

END-TO-END PROBABILISTIC FRAMEWORK FOR LEARNING WITH HARD CONSTRAINTS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
190

In this work, we propose a novel probabilistic framework, ProbHardE2E, that integrates a broad class of hard constraints (including non-linear constraints) in an end-to-end fashion, while incorporating UQ. By leveraging key results from statistics and optimization in a novel way, we predict both the mean and covariance of the output data, moving beyond point estimate predictions. ProbHardE2E enforces nonlinear constraints with an efficient sampling-free method to generate distribution statistics. Our probabilistic approach enables the effective handling of exogenous spikes and jumps (or other discontinuities) by leveraging data heteroscedasticity, enhancing the model’s robustness and flexibility under varying data conditions.

We summarize our key contributions as follows.

- We introduce ProbHardE2E, as a general framework to learn a function in an end-to-end manner by optimizing an objective under hard constraints. The framework enables UQ by learning parameters of a multivariate probabilistic distribution. We show that ProbHardE2E can incorporate a broad class of deep learning backbone models.
- The key technical novelty of ProbHardE2E is a *differentiable probabilistic projection layer* (DPPL) that extends standard projection methods to accommodate UQ while enforcing hard constraints. ProbHardE2E can handle constraints ranging from linear equality to general nonlinear equality to convex inequality constraints.
- We use the DPPL to impose constraints directly on the marginals of the multivariate distribution for an efficient sampling-free approach for posterior distribution estimation, which reduces the computational overhead by up to $3\text{--}5\times$ during training.
- We show that ProbHardE2E is effective in two (seemingly-unrelated, but technically-related) tasks, where hard constraints are important: probabilistic time series forecasting; and solving challenging PDEs in scientific machine learning (SciML). We provide an extensive empirical analysis demonstrating that ProbHardE2E results in up to $15\times$ lower mean-squared error (MSE) in mean forecast and $2.5\times$ improved uncertainty estimates, measured by the Continuous Ranked Probability Score (CRPS), compared to the baseline methods.
- We **show that training with the continuous-ranked probability score (CRPS), rather than negative log-likelihood (NLL) leads to better predictive performance.** While the need for this is well-known in, e.g., time series forecasting, previous PDE learning works commonly use NLL-based metrics for UQ.

2 RELATED WORK

There is a large body of related work from various communities, ranging from imposing constraints on neural networks for point estimates (Min et al., 2024; Donti et al., 2021), to probabilistic time series forecasting with constraints (Rangapuram et al., 2021; 2023; Olivares et al., 2024b), to imposing constraints on deep learning solutions to PDEs (Négier et al., 2023; Hansen et al., 2023). Table 5 in Appendix A summarizes some advantages and disadvantages of these methods that are motivated by enforcing hard constraints in these domains. (See Appendix A for additional details.)

3 PROB HARDE2E: A UNIFIED PROBABILISTIC OPTIMIZATION FRAMEWORK

In this section, we introduce ProbHardE2E. See Algorithm 1 for a summary. (See also Appendix B for a universal approximation guarantee.) In Section 3.1, we discuss the proper evaluation metric for a constrained probabilistic learner, and we define our objective function that corresponds to that evaluation metric. In Section 3.2, we propose our differentiable probabilistic projection layer (DPPL) that enforces the hard constraints. In Section 3.3, we describe how to compute the parameters of the resulting constrained posterior distribution. In Section 3.4, we discuss update rules for various types of constraints (linear equality, nonlinear equality, and convex inequality constraints). In Section 3.5, we propose a sample-free formulation for satisfying the constraints while optimizing for the objective.

3.1 PROBABILISTIC EVALUATION METRICS AND OBJECTIVE FUNCTION

We formulate the problem of *probabilistic learning under constraints*. The goal of this problem is to learn a function $\hat{f}_\theta : \Phi \rightarrow \mathcal{Y}$, where $\Phi \subset \mathbb{R}^m$ denotes the input space, $\theta \in \bar{\Theta} \subseteq \Theta$ denotes the **feasible parameter space**, and $\mathcal{Y} \subset \mathbb{R}^k$ denotes the space of predicted distribution parameters that meet the constraints. Given a multivariate distribution class, these learned parameters induce a predictive multivariate **random variable** $\mathbf{Y}_\theta(\phi^{(i)})$, where $(\phi^{(i)}, u^{(i)}) \sim \mathcal{D}$, where $\phi^{(i)} \in \Phi$, $u^{(i)} \in \mathbb{R}^n$, and \mathcal{D} denotes training data from a distribution \mathcal{D} . Each realization of $\hat{u}(\phi^{(i)}) \sim \mathbf{Y}_\theta(\phi^{(i)}) \in \mathbb{R}^n$ is required

108 **Algorithm 1** ProbHardE2E: Training and Inference
109
110 **Require:** Training data $\{(\phi^{(i)}, u^{(i)})\} \sim \mathcal{D}$, test data ϕ and constraints $g(\cdot) \leq 0, h(\cdot) = 0$.
111 **Ensure:** Learnable function $\hat{f}_\theta : \Phi \rightarrow \mathcal{Y}$ that outputs constrained distribution **parameters**.
112 1: Pick a model class Θ , initialize weights $\theta \in \Theta$ for probabilistic unconstrained model $f_\theta : \Phi \rightarrow \mathcal{Z}$.
113 2: **while** θ not converged **do**
114 3: Predict unconstrained distribution parameters $(\mu_\theta(\phi^{(i)}), \Sigma_\theta(\phi^{(i)}))$.
115 4: **Training Mode:** Project parameters $(\hat{\mu}_\theta(\phi^{(i)}), \hat{\Sigma}_\theta(\phi^{(i)})) = \text{DPPL}((\mu_\theta(\cdot), \Sigma_\theta(\cdot)), g(\cdot), h(\cdot))$.
116 5: Update $\theta \in \bar{\Theta}$ by minimizing the CRPS loss $\ell(\mathbf{Y}_\theta(\phi^{(i)}), u^{(i)})$.
117 6: **end while**
118 7: **Inference Mode:** Project random variable $\mathbf{Y}_\theta(\phi) = \text{DPPL}(\mathbf{Z}_\theta(\phi), g(\cdot), h(\cdot))$, where $\mathbf{Z}_\theta(\phi)$ and
119 $\mathbf{Y}_\theta(\phi)$ denote the **unconstrained** and **unconstrained random variables**, respectively.
120 8: **Return** Feasible predicted sample $u^*(z_\theta(\phi)) \sim \mathbf{Y}_\theta(\phi)$, where $z_\theta(\phi) \sim \mathbf{Z}_\theta(\phi)$.

121
122 to satisfy predefined hard constraints of the form $g(\hat{u}(\phi^{(i)})) \leq 0$ and $h(\hat{u}(\phi^{(i)})) = 0$. We can
123 formulate this constrained optimization problem as follows:
124

$$125 \quad \arg \min_{\theta \in \Theta, g(\mathbf{Y}_\theta(\phi^{(i)})) \leq 0, h(\mathbf{Y}_\theta(\phi^{(i)}))=0} \mathbb{E}_{(\phi^{(i)}, u^{(i)}) \sim \mathcal{D}} \ell(\mathbf{Y}_\theta(\phi^{(i)}), u^{(i)}), \quad (1)$$

128 where denotes a proper scoring rule.

129 One widely-used (strictly) proper scoring rule for continuous distributions is the continuous ranked
130 probability score (CRPS) (Gneiting & Raftery, 2007). The CRPS simultaneously evaluates sharpness
131 (how concentrated or “narrow” the distribution is) and calibration (how well the distributional
132 coverage “aligns” with actual observations). More formally, for an observed scalar outcome y and a
133 corresponding probabilistic distributional estimate, Y , the CRPS is defined as:

$$134 \quad \text{CRPS}(Y, y) = \mathbb{E}_Y |Y - y| - \frac{1}{2} \mathbb{E}_Y |Y - Y'|, \quad (2)$$

136 where Y' denotes an i.i.d. copy of Y . Compared to other scoring rules, e.g., the log probability scoring
137 rules, which require **assumptions** on the outcome variable, the CRPS is robust to probabilistic model
138 mis-specification. Because of this unique property, the CRPS is widely used as the evaluation metric
139 in many applications, e.g., probabilistic time series forecasting (Gasthaus et al., 2019; Rangapuram
140 et al., 2021; Park et al., 2022; Olivares et al., 2024b), quantile regression (Fakoor et al., 2023),
141 precipitation nowcasting (Ravuri et al., 2021; Gao et al., 2023) and weather forecasting (Rasp &
142 Lerch, 2018; Kochkov et al., 2024; Price et al., 2025).

143 We align our training objective with the proposed evaluation metric above, by directly optimizing the
144 CRPS in Eq. (2) in Problem 1. We define the loss as the sum of the univariate CRPS:

$$146 \quad \ell(\mathbf{Y}_\theta(\phi^{(i)}), u^{(i)}) = \sum_{j=1}^n \text{CRPS}((\mathbf{Y}_\theta(\phi^{(i)}))_j, u_j^{(i)}). \quad (3)$$

148 The CRPS naturally aligns with the goal of producing feasible and well-calibrated predictions, as
149 the metric rewards distributions that closely match observed outcomes. Enforcing our constraints in
150 the distribution space guarantees that every sample from the predicted distribution is physically or
151 operationally valid. Consequently, modeling the loss through the CRPS provides a principled way to
152 reconcile domain constraints with distributional accuracy.

154 3.2 DIFFERENTIABLE PROBABILISTIC PROJECTION LAYER (DPPL)

155 We transform the constrained Problem 1 into the unconstrained optimization problem:

$$157 \quad \arg \min_{\theta \in \bar{\Theta}} \mathbb{E}_{(\phi^{(i)}, u^{(i)}) \sim \mathcal{D}} \ell(\mathbf{Y}_\theta(\phi^{(i)}), u^{(i)}), \quad (4)$$

159 where $\bar{\Theta} \subseteq \Theta$ denotes the feasible parameter space that ensures constraint satisfaction, and ℓ denotes
160 the loss function in Eq. (3). We solve this using a two-step procedure: first define a predictive output
161 distribution, then project it onto the constraint manifold using a *differentiable probabilistic projection*
layer (DPPL) for end-to-end optimization.

Our framework begins with an established probabilistic backbone model. This can be a Gaussian Process (Rasmussen & Williams, 2006), neural process (Kim et al., 2019), DeepVAR (Salinas et al., 2019; Rangapuram et al., 2021), or ensembles of neural networks or operators (Mouli et al., 2024). The base model $f_\theta : \Phi \rightarrow \mathbb{R}^k$ predicts the distribution parameters (mean $\mu_\theta(\phi^{(i)})$ and covariance $\Sigma_\theta(\phi^{(i)})$, for $\theta \in \Theta$) – without constraint awareness. We then use a reparameterization function $r : \mathbb{R}^k \times \mathbb{R}^n \rightarrow \mathbb{R}^l$ to define the distribution in one of two ways: either as an identity map, where $l = k$, that returns $f_\theta(\phi^{(i)}) = (\mu_\theta(\phi^{(i)}), \Sigma_\theta(\phi^{(i)}))$ for our efficient sample-free paradigm during training; or as a map, where $l = n$, that combines the distribution parameters with noise $\xi \sim p(\xi) \in \mathbb{R}^n$, where p denotes a tractable sampling distribution, and gives a sample $z_\theta(\phi^{(i)}) \sim \mathbf{Z}_\theta(\phi^{(i)}) \in \mathbb{R}^n$ from the predicted distribution to generate constrained samples at inference. This dual-mode design balances training efficiency with strict constraint feasibility at inference.

The reparameterization function induces the base (unconstrained) distribution parameters or predictive random variable as:

$$r(f_\theta(\phi^{(i)}), \xi) = \begin{cases} (\mu_\theta(\phi^{(i)}), \Sigma_\theta(\phi^{(i)})), & \text{(Training)} \\ \mathbf{Z}_\theta(\phi^{(i)}), & \text{(Inference)} \end{cases} \quad (5)$$

Following this Predictor Step above, we use the DPPL in the Corrector Step to restrict the parameter space to $\bar{\Theta} \subseteq \Theta$, such that for all $\hat{u}_\theta(\phi^{(i)}) \sim \mathbf{Y}_\theta(\phi^{(i)})$, the constraints $g(\hat{u}_\theta(\phi^{(i)})) \leq 0$ and $h(\hat{u}_\theta(\phi^{(i)})) = 0$ are satisfied. The DPPL is our core architecture innovation for leveraging the base model to learn predictions that satisfy the given constraints. We define the projected distribution parameters or projected predictive random variable as:

$$\text{DPPL}(r(f_\theta(\phi^{(i)}), \xi), g(\cdot), h(\cdot)) = r(\hat{f}_\theta(\phi^{(i)}), \xi) = \begin{cases} (\hat{\mu}_\theta(\phi^{(i)}), \hat{\Sigma}_\theta(\phi^{(i)})), & \text{(Training)} \\ \mathbf{Y}_\theta(\phi^{(i)}), & \text{(Inference)} \end{cases} \quad (6)$$

for $r(f_\theta(\phi^{(i)}), \xi)$ in Eq. (5), where $\hat{f}_\theta : \Phi \rightarrow \mathcal{Y} \subset \mathbb{R}^k$ denotes the probabilistic model that outputs the constrained distribution parameters $(\hat{\mu}_\theta(\phi^{(i)}), \hat{\Sigma}_\theta(\phi^{(i)}))$. Our DPPL yields a constraint-satisfying realization $u^* \sim \mathbf{Y}_\theta(\phi^{(i)})$ as the final predictive random variable.

This two-step approach mirrors predictor-corrector methods (Boyd & Vandenberghe, 2004; Bertsekas, 1997), with the DPPL serving as our key architectural innovation for ensuring constraint satisfaction. Equivalently, the DPPL can be formulated as a constrained least squares problem on the samples of $\mathbf{Z}_\theta(\phi^{(i)})$. (See Appendix C for details.) Prior works on imposing hard constraints in time series and solving PDEs (Rangapuram et al., 2021; Hansen et al., 2023) reduce to special cases of our method with linear constraints. (See Appendix D for details.) We draw $z_\theta(\phi^{(i)}) \sim \mathbf{Z}_\theta(\phi^{(i)})$, and we solve the following constrained optimization problem:

$$u^*(z_\theta(\phi^{(i)})) := \arg \min_{\hat{u}_\theta(\phi^{(i)}) \in \mathbb{R}^n, g(\hat{u}_\theta(\phi^{(i)})) \leq 0, h(\hat{u}_\theta(\phi^{(i)})) = 0} \|\hat{u}_\theta(\phi^{(i)}) - z_\theta(\phi^{(i)})\|_Q^2, \quad (7)$$

where $u^*(z_\theta(\phi^{(i)}))$ denotes a predicted sample of $\mathbf{Y}_\theta(\phi^{(i)})$, and where $\|x\|_Q = \sqrt{x^\top Q x}$ for some symmetric positive semi-definite matrix Q . (See Appendix E for details on the flexibility of learning various forms of Q .)

3.3 DPPL ON THE DISTRIBUTION PARAMETERS FOR LOCATION-SCALE DISTRIBUTIONS

In this subsection, we detail how to directly compute the parameters for the constrained distribution by applying our DPPL on the base distribution parameters for an efficient, sampling-free during training. To do so, we can assume that the prior distribution \mathcal{F} belongs to a multivariate, location-scale family, i.e., a distribution such that any affine transformation \mathbf{Y} of a random variable $\mathbf{Z} = \mu + \Sigma^{1/2}\xi \sim \mathcal{F}(\mu, \Sigma)$ and $\xi \sim \mathcal{F}(0, 1)$, remains within the same distribution family \mathcal{F} . This is an example of how to compute the random variable in Eq. (5) for a multivariate location-scale distribution. A familiar case of this is when $\mathbf{Z} \sim \mathcal{N}(\mu, \Sigma)$ and $\mathbf{Y} = A\mathbf{Z} + B$ is an affine transformation; in which case $\mathbf{Y} \sim \mathcal{N}(A\mu + B, A\Sigma A^\top)$. Alternatively, we can show that when \mathbf{Y} is a nonlinear transformation of \mathbf{Z} , it has approximately (to first-order) the same distribution \mathbf{Z} , with an appropriately-chosen set of parameters (given in Eq. (8) below). We state this result more formally in Theorem 3.1. The proof, given in Appendix F, uses a first-order Taylor expansion to linearize the nonlinear function transformation, and is similar to the Multivariate Delta Method (Casella & Berger, 2001).

216 **Theorem 3.1.** Let $\mathbf{Z} \sim \mathcal{F}(\mu, \Sigma)$ be a random variable, where the underlying distribution \mathcal{F} belongs
 217 to a multivariate location-scale family of distributions, with mean μ and covariance Σ ; and let
 218 \mathcal{T} be a function with continuous first derivatives, such that $J_{\mathcal{T}}(\mu)\Sigma J_{\mathcal{T}}(\mu)^\top$ is symmetric positive
 219 semi-definite. Then, the transformed distribution $\mathbf{Y} = \mathcal{T}(\mathbf{Z})$ converges in distribution with first-
 220 order accuracy to $\mathcal{F}(\hat{\mu}, \hat{\Sigma})$ with mean $\hat{\mu} = \mathcal{T}(\mu)$ and covariance $\hat{\Sigma} = J_{\mathcal{T}}(\mu)\Sigma J_{\mathcal{T}}(\mu)^\top$, where
 221 $J_{\mathcal{T}}(\mu) = \nabla \mathcal{T}(\mu)^\top$ denotes the Jacobian of \mathcal{T} with respect to z evaluated at μ .
 222

223 Let $\mathbf{Z} \sim \mathcal{F}(\mu, \Sigma)$ denote the prior distribution and $z \sim \mathbf{Z}$. We apply Theorem 3.1 with $\mathcal{T}(z) = u^*(z)$,
 224 where $u^*(z)$ denotes the solution of the constrained least squares problem in Problem (7). In this
 225 case, the projected random variable satisfies $\mathbf{Y} \sim \mathcal{F}(\hat{\mu}, \hat{\Sigma})$ with updated parameters:
 226

$$\hat{\mu} = \mathcal{T}(\mu), \quad \hat{\Sigma} = J_{\mathcal{T}}(\mu) \Sigma J_{\mathcal{T}}(\mu)^\top. \quad (8)$$

228 3.4 DPPL FOR VARIOUS CONSTRAINT TYPES

230 In this subsection, we discuss how to compute the DPPL for various constraint types (linear equality,
 231 nonlinear equality, and convex inequality) for both train and inference modes. Table 1 shows these
 232 constraints types require different treatments: linear equality have closed-form projections, nonlinear
 233 equality can be solved with iterative methods, and convex inequality require optimization solvers.
 234

235 Table 1: Summary of DPPL in ProbHardE2E for various constraint types. For linear equality
 236 constraints, the oblique projection $P_{Q^{-1}} = I - Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A$; for nonlinear equality
 237 constraints, R denotes the first-order optimality conditions.

238 Constraint Type	239 Solution $u^*(z)$	240 Solver Type	241 Jacobian $J_{\mathcal{T}}$
Linear Equality	$P_{Q^{-1}}z + (I - P_{Q^{-1}})A^\dagger b$	closed-form	$P_{Q^{-1}}$
Nonlinear Equality	(u^*, λ^*) s.t. $R(u^*, \lambda^*; z) = 0$	nonlinear	implicit differentiation
Convex Inequality	$\underset{h(\hat{u})=0, g(\hat{u}) \leq 0}{\operatorname{argmin}} \ \hat{u} - z\ _Q^2$	convex opt.	sensitivity analysis; argmin differentiation

245 3.4.1 LINEAR EQUALITY CONSTRAINTS

246 For linear equality constraints, we have an underdetermined linear system $h(\hat{u}) = A\hat{u} - b = 0$, where
 247 $A \in \mathbb{R}^{q \times n}$, $q < n$, and has full row rank q . In this case, we can derive a closed-form solution to the
 248 constrained least squares Problem (7). In this case, both training and inference modes are equivalent
 249 since the DPPL projection is exact. (See Appendix C.1.)

250 3.4.2 NONLINEAR EQUALITY CONSTRAINTS

251 For nonlinear equality constraints, $h(\hat{u}) = 0$, we can no longer derive the exact closed-form expression
 252 for the solution. Instead, we can provide an expression which is satisfied by the optimal solution.
 253 In particular, we approximate the parameter-level projection at training time. This can then be
 254 solved for the posterior mean $\hat{\mu} = u^*(\mu)$ in Eq. (8) with the nonlinear transformation $\mathcal{T}(\mu) = u^*(\mu)$
 255 with iterative optimization methods, e.g., Newton’s Method. (We can then compute the posterior
 256 covariance $\hat{\Sigma}$ in Eq. (8) by estimating the Jacobian $J_{\mathcal{T}}(\mu)$ by differentiating the nonlinear equations
 257 $u^*(z) = z - Q^{-1}\nabla h(u^*(z))^\top \lambda$, $h(u^*(z)) = 0$ with respect to z via the implicit function theorem
 258 (Blondel et al., 2022), and evaluating it at μ . (See Appendix C.2.) At inference, we project each
 259 sample exactly with our custom, batched optimization solver to ensure strict constraint feasibility.
 260

261 3.4.3 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

262 For convex inequality constraints, \hat{u} in Problem (7) is in a convex set, $\mathcal{C} \subset \mathbb{R}^n$. Closed-form
 263 expressions (such as those in previous subsections for linear and nonlinear equality constraints) do
 264 not exist (Boyd & Vandenberghe, 2004). Instead, we rely on convex optimization solvers to ensure
 265 computational efficiency and scalability to compute the solution u^* in training. The gradients of the
 266 convex program can be calculated efficiently using sensitivity analysis (Bertsekas, 1997; Bonnans &
 267 Shapiro, 2013), argmin differentiation (Sun et al., 2022; Agrawal et al., 2019; Amos & Kolter, 2017;
 268 Gould et al., 2016), and/or variational analysis (Rockafellar & Wets, 2009). These techniques provide
 269 a means to compute the Jacobian $J_{\mathcal{T}}(\mu)$, which represents the sensitivity of the optimal solution
 270 u^* to changes in the input vector μ , whose projection we are essentially computing to the convex
 271 constraints space. During inference, we solve the convex program per sample. (See Appendix C.3.)

270 3.5 SAMPLE-FREE WITH CLOSED-FORM CRPS
271

272 We use a closed-form expression for the CRPS to enable a computationally efficient and sample-free
273 approach for evaluating the CRPS in the loss function ℓ in Eq. (3). Calculating the CRPS for an arbitrary
274 distribution requires generating samples (Rangapuram et al., 2021; Gneiting & Raftery, 2007),
275 but closed-form expressions for the CRPS exist for several location-scale distributions (Gaussian, lo-
276 gistic, student’s t, beta, gamma, uniform). Most notably, for the univariate Gaussian, the closed-form
277 CRPS is given as: $\text{CRPS}_{\mathcal{N}}(z) = \left[z \cdot (2P(z) - 1) + 2p(z) - \frac{1}{\sqrt{\pi}} \right]$, where $p(z) = \frac{1}{\sqrt{2\pi}} \exp(-z^2/2)$
278 denotes the standard normal probability density function (PDF), and $P(z) = \int_{-\infty}^z p(y)dy$ denotes
279 the standard normal cumulative distribution function (CDF) for $z \sim \mathcal{N}(0, 1)$ (Gneiting et al., 2005;
280 Taillardat et al., 2016). This sample-free formulation is especially beneficial when the DPPL is
281 computationally intensive, e.g., in the presence of nonlinear constraints.

