

Note that by Part 3 of Lemma D.1, if ηt ≤ 2
L∥ut∥2

2
⟨gt ◦ ut,1gt◦ut≥0⟩, we have LwC

t+1,wt
≤ 0.

E HAMILTONIAN DYNAMICS

Definition E.1 (Section 2.1 from (Liang et al., 2024)). Momentum-based algorithms can be typi-
cally viewed as monotonic descending algorithms on an augmented loss H(W,S), which satisfies
minS H(W,S) = L(W), so that minimizing L(W) is equivalent to minimizing H(W,S). A typical
choice is

H(w, s) = L(w) +K(s),

where K(·) is any lower bounded function. The continuous-time form of most momentum-based
algorithms can be written into a Hamiltonian descent form:

d

dt
wt = −∇K(st)− Φt(∇L(wt))

d

dt
st = ∇L(wt)−Ψt(∇K(st)) (15)

where H(W,S) is a Hamiltonian (or Lyapunov) function that satisfies

min
S
H(W,S) = L(W), ∀W,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

so that minimizing L(W) reduces to minimizing H(W,S); and Φ(·),Ψ(·) are two monotonic map-
pings satisfying

⟨x,Φ(x)⟩ ≥ 0, ⟨x,Ψ(x)⟩ ≥ 0, ∀x ∈ X.

With Φ(X) = Ψ(X) = 0, the system in (15) reduces to the standard Hamiltonian system that keeps
H(Wt, St) = const along the trajectory. When adding the descending components with Φ and Ψ,
the system then keeps H(W,S) monotonically decreasing:

d

dt
H(wt, st) = −∆H(wt, st) ≤ 0,

where

∆H(wt, st) := ⟨∇L(wt),Φ(∇L(wt))⟩+ ⟨K(st),Ψ(K(st))⟩. (16)

On the other hand, L(w), which is the true objective, is not necessarily decreasing monotonically.

d

dt
L(wt) = −∆L(wt, st),

where

∆L(wt, st) := ⟨∇L(wt),∇K(st)⟩+ ⟨∇L(wt),Φt(∇L(wt)⟩. (17)

Theorem E.2 (Theorem 2.3 in (Liang et al., 2024)). For Hamiltonian dynamics of Cautious opti-
mizer (in Definition 3.2), we have:

∆C
H(wt, st) :=

d

dt
H(wt, st) = ⟨xt,1− 1xt≥0⟩ −∆H(wt, st).

∆C
L(wt) :=

d

dt
L(wt) = − ⟨xt,1xt≥0⟩ − ⟨∇L(wt),Φt(∇L(wt))⟩

= ⟨xt,1− 1xt≥0⟩ −∆L(wt, st).

where ∆H(wt, st) and ∆L(wt) represent the decreasing rates of H and L in accordance with the
system in Definition E.1.

Hence:

• If ⟨xt, (1d − sign(xt))⟩ ≤ 0 for any x ∈ Rd, then both H and L decrease faster than the
original system:

∆C
H(wt, st) ≤ −∆H(wt, st) ≤ 0,

∆C
L(wt) ≤ −∆L(wt, st).

• If ⟨xt, sign(∇L(wt))⟩ ≥ 0 for any x ∈ Rd, then L decreases monotonically:

∆C
L(wt) ≤ 0.

Theorem E.3 (Convergence of Grams Hamiltonian Dynamics, formal version of Theorem 5.7).
Following the dynamics in Definition 5.6, we have

∆Grams
H (wt, st) :=

d

dt
H(wt, st) ≤ 0,

∆Grams
L (wt) :=

d

dt
L(wt) ≤ −∆L(wt, st),

where ∆H(wt, st) and ∆L(wt, st) represent the decreasing rates of H and L in accordance with
the system in Definition E.1.