282 4 EMPIRICAL RESULTS
283

284 In our empirical evaluations, we aim to answer the following five questions about ProbHardE2E:

- 285 (Q1) Does training end-to-end with the imposed hard constraints improve upon the performance
286 of imposing them only at inference time?
- 287 (Q2) Is using a general oblique projection more beneficial than using the commonly-used orthog-
288 onal projection, and if so when?
- 289 (Q3) Does training with the distribution-agnostic proper scoring rule, CRPS instead of NLL,
improve performance?
- 290 (Q4) What are the computational savings of projecting directly on the distribution parameters and
291 using the closed form CRPS vs. projecting on the samples?
- 292 (Q5) How does ProbHardE2E perform when extended to more general constraints, e.g., non-
293 linear equality and convex inequality constraints?

294 See Appendix G for details on the test datasets, Appendix H for implementation details, and Ap-
295 pendix I for additional empirical results.

296 **Test Cases.** We demonstrate the efficacy of ProbHardE2E in two constrained optimization
297 applications: PDEs; and hierarchical forecasting. We show that our methodology with DPPL is
298 model-agnostic, as demonstrated through its high-performance integration with different base models
299 across applications. We first consider a series of PDE problems with varying levels of difficulty
300 in learning their solutions, following the empirical evaluation from Hansen et al. (2023). These
301 PDEs are categorized as “easy,” “medium,” and “hard,” with the difficulty level determined by the
302 smoothness or sharpness of the solution. (See Appendix G.1 for details.) In addition to PDEs, we
303 also evaluate ProbHardE2E on five hierarchical time-series forecasting benchmark datasets from
304 Alexandrov et al. (2019), where the goal is to generate probabilistic predictions that are coherent with
305 known aggregation constraints across cross-sectional hierarchies (Rangapuram et al., 2021). (See
306 Appendix G.2 for details.)

307 **Baselines.** We compare two variants of ProbHardE2E, i.e., ProbHardE2E-Ob, which uses a
308 general oblique projection ($Q = \Sigma^{-1}$) projection and is our default unless otherwise specified, and
309 ProbHardE2E-Or, which uses an orthogonal projection ($Q = I$), against several probabilistic
310 deep learning baselines commonly used for uncertainty quantification in constrained PDEs and
311 probabilistic time series forecasting. For PDEs, ProbHardE2E uses VarianceNO (Mouli et al.,
312 2024), which is a probabilistic extension of the Fourier Neural Operator (FNO) (Li et al., 2021)
313 as the unconstrained model. We compare ProbHardE2E with: (i) HardC, which is based on
314 Négier et al. (2023); Hansen et al. (2023), and which imposes the orthogonal projection only on
315 the mean, but does not update the covariance; (ii) ProbConserv (Hansen et al., 2023), which
316 applies the oblique projection only at inference time, and works only with linear constraints (in the
317 nonlinear constraint case, we compare with ProbHardInf, which is a variant of ProbConserv
318 that imposes the nonlinear constraint at inference time only); (iii) SoftC (Hansen et al., 2023),
319 which introduces a soft penalty on constraint violation à la PINNs (Raissi et al., 2019; Li et al., 2024)
320 during training but does not guarantee constraint satisfaction at inference; and (iv) the unconstrained
321 model backbone VarianceNO. For hierarchical time-series forecasting, ProbHardE2E uses
322 DeepVAR (Salinas et al., 2019) as the probabilistic base model. We compare ProbHardE2E with:
323 (i) ProbConserv; (ii) HierE2E (Rangapuram et al., 2021), which enforces linear constraints via an
end-to-end orthogonal projection; classical statistical approaches including (iii) ARIMA–NaiveBU,

(iv) ETS-NaiveBU (Hyndman et al., 2011; 2025), (v) PERMBU-MINT (Taieb et al., 2017; Olivares et al., 2022); and (vi) the unconstrained model backbone DeepVAR.

Evaluation. We evaluate ProbHardE2E using the following metrics: Mean Squared Error (MSE), which measures the mean prediction accuracy; Constraint Error (CE), which measures the constraint errors on the samples (conservation law for PDEs and coherency for hierarchical time series forecasting); and Continuous Ranked Probability Score (CRPS), which measures performance in uncertainty quantification (UQ). (See Appendix H.3 for details on the metrics.) For each model, we report these metrics when trained with either CRPS or Negative Log-Likelihood (NLL) as the loss. Although originally optimized with NLL, we also train a CRPS-based variant of ProbConserv to ensure a fair comparison. The experiments are conducted on a single NVIDIA V100 GPU in the PDEs case, and on an Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz in the time series forecasting case. To ensure scalability, we use a diagonal covariance matrix Q in Problem 7, following prior work (Hansen et al., 2023; Mouli et al., 2024). (See Appendix E for low-rank and full covariance structures.)

4.1 LINEAR CONSERVATION AND HIERARCHICAL CONSTRAINTS

In this subsection, we test ProbHardE2E on linear constraints. Table 2 presents our comparative evaluation results across multiple PDE datasets under linear constraints, and Table 3 presents our evaluation results across multiple time series forecasting datasets. We use these results to answer questions (Q1)-(Q4) raised above.

Table 2: Test metrics on constrained PDEs across four datasets, which are ordered top to bottom in their learning difficulty. Metrics include $MSE \times 10^{-5}$, constraint (conservation) error ($CE \times 10^{-3}$), and $CRPS \times 10^{-3}$. Each algorithm is trained with either CRPS or NLL. Best values per row are highlighted in bold.

Dataset	Metric	ProbHardE2E-Ob		ProbHardE2E-Or		HardC		ProbConserv		SoftC		VarianceNO (base)	
		CRPS	NLL	CRPS	NLL	CRPS	NLL	CRPS	NLL	CRPS	NLL	CRPS	NLL
Heat	MSE	0.036	0.047	0.031	0.301	0.031	0.090	0.027	1.26	0.051	0.156	0.029	2.01
	CE	0	0	0	0	0	0	0	0	0.852	4.806	1.76	34.3
	CRPS	0.304	0.37	0.271	0.713	0.275	0.452	0.392	4.27	0.354	1.129	0.396	4.39
PME	MSE	9.59	6.16	9.01	11.08	8.870	10.55	8.801	10.5	8.187	7.362	7.945	8.132
	CE	0	0	0	0	0	0	0	0	17.091	29.31	20.19	27.2
	CRPS	2.01	2.65	1.798	1.80	1.785	1.667	2.03	2.49	2.065	2.444	2.02	2.43
Advection	MSE	131	262	88.09	310.82	103.78	458.38	134	277	148.11	599.11	149	605
	CE	0	0	0	0	0	0	0	0	19.334	182.99	18.9	182
	CRPS	4.19	7.03	2.94	8.669	3.236	11.23	3.88	7.90	3.963	9.702	3.98	10.1
Stefan	MSE	186	207	394.84	432.92	394.29	433.28	303	273	431.89	429.06	425	425
	CE	0	0	0	0	0	0	0	0	166.93	168.75	180	169
	CRPS	7.52	7.85	14.147	14.67	14.432	14.539	7.85	8.33	9.878	10.062	9.51	10.2

Q1. Regarding (Q1) on the benefits of training end-to-end with a hard constraint, the results demonstrate that our method achieves superior performance compared to existing approaches. Specifically, when measured against two accuracy metrics across four PDE datasets in Table 2, our method with either oblique (ProbHardE2E-Ob) or orthogonal (ProbHardE2E-Or) projection consistently outperforms both ProbConserv, which applies constraints only during post-processing, and SoftC, which implements constraints as soft penalties, as measured by the desired CRPS metric. This performance advantage directly addresses research question (Q1), showing that our end-to-end approach is more effective than methods that treat constraints as either post-processing steps or soft penalties. In addition, across five diverse hierarchical time-series datasets, our method achieves state-of-the-art CRPS on the LABOUR, TOURISM-L, and WIKI datasets. On the TOURISM and TRAFFIC datasets, it remains highly competitive, outperforming traditional approaches, e.g., ARIMA and ETS, and offering comparable performance to specialized methods, e.g., PERMBU-MINT and HierE2E.

Q2. Regarding (Q2) on the effectiveness of the oblique vs. orthogonal projections, Table 2 shows while both oblique (ProbHardE2E-Ob) and orthogonal (ProbHardE2E-Or) variants of ProbHardE2E enforce zero constraint error, their impact on predictive fidelity varies significantly, depending on the difficulty of the PDE problem. For the “easy” (smooth) Heat equation and “medium” tasks (PME and Advection), orthogonal projection reduces CRPS by 10 – 30% relative to oblique projection and improves MSE by up to 33%. However, in the “hard” (sharp) nonlinear Stefan

problem, the oblique projection-based method improves CRPS by more than 50% compared to the orthogonal projection. Table 3 shows that ProbHardE2E-Or generally performs better on the time series datasets with cross-sectional hierarchies, as it improves CRPS on LABOUR and TOURISM datasets, compared to ProbHardE2E-Ob. This addresses (Q2) that correcting predictions along covariance-weighted (oblique) directions better preserves the true uncertainty structure around shocks and spikes, performing more effectively on problems with heteroscedastic data.

Table 3: CRPS $\times 10^{-3}$ for hierarchical time-series datasets across various probabilistic forecasting algorithms. Constraint (coherency) error (CE) is given in parenthesis and is equal to 0 for all methods except the base unconstrained DeepVAR. PERMBU-MINT is not available for TOURISM-L, because the dataset has a nested hierarchical structure, and PERMBU-MINT is not well-defined on this type of dataset (Rangapuram et al., 2021). ARIMA-NaiveBU, ETS-NaiveBU and PERMBU-MINT are deterministic models with no model uncertainty.

Dataset	ProbHardE2E-Ob	ProbHardE2E-Or	ProbConserv	HierE2E	ARIMA-NaiveBU	ETS-NaiveBU	PERMBU-MINT	DeepVAR (base)
LABOUR	36.1 ± 2.7 (0)	28.6 ± 6.5 (0)	45.8 ± 6.5 (0)	50.5 ± 20.6 (0)	45.3 (0)	43.2 (0)	39.3 (0)	38.2 ± 4.5 (0.215)
TOURISM	98.9 ± 13.0 (0)	82.4 ± 6.6 (0)	100.7 ± 7.7 (0)	103.1 ± 16.3 (0)	113.8 (0)	100.8 (0)	77.1 (0)	92.5 ± 2.2 (2818.01)
TOURISM-L	155.2 ± 3.6 (0)	156.4 ± 9.4 (0)	176.9 ± 21.5 (0)	161.3 ± 10.9 (0)	174.1 (0)	169.0 (0)	–	158.1 ± 10.2 (70000)
TRAFFIC	55.0 ± 10.6 (0)	60.6 ± 7.8 (0)	71.0 ± 3.9 (0)	41.8 ± 7.8 (0)	80.8 (0)	66.5 (0)	67.7 (0)	40.0 ± 2.6 (0.192)
WIKI	212.1 ± 29.4 (0)	215.8 ± 16.9 (0)	264.7 ± 30.7 (0)	216.5 ± 26.7 (0)	377.2 (0)	467.3 (0)	281.2 (0)	229.4 ± 15.8 (8398.6)

Regarding (Q3) on the training objective, Table 2 shows that training with the proper scoring rule, such as CRPS, improves UQ (measured by CRPS) across nearly all PDE datasets compared to training with the commonly-used NLL in previous ScIML works. The only exception is HardC in the PME. The CRPS training objective also improves mean accuracy (measured by MSE) in approximately three-quarters of the dataset-model experiments. In addition, Table 3 shows that on four out of five time series datasets, we improve upon the results of HierE2E, which uses the DeepVAR base model with an orthogonal projection on the samples, and which optimizes the sampling-based quantile loss by projecting directly on the distribution parameters.

Regarding (Q4) on the computational efficiency of our sampling-free approach, Fig. 1(a) shows the training time per epoch for the hierarchical time series datasets. Models trained for time series and PDEs (see Appendix I.1) with 100 posterior samples per training step incur a $3.3\text{--}4.6\times$ increase in epoch time relative to ProbHardE2E, which avoids sampling altogether by using a closed-form CRPS loss. Note that the computational overhead of ProbHardE2E is approximately $2\times$ that of the unconstrained model. However, compared to the sampling-based probabilistic baselines, our approach with the DPPL layer that directly projects distribution parameters and a closed-form CRPS objective offers significant training-time speed-ups across all forecasting and PDE testbeds.

4.2 GENERAL NONLINEAR EQUALITY AND CONVEX INEQUALITY CONSTRAINTS (Q5)

In this subsection, we test ProbHardE2E on nonlinear equality and convex inequality constraints to address question (Q5) on PDE datasets, as (current) time series forecasting applications usually need predictions to satisfy only linear (e.g., hierarchical) constraints.

4.2.1 NONLINEAR EQUALITY CONSTRAINTS

We test ProbHardE2E with general nonlinear constraints using nonlinear conservation laws from PDEs. (See Appendix I.2 for details.) Importantly, Table 4 shows that even in this challenging case of nonlinear constraints, the constraint error (CE) on the samples is 0 so that we ensure strict feasibility on the samples. In addition, we see superior performance of enforcing nonlinear constraints with ProbHardE2E. We see an even larger MSE performance improvement of **at most** $\approx 15 - 17\times$ when trained on CRPS, and CRPS performance improvement of **at most** $\approx 2.5\times$ for $m \in [2, 3]$ over the various baselines that apply the nonlinear constraint just at inference time (ProbHardInf), as a reduced linear constraint (ProbConserv) at inference time, and the unconstrained model (VarianceNO). These results highlight the benefit of training end-to-end with the constraint in the nonlinear case. In particular, this validates our dual mode training and inference approach, where we obtain the computational benefits of projecting on the parameters and **approximately** satisfying the constraint during training, and exact constraint sanctification at inference time while achieving state-of-the-art performance measured in CRPS. In addition, Fig. 1(b) shows that ProbHardE2E is able to significantly better capture the shock and has tighter uncertainty estimates, leading to lower CRPS values than the baselines.

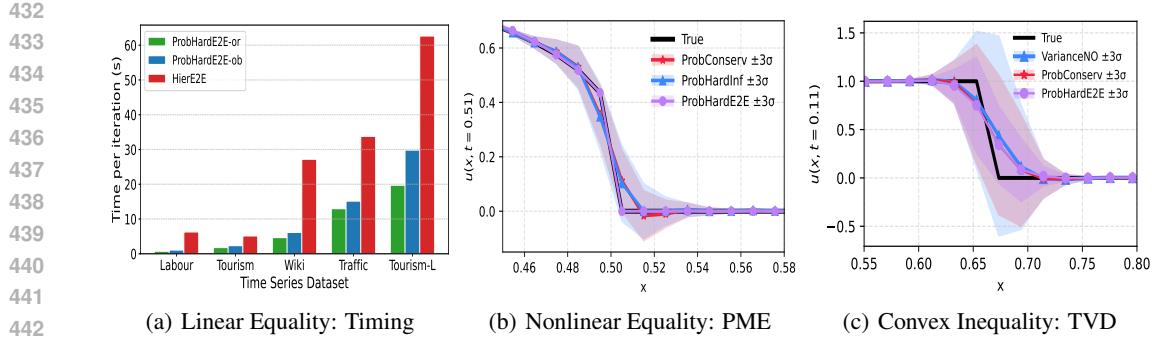


Figure 1: ProbHardE2E on the various constraint types. (a) **Linear Equality**: Average time per iteration (in seconds) for ProbHardE2E, compared to the HierE2E on five hierarchical time-series datasets; (b) **Nonlinear Equality**: Mean ± 3 standard deviation for the PME with conservation constraint at time $t = 0.51$, with PDE parameter $m_{\text{train}} \in [3, 4]$ and $m_{\text{test}} = 3.88$; (c) **Convex Inequality**: Mean ± 3 standard deviation for linear advection with TVD constraint at time $t = 0.51$, with PDE parameter $\beta_{\text{train}} \in [1, 2]$ and $\beta_{\text{test}} = 1.5$. The horizontal axes in (b)-(c) are zoomed in to highlight the uncertainty near the propagating front.

Table 4: Test metrics on the nonlinear PME with PDE coefficient $k(u) = u^m$, which controls the sharpness of the solution (larger values are “harder”), for NLL and CRPS training. The training and test parameters are sampled from this range of m . Metrics include $\text{MSE} \times 10^{-6}$, calibration error (CE) $\times 10^{-3}$, and CRPS $\times 10^{-4}$. Best values per row and metric are bolded.

PME Dataset	Metric	ProbHardE2E-Ob		ProbHardE2E-Or		ProbHardInf		ProbConserv		VarianceNO (base)	
		CRPS	NLL	CRPS	NLL	CRPS	NLL	CRPS	NLL	CRPS	NLL
$m \in [2, 3]$	MSE	5.04	106.638	9.38	43.5	78.185	86.147	88.539	94.467	80.342	89.212
	CE	0	0	0	0	0	0	0	0	0.020	0.028
	CRPS	8.648	18.867	11.34	14.8	19.005	32.977	20.672	36.724	20.779	37.140
$m \in [3, 4]$	MSE	296.4	471.3	3.19	134.7	157.8	200.2	184.5	276.4	162	201.5
	CE	0	0	0	0	0	0	0	0	14.8	34.1
	CRPS	11.23	16.9	7.10	11.18	22.60	30.4	24.7	35.1	23.7	48.5
$m \in [4, 5]$	MSE	424.8	716.8	1.59	206.49	280.4	332.3	276.7	619.9	199.2	341.7
	CE	0	0	0	0	0	0	0	0	22.8	59.7
	CRPS	10.8	19.9	5.62	9.36	23.3	32.4	25.4	41.3	27.2	35.9

4.2.2 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

We impose a convex relaxation of the total variation diminishing (TVD) constraint that has been commonly used in numerical methods for PDEs to minimize artificial oscillations (LeVeque, 2002). In particular, we impose $\text{TVD} = \sum_{n=1}^{N_t} \sum_{i=1}^{N_x} |u(t_n, x_{i+1}) - u(t_n, x_i)|$ as a regularization term. (See Appendix I.3 for details.) Note that this discrete form is analogous to total variation denoising in signal processing (Rudin et al., 1992; Boyd & Vandenberghe, 2004). Fig. 1(c) illustrates that imposing this TVD relaxation improves the shock location prediction, compared to the unconstrained model VarianceNO. We see that ProbHardE2E has smaller variance, compared to both ProbConserv, which only enforces the conservation law, and VarianceNO. Most importantly, we see that ProbHardE2E is less likely to predict non-physical negative samples, which violates the positivity of the true solution. In addition, the variance of the ProbHardE2E solution also has a smaller peak above the shock, and hence it is less prone to oscillations than the other baselines.

5 CONCLUSION

à la finite volume methods (LeVeque, 2002). Future work also includes extending our method to handle general non-convex, nonlinear inequality constraints using advanced optimization techniques or relaxations, to richer covariance parameterizations, e.g., low-rank or dense, and to empirical distributions other than location-scale families by sample projection.

486 REFERENCES
487

488 Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
489 Differentiable convex optimization layers. In *Advances in neural information processing systems*,
490 volume 32, 2019.

491 Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
492 Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
493 Schulz, et al. Gluonts: Probabilistic and neural time series modeling in python. *Journal of Machine*
494 *Learning Research*, 21(116):1–6, 2019.

495 Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
496 *Proceedings of the 34th International Conference on Machine Learning*, volume 70, pp. 136–145.
497 PMLR, 2017.

498 Oren Anava, Vitaly Kuznetsov, and (Google Inc. Sponsorship). Web traffic time series forecasting,
499 forecast future traffic to wikipedia pages. Kaggle Competition, 2018. URL <https://www.kaggle.com/c/web-traffic-time-series-forecasting/>.

500 Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
501 Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
502 Chronos: Learning the language of time series. *Transactions on Machine Learning Research*,
503 2024.

504 George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Anastasios Panagiotelis. Forecast
505 reconciliation: A review. *International Journal of Forecasting*, 40(2):430–456, 2024.

506 Australian Bureau of Statistics. Labour Force, Australia. Accessed Online, 2019. URL
507 <https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6202.0Dec%202019?OpenDocument>.

508 Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
509 Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
510 Relational inductive biases, deep learning, and graph networks. *arXiv preprint arXiv:1806.01261*,
511 2018.

512 Souhaib Ben Taieb and Bonsoo Koo. Regularized regression for hierarchical forecasting without
513 unbiasedness conditions. In *Proceedings of the 25th ACM SIGKDD international conference on*
514 *knowledge discovery & data mining*, pp. 1337–1347, 2019.

515 Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Yuyang Wang, Danielle
516 Maddix, Caner Turkmen, Jan Gasthaus, Michael Bohlke-Schneider, David Salinas, Lorenzo Stella,
517 Fran ois-Xavier Aubet, Laurent Callot, and Tim Januschowski. Deep learning for time series
518 forecasting: Tutorial and literature survey. *ACM Comput. Surv.*, 55(6), 2022.

519 Dimitri P Bertsekas. Nonlinear programming. *Journal of the Operational Research Society*, 48(3):
520 334–334, 1997.

521 Tom Beucler, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine. Enforcing
522 analytic constraints in neural networks emulating physical systems. *Physical Review Letters*,
523 126(9):098302, 2021.

524 Lorenz T Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart van Bloemen Waanders. Large-
525 scale pde-constrained optimization: an introduction. In *Large-scale PDE-constrained optimization*,
526 pp. 3–13. Springer, 2003.

527 ke Bj rck. *Numerical Methods for Least Squares Problems*. Society for Industrial and Applied
528 Mathematics, 1996.

529 Mathieu Blondel and Vincent Roulet. The elements of differentiable programming. *arXiv preprint*
530 *arXiv:2403.14606*, 2024.

531 Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-L pez,
532 Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. In
533 *Advances in Neural Information Processing Systems*, volume 35, pp. 5230–5242, 2022.

540 Thomas Bolton and Laure Zanna. Applications of Deep Learning to Ocean Data Inference and
 541 Subgrid Parameterization. *Journal of Advances in Modeling Earth Systems*, 11(1):376–399, 2019.
 542

543 J Frédéric Bonnans and Alexander Shapiro. *Perturbation analysis of optimization problems*. Springer
 544 Science & Business Media, 2013.

545 Nicholas Boumal. *An Introduction to Optimization on Smooth Manifolds*. Cambridge University
 546 Press, 2024.

547 George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. *Time series analysis:
 548 forecasting and control*. John Wiley & Sons, 2015.

549

550 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
 551

552 George Casella and Roger Berger. *Statistical Inference*. Duxbury Resource Center, June 2001.

553 Nithin Chalapathi, Yiheng Du, and Aditi Krishnapriyan. Scaling physics-informed hard constraints
 554 with mixture-of-experts. In *International Conference on Learning Representations*, 2024.

555

556 Hao Chen, Gonzalo E. Constante Flores, and Can Li. Physics-informed neural networks with hard
 557 linear equality constraints. *Computers and Chemical Engineering*, 189:108764, 2024.

558

559 Chaoran Cheng, Boran Han, Danielle C. Maddix, Abdul Fatir Ansari, Andrew Stuart, Michael W. Ma-
 560 haney, and Yuyang Wang. Gradient-free generation for hard-constrained systems. In *International
 561 Conference on Learning Representations*, 2025.

562

563 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
 564 time-series forecasting. *arXiv preprint arXiv:2310.10688*, 2023.

565

566 Priya L Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with hard
 567 constraints. In *International Conference on Learning Representations*, 2021.

568

569 Chris Edwards. Neural networks learn to speed up simulations. *Communications of the ACM*, 65(5):
 570 27–29, 2022.

571

572 Carson Eisenach, Yagna Patel, and Dhruv Madeka. Mqtransformer: Multi-horizon forecasts with
 573 context dependent and feedback-aware attention. *arXiv preprint arXiv:2009.14799*, 2022.

574

575 Rasool Fakoor, Taesup Kim, Jonas Mueller, Alexander J. Smola, and Ryan J. Tibshirani. Flexible
 576 model aggregation for quantile regression. *Journal of Machine Learning Research*, 24(162):1–45,
 577 2023.

578

579 Yuchen Fang, Sen Na, Michael W Mahoney, and Mladen Kolar. Fully stochastic trust-region
 580 sequential quadratic programming for equality-constrained optimization problems. *SIAM Journal
 581 on Optimization*, 34(2):2007–2037, 2024.

582

583 Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
 584 meshgraphnets. *2nd AI4Science Workshop at the 39th International Conference on Machine
 585 Learning (ICML)*, 2022.

586

587 Zhihan Gao, Xingjian Shi, Boran Han, Hao Wang, Xiaoyong Jin, Danielle C. Maddix, Yi Zhu, Mu Li,
 588 and Yuyang Wang. PreDiff: Precipitation nowcasting with latent diffusion models. In *Advances in
 589 Neural Information Processing Systems*, 2023.

590

591 Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapuram, David Salinas,
 592 Valentin Flunkert, and Tim Januschowski. Probabilistic forecasting with spline quantile function
 593 rnns. In *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
 594 Statistics*, volume 89, pp. 1901–1910. PMLR, 2019.

595

596 Philip E. Gill and Elizabeth Wong. Sequential quadratic programming methods. In *Mixed Integer
 597 Nonlinear Programming*, pp. 147–224, New York, NY, 2012. Springer New York.

598

599 Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo
 600 methods. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 73(2):123–214,
 601 2011.

594 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
 595 *Journal of the American statistical Association*, 102(477):359–378, 2007.
 596

597 Tilmann Gneiting, Adrian E Raftery, Anton H Westveld, and Tom Goldman. Calibrated probabilistic
 598 forecasting using ensemble model output statistics and minimum crps estimation. *Monthly Weather
 599 Review*, 133(5):1098–1118, 2005.

600 Gene H. Golub and Chen Greif. On solving block-structured indefinite linear systems. *SIAM Journal
 601 on Scientific Computing*, 24(6):2076–2092, 2003.
 602

603 Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
 604 Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
 605 optimization. *arXiv preprint arXiv:1607.05447*, 2016.

606 Stephen Gould, Richard Hartley, and Dylan Campbell. Deep declarative networks. *IEEE Trans.
 607 Pattern Anal. Mach. Intell.*, 44(8):3988–4004, 2022.

608 Andreas Griewank and Andrea Walther. *Evaluating derivatives: principles and techniques of
 609 algorithmic differentiation*. SIAM, 2008.
 610

611 Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
 612 equations. In *Advances in Neural Information Processing Systems*, volume 34, pp. 24048–24062,
 613 2021.

614 Derek Hansen, Danielle C. Maddix, Shima Alizadeh, Gaurav Gupta, and Michael W. Mahoney. Learning
 615 physical models that can respect conservation laws. In *Proceedings of the 40th International
 616 Conference on Machine Learning*, volume 202, pp. 12469–12510. PMLR, 2023.

617 Ami Harten. High resolution schemes for hyperbolic conservation laws. *Journal of computational
 618 physics*, 135(2):260–278, 1997.
 619

620 Ilgee Hong, Sen Na, Michael W Mahoney, and Mladen Kolar. Constrained optimization via exact
 621 augmented lagrangian and randomized iterative sketching. In *Proceedings of the 40th International
 622 Conference on Machine Learning*, volume 202, pp. 13174–13198. PMLR, 2023.

623 Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. The tabular foundation model tabPFN
 624 outperforms specialized time series forecasting models based on simple features. *arXiv preprint
 625 arXiv:2501.02945*, 2025.
 626

627 Thomas JR Hughes. *The finite element method: linear static and dynamic finite element analysis*.
 628 Courier Corporation, 2003.
 629

630 Rob J Hyndman and George Athanasopoulos. *Forecasting: principles and practice*. OTexts, 2018.
 631

632 Rob J. Hyndman, Roman A. Ahmed, George Athanasopoulos, and Han Lin Shang. Optimal com-
 633 bination forecasts for hierarchical time series. *Computational statistics & data analysis*, 55(9):
 2579–2589, 2011.
 634

635 Rob J Hyndman, George Athanasopoulos, Azul Garza, Cristian Challu, Max Mergenthaler, and
 636 Kin G. Olivares. *Forecasting: Principles and Practice, the Pythonic Way*. OTexts, Melbourne,
 637 Australia, 2025. available at <https://otexts.com/fpppy/>.
 638

639 Harry Joe. *Multivariate models and multivariate dependence concepts*. CRC press, 1997.
 640

641 A. Kadambi, C. de Melo, CJ. Hsieh, M. Srivastava, and S. Soatto. Incorporating physics into
 642 data-driven computer vision. *Nat Mach Intell*, 5:572–580, 2023.
 643

644 Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. *Journal of Basic
 645 Engineering*, 82(1):35–45, 1960.
 646

647 George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 648 Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.
 649

650 Muhammad Firmansyah Kasim and Yi Heng Lim. Constants of motion network. In *Advances in
 651 Neural Information Processing Systems*, volume 35, pp. 25295–25305, 2022.

648 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
 649 vision? In *Proceedings of the 31st International Conference on Neural Information Processing*
 650 *Systems*, pp. 5580–5590. Curran Associates Inc., 2017.

651

652 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
 653 for scene geometry and semantics. In *2018 IEEE Conference on Computer Vision and Pattern*
 654 *Recognition (CVPR)*, pp. 7482–7491. Computer Vision Foundation / IEEE Computer Society,
 655 2018.

656 Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
 657 Vinyals, and Yee Whye Teh. Attentive neural processes. *arXiv preprint arXiv:1901.05761*, 2019.

658

659 D. Kingma and J. Ba. A method for stochastic optimization. In *International Conference on Learning*
 660 *Representations*, 2015.

661 Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Milan
 662 Klöwer, James Lottes, Stephan Rasp, Peter Düben, et al. Neural general circulation models for
 663 weather and climate. *Nature*, 632(8027):1060–1066, 2024.

664

665 Steven George Krantz and Harold R. Parks. *The implicit function theorem: history, theory, and*
 666 *applications*. Springer Science & Business Media, 2002.

667

668 Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
 669 acterizing possible failure modes in physics-informed neural networks. In *Advances in neural*
 670 *information processing systems*, volume 34, pp. 26548–26560, 2021.

671 Quoc V Le, Alex J Smola, and Stéphane Canu. Heteroscedastic gaussian process regression. In
 672 *Proceedings of the 22nd International Conference on Machine Learning*, pp. 489–496. PMLR,
 673 2005.

674

675 Randall J. LeVeque. *Numerical Methods for Conservation Laws*. Lectures in mathematics ETH
 676 Zürich. Birkhäuser Verlag, 1990.

677

678 Randall J. LeVeque. *Finite volume methods for hyperbolic problems*, volume 31. Cambridge
 679 university press, 2002.

680

681 Randall J. LeVeque. *Finite difference methods for ordinary and partial differential equations:*
 682 *steady-state and time-dependent problems*. SIAM, 2007.

683

684 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
 685 Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
 686 equations. *arXiv preprint arXiv:2003.03485*, 2020.

687

688 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
 689 Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential
 690 Equations. In *International Conference on Learning Representations*, 2021.

691

692 Zongyi Li, Hongkai Zheng, Nikola B. Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
 693 Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
 694 differential equations. *ACM / IMS J. Data Sci.*, 1(3), 2024.

695

696 Bryan Lim, Sercan Ö Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
 697 interpretable multi-horizon time series forecasting. *International Journal of Forecasting*, 37(4):
 698 1748–1764, 2021.

699

700 Konstantin Lipnikov, Gianmarco Manzini, J. David Moulton, and Mikhail Shashkov. The mimetic
 701 finite difference method for elliptic and parabolic problems with a staggered discretization of
 702 diffusion coefficient. *Journal of Computational Physics*, 305:111–126, 2016.

703

704 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 705 nonlinear operators via DeepONet based on the universal approximation theorem of operators.
 706 *Nature Machine Intelligence*, 3(3):218–229, 2021.

702 Danielle C Maddix, Luiz Sampaio, and Margot Gerritsen. Numerical artifacts in the generalized
 703 porous medium equation: Why harmonic averaging itself is not to blame. *Journal of Computational*
 704 *Physics*, 361:280–298, 2018a.

705 Danielle C Maddix, Luiz Sampaio, and Margot Gerritsen. Numerical artifacts in the discontinuous
 706 generalized porous medium equation: How to avoid spurious temporal oscillations. *Journal of*
 707 *Computational Physics*, 368:277–298, 2018b.

708 James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions.
 709 *Management science*, 22(10):1087–1096, 1976.

710 Takashi Matsubara and Takaharu Yaguchi. Finde: Neural differential equations for finding and
 711 preserving invariant quantities. In *International Conference on Learning Representations*, 2023.

712 Youngjae Min, Anoopkumar Sonar, and Navid Azizan. Hard-constrained neural networks with
 713 universal approximation guarantees. *arXiv preprint arXiv:2410.10807*, 2024.

714 S. Chandra Mouli, Danielle C. Maddix, Shima Alizadeh, Gaurav Gupta, Andrew Stuart, Michael W.
 715 Mahoney, and Yuyang Wang. Using Uncertainty Quantification to Characterize and Improve
 716 Out-of-Domain Learning for PDEs. In *Proceedings of the 40th International Conference on*
 717 *Machine Learning*, volume 235, pp. 36372–36418. PMLR, 2024.

718 Eike Hermann Müller. Exact conservation laws for neural network integrators of dynamical systems.
 719 *arXiv preprint arXiv:2209.11661*, 2022.

720 Jorge Nocedal and J. Wright, Steven. *Numerical Optimization*. Springer, 2006.

721 Geoffrey Négiar, Michael W. Mahoney, and Aditi S. Krishnapriyan. Learning differentiable solvers
 722 for systems with hard constraints. In *International Conference on Learning Representations*, 2023.

723 Kin G. Olivares, Federico Garza, David Luo, Cristian Challú, Max Mergenthaler, Souhaib Ben
 724 Taieb, Shanika L. Wickramasuriya, and Artur Dubrawski. HierarchicalForecast: A reference
 725 framework for hierarchical forecasting in python. *Work in progress paper, submitted to Journal*
 726 *of Machine Learning Research.*, abs/2207.03517, 2022. URL <https://arxiv.org/abs/2207.03517>.

727 Kin G Olivares, O Nganba Meetei, Ruijun Ma, Rohan Reddy, Mengfei Cao, and Lee Dicker. Probabilistic
 728 hierarchical forecasting with deep poisson mixtures. *International Journal of Forecasting*,
 729 40(2):470–489, 2024a.

730 Kin G Olivares, Geoffrey Négiar, Ruijun Ma, Oinam Nganba Meetei, Mengfei Cao, and Michael W.
 731 Mahoney. ♣ CLOVER ♣: Probabilistic forecasting with coherent learning objective reparameteri-
 732 zation. *Transactions on Machine Learning Research*, 2024b.

733 Youngsuk Park, Danielle C. Maddix, François-Xavier Aubet, Kelvin Kan, Jan Gasthaus, and Yuyang
 734 Wang. Learning quantile functions without quantile crossing for distribution-free time series
 735 forecasting. In *Proceedings of The 25th International Conference on Artificial Intelligence and*
 736 *Statistics*, volume 151, pp. 8127–8150. PMLR, 2022.

737 Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K
 738 Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak, John E Boylan,
 739 et al. Forecasting: theory and practice. *International Journal of Forecasting*, 38(3):705–871, 2022.

740 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
 741 based simulation with graph networks. In *International Conference on Learning Representations*,
 742 2021.

743 I. Price, A. Sanchez-Gonzalez, F. Alet, TR Andersson, A El-Kadi, D Masters, T Ewalds, J Stott,
 744 S Mohamed, P Battaglia, R Lam, and M. Willson. Probabilistic weather forecasting with machine
 745 learning. *Nature*, 637(8044):84–90, 2025.

746 Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar,
 747 Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for scientific
 748 machine learning. *arXiv preprint arXiv:2001.04385*, 2020.

756 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 757 deep learning framework for solving forward and inverse problems involving nonlinear partial
 758 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

759

760 Syama Sundar Rangapuram, Lucien D. Werner, Konstantinos Benidis, Pedro Mercado, Jan Gasthaus,
 761 and Tim Januschowski. End-to-end learning of coherent probabilistic forecasts for hierarchical
 762 time series. In *International Conference on Machine Learning*, pp. 8832–8843. PMLR, 2021.

763

764 Syama Sundar Rangapuram, Shubham Kapoor, Rajbir Singh Nirwan, Pedro Mercado, Tim
 765 Januschowski, Yuyang Wang, and Michael Bohlke-Schneider. Coherent probabilistic forecasting of
 766 temporal hierarchies. In *Proceedings of The 26th International Conference on Artificial Intelligence
 767 and Statistics*, volume 206, pp. 9362–9376. PMLR, 2023.

768

769 C.E. Rasmussen and C.K. Williams. *Gaussian Processes for Machine Learning*. MIT Press, 2006.

770

771 Stephan Rasp and Sebastian Lerch. Neural networks for postprocessing ensemble weather forecasts.
Monthly Weather Review, 146(11):3885 – 3900, 2018.

772

773 Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
 774 Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, et al. Skilful precipitation
 775 nowcasting using deep generative models of radar. *Nature*, 597(7878):672–677, 2021.

776

777 Jack Richter-Powell, Yaron Lipman, and Ricky T. Q. Chen. Neural conservation laws: A divergence-
 778 free perspective. In *Advances in Neural Information Processing Systems*, 2022.

779

780 Christian P Robert, George Casella, and George Casella. *Monte Carlo statistical methods*, volume 2.
 Springer, 1999.

781

782 R Tyrrell Rockafellar and Roger J-B Wets. *Variational analysis*, volume 317. Springer Science &
 783 Business Media, 2009.

784

785 Jo Bo Rosen. The gradient projection method for nonlinear programming. part i. linear constraints.
Journal of the society for industrial and applied mathematics, 8(1):181–217, 1960.

786

787 Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
 788 algorithms. *Physica D: nonlinear phenomena*, 60(1-4):259–268, 1992.

789

790 Nadim Saad, Gaurav Gupta, Shima Alizadeh, and Danielle C. Maddix. Guiding continuous operator
 791 learning through physics-based boundary constraints. In *International Conference on Learning
 Representations*, 2023.

792

793 David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus. High-
 794 dimensional multivariate forecasting with low-rank gaussian copula processes. In *Advances in
 795 neural information processing systems*, volume 32, 2019.

796

797 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
 798 forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, 36(3):
 1181–1191, 2020.

799

800 Alexander Schein, Kevin T. Carlberg, and Matthew J. Zahr. Preserving general physical properties
 801 in model reduction of dynamical systems via constrained-optimization projection. *International
 Journal for Numerical Methods in Engineering*, 122(14):3368–3399, 2021.

802

803 James A. Sethian and John Strain. Crystal growth and dendritic solidification. *Journal of Computational Physics*, 98(2):231–253, 1992.

804

805 Nicki Skafte, Martin Jørgensen, and Søren Hauberg. Reliable training and estimation of variance
 806 networks. In *Advances in Neural Information Processing Systems*, volume 32, 2019.

807

808 Andrew Stirn, Harm Wessels, Megan Schertzer, Laura Pereira, Neville Sanjana, and David Knowles.
 809 Faithful heteroscedastic regression with neural networks. In *International Conference on Artificial
 Intelligence and Statistics*, pp. 5593–5613. PMLR, 2023.

810 Patrick Obin Sturm and Anthony S. Wexler. Conservation laws in a neural network architecture:
 811 enforcing the atom balance of a julia-based photochemical model (v0.2.0). *Geosci. Model Dev.*,
 812 15:3417–3431, 2022.

813

814 Haixiang Sun, Ye Shi, Jingya Wang, Hoang Duong Tuan, H Vincent Poor, and Dacheng Tao.
 815 Alternating differentiation for optimization layers. *arXiv preprint arXiv:2210.01802*, 2022.

816 Roberto Szechtman and Peter W Glynn. Constrained monte carlo and the method of control variates.
 817 In *Proceeding of the 2001 Winter Simulation Conference (Cat. No. 01CH37304)*, volume 1, pp.
 818 394–400. IEEE, 2001.

819

820 Souhaib Ben Taieb, James W. Taylor, and Rob J. Hyndman. Coherent probabilistic forecasts for
 821 hierarchical time series. In *International Conference on Machine Learning*, pp. 3348–3357. PMLR,
 822 2017.

823

824 Maxime Taillardat, Olivier Mestre, Michaël Zamo, and Philippe Naveau. Calibrated ensemble
 825 forecasts using quantile regression forests and ensemble model output statistics. *Monthly Weather
 Review*, 144(6):2375–2393, 2016.

826

827 Irina Kalashnikova Tezaur, Jeffrey A. Fike, Kevin Thomas Carlberg, Matthew F. Barone, Danielle
 828 Maddix, Erin E. Mussoni, and Maciej Balajewicz. Advanced fluid reduced order models for
 829 compressible flow. *Sandia National Laboratories Report, Sand No. 2017-10335*, 2017.

830

831 Tourism Australia, Canberra. Tourism Research Australia (2005), Travel by Australians. <https://www.kaggle.com/luisblanche/quarterly-tourism-in-australia/>, 2005.

832

833 Marc Toussaint, Kelsey R. Allen, Kevin A. Smith, and Joshua B. Tenenbaum. Differentiable physics
 834 and stable modes for tool-use and manipulation planning - extended abstract. In *Proceedings of the
 835 Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19*, pp. 6231–6235.
 836 International Joint Conferences on Artificial Intelligence Organization, 2019.

837

838 Utkarsh Utkarsh, Valentin Churavy, Yingbo Ma, Tim Besard, Prakitr Srisuma, Tim Gymnich, Adam R
 839 Gerlach, Alan Edelman, George Barbastathis, Richard D Braatz, et al. Automated translation and
 840 accelerated solving of differential equations on multiple gpu platforms. *Computer Methods in
 841 Applied Mechanics and Engineering*, 419:116591, 2024.

842

843 Utkarsh Utkarsh, Pengfei Cai, Alan Edelman, Rafael Gomez-Bombarelli, and Christopher Vincent
 844 Rackauckas. Physics-constrained flow matching: Sampling generative models with hard constraints.
 845 *arXiv preprint arXiv:2506.04171*, 2025.

846

847 J.M. van der Meer, J.F.B.M. Kraaijevanger, M. Möller, and J.D. Jansen. Temporal oscillations in
 848 the simulation of foam enhanced oil recovery. *ECMOR XV - 15th European Conference on the
 849 Mathematics of Oil Recovery*, pp. 1–20, 2016.

850

851 Aad W Van der Vaart. *Asymptotic statistics*, volume 3. Cambridge university press, 2000.

852

853 Tim Van Erven and Jairo Cugliari. Game-theoretically optimal reconciliation of contemporaneous
 854 hierarchical time series forecasts. In *Modeling and stochastic learning for forecasting in high
 855 dimensions*, pp. 297–317. Springer, 2015.

856

857 J.L. Vázquez. *The Porous Medium Equation: Mathematical Theory*. The Clarendon Press, Oxford
 858 University Press, Oxford, 2007.

859

860 Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest
 861 neighbor classification. *Journal of machine learning research*, 10(2), 2009.

862

863 Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-horizon
 864 quantile recurrent forecaster. *arXiv preprint arXiv:1711.11053*, 2018.

865

866 Alistair White, Anna Büttner, Maximilian Gelbrecht, Valentin Duruisseaux, Niki Kilbertus, Frank
 867 Hellmann, and Niklas Boers. Projected neural differential equations for learning constrained
 868 dynamics. *arXiv preprint arXiv:2410.23667*, 2024.

864 Shanika L. Wickramasuriya, George Athanasopoulos, and Rob J. Hyndman and. Optimal forecast
865 reconciliation for hierarchical and grouped time series through trace minimization. *Journal of the*
866 *American Statistical Association*, 114(526):804–819, 2019.

867 Jeffrey Willette, Hae Beom Lee, Juho Lee, and Sung Ju Hwang. Meta learning low rank covariance
868 factors for energy-based deterministic uncertainty. *arXiv preprint arXiv:2110.06381*, 2021.

870 R.B. Wilson. *A Simplicial Method for Convex Programming*. PhD thesis, Harvard University, 1963.

872 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
873 Unified training of universal time series forecasting transformers. *arXiv preprint arXiv:2402.02592*,
874 2024.

875 M.J. Zahr and P.-O. Persson. An adjoint method for a high-order discretization of deforming domain
876 conservation laws for optimization of flow problems. *Journal of Computational Physics*, 326:
877 516–543, 2016.

878 Laure Zanna and Thomas Bolton. Data-Driven Equation Discovery of Ocean Mesoscale Closures.
879 *Geophysical Research Letters*, 47(17), 2020.