Proof. Following the dynamics in Definition 5.6, we can calculate ∆Grams
H (wt, st) :=

d
dtH(wt, st):

∆Grams
H (wt, st)

= ⟨∇L(wt),
d

dt
wt⟩+ ⟨∇K(st),

d

dt
st⟩

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

= ⟨∇L(wt),−sign(∇L(wt)) ◦ |∇K(st)| − Φt(∇L(wt))⟩
+ ⟨K(st),∇L(wt)−Ψt(∇K(st))⟩

= ⟨∇L(wt),−sign(∇L(wt)) ◦ |∇K(st)|⟩+ ⟨∇K(st),∇L(wt)⟩ − ⟨∇L(wt),Φt(∇L(wt))⟩
− ⟨∇K(st),Ψt(∇K(st))⟩

= ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ −∆H(wt, st)

≤ 0,

where the first step follows from the chain rule for the time derivative of the Hamiltonian H , the
second step substitutes the dynamics from Definition 5.6, the third step separates the inner products
for clearer analysis, the fourth step follows the definition of ∆H(wt, st) and Fact C.2, and the last
step follows Fact C.3, and −∆H(wt, st) ≤ 0.

Then, we calculate ∆Grams
L (wt) :=

d
dtL(wt):

∆Grams
L (wt) = ⟨∇L(wt),−sign(∇L(wt)) ◦ |∇K(st)| − Φt(∇L(wt))⟩

= ⟨∇L(wt),−sign(∇L(wt)) ◦ |∇K(st)|⟩ − ⟨∇L(wt),Φt(∇L(wt))⟩
= − ⟨|∇L(wt)|, |∇K(st)|⟩ − ⟨∇L(wt),Φt(∇L(wt))⟩
= ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩
− (⟨∇L(wt),Φt(∇L(wt))⟩+ ⟨∇L(wt),∇K(st)⟩)

= ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ −∆L(wt, st)

where the first step follows from the chain rule, and the second step separates the inner products.
The third step follows Fact C.2, the fourth step adds and subtracts the term ⟨∇L(wt),∇K(st)⟩
simultaneously, the fifth step follows the definition of ∆L(wt, st) from Eq. (2).

Since we know ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ ≤ 0 from Fact C.3,

⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ ≤ −∆L(wt, st)

Thus we complete the proof.

Theorem E.4 (Convergence Comparison of Hamiltonian Dynamics between Grams and Cautious
Optimizers, formal version of Theorem 5.8). From Theorem E.3 and E.2, recall ∆Grams

L (wt) and
∆C

L(wt):

∆Grams
L (wt) ≤ ∆C

L(wt).

Proof. We calculate the difference between ∆Grams
L (wt) and ∆C

L(wt):

∆Grams
L (wt)−∆C

L(wt) = ⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇L(wt)|⟩ − ⟨xt,1− 1xt≥0⟩,
where xt = ∇L(wt) ◦ ∇K(st).
By applying Fact C.4, we know:

⟨∇L(wt),∇K(st)⟩ − ⟨|∇L(wt)|, |∇K(st)|⟩ − ⟨xt,1− 1xt≥0⟩ ≤ 0,

with equality if all components of∇L(wt) ◦ ∇K(st) ≥ 0.

Thus:

∆Grams
L (wt)−∆C

L(wt) ≤ 0,

which implies:

∆Grams
L (wt) ≤ ∆C

L(wt).

Thus we complete the proof.

F EXPERIMENTS DETAILS

For the Lion and C-Lion optimizers, we set the learning rate to 1
10 × Adam learning rate, as recom-

mended in (Chen et al., 2024).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F.1 PRE-TRAINING

For the pre-training experiments with Llama 3.2 60M (Dubey et al., 2024), we used the first
2, 048, 000 rows of training data from the English section of the C4 dataset (Raffel et al., 2020). Due
to the limited computing resources, we trained 1, 000 steps using constant with warm-up scheduler,
in order to simulate the beginning part of regular pre-training.We used the first 10, 000 rows of val-
idation data from the English section of the C4 dataset for evaluation. Table 3 provides a detailed
summary of the hyperparameters employed.