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 A RELATED WORK
919

920 In this section, we review works that have been motivated by dealing with hard constraints in various
921 domains including imposing constraints in neural networks (Min et al., 2024; Donti et al., 2021),
922 probabilistic time series forecasting (Rangapuram et al., 2023; 2021; Olivares et al., 2024b) and
923 scientific machine learning (Négier et al., 2023; Hansen et al., 2023). Table 5 summarizes several
924 of these methods. We see that existing general methododologies, e.g., HardNet (Min et al., 2024)
925 and DC3 (Donti et al., 2021), work across various domains and different types of constraints—
926 HardNet handles convex constraints, and DC3 tackles nonlinear ones. The biggest limitation of
927 these methods is that they provide point estimates only. Despite having the point forecast satisfying
928 the constraints, they are unsuitable for PDEs and forecasting applications, which generally now
929 require variance estimates. Hier-E2E (Rangapuram et al., 2021) and CLOVER (Olivares et al., 2024b)
930 are specialized solutions for forecasting problems, which both deal with probabilistic forecasting
931 under linear constraints. Linear constraints are common in the time series forecasting domain. Both
932 methods require sampling during training, which can be computationally intensive. Within the PDE-
933 focused methods, ProbConserv (Hansen et al., 2023) and HardC (Hansen et al., 2023) handle linear
934 constraints and include variance estimates in their probabilistic models. The training procedure with
935 the constraint is not end-to-end since the constraint is only applied at inference time. PDE-CL (Négier
936 et al., 2023) handles nonlinear constraints and supports end-to-end training, but at the cost of not
937 supporting variance estimation.

938 Table 5: Summary of methods motivated by dealing with hard constraints in various domains:
939 imposing constraints in neural networks (Min et al., 2024; Donti et al., 2021), probabilistic time series
940 forecasting (Rangapuram et al., 2023; 2021; Olivares et al., 2024b) and scientific machine learning
941 (Négier et al., 2023; Hansen et al., 2023). For models that only provide point estimates, we evaluate
942 their capabilities on sampling-free training and satisfying constraints on distributions, while treating
943 the point estimate as a degenerate probabilistic distribution.

944 Method	945 Domain	946 Constraint Type	947 End-to- End	948 Prob. Model w/ Variance Estimate	949 Sampling- free Training	950 Constraint on Dstbn.
948 HardNet (Min et al., 2024)	949 General	950 Convex	✓	✗	✓	✓
948 DC3 (Donti et al., 2021)	949 General	950 Nonlinear	✓	✗	✓	✓
948 Hier-E2E (Rangapuram et al., 2021; 2023)	949 Forecasting	950 Linear	✓	✓	✗	✗
948 CLOVER (Olivares et al., 2024b)	949 Forecasting	950 Linear	✓	✓	✗	✓
948 PDE-CL (Négier et al., 2023)	949 PDEs	950 Nonlinear	✓	✗	✓	✓
948 ProbConserv (Hansen et al., 2023)	949 PDEs	950 Linear	✗	✓	✓	✓
948 HardC (Hansen et al., 2023)	949 PDEs	950 Linear	✗	✓	✓	✓
948 ProbHardE2E (Ours)	949 General	950 Nonlinear	✓	✓	✓	✓

954 Our proposed method ProbHardE2E bridges the gaps left by its predecessors. It combines the
955 flexibility of general domain application with the ability to handle nonlinear constraints, and it
956 maintains end-to-end training capability. Perhaps most notably, it achieves this while incorporating
957 probabilistic modeling with variance estimates, supporting sampling-free training, and maintaining
958 constraints on distributions.

959
960 A.1 IMPOSING DETERMINISTIC CONSTRAINTS ON NEURAL NETWORKS
961

962 Enforcing constraints in neural networks (NNs) has been explored in various forms. In fact, activation
963 functions, e.g., sigmoid, ReLU, and softmax, inherently impose implicit constraints by restricting out-
964 puts to specific intervals. Another well-established method for enforcing constraints in NNs involves
965 differentiating the Karush-Kuhn-Tucker (KKT) conditions, which enables backpropagation through
966 optimization problems. This technique has led to the development of differentiable optimization
967 layers (Amos & Kolter, 2017; Agrawal et al., 2019) and projected gradient descent methods (Rosen,
968 1960).

969 Most commonly, soft constraint methods, e.g., Lagrange duality based methods, are often employed
970 in ML to balance minimizing the primary objective with satisfying the constraints. These methods
971 typically do so by adding the constraint as a penalty term to the loss function (Battaglia et al., 2018).
For example, Lagrange dual methods and relaxed formulations are frequently used to allow flexibility

972 in the optimization process, while still guiding the model toward feasible solutions. These methods
 973 encourage—but do not strictly enforce—adherence to the constraints during training; and this lack of
 974 strict enforcement can be undesirable in some scientific disciplines, where known constraints must be
 975 satisfied exactly (Hansen et al., 2023; Rangapuram et al., 2021).

976 More recently, there have been approaches that have been motivated by satisfying hard constraints.
 977 DC3 (Donti et al., 2021) is a general method for learning a family of constrained optimization
 978 problems using a correction and variable completion procedure. The variable completion approach
 979 has a strong theoretical and practical foundation. A limitation is that it does require knowledge of the
 980 structure of the matrix A to identify these corresponding predicted and completed variables, which
 981 hinders its generalizability. In addition for inequality constraints, it only achieves hard constraint
 982 satisfaction asymptotically; that is, the “correction” procedure to enforce inequality constraints is
 983 carried out through gradient-descent optimization algorithms (Min et al., 2024; Donti et al., 2021).

984 Projection-based methods are an alternate method for enforcing hard constraints in NNs. Min et al.
 985 (2024) identify cases where the aforementioned DC3 framework (Donti et al., 2021) is outperformed
 986 by their proposed HardNet projection layer approach. Additionally, Min et al. (2024) investigate the
 987 expressiveness of projection layers, which builds on the foundational work in Agrawal et al. (2019);
 988 Amos & Kolter (2017), to further advance the understanding of constraint enforcement in NNs.
 989 Projection-based methods have also been used to enforce constraints on specific architectures, e.g.,
 990 neural ordinary differential equations (Neural ODEs) (Kasim & Lim, 2022; Matsubara & Yaguchi,
 991 2023). In particular, White et al. (2024) use a closed-form projection operator to enforce a nonlinear
 992 constraint $g(u) = 0$ in a Neural ODE, using techniques from Boumal (2024). A common limitation
 993 of these works is that they impose the constraint deterministically, on point estimates rather than on
 994 an entire probability distribution.

996 A.2 PROBABILISTIC TIME SERIES FORECASTING

997 Probabilistic time series forecasting extends beyond predicting point estimates, e.g., the mean or
 998 median, by providing a framework to capture uncertainty, with practical application in estimating
 999 high quantiles, e.g., P99. Classical statistical models, e.g., autoregressive integrated moving average
 1000 (ARIMA) models (Box et al., 2015), state-space models (Kalman, 1960), and copula-based models
 1001 (Joe, 1997) are prominent examples. More recently, deep learning models, e.g., DeepAR (Salinas
 1002 et al., 2020) and its multivariate extension DeepVAR (Salinas et al., 2019), multivariate quantile
 1003 regression-based models (Wen et al., 2018; Eisenach et al., 2022; Park et al., 2022), temporal fusion
 1004 transformers (TFT) (Lim et al., 2021), and foundational models based on large language models
 1005 (LLMs) (Ansari et al., 2024; Hoo et al., 2025; Das et al., 2023; Woo et al., 2024) have shown success.
 1006 See Benidis et al. (2022) for an overview.

1007 Linear constraints are important in hierarchical time series forecasting, where coherent aggregation
 1008 constraints are required over regions (Rangapuram et al., 2021; Olivares et al., 2024b) and over
 1009 temporal hierarchies (Rangapuram et al., 2023). This constraint is critical in scenarios where higher-
 1010 level forecasts must be aggregates of lower-level ones, which is a common requirement in time-series
 1011 forecasting. Early works in hierarchical forecasting focus on mean forecasts under linear/hierarchical
 1012 constraints, starting from the naive bottom-up and top-down approaches (Hyndman & Athanasopoulos,
 1013 2018). More recently, Hyndman et al. (2011) show that the Middle-Out projection-based method
 1014 yields better forecast accuracy. Since then, projection-based reconciliation methods, e.g., GTOP
 1015 (Van Erven & Cugliari, 2015), MinT (Wickramasuriya et al., 2019), and ERM (Ben Taieb & Koo,
 1016 2019) have been developed. These methods leverage generic time series models, e.g., ARIMA and
 1017 exponential smoothing (ETS), to derive the unconstrained mean forecast, and then they use a linear
 1018 projection to map these forecasts to the consistent space. Taieb et al. (2017) further extend the
 1019 reconciliation method (MinT) to probabilistic forecasting by developing a method called PERMBU
 1020 that constructs cross-sectional dependence through a sequence of permutations. A more thorough
 1021 review of forecasting reconciliation is provided in Athanasopoulos et al. (2024).

1022 To better handle the trade-off between forecast accuracy and coherence within the model, several
 1023 works have proposed end-to-end methodologies. For example, Rangapuram et al. (2021) propose
 1024 Hier-E2E, which is an end-to-end learning approach that imposes constraints via an orthogonal
 1025 projection on samples from the distribution. Hier-E2E produces coherent probabilistic forecasts
 without requiring explicit post-processing reconciliation. One limitation is that Hier-E2E relies on

1026 expensive sampling techniques to achieve this coherence, by projecting directly on the samples rather
 1027 than on the distribution itself, which has a closed-form expression.

1028 Separately, DPMN (Olivares et al., 2024a) adopts an equality constraint completion approach similar
 1029 to that in DC3 (Donti et al., 2021), rather than a projection-based approach, for satisfying the co-
 1030 herency constraint. DPMN assumes that the bottom-level series follow a Poisson mixture distribution,
 1031 with a multivariate discrete distribution on the Poisson rates across bottom-level series. Compared
 1032 to Hier-E2E, DPMN uses a CNN-based encoder rather than DeepVAR, and it shows improved
 1033 forecast accuracy over Hier-E2E. As follow-up work to DPMN, Olivares et al. (2024b) propose
 1034 CLOVER, a framework which enforces coherency as a hard constraint in probabilistic hierarchical
 1035 time series forecasting models using a CNN encoder. In particular, CLOVER only predicts the base
 1036 forecasts in the first step, and it solves for the aggregate forecasts by leveraging the constraint relation.
 1037 Finally, CLOVER models the joint distribution of all the forecasts in the scoring function calculation.
 1038 Similar to Hier-E2E, CLOVER also relies on sampling to enforce hierarchical coherency and to
 1039 generate uncertainty estimates. This affects the training time, and it requires tuning of the number of
 1040 samples for an accurate approximation of this scoring function. Although CLOVER admits constraint
 1041 satisfaction, the exact provably convergent procedure only exists for linear equality constraints (Donti
 1042 et al., 2021), and it has not been applied to nonlinear equality or convex inequality constraints.

1043

1044 A.3 SCIENTIFIC MACHINE LEARNING (SciML)

1045

1046 Partial differential equations (PDEs) are ubiquitous in science and engineering applications, and have
 1047 been used to model various physical phenomena, ranging from nonlinear fluid flows with the Navier-
 1048 Stokes equations to nonlinear heat transfer. Classical numerical methods to solve PDEs include finite
 1049 difference (LeVeque, 2007), finite element (Hughes, 2003), and finite volume methods (LeVeque,
 1050 2002). These numerical methods discretize the solution on a spatio-temporal mesh, and the accuracy
 1051 increases as the mesh becomes finer. For this reason, numerical methods can be computationally
 1052 expensive on real-world, time dependent, 3D spatial problems that require fine meshes for high
 1053 accuracy.

1054

1055 Recently, Scientific Machine Learning (SciML) methods aim to alleviate the high computational
 1056 requirement of numerical methods. State-of-the-art data-driven methods include operator-based
 1057 methods, which aim to learn a mapping from PDE parameters or initial/boundary conditions to the
 1058 PDE solution, e.g., Neural Operators (NOs) (Li et al., 2020; 2021; Gupta et al., 2021) and DeepONet
 1059 (Lu et al., 2021), and message-passing Graph Neural Networks (GNNs)-based MeshGraphNets (Pfaff
 1060 et al., 2021; Fortunato et al., 2022). These data-driven methods are not guaranteed to satisfy the PDE
 1061 or known physical laws exactly, e.g., conservation laws (Hansen et al., 2023; Mouli et al., 2024) or
 1062 boundary conditions (Saad et al., 2023; Cheng et al., 2025) since they only implicitly encode the
 1063 physics through the supervised training simulation data (Kadambi et al., 2023).

1064

1065 Similar to imposing constraints on NNs, most work on imposing constraints in SciML has been
 1066 focused on soft constraints. One well-known type of approach is Physics-Informed Neural Networks
 1067 (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021), which approximates the solution of a PDE
 1068 as a NN. PINNs and similarly Physics-Informed Neural Operators (PINOs) (Li et al., 2024) impose
 1069 the PDE as an additional term in the loss function, akin to the aforementioned soft constraint
 1070 regularization. Krishnapriyan et al. (2021); Edwards (2022) identify limitations of this approach
 1071 on problems with large PDE parameter values, where adding this regularization term can actually
 1072 make the loss landscape sharp, non-smooth and more challenging to optimize. In addition, Hansen
 1073 et al. (2023) show that adding the constraint to the loss function does not guarantee exact constraint
 1074 enforcement, which can be critical in the case of conservation and other physical laws. This constraint
 1075 violation primarily happens because the Lagrangian duals of the constrained optimization problem
 1076 are typically non-zero, i.e., the physical constraint is not exactly satisfied.

1077

1078 Recent work has studied imposing physical knowledge as hard constraints on various SciML methods.
 1079 Négier et al. (2023) propose PDE-CL, which uses differentiable programming and the implicit
 1080 function theorem (Krantz & Parks, 2002) to impose nonlinear PDE constraints directly. Chalapathi
 1081 et al. (2024), extend this work by leveraging a mixture-of-experts (MoE) framework to better scale
 1082 the method. Similarly, Beucler et al. (2021) impose analytical constraints in NNs with applications to
 1083 climate modeling. In addition, Universal Differential Equations (UDEs) (Rackauckas et al., 2020;
 1084 Utkarsh et al., 2024) provide a GPU-compatible and end-to-end differentiable way to learn PDEs

1080 while also enforcing implicit constraints. [Chen et al. \(2024\)](#) propose KKT-hPINN to enforce linear
 1081 equality constraints by using a projection layer that is derived from the KKT conditions. These
 1082 works show the benefit of imposing the PDE as a hard constraint rather than as a soft constraint. A
 1083 limitation of these methods is that they impose the constraints deterministically, and they do not
 1084 provide estimates of the underlying variance or uncertainties. To address this, [Hansen et al. \(2023\)](#)
 1085 propose ProbConserv, which incorporates linear conservation laws as hard constraints on probabilistic
 1086 models by performing an oblique projection to update the unconstrained mean and variance estimates.
 1087 Limitations are that this projection is only applied as a post-processing step at inference time, and the
 1088 method only supports linear constraints.

1090 B UNIVERSAL APPROXIMATION GUARANTEES

1092 In this section, we prove a universal approximation result for our differentiable probabilistic projection
 1093 layer (DPPL) in the case of convex constraints. As a consequence of this result, our `ProbHardE2E`
 1094 in [Algorithm 1](#) is a universal approximator, and can approximate any continuous target function that
 1095 satisfies the given constraints. Our proof of this result generalizes the analysis of [Min et al. \(2024\)](#)
 1096 from the case $Q = I$ to our broader framework with arbitrary Q . Since Q is symmetric positive
 1097 definite, we compute its Cholesky factorization $Q = LL^T$, where L denotes a lower triangular matrix.
 1098 We then show that if f_θ is a universal approximator, i.e., a sufficiently wide and deep neural network,
 1099 then our DPPL preserves this universal approximation capability. Hence, `ProbHardE2E` retains
 1100 the expressiveness of neural networks, both in its probabilistic formulation and in enforcing hard
 1101 constraints.

1102 Our DPPL in [Problem \(7\)](#) is formulated in terms of projecting the samples $z_\theta(\phi^{(i)}) \sim \mathbf{Z}_\theta(\phi^{(i)})$,
 1103 where $\mathbf{Z}_\theta(\phi^{(i)}) \sim \mathcal{F}(\mu_\theta(\phi^{(i)}), \Sigma_\theta(\phi^{(i)}))$ for some multivariate location-scale distribution \mathcal{F} , and
 1104 where $(\phi^{(i)}, u^{(i)}) \sim \mathcal{D}$ denotes training data from a distribution \mathcal{D} . The mean $\mu_\theta(\phi^{(i)}) \in \mathbb{R}^n$ and
 1105 covariance $\Sigma_\theta(\phi^{(i)}) \in \mathbb{R}^{n \times n}$ are the output from a deep neural network, $f_\theta : \Phi \rightarrow \mathbb{R}^k$. The value
 1106 of k depends on the approximation for $\Sigma_\theta(\phi^{(i)})$, e.g., $k = n + n^2$ for dense $\Sigma_\theta(\phi^{(i)})$, $k = 2n$ for
 1107 $\Sigma_\theta(\phi^{(i)}) = \text{diag}(\sigma_1^2, \dots, \sigma_n^2)$, or $k = n$ for $\Sigma_\theta(\phi^{(i)}) = I$. For notational simplicity, we assume in
 1108 this section that $f_\theta : \Phi \rightarrow \mathbb{R}^n$ corresponds to the components that output the mean $\mu_\theta(\phi^{(i)})$. By
 1109 setting $z_\theta(\phi^{(i)}) = \mu_\theta(\phi^{(i)}) = f_\theta(\phi^{(i)})$ in [Problem \(7\)](#), our DPPL can also be formulated in terms of
 1110 projecting the mean $\mu_\theta(\phi^{(i)})$ as the following constrained least squares problem:

$$1111 \hat{\mu}_\theta(\phi^{(i)}) := \underset{\substack{\tilde{\mu}_\theta(\phi^{(i)}) \in \mathbb{R}^n \\ g(\tilde{\mu}_\theta(\phi^{(i)})) \leq 0 \\ h(\tilde{\mu}_\theta(\phi^{(i)})) = 0}}{\arg \min} \|\tilde{\mu}_\theta(\phi^{(i)}) - f_\theta(\phi^{(i)})\|_Q^2, \quad (9)$$

1116 where Q denotes a symmetric positive definite matrix and $g(\cdot) \leq 0, h(\cdot) = 0$ denote the convex
 1117 constraints. In particular, we show that the projected mean $\hat{\mu}_\theta(\phi^{(i)})$ is a universal approximator of
 1118 the true solution $u \in \mathbb{R}^n$. We now state the theorem and provide its proof below.

1119 **Theorem B.1.** *Consider [Problem 9](#) with the projection step defined using a symmetric positive definite
 1120 (SPD) matrix $Q \in \mathbb{R}^{n \times n}$, a deep neural network that is a universal approximator, $f_\theta : \Phi \rightarrow \mathbb{R}^n$,
 1121 where $\Phi \subset \mathbb{R}^m$ denotes a compact set, convex constraints $g(\cdot) \leq 0, h(\cdot) = 0$, and training data
 1122 $(\phi^{(i)}, u^{(i)}) \sim \mathcal{D}$ from a distribution \mathcal{D} . For any continuous target function that satisfies the constraints,
 1123 i.e., the true solution $u : \Phi \rightarrow \mathcal{C} \subseteq \mathbb{R}^n$, $u \in C(\Phi)$, where \mathcal{C} denotes the convex set of feasible points
 1124 defined by the convex constraints and $C(\Phi)$ denotes the space of continuous functions on Φ , there
 1125 exists a choice of network parameters for $f_\theta(\phi^{(i)}) = \mu_\theta(\phi^{(i)}) \in \mathbb{R}^n$, such that the projected mean,
 1126 which is composition of f_θ with the projection step, i.e., $\Pi_{\mathcal{C}}^Q(f_\theta(\phi^{(i)})) = \hat{f}_\theta(\phi^{(i)}) = \hat{\mu}_\theta(\phi^{(i)}) \in \mathcal{C} \subseteq$
 1127 \mathbb{R}^n , approximates the target function arbitrarily well, where $\hat{f}_\theta : \Phi \rightarrow \mathcal{C} \subseteq \mathbb{R}^n$. Hence, under these
 1128 conditions, `ProbHardE2E` is a universal approximator for constrained mappings.*

1131 *Proof.* Let $\mathcal{C} \subseteq \mathbb{R}^n$ denote the convex set of feasible points defined by the convex constraints.
 1132 Consider the projection operator onto \mathcal{C} with respect to the Q -norm:

$$1133 \Pi_{\mathcal{C}}^Q(v) = \underset{\tilde{\mu}_\theta(\phi^{(i)}) \in \mathcal{C}}{\arg \min} \|\tilde{\mu}_\theta(\phi^{(i)}) - v\|_Q^2. \quad (10)$$

1134 Since Q is symmetric positive definite (SPD), it has the following Cholesky factorization,
 1135

$$1136 \quad Q = LL^\top,$$

1137 where $L \in \mathbb{R}^{n \times n}$ denotes a lower triangular matrix with strictly positive diagonal entries, and hence
 1138 is invertible. By the definition of the Q -norm, and then substituting in its Cholesky factorization, we
 1139 have

$$\begin{aligned} 1140 \quad \|\tilde{\mu}_\theta(\phi^{(i)}) - v\|_Q^2 &= (\tilde{\mu}_\theta(\phi^{(i)}) - v)^\top Q(\tilde{\mu}_\theta(\phi^{(i)}) - v) \\ 1141 &= (\tilde{\mu}_\theta(\phi^{(i)}) - v)^\top LL^\top(\tilde{\mu}_\theta(\phi^{(i)}) - v) \\ 1142 &= ((\tilde{\mu}_\theta(\phi^{(i)}) - v)^\top L)(L^\top(\tilde{\mu}_\theta(\phi^{(i)}) - v)) \\ 1143 &= (L^\top(\tilde{\mu}_\theta(\phi^{(i)}) - v))^\top(L^\top(\tilde{\mu}_\theta(\phi^{(i)}) - v)) \\ 1144 &= \|L^\top(\tilde{\mu}_\theta(\phi^{(i)}) - v)\|_2^2. \\ 1145 \end{aligned} \quad (11)$$

1146 This shows that the Q -norm is equivalent to the standard Euclidean norm after the linear transformation
 1147 L^\top .

1148 We define the invertible linear mapping $\Psi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ by $\Psi(v) = L^\top v$. Then using Eq. (11), the
 1149 Q -norm in Eq. (10) can be written as the Euclidean norm as follows:
 1150

$$\begin{aligned} 1151 \quad \Pi_{\mathcal{C}}^Q(v) &= \operatorname{argmin}_{\tilde{\mu}_\theta(\phi^{(i)}) \in \mathcal{C}} \|L^\top(\tilde{\mu}_\theta(\phi^{(i)}) - v)\|_2^2 \\ 1152 &= \operatorname{argmin}_{\tilde{\mu}_\theta(\phi^{(i)}) \in \mathcal{C}} \|\Psi(\tilde{\mu}_\theta(\phi^{(i)})) - \Psi(v)\|_2^2 \\ 1153 &= \Psi^{-1} \left(\operatorname{argmin}_{w \in \Psi(\mathcal{C})} \|w - \Psi(v)\|_2^2 \right), \\ 1154 \end{aligned} \quad (12)$$

1155 where $w = \Psi(\tilde{\mu}_\theta(\phi^{(i)}))$. Hence, the projection can be expressed as the Euclidean projection onto
 1156 the transformed set $\Psi(\mathcal{C})$. It is well known that the Euclidean projection onto a closed convex set is
 1157 nonexpansive and is Lipschitz continuous. (See, e.g., Min et al. (2024).)

1158 Now, suppose that $f_\theta(\phi^{(i)})$ is a deep neural network that is a universal approximator, i.e., for any
 1159 continuous function $u : \Phi \rightarrow \mathbb{R}^n$, $u \in C(\Phi)$, and for any $\epsilon > 0$, there exists parameters θ such that
 1160

$$1161 \quad \sup_{\phi^{(i)} \in \Phi} \|u(\phi^{(i)}) - f_\theta(\phi^{(i)})\| < \epsilon,$$

1162 where $\Phi \subset \mathbb{R}^m$ denotes a compact set and $C(\Phi)$ denotes the space of continuous functions on Φ .
 1163 Let $u : \Phi \rightarrow \mathcal{C} \subseteq \mathbb{R}^n$, $u \in C(\Phi)$, be any continuous target function whose outputs satisfy the
 1164 constraints. Since $\Pi_{\mathcal{C}}^Q$ is continuous (as the composition of the continuous mapping Ψ , the Euclidean
 1165 projection onto $\Psi(\mathcal{C})$, and Ψ^{-1}), it follows by the universal approximation theorem and properties of
 1166 continuous functions that the projected mean $\Pi_{\mathcal{C}}^Q(f_\theta(\phi^{(i)})) = \hat{\mu}(\phi^{(i)})$ can uniformly approximate
 1167 $u(\phi^{(i)})$ arbitrarily well on Φ . In other words, for every $\epsilon > 0$, there exists a choice of network
 1168 parameters θ such that
 1169

$$1170 \quad \sup_{\phi^{(i)} \in \Phi} \|u(\phi^{(i)}) - \Pi_{\mathcal{C}}^Q(f_\theta(\phi^{(i)}))\| < \epsilon.$$

1171 Thus, the composition of the neural network f_θ with the Q -norm projection retains the universal
 1172 approximation property for any continuous target function satisfying the constraints. \square
 1173

1174 C COMPUTATION OF POSTERIOR DISTRIBUTION FOR VARIOUS CONSTRAINT 1175 TYPES

1176 In this section, we discuss how to compute the differentiable probabilistic projection layer (DPPL)
 1177 that projects the distribution parameters (Eq. (6)) in ProbHardE2E for various constraint types,
 1178 which are summarized in Table 1.

1179 C.1 LINEAR EQUALITY CONSTRAINTS

1180 In this subsection, we provide the closed-form expressions for the constrained posterior distribution
 1181 parameters, i.e., the mean $\hat{\mu}$ and covariance $\hat{\Sigma}$ in Eq. (8), from the DPPL in ProbHardE2E for linear

1188 equality constraints. Linear equality constraints occur in a wide range of applications, including
 1189 coherency constraints in hierarchical time series forecasting (Hyndman et al., 2011; Rangapuram et al.,
 1190 2021; Petropoulos et al., 2022; Olivares et al., 2024b), divergence-free conditions in incompressible
 1191 fluid flows (Raissi et al., 2019; Richter-Powell et al., 2022), boundary conditions in PDEs (Saad et al.,
 1192 2023), and global linear conservation law constraints (Hansen et al., 2023; Mouli et al., 2024).

1193 **Proposition C.1.** *For linear equality constraints, $h(\hat{u}) = A\hat{u} - b = 0$, with $A \in \mathbb{R}^{q \times n}$, with
 1194 full row rank q , where $q < n$, and $b \in \mathbb{R}^q$, the optimal solution u^* to Problem (7) is given as
 1195 $u^*(z) = P_{Q^{-1}}z + (I - P_{Q^{-1}})A^\dagger b$, where $P_{Q^{-1}} = I - Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A$, denotes an oblique
 1196 projection operator, and A^\dagger denotes the Moore-Penrose inverse. In addition, if $\mathbf{Z} \sim \mathcal{F}(\mu, \Sigma)$ and
 1197 $z \sim \mathbf{Z}$ for multivariate, location-scale distribution \mathcal{F} , then $u^* \sim \mathbf{Y}$, where $\mathbf{Y} \sim \mathcal{F}(\hat{\mu}, \hat{\Sigma})$ and
 1198 $\hat{\mu}, \hat{\Sigma}$ are given in Eq. (8) with $\mathcal{T}(z) = u^*(z)$, which simplifies to the closed-form expressions,
 1199 $\hat{\mu} = P_{Q^{-1}}\mu + (I - P_{Q^{-1}})A^\dagger b$ and $\hat{\Sigma} = P_{Q^{-1}}\Sigma P_{Q^{-1}}^\top$.*

1200
 1201 *Proof.* Using the Lagrange multiplier $\lambda \in \mathbb{R}^q$, we can form the Lagrangian of Problem (7) with
 1202 linear constraints to obtain:
 1203

$$1204 L(\hat{u}, \lambda; z) = \frac{1}{2}\hat{u}^\top Q\hat{u} - z^\top Q\hat{u} + \lambda^\top(A\hat{u} - b).$$

1205 The sufficient optimality conditions to obtain (u^*, λ^*) are the first-order gradient conditions:
 1206

$$1207 \nabla_{\hat{u}} L(\hat{u}, \lambda; z)|_{u^*, \lambda^*} = Qu^* - Q^\top z + A^\top \lambda^* = 0, \quad (13a)$$

$$1208 \nabla_\lambda L(\hat{u}, \lambda; z)|_{u^*, \lambda^*} = Au^* - b = 0. \quad (13b)$$

1209 Since Q is SPD, $Q = Q^\top$ and Q^{-1} exists. Then from Eq. (13a), we obtain:
 1210

$$1211 Q(u^* - z) + A^\top \lambda^* = 0,$$

1212 which simplifies to the following expression for u^* :
 1213

$$1214 u^* = z - Q^{-1}A^\top \lambda^*. \quad (14)$$

1215 We solve Eq. (13b) for u^* using the Moore-Penrose inverse, i.e., $u^* = A^\dagger b$, where $A^\dagger = A^\top(AA^\top)^{-1}$. Note that $AA^\top \in \mathbb{R}^{q \times q}$ is invertible with full rank q since $A \in \mathbb{R}^{q \times n}$ has full
 1216 row rank $q \leq n$. Substituting this expression into Eq. (14) for u^* gives:
 1217

$$1218 A^\top(AA^\top)^{-1}b = z - Q^{-1}A^\top \lambda^*.$$

1219 Rearranging for the optimal Lagrange multiplier λ^* , and multiplying both sides by A gives:
 1220

$$1221 (AQ^{-1}A^\top)\lambda^* = Az - \underbrace{(AA^\top)(AA^\top)^{-1}b}_I.$$

1222 Now, $AQ^{-1}A^\top \in \mathbb{R}^{q \times q}$ is invertible since A has full row rank q . Then we obtain:
 1223

$$1224 \lambda^* = (AQ^{-1}A^\top)^{-1}(Az - b).$$

1225 Substituting in the expression for λ^* into Eq. (14) gives the following expression for the optimal
 1226 solution:
 1227

$$1228 u^* = z - Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}(Az - b), \quad (15)$$

$$1229 = (I - Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A)z + Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}b.$$

1230 Let
 1231

$$1232 P_{Q^{-1}} = I - Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A, \quad (16)$$

1233 be an oblique projection. To see that this is a projection, observe that
 1234

$$1235 \begin{aligned} P_{Q^{-1}}^2 &= (I - Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A)(I - Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A) \\ 1236 &= I - 2Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A + Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}AQ^{-1}A^\top(AQ^{-1}A^\top)^{-1}A \\ 1237 &= I - 2Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A + Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A \\ 1238 &= I - Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A \\ 1239 &= P_{Q^{-1}}. \end{aligned}$$

1242 Then, the expression for u^* in Eq. (15) simplifies to:

$$\begin{aligned} 1243 \quad u^*(z) &= P_{Q^{-1}}z + Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}(AA^\dagger)b, \\ 1244 \quad &= P_{Q^{-1}}z + (Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A)A^\dagger b, \\ 1245 \quad &= P_{Q^{-1}}z + (I - P_{Q^{-1}})A^\dagger b, \\ 1246 \quad & \\ 1247 \end{aligned} \quad (17)$$

1248 since $AA^\dagger = AA^\top(AA^\top)^{-1} = I$.

1249 Since the expression for u^* in Eq. (17) is a linear transformation \mathcal{T} of $z \sim \mathcal{F}(\mu, \Sigma)$, we can use
1250 Theorem 3.1 with $\mathcal{T}(z) = u^*(z)$ to write the expression for $u^* \sim \mathcal{F}(\hat{\mu}, \hat{\Sigma})$, where:

$$\hat{\mu} = \mathcal{T}(\mu) = u^*(\mu) = P_{Q^{-1}}\mu + (I - P_{Q^{-1}})A^\dagger b, \quad (18a)$$

$$\hat{\Sigma} = J_{\mathcal{T}}(\mu)\Sigma J_{\mathcal{T}}(\mu)^\top = P_{Q^{-1}}\Sigma P_{Q^{-1}}^\top. \quad (18b)$$

1254 It can easily be verified that $J_{\mathcal{T}}(\mu) = P_{Q^{-1}}$ by differentiating Eq. (17) with respect to z . We note
1255 that Eq. (18) holds exactly in the case of linear constraints since \mathcal{T} is a linear transformation of z . \square
1256

1257 We note that our probabilistic method applies to underdetermined linear systems when $q < n$, where
1258 there is existence of many solutions. When $q = n$ and A has full row rank, the solution is unique. In
1259 this case, the projection P_Q^{-1} has the following deterministic solution,

$$\hat{\mu} = A^\dagger b, \quad \hat{\Sigma} = 0.$$

1260 In this case, it reduces to a non-probabilistic point prediction methods, similar to the `HardC` baseline
1261 (Hansen et al., 2023), where only the mean is updated.
1262

1264 C.2 NONLINEAR EQUALITY CONSTRAINTS

1266 In this subsection, we describe how to compute the DPPL in `ProbHardE2E` for general nonlinear
1267 equality constraints. Nonlinear equality constraints naturally arise in applications that involve
1268 structural, physical, or geometric consistency. These include closed-loop kinematics in robotics
1269 (Toussaint et al., 2019), nonlinear conservation laws (LeVeque, 1990) in PDE-constrained surrogate
1270 modeling (Biegler et al., 2003; Zahr & Persson, 2016; Négrier et al., 2023) with applications in climate
1271 modeling (Bolton & Zanna, 2019; Zanna & Bolton, 2020; Beucler et al., 2021), compressible flows
1272 in aerodynamics (Tezaur et al., 2017) and atomic modeling (Müller, 2022; Sturm & Wexler, 2022).

1273 **Proposition C.2.** For nonlinear equality constraints, $h(\hat{u}) = 0 \in \mathbb{R}^q$, where $h : \mathbb{R}^n \rightarrow \mathbb{R}^q$,
1274 the optimal solution $u^*(z)$ to Problem (7) forms a pair $(u^*(z), \lambda^*)$ which satisfies $u^*(z) = z -$
1275 $Q^{-1}\nabla h(u^*(z))^\top \lambda^*$ and $h(u^*(z)) = 0$. In addition, if $\mathbf{Z} \sim \mathcal{F}(\mu, \Sigma)$ and $z \sim \mathbf{Z}$ for multivariate,
1276 location-scale distribution \mathcal{F} , then $u^* \sim \mathbf{Y}$, where $\mathbf{Y} \sim \mathcal{F}(\hat{\mu}, \hat{\Sigma})$ and $\hat{\mu}, \hat{\Sigma}$ are given in Eq. (8) with
1277 $\mathcal{T}(z) = u^*(z)$.

1278 *Proof.* Using the Lagrange multiplier $\lambda \in \mathbb{R}^q$, we can form the Lagrangian of Problem (7) with
1279 nonlinear equality constraints to obtain:
1280

$$1281 \quad L(\hat{u}, \lambda; z) = \frac{1}{2}\hat{u}^\top Q\hat{u} - z^\top Q\hat{u} + \lambda^\top h(\hat{u}).$$

1283 The sufficient optimality conditions to obtain (u^*, λ^*) are the first-order gradient conditions:
1284

$$1285 \quad R(u^*, \lambda^*; z) = \begin{cases} \nabla_{\hat{u}} L(\hat{u}, \lambda; z)|_{u^*, \lambda^*} = Q(u^* - z) + \nabla h(u^*)\lambda^* = 0, \\ 1286 \quad \nabla_\lambda L(\hat{u}, \lambda; z)|_{u^*, \lambda^*} = h(u^*) = 0. \end{cases} \quad (19)$$

1288 We solve Eq. (19) via root-finding methods, e.g., Newton's method for (u^*, λ^*) to obtain $u^*(z) =$
1289 $\arg\{\hat{u} : R(\hat{u}, \lambda^*; z) = 0\}$, where the root-finding solution u^* is implicitly dependent on z . Since
1290 the expression for u^* is a nonlinear transformation \mathcal{T} of $z \sim \mathcal{F}(\mu, \Sigma)$, we can use Theorem 3.1 with
1291 $\mathcal{T}(z) = u^*(z)$ to write the expression for $u^* \sim \mathcal{F}(\hat{\mu}, \hat{\Sigma})$, where:

$$1292 \quad \hat{\mu} = \mathcal{T}(\mu) = u^*(\mu), \quad (20a)$$

$$1293 \quad \hat{\Sigma} = J_{\mathcal{T}}(\mu)\Sigma J_{\mathcal{T}}(\mu)^\top, \quad (20b)$$

1294 hold to first-order accuracy. In the following Proposition C.3, we detail the iterative algorithm to
1295 compute the terms $u^*(\mu)$ and $J_{\mathcal{T}}(\mu)$ in Eq. (20). \square
1296

1296 **Proposition C.3.** Let $h(\hat{u}) = 0 \in \mathbb{R}^q$ be a smooth nonlinear equality constraint, where $h : \mathbb{R}^n \rightarrow \mathbb{R}^q$.
 1297 Consider the constrained projection problem from Problem (7) with $z = \mu$:

1299
$$u^*(\mu) = \arg \min_{\substack{\hat{u} \in \mathbb{R}^n \\ h(\hat{u})=0}} f(\hat{u}), \quad (21)$$

1300

1301 where $Q \succ 0$ and $f(\hat{u}) = \frac{1}{2} \|\hat{u} - \mu\|_Q^2$ denotes our quadratic objective.

1303 1. At each iteration, we solve the linearized Karush-Kuhn-Tucker (KKT) system using the Schur
 1304 complement to obtain:

1306
$$\lambda^{(i+1)} = \left(J^{(i)} Q^{-1} J^{(i)\top} \right)^{-1} \left(h(\hat{u}^{(i)}) - J^{(i)}(\hat{u}^{(i)} - \mu) \right), \quad (22a)$$

1307

1308
$$\hat{u}^{(i+1)} = \mu - Q^{-1} J^{(i)\top} \lambda^{(i+1)}, \quad (22b)$$

1309

1310 where $J^{(i)} = \nabla h(\hat{u}^{(i)})^\top \in \mathbb{R}^{q \times n}$. At the first iteration with $\hat{u}^{(0)} = \mu$, Eq. (22b) simplifies
 1311 to:

1312
$$\hat{u}^{(1)} = \mu - Q^{-1} J^\top \left(J Q^{-1} J^\top \right)^{-1} h(\mu), \quad (23)$$

1313 where $J = \nabla h(\mu)^\top$.

1315 2. At convergence, the Jacobian $J_{\mathcal{T}}(\mu)$ of the projection map $\mathcal{T}(\mu) := u^*(\mu)$ is given by:

1316
$$J_{\mathcal{T}}(\mu) := \frac{\partial u^*(\mu)}{\partial \mu} = I - Q^{-1} J^{*\top} (J^* Q^{-1} J^{*\top})^{-1} J^* \in \mathbb{R}^{n \times n}, \quad (24)$$

1317

1319 where $J^* = \nabla h(u^*)^\top$.

1321 *Proof.* We begin with the matrix form of the KKT system derived in Eq. (19):

1323
$$R(u^*, \lambda^*; \mu) = \begin{bmatrix} \nabla_{\hat{u}} L(u^*, \lambda^*) \\ \nabla_{\lambda} L(u^*, \lambda^*) \end{bmatrix} = \begin{bmatrix} \nabla f(u^*) + J^{*\top} \lambda^* \\ h(u^*) \end{bmatrix} = 0, \quad (25)$$

1324

1325 with quadratic objective f defined in Problem 21.

1327 **1. Iteration Update.** We use Newton's Method to linearize the KKT system in Eq. (25) evaluated at
 1328 $(\hat{u}^{(i+1)}, \lambda^{(i+1)})$ about the past iterate $(\hat{u}^{(i)}, \lambda^{(i)})$. For the stationarity condition, which is the first com-
 1329 ponent of $R(u^*, \lambda^*; \mu)$ in Eq. (25), we use the first-order Taylor expansion of $R_0(\hat{u}^{(i+1)}, \lambda^{(i+1)}; \mu)$
 1330 about the past iterate $(\hat{u}^{(i)}, \lambda^{(i)})$ to obtain:

1331
$$\begin{aligned} R_0(\hat{u}^{(i+1)}, \lambda^{(i+1)}; \mu) &= R_0(\hat{u}^{(i)}, \lambda^{(i)}; \mu) + \nabla_{\hat{u}, \lambda} R_0(\hat{u}^{(i)}, \lambda^{(i)}; \mu)^\top \begin{bmatrix} \Delta \hat{u}^{(i+1)} \\ \Delta \lambda^{(i+1)} \end{bmatrix} \\ 1332 &= \nabla_{\hat{u}} L(\hat{u}^{(i)}, \lambda^{(i)}) + \nabla_{\hat{u}, \lambda} (\nabla f(\hat{u}^{(i)}) + J^{(i)\top} \lambda^{(i)})^\top \begin{bmatrix} \Delta \hat{u}^{(i+1)} \\ \Delta \lambda^{(i+1)} \end{bmatrix} \\ 1333 &= \nabla_{\hat{u}} L(\hat{u}^{(i)}, \lambda^{(i)}) + \left[(\nabla^2 f(\hat{u}^{(i)}) + \nabla^2 h(\hat{u}^{(i)}) \lambda^{(i)}) - J^{(i)\top} \right] \begin{bmatrix} \Delta \hat{u}^{(i+1)} \\ \Delta \lambda^{(i+1)} \end{bmatrix} \\ 1334 &= \nabla_{\hat{u}} L(\hat{u}^{(i)}, \lambda^{(i)}) + \left[\nabla^2_{\hat{u}\hat{u}} L(\hat{u}^{(i)}, \lambda^{(i)}) - J^{(i)\top} \right] \begin{bmatrix} \Delta \hat{u}^{(i+1)} \\ \Delta \lambda^{(i+1)} \end{bmatrix} = 0, \end{aligned} \quad (26)$$

1335

1336 where $\Delta \hat{u}^{(i+1)} = \hat{u}^{(i+1)} - \hat{u}^{(i)}$, $\Delta \lambda^{(i+1)} = \lambda^{(i+1)} - \lambda^{(i)}$, and $\nabla^2 h(\hat{u}^{(i)}) \in \mathbb{R}^{n \times n \times q}$ denotes the
 1337 Hessian of the constraints. Solving for the increments we obtain:

1338
$$\left[\nabla^2_{\hat{u}\hat{u}} L(\hat{u}^{(i)}, \lambda^{(i)}) - J^{(i)\top} \right] \begin{bmatrix} \Delta \hat{u}^{(i+1)} \\ \Delta \lambda^{(i+1)} \end{bmatrix} = -\nabla_{\hat{u}} L(\hat{u}^{(i)}, \lambda^{(i)}). \quad (27)$$

1339

1340 For the feasibility condition, i.e., the second component of $R(u^*, \lambda^*; \mu)$ in Eq. (25), we also linearize
 1341 the constraint as:

1342
$$R_1(\hat{u}^{(i+1)}, \lambda^{(i+1)}; \mu) = h(\hat{u}^{(i+1)}) = h(\hat{u}^{(i)}) + J^{(i)}(\hat{u}^{(i+1)} - \hat{u}^{(i)}) = 0, \quad (28)$$

1343

1350 using first-order Taylor expansion (Newton's Method). Then,

$$1351 \quad 1352 \quad J^{(i)} \Delta \hat{u}^{(i+1)} = -h(\hat{u}^{(i)}). \quad (29)$$

1353 We can then combine Eq. (27) and Eq. (29) to form the following linearized system of KKT conditions:

$$1354 \quad 1355 \quad \begin{bmatrix} \nabla_{\hat{u}\hat{u}}^2 L(\hat{u}^{(i)}, \lambda^{(i)}) & J^{(i)\top} \\ J^{(i)} & 0 \end{bmatrix} \begin{bmatrix} \Delta \hat{u}^{(i+1)} \\ \Delta \lambda^{(i+1)} \end{bmatrix} = - \begin{bmatrix} \nabla_{\hat{u}} L(\hat{u}^{(i)}, \lambda^{(i)}) \\ h(\hat{u}^{(i)}) \end{bmatrix}. \quad (30)$$

1356 Note that the system of equations in Eq. (30) is used in Sequential Quadratic Programming (SQP) (Wilson, 1963; Nocedal & Wright, 2006; Gill & Wong, 2012) when there are no inequality constraints. In addition, since our objective f is quadratic, we do not need to compute its second-order Taylor expansion, and only need to linearize the constraints. SQP reduces to Newton's Method when there are no constraints. In particular, Eq. (30) gives the standard unconstrained Newton step $\nabla^2 f(\hat{u}^{(i)}) \Delta \hat{u}^{(i+1)} = -\nabla f(\hat{u}^{(i)})$ when $h = 0$.

1363 Now, we use our quadratic objective f in Problem 21 to compute:

$$1364 \quad 1365 \quad \nabla_{\hat{u}} L(\hat{u}^{(i)}, \lambda^{(i)}) = Q(\hat{u}^{(i)} - \mu) + J^{(i)\top} \lambda^{(i)}, \\ 1366 \quad \nabla_{\hat{u}\hat{u}}^2 L(\hat{u}^{(i)}, \lambda^{(i)}) = Q + \nabla^2 h(\hat{u}^{(i)}) \lambda^{(i)} \approx Q. \quad (31)$$

1367 Note that Q is symmetric positive definite, but $\nabla^2 h(\hat{u}^{(i)})$ is not guaranteed to be positive definite in the general case, especially at every iterate, which could make the Newton step undefined. Regularization may be needed to ensure that $\nabla^2 h(\hat{u}^{(i)})$ is positive semi-definite. In addition, since $\nabla^2 h(\hat{u}^{(i)}) \in \mathbb{R}^{n \times n \times q}$ is a three-dimensional tensor, it is computationally expensive to compute this matrix of second derivatives, especially on our large-scale problem and through auto-differentiation (Griewank & Walther, 2008; Blondel & Roulet, 2024). Similar to the Gauss-Newton method (Björck, 1996; Nocedal & Wright, 2006) for nonlinear least squares problems, we assume that the constraint h is approximately affine near its optimal point u^* , and use only first-order constraint information. Hence, we set $\nabla^2 h(\hat{u}^{(i)}) \approx 0$. We note that even with these approximations for efficiency on large-scale problems, we still show strong performance in the nonlinear constraint results in Table 4. An alternate approach could be to use a low-rank approximation to the Hessian as done in Quasi-Newton, e.g., BFGS methods (Nocedal & Wright, 2006).