Table 3: Hyperparameters for Llama 3.2 60M pre-training experiments.

Optimizers Grams/AdamW/CAdamW Lion/CLion
Training

Epoch 1 1
Learning Rate 6e-3 6e-4
Weight Decay 0.0 0.0

Batch Size 2048 2048
Model Precision BF16 BF16
Mix Precision BF16&TF32 BF16&TF32

Scheduler Constant with warm-up Constant with warm-up
Warm-up Steps 50 50
Grad Clipping 1.0 1.0

β1 0.9 0.9
β2 0.95 0.95
ϵ 1e-6 1e-6

Seq-len 256 256

Evaluating
Precision BF16
Seq-len 256

For the computer vision experiments, we used the CIFAR-10 dataset (Krizhevsky, 2009) to train
and evaluate the WideResNet-50-2 model (Zagoruyko & Komodakis, 2016). Table 4 outlines the
corresponding hyperparameters.

Table 4: Hyperparameters for WideResNet-50-2 pre-training experiments.

Optimizers Grams/AdamW/CAdamW Lion/CLion
Training

Epoch 10 10
Learning Rate 2e-3 2e-4
Weight Decay 0.0 0.0

Batch Size 128 128
Model Precision FP32 FP32
Mix Precision None None

Scheduler Linear Linear
Warm-up Steps 100 100
Grad Clipping 1.0 1.0

β1 0.9 0.9
β2 0.999 0.99
ϵ 1e-6 1e-6

Evaluating
Precision FP32

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.2 FINE-TUNING

For fine-tuning experiments of the Llama 3.2 1B model, Table 5 provides the detailed hyperparam-
eters.

Table 5: Hyperparameters for Llama 3.2 1B fine-tuning experiments.

Optimizers Grams/AdamW/CAdamW
Training

Epoch 1
Learning Rate 1e-4
Weight Decay 0.0

Batch Size 64
Model Precision BF16
Mix Precision BF16&TF32

Scheduler Cosine
Warm-up Ratio 0.03
Grad Clipping 1.0

β1 0.9
β2 0.999
ϵ 1e-6

Seq-len 512

Evaluating
Precision BF16
Seq-len 1024

For PEFT of the Llama 3.2 3B model, Table 5 provides the detailed hyperparameters.

Table 6: Hyperparameters for Llama 3.2 3B PEFT experiments.

Optimizers Grams/AdamW/CAdamW
Training

Epoch 1
Learning Rate 1e-4
Weight Decay 0.0

Batch Size 128
Model Precision BF16
Mix Precision BF16&TF32

Scheduler Cosine
Warm-up Ratio 0.03
Grad Clipping 1.0

β1 0.9
β2 0.999
ϵ 1e-6

Seq-len 512
Rank 128

SORSA (Cao, 2024) γ 1e-3

Evaluating
Precision BF16
Seq-len 2048

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G IMPACT STATEMENT

Grams advances optimization efficiency by decoupling update direction and magnitude, offering
faster and more stable convergence. This has the potential to significantly reduce training costs and
energy consumption for large-scale models, making deep learning more accessible and sustainable.
We do not foresee any negative potential societal impact of this work.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

26

	Introduction
	Related Work
	Preliminaries
	Notations
	Sign Function
	Cautious Optimizers
	Hamiltonian Descent

	Adaptive Momentum Scaling
	Gradient Descent with Adaptive Momentum Scaling
	Definitions
	Loss Descent
	Hamiltonian Dynamics

	Experiments
	Hyperparameters
	Pre-Training
	Fine-Tuning

	Conclusion and Future Work
	Preliminary
	Backgrounds on Optimization
	Adam Optimizer
	Lion Optimizer

	Equivalence of Adaptive Momentum Scaling
	Useful Facts
	Loss Descent
	Hamiltonian Dynamics
	Experiments Details
	Pre-Training
	Fine-Tuning

	Impact Statement