1379 Using Eq. (31) with setting $\nabla^2 h(\hat{u}^{(i)}) = 0$, Eq. (30) simplifies to:

$$1380 \quad 1381 \quad \begin{bmatrix} Q & J^{(i)\top} \\ J^{(i)} & 0 \end{bmatrix} \begin{bmatrix} \Delta \hat{u}^{(i+1)} \\ \Delta \lambda^{(i+1)} \end{bmatrix} = - \begin{bmatrix} Q(\hat{u}^{(i)} - \mu) + J^{(i)\top} \lambda^{(i)} \\ h(\hat{u}^{(i)}) \end{bmatrix}. \quad (32)$$

1383 Then,

$$1384 \quad 1385 \quad Q \Delta \hat{u}^{(i+1)} + J^{(i)\top} (\lambda^{(i+1)} - \lambda^{(i)}) = -Q(\hat{u}^{(i)} - \mu) - J^{(i)\top} \lambda^{(i)}, \quad (33a)$$

$$1386 \quad 1387 \quad J^{(i)} \Delta \hat{u}^{(i+1)} = -h(\hat{u}^{(i)}). \quad (33b)$$

1388 We see that the only terms involving $\lambda^{(i)}$ cancel from both sides of the equation. Note that the method 1389 does not require tracking the dual variable, so it could also be equivalently reset to $\lambda^{(i)} = 0$ at each 1390 iteration, and we compute $\lambda^{(i+1)}$ only for computing the primal update in Eq. (22b).

1391 Since $Q \succ 0$, it is invertible, we can multiply Eq. (33a) by Q^{-1} to obtain:

$$1392 \quad 1393 \quad \Delta \hat{u}^{(i+1)} = \hat{u}^{(i+1)} - \hat{u}^{(i)} = -(\hat{u}^{(i)} - \mu) - Q^{-1} J^{(i)\top} \lambda^{(i+1)}. \quad (34)$$

1394 Multiplying both sides of Eq. (34) by $J^{(i)}$ and using Eq. (33b), we can eliminate $\Delta \hat{u}^{(i+1)}$ to obtain:

$$1395 \quad 1396 \quad -h(\hat{u}^{(i)}) = -J^{(i)}(\hat{u}^{(i)} - \mu) - J^{(i)} Q^{-1} J^{(i)\top} \lambda^{(i+1)}. \quad (35)$$

1397 Since $Q \succ 0$, $Q^{-1} \succ 0$ and then $J^{(i)} Q^{-1} J^{(i)\top} \succ 0$, and hence it is invertible. We can then solve 1398 Eq. (35) for $\lambda^{(i+1)}$ to obtain:

$$1399 \quad 1400 \quad \lambda^{(i+1)} = \left(J^{(i)} Q^{-1} J^{(i)\top} \right)^{-1} \left(h(\hat{u}^{(i)}) - J^{(i)}(\hat{u}^{(i)} - \mu) \right), \quad (36)$$

1402 which gives the desired Eq. (22a). Then, solving Eq. (34) for $\hat{u}^{(i+1)}$ gives:

$$1403 \quad u^{(i+1)} = \mu - Q^{-1} J^{(i)\top} \lambda^{(i+1)}, \quad (37)$$

1404 which is the desired Eq. (22b). Lastly, for the first iterate, substituting Eq. (36) into Eq. (37), setting
 1405 $i = 0$ and $u^{(0)} = \mu$ gives the desired Eq. (23).
 1406

1407 We can also solve Eq. (32) efficiently using block Gaussian elimination and the Schur complement
 1408 $(J^{(i)}Q^{-1}J^{(i)\top})^{-1} \in \mathbb{R}^{q \times q}$ (Golub & Greif, 2003). In particular, the block matrix in Eq. (32) can be
 1409 factored into a product of elementary matrices as:

$$1410 \begin{bmatrix} Q & J^{(i)\top} \\ J^{(i)} & 0 \end{bmatrix} = \begin{bmatrix} I & 0 \\ J^{(i)}Q^{-1} & I \end{bmatrix} \begin{bmatrix} Q^{-1} & 0 \\ 0 & -J^{(i)}Q^{-1}J^{(i)\top} \end{bmatrix} \begin{bmatrix} I & Q^{-1}J^{(i)\top} \\ 0 & I \end{bmatrix}. \quad (38)$$

1413 Since the matrix factorization in Eq. (38) is a product of elementary matrices and a diagonal matrix,
 1414 we can easily compute its inverse as:
 1415

$$1416 \begin{bmatrix} Q & J^{(i)\top} \\ J^{(i)} & 0 \end{bmatrix}^{-1} = \begin{bmatrix} I & -Q^{-1}J^{(i)\top} \\ 0 & I \end{bmatrix} \begin{bmatrix} Q^{-1} & 0 \\ 0 & -(J^{(i)}Q^{-1}J^{(i)\top})^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -J^{(i)}Q^{-1} & I \end{bmatrix} \quad (39)$$

1419 Then multiplying by the right-hand side in Eq. (32) gives the solution:
 1420

$$1421 \begin{bmatrix} \hat{u}^{(i+1)} \\ \lambda^{(i+1)} \end{bmatrix} = \begin{bmatrix} \hat{u}^{(i)} \\ 0 \end{bmatrix} - \begin{bmatrix} I & -Q^{-1}J^{(i)\top} \\ 0 & I \end{bmatrix} \begin{bmatrix} Q^{-1} & 0 \\ 0 & -(J^{(i)}Q^{-1}J^{(i)\top})^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -J^{(i)}Q^{-1} & I \end{bmatrix} \begin{bmatrix} Q(\hat{u}^{(i)} - \mu) \\ h(\hat{u}^{(i)}) \end{bmatrix} \\ 1422 = \begin{bmatrix} \hat{u}^{(i)} \\ 0 \end{bmatrix} - \begin{bmatrix} I & -Q^{-1}J^{(i)\top} \\ 0 & I \end{bmatrix} \begin{bmatrix} Q^{-1} & 0 \\ 0 & -(J^{(i)}Q^{-1}J^{(i)\top})^{-1} \end{bmatrix} \begin{bmatrix} Q(\hat{u}^{(i)} - \mu) \\ h(\hat{u}^{(i)}) - J^{(i)}(\hat{u}^{(i)} - \mu) \end{bmatrix} \\ 1423 = \begin{bmatrix} \hat{u}^{(i)} \\ 0 \end{bmatrix} - \begin{bmatrix} I & -Q^{-1}J^{(i)\top} \\ 0 & I \end{bmatrix} \begin{bmatrix} \hat{u}^{(i)} - \mu \\ -(J^{(i)}Q^{-1}J^{(i)\top})^{-1}(h(\hat{u}^{(i)}) - J^{(i)}(\hat{u}^{(i)} - \mu)) \end{bmatrix} \\ 1424 = \begin{bmatrix} \hat{u}^{(i)} \\ 0 \end{bmatrix} - \begin{bmatrix} \mu - Q^{-1}J^{(i)\top}\lambda^{(i+1)} \\ (J^{(i)}Q^{-1}J^{(i)\top})^{-1}(h(\hat{u}^{(i)}) - J^{(i)}(\hat{u}^{(i)} - \mu)) \end{bmatrix}.$$

1431 Using the Schur complement reduces the Newton system from an indefinite $(n + q) \times (n + q)$ solve
 1432 to a $n \times n$ SPD solve with Q^{-1} and $q \times q$ SPD solve with the Schur complement, where $q \leq n$.
 1433 Similarly, the Jacobian expression in Eq. (24), which we will show next, is obtained by implicitly
 1434 differentiating the linearized KKT conditions and eliminating the dual block, which also avoids the
 1435 need to invert a full $(n + q) \times (n + q)$ saddle-point or indefinite matrix.

1436 **2. Jacobian $J_{\mathcal{T}}(\mu)$.** Here, we compute the Jacobian $J_{\mathcal{T}}(\mu) := \partial u^*(\mu) / \partial \mu$ of the transformation
 1437 $\mathcal{T}(\mu) = u^*(\mu)$ using implicit differentiation. At convergence, the optimal pair (u^*, λ^*) satisfies
 1438 Eq. (19). Differentiating both sides of the first stationarity equation in Eq. (19) w.r.t. μ gives:
 1439

$$1440 \frac{\partial}{\partial \mu} R_0(u^*, \lambda^*; \mu) = \frac{\partial}{\partial \mu} (Q(u^* - \mu) + \nabla h(u^*)\lambda^*) = 0, \\ 1441 \iff (Q + \nabla^2 h(u^*)\lambda^*) \frac{\partial u^*}{\partial \mu} + \nabla h(u^*) \frac{\partial \lambda^*}{\partial \mu} = Q. \quad (40)$$

1445 Similar to Eq. (31), we assume $h(u^*)$ is approximately affine near the optimal point, and we
 1446 approximate $\nabla^2 h(u^*) \approx 0$.
 1447

1448 Similarly differentiating both sides of the second feasibility equation in Eq. (19) w.r.t μ gives:

$$1449 \frac{\partial}{\partial \mu} R_1(u^*, \lambda^*; \mu) = \frac{\partial}{\partial \mu} h(u^*) = \nabla h(u^*)^\top \frac{\partial u^*}{\partial \mu} = 0. \quad (41)$$

1452 Combining Eq. (40) and Eq. (41) leads to the following block linear system:
 1453

$$1454 \begin{bmatrix} Q & J^{*\top} \\ J^* & 0 \end{bmatrix} \begin{bmatrix} \partial u^* / \partial \mu \\ \partial \lambda^* / \partial \mu \end{bmatrix} = \begin{bmatrix} Q \\ 0 \end{bmatrix}.$$

1454 Similar to Eq. (38), we can use the Schur complement to eliminate the dual term via block substitution.
 1455 Using the block inverse in Eq. (39) with $J^{(i)} = J^*$, we have
 1456

$$\begin{aligned}
& \begin{bmatrix} \partial u^* / \partial \mu \\ \partial \lambda^* / \partial \mu \end{bmatrix} = \begin{bmatrix} I & -Q^{-1} J^{*\top} \\ 0 & I \end{bmatrix} \begin{bmatrix} Q^{-1} & 0 \\ 0 & -(J^* Q^{-1} J^{*\top})^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ -J^* Q^{-1} & I \end{bmatrix} \begin{bmatrix} Q \\ 0 \end{bmatrix} \\
& = \begin{bmatrix} I & -Q^{-1} J^{*\top} \\ 0 & I \end{bmatrix} \begin{bmatrix} Q^{-1} & 0 \\ 0 & -(J^* Q^{-1} J^{*\top})^{-1} \end{bmatrix} \begin{bmatrix} Q \\ -J^* \end{bmatrix} \\
& = \begin{bmatrix} I & -Q^{-1} J^{*\top} \\ 0 & I \end{bmatrix} \begin{bmatrix} I \\ (J^* Q^{-1} J^{*\top})^{-1} J^* \end{bmatrix} \\
& = \begin{bmatrix} I - Q^{-1} J^{*\top} \partial \lambda^* / \partial \mu \\ (J^* Q^{-1} J^{*\top})^{-1} J^* \end{bmatrix}.
\end{aligned}$$

Hence, the Jacobian is given by the first component as:

$$J_T(\mu) = \frac{\partial u^*(\mu)}{\partial \mu} = I - Q^{-1} J^{*\top} (J^* Q^{-1} J^{*\top})^{-1} J^*,$$

which is the desired Eq. (24). \square

C.3 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

In this subsection, we describe how to compute the DPPL in ProbHardE2E for nonlinear convex inequality constraints. Convex inequality constraints arise naturally in many scientific and engineering applications. For example, total variation (TV) regularization is widely used to promote smoothness or piecewise-constant structure in spatial fields, e.g., image denoising (Rudin et al., 1992; Boyd & Vandenberghe, 2004) and total variation diminishing (TVD) constraints to avoid spurious artificial oscillations in numerical solutions to PDEs (Harten, 1997; Tezaur et al., 2017; Schein et al., 2021). Other common convex constraints include box constraints, which enforce boundedness of physical or operational quantities (Bertsekas, 1997).

We consider the constrained projection Problem (7), where $Q \succ 0$, and $h : \mathbb{R}^n \rightarrow \mathbb{R}^q$, $g : \mathbb{R}^n \rightarrow \mathbb{R}^s$ denote smooth functions representing equality and convex inequality constraints, respectively. This is a convex optimization problem due to the strictly convex quadratic objective and the assumption that $g(u)$ is convex. The associated Lagrangian is

$$L(u, \lambda, \nu; z) = \frac{1}{2}(u - z)^\top Q(u - z) + \lambda^\top h(u) + \nu^\top g(u),$$

with Lagrange multipliers $\lambda \in \mathbb{R}^q$ for the equality constraints and $\nu \in \mathbb{R}^s$ for the inequality constraints, where $\nu \geq 0$. The KKT optimality conditions are given as:

$$\begin{aligned}
& \text{(Stationarity)} \quad Q(u^* - z) + \nabla h(u^*) \lambda^* + \nabla g(u^*) \nu^* = 0, \\
& \text{(Primal feasibility)} \quad h(u^*) = 0, \quad g(u^*) \leq 0, \\
& \text{(Dual feasibility)} \quad \nu^* \geq 0, \\
& \text{(Complementary slackness)} \quad \nu_j^* \cdot g_j(u^*) = 0 \quad \text{for all } j = 1, \dots, s.
\end{aligned} \tag{42}$$

Note the first two conditions are the same as the ones for nonlinear equality constraints with $\nu = 0$, in Eq. (19).

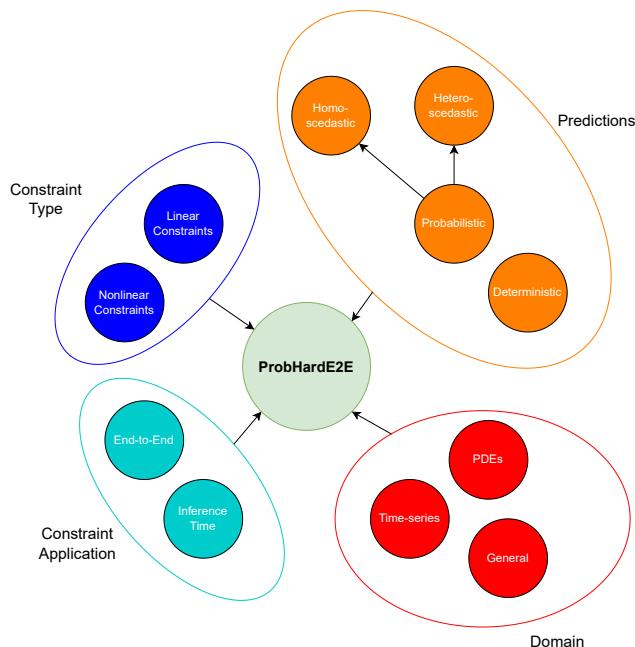
The KKT conditions in Eq. (42) are necessary and sufficient for optimality, under standard constraint qualifications, e.g., Slater's condition (Boyd & Vandenberghe, 2004). Eq. (42) can be solved by various optimization methods, e.g., stochastic trust-region methods with sequential quadratic programming (SQP) (Boyd & Vandenberghe, 2004; Hong et al., 2023) and exact augmented Lagrangian (Boyd & Vandenberghe, 2004; Fang et al., 2024). The augmented Lagrangian balances the need for both constraint satisfaction and computational efficiency, which makes it particularly effective in large-scale optimization problems. While the inequality constraints $g(u) \leq 0$ are convex by assumption, the equality constraints $h(u) = 0$ are typically required to be affine to ensure that the feasible set remains convex (Boyd & Vandenberghe, 2004). Nonlinear equalities generally yield non-convex level sets, which can violate problem convexity even when the objective and inequalities are convex. Although exceptions exist where nonlinear equalities define convex sets, these cases are rare and must be verified explicitly (Bertsekas, 1997; Boyd & Vandenberghe, 2004).

To compute the Jacobian $J_T(\mu) := \partial u^*(\mu) / \partial \mu$ of the projection map with respect to the input μ , we could, in principle, apply implicit differentiation to the KKT conditions in Eq. (42). For general

1512 constrained problems with nonlinear equality and convex inequality constraints, the derivation
 1513 becomes analytically complex, particularly due to active set variability and non-affine structure. In the
 1514 special case of quadratic programs with affine constraints, OptNet (Amos & Kolter, 2017) provides
 1515 an explicit expression for the derivatives via KKT conditions. In addition, CVXPYLayers (Agrawal
 1516 et al., 2019) enables gradient-based learning for general convex cone programs by canonicalizing
 1517 them into a standard conic form. In our implementation, we use CVXPYLayers to enforce the
 1518 constraints during the projection step. Since CVXPYLayers does not currently support full Jacobian
 1519 extraction or higher-order derivatives, we estimate the variance of the projection map using Monte
 1520 Carlo methods by applying random perturbations to the inputs and computing empirical statistics
 1521 over repeated forward passes.

1522 D SPECIAL CASES OF PROB HARDE2E

1523 In this section, we show applications of ProbHardE2E in two seemingly unrelated but technically re-
 1524 lated domains: (1) hierarchical time series forecasting with coherency constraints (Rangapuram et al.,
 1525 2021; Olivares et al., 2024a); (2) solving partial differential equations (PDEs) with global conservation
 1526 constraints (Hansen et al., 2023; Mouli et al., 2024). Both are special cases of ProbHardE2E with
 1527 linear equality constraints, and orthogonal ($Q = I$) and oblique ($Q = \Sigma^{-1}$) projections, respectively.
 1528 Fig. 2 illustrates the wide variety of cases that our framework covers.



1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

Figure 2: ProbHardE2E serves as a probabilistic unified framework for learning with hard constraints.

D.1 ENFORCING COHERENCY IN HIERARCHICAL TIME SERIES FORECASTING

Hierarchical time series forecasting is abundant in several applications, e.g., retail demand forecasting and electricity forecasting. In retail demand forecasting, the sales are tracked at various granularities, including item, store, and region levels. In electricity forecasting, the consumption demand is tracked at individual and regional levels. Each time series at time t can be separated into bottom and aggregate levels. Bottom-levels aggregate into higher-level series at each time point through known

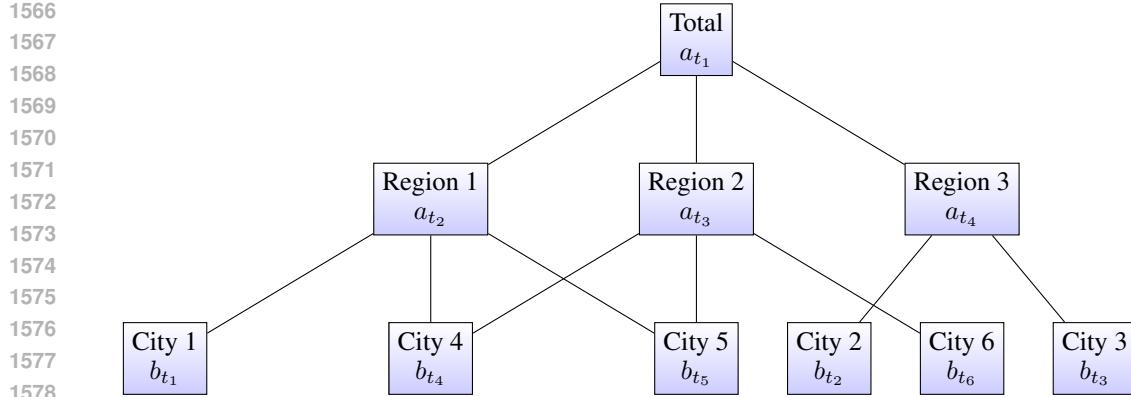


Figure 3: Example hierarchical time series structure with $a_t \in \mathbb{R}^4$, $b_t \in \mathbb{R}^6$ and $S_{\text{sum}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$.

relationships, which can be represented as dependency graphs. Let $z_t = [a_t \ b_t]^\top \in \mathbb{R}^n$, where $a_t \in \mathbb{R}^q$ denotes the aggregate entries, $b_t \in \mathbb{R}^{\tilde{q}}$ denotes the bottom-level entries, and $n = q + \tilde{q}$. Let $S_{\text{sum}} \in \{0, 1\}^{q \times \tilde{q}}$ denote the summation matrix, which defines the relationship between the bottom and aggregate levels as $a_t = S_{\text{sum}} b_t$. This coherency constraint can be equivalently expressed as:

$$[I_q \ -S_{\text{sum}}] \begin{bmatrix} a_t \\ b_t \end{bmatrix} = 0 \Leftrightarrow Az_t = 0, \quad \forall t, \quad (43)$$

where I_q denotes the $q \times q$ identity matrix. See Hyndman et al. (2011); Rangapuram et al. (2021); Olivares et al. (2024b) and the references therein for details, and Fig. 3 for an illustration.

HierE2E (Rangapuram et al., 2021) enforces the coherency constraint in Eq. (43) by projecting the multivariate samples z_t onto the null space of the constraint, i.e., $Az_t = 0$. It uses the following projection:

$$u^*(z_t) = \underbrace{(I - A^\top (AA^\top)^{-1} A)}_{P_I} z_t = (I - A^\dagger A) z_t, \quad (44)$$

where $A^\dagger = A^\top (AA^\top)^{-1}$ denotes the right pseudoinverse, and $P_I = P_I^2 = P_I^\top$ denotes an orthogonal projector.

We show that HierE2E can be formulated in our ProbHardE2E framework with the following posterior mean and covariance:

$$\hat{\mu}_{\text{HierE2E}} = (I - A^\dagger A)\mu, \quad (45a)$$

$$\hat{\Sigma}_{\text{HierE2E}} = \Sigma - A^\dagger A\Sigma - \Sigma A^\dagger A + A^\dagger A\Sigma A^\dagger A, \quad (45b)$$

where P_I is defined in Eq. (44). In particular, we show in Proposition D.1 that the HierE2E posterior update in Eq. (45) is a special linear constraint case of our ProbHardE2E method, which uses an orthogonal projection with $Q = I$ and $b = 0$.

Proposition D.1. *The projected mean and covariance for HierE2E in Eq. (45) is given by the solution to Problem (7) with linear constraints in Proposition C.1, i.e., $h(u) = Au = 0$, $b = 0$, where $Q = I$ for an orthogonal projection and $\mathbf{Z} \sim \mathcal{N}(\mu, \Sigma)$ is a multivariate Gaussian.*

Proof. The oblique projection in Eq. (16) used in ProbHardE2E for linear constraints is given as $P_{Q^{-1}} = I - Q^{-1}A^\top (AQ^{-1}A^\top)^{-1}A$. Setting $Q = I$, the expression simplifies to $P_{Q^{-1}} = P_I = I - A^\top (AA^\top)^{-1}A = I - A^\dagger A$.

1620 The posterior mean $\hat{\mu}$ for ProbHardE2E with linear constraints is given in Eq. (18a) with $b = 0$ as:
 1621

$$\begin{aligned} 1622 \hat{\mu} &= P_{Q^{-1}}\mu \\ 1623 &= P_I\mu \\ 1624 &= (I - A^\dagger A)\mu \\ 1625 &= \hat{\mu}_{\text{HierE2E}}, \end{aligned} \tag{46}$$

1626 which is the desired expression in Eq. (45a).
 1627

1628 Similarly, the posterior covariance $\hat{\Sigma}$ for ProbHardE2E in Eq. (18b) is given as:
 1629

$$\begin{aligned} 1630 \hat{\Sigma} &= P_{Q^{-1}}\Sigma P_{Q^{-1}}^\top \\ 1631 &= P_I\Sigma P_I^\top \\ 1632 &= P_I\Sigma P_I \\ 1633 &= (I - A^\dagger A)\Sigma(I - A^\dagger A) \\ 1634 &= (I - A^\dagger A)(\Sigma - \Sigma A^\dagger A) \\ 1635 &= \Sigma - A^\dagger A\Sigma - \Sigma A^\dagger A + A^\dagger A\Sigma A^\dagger A \\ 1636 &= \hat{\Sigma}_{\text{HierE2E}}, \end{aligned} \tag{47}$$

1637 which is the desired expression in Eq. (45b). \square
 1638

1639 Note that HierE2E does not directly project the distribution parameters, even though a closed
 1640 form exists, as shown in Eq. (46) and Eq. (47). Instead, it directly projects the samples in Eq. (44).
 1641 An improvement to HierE2E (that we do in ProbHardE2E) is to eliminate the computationally
 1642 expensive sampling in the training loop. (See Section 3.5.) HierE2E samples from the parametric
 1643 distribution generated by DeepVAR (Salinas et al., 2019; 2020; Alexandrov et al., 2019), reconciles
 1644 these samples, and computes the loss over time using the Continuous Ranked Probability Score
 1645 (CRPS). Generally, for unknown distributions, the CRPS evaluation requires sampling, which may
 1646 explain its necessity in their framework. For many standard distributions, e.g., the multivariate
 1647 Gaussian distribution in HierE2E, the CRPS can be computed analytically (Matheson & Winkler,
 1648 1976; Taillardat et al., 2016) using the mean and covariance of the output distribution.
 1649

1651 D.2 ENFORCING CONSERVATION LAWS IN PDEs

1652 In addition to hierarchical forecasting, another (at first seemingly-unrelated) application of
 1653 ProbHardE2E is enforcing conservation laws in solutions to partial differential equations (PDEs).
 1654 A conservation law is given as $u_t + \nabla \cdot F(u) = 0$, for unknown $u(t, x)$ and nonlinear flux function
 1655 $F(u)$ (LeVeque, 1990). Hansen et al. (2023) propose the ProbConserv method to enforce the
 1656 integral form of conservation laws from finite volume methods (LeVeque, 2002) as a linear con-
 1657 straint $Au = b$ for specific problems that satisfy a boundary flux linearity assumption. In particular,
 1658 ProbConserv proposes the following update equations for the posterior mean and covariance
 1659 matrix:
 1660

$$\hat{\mu}_{\text{ProbConserv}} = \mu - \Sigma A^\top (A\Sigma A^\top)^{-1} (A\mu - b), \tag{48a}$$

$$\hat{\Sigma}_{\text{ProbConserv}} = \Sigma - \Sigma A^\top (A\Sigma A^\top)^{-1} A\Sigma, \tag{48b}$$

1661 given the mean μ and the covariance matrix Σ estimated from a black-box probabilistic model, e.g.,
 1662 Gaussian Process, probabilistic Neural Operators (Mouli et al., 2024) or Attentive Neural Process
 1663 (ANP) (Hansen et al., 2023) or DeepVAR (Salinas et al., 2019) used in the hierarchical forecasting
 1664 case.
 1665

1666 In ProbConserv, the posterior mean $\hat{\mu}$ in Eq. (48a) is shown to be the solution to the constrained
 1667 least squares problem:
 1668

$$\hat{\mu}_{\text{ProbConserv}} = \arg \min_{\substack{\hat{\mu} \in \mathbb{R}^n \\ A\hat{\mu} = b}} \frac{1}{2} \|\hat{\mu} - \mu\|_{\Sigma^{-1}}^2.$$

1669 We formulate this optimization problem more generally, and show that by assuming that $z \sim \mathbf{Z} \sim$
 1670 $\mathcal{N}(\mu, \Sigma)$ is a multivariate Gaussian, a constrained sample $u^*(z) \sim \mathbf{Y} \sim \mathcal{N}(\hat{\mu}, \hat{\Sigma})$ in ProbConserv

1674 is a solution to our Problem (7) with $Q = \Sigma^{-1}$ and linear constraints. In particular, we show in
 1675 Proposition D.2 that the ProbConserv posterior update in Eq. (48) is a special linear constraint
 1676 case of our ProbHardE2E method, which uses an oblique projection with $Q = \Sigma^{-1}$.
 1677

1678 **Proposition D.2.** *The projected mean and covariance for ProbConserv in Eq. (48) is given by the
 1679 solution to Problem (7) with linear constraints in Proposition C.1, i.e., $h(u) = Au - b = 0$, where
 1680 $Q = \Sigma^{-1}$ for an oblique projection and $\mathbf{Z} \sim \mathcal{N}(\mu, \Sigma)$ is a multivariate Gaussian.*

1681 *Proof.* The oblique projection in Eq. (16) used in ProbHardE2E for linear constraints is given
 1682 as $P_{Q^{-1}} = P_\Sigma = I - Q^{-1}A^\top(AQ^{-1}A^\top)^{-1}A$. Setting $Q = \Sigma^{-1}$, we have that $P_{Q^{-1}} = I -$
 1683 $\Sigma A^\top(A\Sigma A^\top)^{-1}A = P_\Sigma$.
 1684

1685 The posterior mean $\hat{\mu}$ for ProbHardE2E with linear constraints is given in Eq. (18a) as:

$$\begin{aligned} \hat{\mu} &= P_{Q^{-1}}\mu + (I - P_{Q^{-1}})A^\dagger b \\ &= (I - \Sigma A^\top(A\Sigma A^\top)^{-1}A)\mu + (I - (I - \Sigma A^\top(A\Sigma A^\top)^{-1}A))A^\dagger b \\ &= (I - \Sigma A^\top(A\Sigma A^\top)^{-1}A)\mu + \Sigma A^\top(A\Sigma A^\top)^{-1} \underbrace{A A^\dagger}_I b \\ &= \mu - \Sigma A^\top(A\Sigma A^\top)^{-1}(A\mu - b) \\ &= \hat{\mu}_{\text{ProbConserv}}, \end{aligned}$$

1694 which is equal to the desired expression in Eq. (48a).

1695 Similarly, the posterior covariance $\hat{\Sigma}$ for ProbHardE2E in Eq. (18b) is given as:

$$\begin{aligned} \hat{\Sigma} &= P_{Q^{-1}}\Sigma P_{Q^{-1}}^\top \\ &= (I - \Sigma A^\top(A\Sigma A^\top)^{-1}A)\Sigma(I - A^\top(A\Sigma A^\top)^{-1}A\Sigma) \\ &= (I - \Sigma A^\top(A\Sigma A^\top)^{-1}A)(\Sigma - \Sigma A^\top(A\Sigma A^\top)^{-1}A\Sigma) \\ &= \Sigma - 2\Sigma A^\top(A\Sigma A^\top)^{-1}A\Sigma + \Sigma A^\top(A\Sigma A^\top)^{-1}(A\Sigma A^\top)(A\Sigma A^\top)^{-1}A\Sigma \\ &= \Sigma - \Sigma A^\top(A\Sigma A^\top)^{-1}A\Sigma \\ &= \hat{\Sigma}_{\text{ProbConserv}}, \end{aligned}$$

1705 which is equal to the desired expression in Eq. (48b). \square

1707 Note that the projected distribution parameters in Eq. (48) are applied only at inference time in
 1708 ProbConserv. In ProbHardE2E, we show the benefits of imposing the constraints at training
 1709 time as well in an end-to-end manner.

1711 E FLEXIBILITY IN THE CHOICE OF Q AND ITS STRUCTURE

1714 In this section, we discuss the modeling choices for the projection matrix Q in our DPPL, which
 1715 defines the energy norm in the objective in the constrained least squares Problem (7). Its specification
 1716 significantly influences both the learning dynamics and the inductive biases of the model. Selecting
 1717 or learning Q offers a principled mechanism to reflect the statistical structure of the data, particularly
 1718 in settings involving multivariate regression or heteroscedastic noise (Kendall et al., 2018; Stirn et al.,
 1719 2023). Table 6 summarizes common structure choices for Q and their trade-offs. Of course, in many
 1720 applications, there is a single goal for the choice of Q —to optimize accuracy.

1721 In practice, the space of symmetric positive definite (SPD) matrices is too large to be explored (and
 1722 “learned”) without additional structure, especially in high-dimensional settings. To address this,
 1723 structural constraints are often imposed on Q , reducing the number of parameters, and acting as a
 1724 form of regularization (Willette et al., 2021). These structures encode modeling assumptions, e.g.,
 1725 output independence, sparsity, or low-rank correlations, and they trade off statistical expressivity
 1726 against computational efficiency.

1727 In many cases, the choice of Q (or the form of Q) should ideally reflect (knowledge or assumptions
 1728 or hope about) the structure of the underlying data distribution. The simplest choice, $Q = I$,

Structure of Q	Example Form	Merits and Demerits
Identity	$Q = I$	<ul style="list-style-type: none"> + Simplest choice, no parameters + Strong regularization - Ignores uncertainty and correlations
Diagonal (learned)	$Q = \text{diag}(q_1, \dots, q_n)$	<ul style="list-style-type: none"> + Captures heteroscedasticity + Efficient to compute and invert - Ignores correlations
Low-rank (learned L)	$Q = LL^\top, L \in \mathbb{R}^{n \times d}$	<ul style="list-style-type: none"> + Captures dominant correlations + Fewer parameters than full - Still computationally involved
Full (learned L)	$Q = LL^\top, L \in \mathbb{R}^{n \times n}$	<ul style="list-style-type: none"> + Fully expressive - High memory and compute cost - Prone to overfitting

Table 6: Several structure choices for the matrix Q and their associated trade-offs.

assumes isotropy across output dimensions, and is often used for its regularization benefits and ease of implementation. This choice neglects any correlation structure in the data, and it tends to perform poorly in the presence of strong heteroscedasticity. A diagonal matrix $Q = \text{diag}(q_1, \dots, q_n)$ introduces per-dimension weighting, and is well-suited to heteroscedastic tasks where the variance differs across outputs (Kendall & Gal, 2017; Skafte et al., 2019). Low-rank approximations provide a compromise between model complexity and expressivity, by capturing dominant correlation directions (Willette et al., 2021). Full-rank matrices allow flexibility and often require strong priors or large datasets to avoid overfitting (Weinberger & Saul, 2009).

We focus on two concrete realizations of Q : the identity matrix $Q = I$ that is used in the HierE2E (Rangapuram et al., 2021) (see Appendix D.1), and a diagonal matrix defined as the inverse of a predicted diagonal covariance, $Q = \Sigma^{-1}$ that is used in ProbConserv (Hansen et al., 2023) (see Appendix D.2), where $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ denote the empirical variances output by the model. This latter choice corresponds to a heteroscedastic formulation that scales residuals based on their predicted precision, which emphasizes more confident predictions, and down-weights less certain ones (Stirn et al., 2023; Le et al., 2005; Hansen et al., 2023).

F PROOF OF THEOREM 3.1

In this section, we begin by first restating Theorem 3.1, which provides a closed-form update for our DPPL in Eq. (8) for a prior distribution that belongs to a multivariate local-scale family of distributions; and then we provide its proof.

Theorem 3.1. *Let $\mathbf{Z} \sim \mathcal{F}(\mu, \Sigma)$ be a random variable, where the underlying distribution \mathcal{F} belongs to a multivariate location-scale family of distributions, with mean μ and covariance Σ ; and let \mathcal{T} be a function with continuous first derivatives, such that $J_{\mathcal{T}}(\mu)\Sigma J_{\mathcal{T}}(\mu)^\top$ is symmetric positive semi-definite. Then, the transformed distribution $\mathbf{Y} = \mathcal{T}(\mathbf{Z})$ converges in distribution with first-order accuracy to $\mathcal{F}(\hat{\mu}, \hat{\Sigma})$ with mean $\hat{\mu} = \mathcal{T}(\mu)$ and covariance $\hat{\Sigma} = J_{\mathcal{T}}(\mu)\Sigma J_{\mathcal{T}}(\mu)^\top$, where $J_{\mathcal{T}}(\mu) = \nabla \mathcal{T}(\mu)^\top$ denotes the Jacobian of \mathcal{T} with respect to z evaluated at μ .*

Proof. Recall that a family of probability distributions is said to be a location-scale family if for any random variable \mathbf{Z} whose distribution belongs to the family $\mathbf{Z} \sim \mathcal{F}(\mu, \Sigma)$, then there exists a transformation (re-parameterization) of the form

$$\mathbf{Y} \stackrel{d}{=} A\mathbf{Z} + B,$$

where A denotes a scale transformation matrix, B denotes the location parameter, and $\stackrel{d}{=}$ denotes equality in distribution.

Let $\mathbf{Y} = \mathcal{T}(\mathbf{Z})$ be a nonlinear transformation. We calculate the first-order Taylor series expansion to linearize the function about the mean μ as:

$$\begin{aligned} \mathbf{Y} = \mathcal{T}(\mathbf{Z}) &\approx \mathcal{T}(\mu) + J_{\mathcal{T}}(\mu)(\mathbf{Z} - \mu) \\ &= \underbrace{J_{\mathcal{T}}(\mu)\mathbf{Z}}_A + \underbrace{(\mathcal{T}(\mu) - J_{\mathcal{T}}(\mu)\mu)}_B. \end{aligned} \quad (49)$$

Then, since \mathbf{Z} belongs to the location-scale family of distributions, the linearization of $\mathbf{Y} \sim \mathcal{F}(\hat{\mu}, \hat{\Sigma})$ also belongs to the family with mean $\hat{\mu}$ and covariance $\hat{\Sigma}$, which we compute below.

Taking the expectation of both sides of Eq. (49) we get:

$$\begin{aligned} \hat{\mu} &= \mathbb{E}[\mathcal{T}(\mathbf{Z})] \approx \mathbb{E}[\mathcal{T}(\mu) + J_{\mathcal{T}}(\mu)(\mathbf{Z} - \mu)] \\ &= \mathbb{E}[\mathcal{T}(\mu)] + \mathbb{E}[J_{\mathcal{T}}(\mu)(\mathbf{Z} - \mu)] \text{ (by linearity of expectation)} \\ &= \mathcal{T}(\mu) + J_{\mathcal{T}}(\mu) \underbrace{(\mathbb{E}[\mathbf{Z}] - \mu)}_0 \text{ (since } \mu \text{ is not a random variable)} \\ &= \mathcal{T}(\mu). \end{aligned} \quad (50)$$

Then, the covariance $\hat{\Sigma}$ is given as:

$$\begin{aligned} \hat{\Sigma} &= \mathbb{E}[(\mathcal{T}(\mathbf{Z}) - \mathbb{E}[\mathcal{T}(\mathbf{Z})])(\mathcal{T}(\mathbf{Z}) - \mathbb{E}[\mathcal{T}(\mathbf{Z})])^\top] \\ &= \mathbb{E}[(\mathcal{T}(\mathbf{Z}) - \mathcal{T}(\mu))(\mathcal{T}(\mathbf{Z}) - \mathcal{T}(\mu))^\top] \text{ (by Eq. (50))} \\ &\approx \mathbb{E}[(\mathcal{T}(\mu) + J_{\mathcal{T}}(\mu)(\mathbf{Z} - \mu) - \mathcal{T}(\mu))(\mathcal{T}(\mu) + J_{\mathcal{T}}(\mu)(\mathbf{Z} - \mu) - \mathcal{T}(\mu))^\top] \text{ (by Eq. (49))} \\ &= \mathbb{E}[(J_{\mathcal{T}}(\mu)(\mathbf{Z} - \mu))(J_{\mathcal{T}}(\mu)(\mathbf{Z} - \mu))^\top] \\ &= J_{\mathcal{T}}(\mu) \mathbb{E}[(\mathbf{Z} - \mu)(\mathbf{Z} - \mu)^\top] J_{\mathcal{T}}(\mu)^\top \\ &= J_{\mathcal{T}}(\mu) \Sigma J_{\mathcal{T}}(\mu)^T. \end{aligned}$$

□

Importantly, the approximation error between the nonlinear transformation and its linearization converges to zero in probability (Van der Vaart, 2000), which ensures the validity of this approach asymptotically. We note that this result is closely related to the Multivariate Delta Method (Casella & Berger, 2001), which shows that for a nonlinear function \mathcal{T} , the sample mean of $\mathcal{T}(z_1, \dots, z_n)$ also converges in distribution, under mild conditions. Specifically, if the sample mean of n i.i.d. draws from \mathbf{Z} converges to a multivariate Gaussian (by the CLT), then the same linearization argument and Slutsky's theorem imply that the sample mean of the projected samples converges to a multivariate Gaussian, with parameters given in Eq. (8). Second-order approximations (via a quadratic expansion of \mathcal{T}) yield higher-order corrections, and can lead to non-Gaussian outcomes (e.g., chi-squared) (Casella & Berger, 2001).

G BENCHMARKING DATASETS

In this section, we detail the benchmarking datasets in both applications domains, i.e., PDEs and probabilistic time series forecasting.

G.1 PDEs

We consider a series of conservative PDEs with varying levels of difficulties, where the goal is to learn an approximation of the solution that satisfies known conservation laws. We follow the empirical evaluation protocol from Hansen et al. (2023). The PDEs we study are conservation laws, which take the following differential form:

$$u_t + \nabla \cdot F(u) = 0, \quad (51)$$

for some nonlinear flux function $F(u)$. These equations can be written in their conservative form as:

$$\frac{d}{dt} \int_{\Omega} u(t, x) d\Omega = F(u(t, x_0)) - F(u(t, x_N)), \quad (52)$$

1836 by applying the divergence term in 1D over the domain $\Omega = [x_0, x_N]$ (LeVeque, 1990; Hansen et al.,
 1837 2023). This global conservation law states that the rate of change of total mass or energy in this
 1838 system is given by the difference of the flux into the domain and the flux out of the domain. Note
 1839 that in higher dimensions, the flux difference on the right-hand side of Eq. (52) can be written as a
 1840 surface integral along the boundary of the domain. This conservative form is at the heart of numerical
 1841 finite volume methods (LeVeque, 2002), which discretize the domain into control volumes and solve
 1842 this equation locally in each control volume, to enforce local conservation, i.e., so that the flux into
 1843 a control volume is equal to the flux out of it. In the following, we summarize the PDE test cases
 1844 with their initial and boundary conditions, exact solutions, and derived linear conservation constraints
 1845 from Hansen et al. (2023).

1846 G.1.1 GENERALIZED POROUS MEDIUM EQUATION (GPME)

1848 The Generalized Porous Medium Equation (GPME) is given by the following degenerate parabolic
 1849 PDE:

$$1850 u_t - \nabla \cdot (k(u) \nabla u) = 0, \quad (53)$$

1851 where the flux in Eq. (51) is given as $F(u) = -k(u) \nabla u$, and $k(u)$ denotes the diffusivity parameter.
 1852 This diffusivity parameter $k(u)$ may depend nonlinearly and/or discontinuously on the solution u .
 1853 We consider three representative cases within the GPME family, by changing this parameter $k(u)$.
 1854 Each instance of the GPME increases in difficulty based on the regularity of the solution and the
 1855 presence of shocks or discontinuities.

1856 **Heat Equation (“Easy”).** The classical parabolic heat equation arises when the diffusivity is
 1857 constant, i.e., $k(u) = k$ in Eq. (53). We use the heat equation with the following sinusoidal initial
 1858 condition and periodic boundary conditions from Krishnapriyan et al. (2021); Hansen et al. (2023):
 1859

$$1860 u_t = k \Delta u, \quad \forall x \in \Omega = [0, 2\pi], \forall t \in [0, 1], \\ 1861 u(0, x) = \sin(x), \quad \forall x \in [0, 2\pi], \\ 1862 u(t, 0) = u(2\pi, t), \quad \forall t \in [0, 1], \quad (54)$$

1863 respectively. The exact solution, which can be solved using the Fourier Transform, is given as:

$$1864 u_{\text{exact}}(t, x) = e^{-kt} \sin(x).$$

1865 The solution is a smooth sinusoidal curve that exponentially decays or dissipates over time, and has
 1866 an infinite speed of propagation. With these specific initial and boundary conditions in Eq. (54), the
 1867 global conservation law in Eq. (52) reduces to the following linear equation:

$$1868 \int_0^{2\pi} u(t, x) dx = 0, \quad \forall t \in [0, 1], \quad (55)$$

1869 since the net flux on the boundaries is 0.

1870 **Porous Medium Equation (PME) (“Medium”).** The PME is a nonlinear degenerate subclass of
 1871 the GPME, where the diffusivity is a nonlinear, monomial of the solution, i.e., $k(u) = u^m$ in Eq. (53).
 1872 It has been used in modeling nonlinear heat transfer (Vázquez, 2007; Maddix et al., 2018a). We use
 1873 the PME with the following initial condition and growing in time left Dirichlet boundary condition
 1874 from Lipnikov et al. (2016); Maddix et al. (2018a); Hansen et al. (2023):
 1875

$$1876 u_t - \nabla \cdot (u^m \nabla u) = 0, \quad \forall x \in \Omega = [0, 1], \forall t \in [0, 1], \\ 1877 u(0, x) = 0, \quad \forall x \in [0, 1], \\ 1878 u(t, 0) = (mt)^{1/m}, \quad \forall t \in [0, 1]. \quad (56)$$

1879 The exact solution is given as:

$$1880 u_{\text{exact}}(t, x) = (m \text{ReLU}(t - x))^{1/m}.$$

1881 For small values of $k(u)$, this degenerate parabolic equation behaves hyperbolic in nature. The
 1882 solution exhibits a sharp front at the degeneracy point $t = x$ with a finite speed of propagation. With
 1883 these specific initial and boundary conditions in Eq. (56), the global conservation law in Eq. (52)
 1884 reduces to the following linear equation:

$$1885 \int_0^1 u(t, x) dx = \frac{(mt)^{1+1/m}}{m+1}, \quad \forall t \in [0, 1]. \quad (57)$$

1890
 1891 **Stefan Equation (“Hard”).** The Stefan equation has been used in foam modeling (van der Meer
 1892 et al., 2016) and crystallization (Sethian & Strain, 1992), and models phase transitions with the
 1893 following discontinuous diffusivity:

$$1894 \quad k(u) = \begin{cases} 1, & u \geq u^* \\ 0, & u < u^* \end{cases}, \quad u^* \geq 0,$$

1895
 1896 in Eq. (53). We use the Stefan equation with the following initial condition and Dirichlet boundary
 1897 conditions from Maddix et al. (2018b); Hansen et al. (2023):
 1898

$$1899 \quad u_t - \nabla \cdot (k(u) \nabla u) = 0, \quad \forall x \in \Omega = [0, 1], t \in [0, 1], \\ 1900 \quad u(0, x) = 0, \quad \forall x \in [0, 1], \\ 1901 \quad u(t, 0) = 1, \quad \forall t \in [0, 1]. \quad (58)$$

1902 The exact solution is given as:
 1903

$$1904 \quad u_{\text{exact}}(t, x) = \mathbf{1}_{u \geq u^*} \left[1 - \frac{1 - u^*}{\text{erf}(\alpha/2)} \text{erf} \left(\frac{x}{2\sqrt{t}} \right) \right],$$

1905 where $\mathbf{1}$ denotes the indicator function, $\text{erf}(z) = (2/\sqrt{\pi}) \int_0^z \exp(-y^2) dy$ denotes the error function,
 1906 and $\alpha = 2\tilde{\alpha}$ and $\tilde{\alpha}$ satisfies the following nonlinear equation:
 1907

$$1908 \quad \frac{1 - u^*}{\sqrt{\pi}} = u^* \text{erf}(\tilde{\alpha}) \tilde{\alpha} e^{\tilde{\alpha}^2}.$$

1909 The solution is a rightward moving shock. With these specific initial and boundary conditions in
 1910 Eq. (58), the global conservation law in Eq. (52) reduces to the following linear equation:
 1911

$$1912 \quad \int_0^1 u(t, x) dx = \frac{2(1 - u^*)}{\text{erf}(\alpha/2)} \sqrt{\frac{t}{\pi}}, \quad \forall t \in [0, 1]. \quad (59)$$

1913 G.1.2 HYPERBOLIC LINEAR ADVECTION EQUATION

1914 The hyperbolic linear advection equation models fluids transported at a constant velocity, and is given
 1915 by Eq. (51) with linear flux $F(u) = \beta u$. We use the 1D linear advection problem with the following
 1916 step-function initial condition and inflow Dirichlet boundary conditions from Hansen et al. (2023):
 1917

$$1918 \quad u_t + \beta u_x = 0, \quad \forall x \in \Omega = [0, 1], \forall t \in [0, 1], \\ 1919 \quad u(0, x) = \mathbf{1}_{x \leq 0.5}, \quad \forall x \in [0, 1], \\ 1920 \quad u(t, 0) = 1, \quad \forall t \in [0, 1]. \quad (60)$$

1921 The exact solution is given as:
 1922

$$1923 \quad u(x, t) = h(x - \beta t),$$

1924 where $h(x) = \mathbf{1}_{x \leq 0.5}$ denotes the initial condition. The solution remains a shock, which travels to
 1925 the right with a finite speed of propagation β . With these specific initial and boundary conditions in
 1926 Eq. (60), the global conservation law in Eq. (52) reduces to the following linear equation:
 1927

$$1928 \quad \int_0^1 u(x, t) dx = \frac{1}{2} + \beta t, \quad (61)$$

1929 which shows that the total mass increases linearly with time due to the fixed inflow.
 1930

1931 G.2 PROBABILISTIC TIME SERIES FORECASTING

1932 In addition to PDEs, we also evaluate ProbHardE2E on five hierarchical time series forecasting
 1933 benchmark datasets, where the goal is to generate probabilistic predictions that are coherent with
 1934 known aggregation constraints across cross-sectional hierarchies (Rangapuram et al., 2021).
 1935

1936 Table 7 provides an overview of the time series datasets used in our empirical evaluation. For each
 1937 benchmarking dataset, it details the total number of series, the number of bottom level series (i.e., the
 1938 leaf nodes in the hierarchy), the number of series aggregated from the bottom-level series, the depth
 1939

1944 of the hierarchy in terms of the number of levels, the number of time series observations, and the
 1945 prediction horizon τ .
 1946

1947 We adopt the same dataset configurations as in [Rangapuram et al. \(2021\)](#), from which we use the
 1948 hierarchical forecasting benchmarks and pre-processing pipeline. These datasets are available in Glu-
 1949 onTS package ([Alexandrov et al., 2019](#)). The LABOUR dataset ([Australian Bureau of Statistics, 2019](#))
 1950 contains monthly Australian employment statistics from 1978 to 2020, organized into a 57-series hi-
 1951 erarchy. The TRAFFIC dataset ([Ben Taieb & Koo, 2019](#)) includes sub-hourly freeway lane occupancy
 1952 data, aggregated into daily observations forming a 207-series structure. TOURISM ([Tourism Australia,
 1953 Canberra, 2005](#)) consists of quarterly tourism counts across 89 Australian regions (1998–2006), and
 1954 the extended TOURISM-L dataset ([Wickramasuriya et al., 2019](#)) comprises 555 grouped series based
 1955 on both geography and travel purpose. Lastly, WIKI contains daily page view counts from 199
 1956 Wikipedia pages collected over two years ([Anava et al., 2018](#)).
 1957

1958 Table 7: A summary of the time-series datasets. TOURISM-L has two hierarchies, defined by
 1959 geography and travel purpose; consequently, it has different numbers of bottom series and different
 1960 depths in each hierarchy.
 1961

Dataset	Total	Bottom	Aggregated	Levels	Obs.	Horizon τ	Frequency
TOURISM	89	56	33	4	36	8	Quarterly
TOURISM-L	555	76; 304	175	4; 5	228	12	Monthly
LABOUR	57	32	25	4	514	8	Monthly
TRAFFIC	207	200	7	4	366	1	Daily
WIKI	199	150	49	5	366	1	Daily

H IMPLEMENTATION DETAILS

1971 In this section, we provide the implementation details of `ProbHardE2E`. Fig. 4 illustrates the overall
 1972 pipeline of `ProbHardE2E`, which integrates probabilistic modeling, constraint enforcement, and
 1973 loss-based calibration into a unified differentiable architecture. The core contribution lies in the DPPL,
 1974 which acts as a “corrector” to the “predictor,” which is the unconstrained distribution predicted by a
 1975 wide class of models. Conceptually, this layer parallels classical predictor-corrector and primal-dual
 1976 methods from numerical optimization ([Boyd & Vandenberghe, 2004](#); [Bertsekas, 1997](#)), where a
 1977 candidate solution is refined to satisfy known constraints before evaluation.
 1978

1979 We evaluate `ProbHardE2E` on two scientific domains: (1) PDEs, where structured physical
 1980 constraints, e.g., conservation laws and boundary conditions, must be enforced (see Appendix [G.1](#)),
 1981 and (2) probabilistic hierarchical time series forecasting, where aggregation coherency is required
 1982 (see Appendix [G.2](#)). We show that `ProbHardE2E` is model-agnostic by using a base probabilistic
 1983 model (predictor) from each application domain, i.e., `VarianceNO` ([Mouli et al., 2024](#)) for PDEs
 1984 and `DeepVAR` ([Salinas et al., 2019](#)) for forecasting. We then enforce the corresponding constraint
 1985 with our DPPL (corrector). We provide the experimental details for each application in the following
 1986 subsections.
 1987

H.1 PDEs

1988 All the experiments are performed on a single NVIDIA V100 GPU. We use a probabilistic Fourier
 1989 Neural Operator (FNO) ([Li et al., 2021](#)), i.e., `VarianceNO` ([Mouli et al., 2024](#)) to learn a mapping
 1990 from PDE parameters to solutions, e.g., the diffusivity mapping $k(u) \mapsto u(t, x)$ in the (degenerate)
 1991 parabolic Generalized Porous Medium Equation (GPME), or the velocity mapping $\beta \mapsto u(t, x)$ in
 1992 the hyperbolic linear advection equation. (See Appendix [G.1](#) for details on the datasets.)
 1993

H.1.1 DATASET GENERATION

1994 Table 8 provides an overview of the PDE data generation. For each PDE in Appendix [G.1](#), we
 1995 generate a dataset of $N = 200$ parameter-solution pairs $\{\phi^{(i)}, u^{(i)}\}_{i=1}^N \sim \mathcal{D}$, where $\phi^{(i)}$ denotes the
 1996 input PDE parameters, e.g., k, m, u^*, β , and $u^{(i)}$ denotes the corresponding spatiotemporal solution
 1997

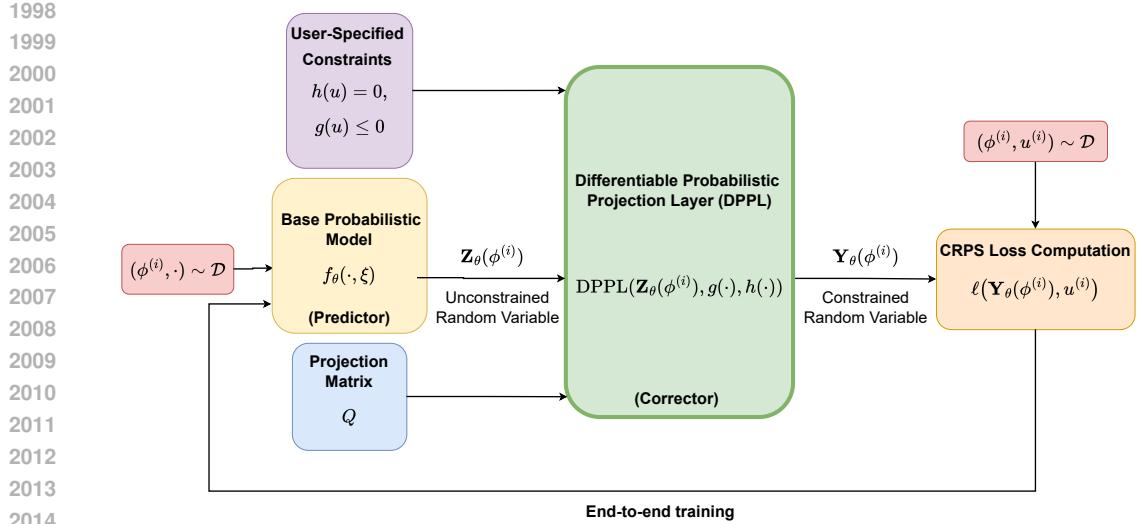


Figure 4: Schematic representation of ProbHardE2E (see Algorithm 1). Here, a known pathwise-differentiable probabilistic model is chosen to predict a (unconstrained) prior distribution. (Optionally, the projection matrix can be specified as a part of the prediction from the probabilistic model or modeled separately.) Next, we transform the distribution with our DPPL to obtain the transformed distribution, done empirically or via the Delta Method (see Section 3.3), which enforces the constraints. Lastly, we choose an appropriate loss function, e.g., CRPS, to calibrate the transformed distribution with the target variable.

field. Each solution $u^{(i)}(t, x)$ is simulated over a grid of 100 equidistant points in both space and time, yielding a total of 100×100 observations per instance. During evaluation, we predict the final 20 equidistant time slices while conditioning on the earlier time steps.

Table 8: Overview of PDE dataset generation. Each dataset contains 200 samples with a fixed 160/40 train-test split.

PDE	Parameter range	Spatial domain	Time domain	Train/Test (%)
Heat	$k \in [1, 5]$	$[0, 2\pi]$	$[0, 1]$	80/20
PME	$m \in [2, 3]$	$[0, 1]$	$[0, 1]$	80/20
Stefan	$u^* \in [0.6, 0.65]$	$[0, 1]$	$[0, 1]$	80/20
Linear Advection	$\beta \in [1, 2]$	$[0, 1]$	$[0, 1]$	80/20

H.1.2 ARCHITECTURAL DETAILS

We use VarianceNO (Mouli et al., 2024) as our base unconstrained probabilistic model. VarianceNO is an augmented Fourier Neural Operator (FNO) (Li et al., 2021) that updates the last layer to output two prediction heads instead of one, i.e., one for the mean and the other for the variance of the multivariate Gaussian distribution. Table 9 details the model hyperparameters.

H.1.3 TRAINING AND TESTING SETUP

We follow the standard training procedure for FNO-based models as proposed by Li et al. (2021). Specifically, we use the Adam optimizer (Kingma & Ba, 2015) with weight decay and train using mini-batches of fixed size $B = 20$. A step-based learning rate scheduler is applied, which reduces the learning rate by half every 50 epochs. During evaluation, we uniformly sample parameters from the specified parameter ranges in Table 8 to construct test sets and compute the evaluation metrics.

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
Table 9: Hyperparameters for the VarianceNO model.

Hyperparameter	Values
VarianceNO	
Number of Fourier layers	4
Channel width	$\{32, 64\}$
Number of Fourier modes	12
Batch size	20
Learning rate	$\{10^{-4}, 10^{-3}, 10^{-2}\}$

H.2 PROBABILISTIC TIME SERIES FORECASTING

The experiments are performed on an Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz.

H.2.1 DATASET GENERATION

We adopt the hierarchical forecasting benchmarks and preprocessing pipeline introduced in Rangapuram et al. (2021), using five standard datasets: LABOUR, TRAFFIC, TOURISM, TOURISM-L, and WIKI. Each dataset contains a hierarchy of time series with varying depth and number of aggregation levels (see Table 7). The train/test splits, seasonal resolutions, and prediction horizons follow the standardized setup provided in Rangapuram et al. (2021).

H.2.2 ARCHITECTURAL DETAILS

We use DeepVAR (Salinas et al., 2019) as our base unconstrained probabilistic model, which is aligned with Hier-E2E. DeepVAR is a probabilistic autoregressive LSTM-based model that leverages a multivariate Gaussian distribution assumption on the multivariate target. DeepVAR models the joint dynamics of all the time series in the hierarchy through latent temporal dependencies, and outputs both the mean and scale of the predictive distribution, by optimizing the negative log likelihood (NLL). Our ProbHarDE2E model in the time series application is developed based on Hier-E2E in GluonTS (Alexandrov et al., 2019). We use the default base model architecture DeepVAR, and make further modifications to Hier-E2E. Specifically, we tune the hyperparameters in Table 10, and adjust the loss to CRPS for structured probabilistic evaluation. We disable sampling-based projection during training because ProbHarDE2E optimizes the closed-form CRPS for Gaussian distributions, and our projection methodology ensures that linear constraints are met probabilistically. During inference, we report CRPS through samples, in order to align the evaluation definition with the various hierarchical forecasting baselines.

Table 10: Key hyperparameters for DeepVAR across hierarchical forecasting datasets.

Dataset	Epochs	Batch Size	Learning Rate	Context Length	No. of Prediction Samples
LABOUR	5	32	0.01	24	400
TRAFFIC	10	32	0.001	40	400
TOURISM	10	32	0.01	24	200
TOURISM-L	10	4	0.001	36	200
WIKI	25	32	0.001	15	200

H.2.3 TRAINING AND TESTING SETUP

We follow the standard GluonTS (Alexandrov et al., 2019) training setup using the Adam optimizer (Kingma & Ba, 2015) and mini-batch updates. Each epoch consists of 50 batches, with batch size set according to Table 10. We run our evaluation five times and report the mean and variance of the CRPS values in Table 3.

Unlike Hier-E2E (Rangapuram et al., 2021), which samples forecast trajectories during training and projects them to ensure structural coherence on samples, our method operates entirely in the parameter space during training. We avoid sampling and instead minimize the closed-form CRPS

loss (Gneiting et al., 2005) directly on the predicted mean and variance. This makes the training process sampling-free and reduces training time, similar to the PDE case discussed later in Figure 5. This key distinction avoids the use of `coherent_train_samples`, as described in the Appendix of Rangapuram et al. (2021).

At inference time, because the reported CRPS is computed on the samples in the hierarchical baselines, we enable structured projection by drawing predicted samples from the learned distribution, and we apply our DPPL to ensure that they satisfy the hierarchical aggregation constraints. This setup parallels the `coherent_pred_samples` mode in HierE2E, and we implement the inference step with this approach for experimentation simplicity. Table 10 shows the number of prediction samples in evaluation to compute the CRPS and calibration metrics over the projected outputs. Alternatively, we can also evaluate the CRPS using samples from the projected distribution.

H.3 METRICS

We evaluate ProbHardE2E and the various baselines using the following metrics. We denote the exact solution or ground truth observations as u , and we report the metrics on the mean $\hat{\mu}$, covariance $\hat{\Sigma}$, and samples $\{u_i^*\}_{i=1}^N$ drawn from the constrained multivariate Gaussian distribution $\mathcal{N}(\hat{\mu}, \hat{\Sigma})$.

Mean Squared Error (MSE). The MSE measures the mean prediction accuracy and is given as:

$$\text{MSE}(\hat{\mu}) = \frac{1}{n} \|u - \hat{\mu}\|_F^2,$$

where the Frobenius norm is taken over all the datapoints n in $\hat{\mu}$.

Constraint Error (CE). The CE measures the error in the various equality constraints $h(u^*) = 0$, i.e., conservation laws for PDEs and coherency for hierarchical time series forecasting, on the samples, and is given as:

$$\text{CE}(u^*) = \sum_{i=1}^N \|h(u_i^*)\|_2^2,$$

where we compute the average error over $N = 100$ samples $\{u_i^*\}_{i=1}^N$.

Continuous Ranked Probability Score (CRPS). The CRPS (Gneiting & Raftery, 2007) measures the quality of uncertainty quantification by comparing a predictive distribution to a ground-truth observation. For a multivariate Gaussian distribution with independent components $\mathcal{N}(\mu, \text{diag}(\hat{\sigma}^2))$, where $\hat{\sigma}_{ii}^2$ denotes the i -th diagonal entry of the predictive covariance $\hat{\Sigma}$, the CRPS is given in closed-form as:

$$\text{CRPS}_{\mathcal{N}}(\hat{\mu}, \hat{\sigma}; u) = \sum_{i=1}^n \hat{\sigma}_{ii} \left[z_i (2P(z_i) - 1) + 2p(z_i) - \frac{1}{\sqrt{\pi}} \right],$$

where $z_i = (u_i - \hat{\mu}_i)/\hat{\sigma}_{ii}$, $p(z_i) = (1/\sqrt{2\pi}) \exp(-z_i^2/2)$ denotes the standard normal PDF, and $P(z_i) = \int_{-\infty}^{z_i} p(y)dy$ denotes the standard normal CDF (Gneiting et al., 2005; Taillardat et al., 2016).

I ADDITIONAL EMPIRICAL RESULTS AND DETAILS

In this section, we include additional empirical results and details for ProbHardE2E with various constraint types, i.e., linear equality, nonlinear equality and convex inequality.

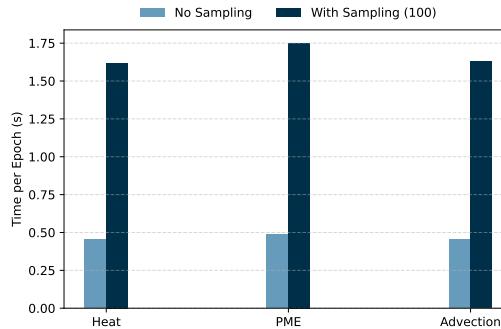
I.1 LINEAR EQUALITY CONSTRAINTS

In this subsection, we show additional results and details for ProbHardE2E with linear equality constraints in both PDEs and hierarchical time series forecasting.

2160 I.1.1 PDES WITH CONSERVATION LAW CONSTRAINTS
2161

2162 Here, we impose the discretized form of the simplified linear global conservation laws given in
2163 Appendix G.1 for the heat equation (Eq. (55)), PME (Eq. (57)), Stefan (Eq. (59)) and linear advection
2164 equation (Eq. (61)). We use the trapezoidal discretizations of the integrals from Hansen et al. (2023).

2165 Fig. 5 shows the analogous training time per epoch to Fig. 1(a) for PDE datasets. Models trained
2166 with 100 posterior samples per training step incur a $3.5\text{--}3.6\times$ increase in epoch time relative to our
2167 ProbHardE2E, which avoids sampling altogether by using a closed-form CRPS loss. See Table 2
2168 for the accuracy results.



2170
2171 Figure 5: ProbHardE2E: PDE timing comparisons for our sampling-free approach.
2172
2173
2174
2175
2176
2177
2178
2179
2180

2181 I.1.2 HIERARCHICAL TIME SERIES FORECASTING WITH COHERENCY CONSTRAINTS
2182

2183 Here, we test ProbHardE2E on probabilistic hierarchical forecasting with coherency constraints.
2184 (See Appendix G.2 for details and Table 3 for the results.) We compare the two variants of
2185 ProbHardE2E, i.e., with oblique $Q = \Sigma^{-1}$ (ProbHardE2E-Ob) and with orthogonal $Q = I$
2186 (ProbHardE2E-Or) projection to the following baselines:
2187

- 2188 • DeepVAR (Salinas et al., 2019) is the base unconstrained probabilistic model, which
2189 assumes a multivariate Gaussian distribution for $\mathbf{Z} \sim \mathcal{N}(\mu, \Sigma)$ with mean μ and diagonal
2190 covariance Σ .
- 2191 • Hier-E2E (Rangapuram et al., 2021) uses DeepVAR as the base model, and enforces the
2192 exact coherency constraint by applying the orthogonal projection directly on the samples in
2193 an end-to-end manner. Another difference from their approach is that we use the closed-form
2194 CRPS expression rather than the approximate weighted quantile loss.
- 2195 • ProbConserv (Hansen et al., 2023) enforces the coherency constraint as an oblique
2196 projection at inference time only.
- 2197 • ARIMA-NaiveBU and ETS-NaiveBU are two simple baseline models that use ARIMA
2198 and exponential smoothing (ETS), respectively. These methods use a naive bottom-up
2199 approach of deriving aggregated level forecasts (Hyndman & Athanasopoulos, 2018).
- 2200 • PERMBU-MINT (Taieb et al., 2017) is a hierarchical probabilistic forecasting model that
2201 is based on a linear projection method MINT (Wickramasuriya et al., 2019). It generates
2202 probabilistic forecasts for aggregated series using permuted bottom-level forecasts.

2203 We do not include DPMN (Olivares et al., 2024a) or CLOVER (Olivares et al., 2024b) in our experiments
2204 because the implementations are proprietary. Given that Hier-E2E is the best open-access
2205 hierarchical forecasting model, through GluonTS (Alexandrov et al., 2019), to the best of our knowledge,
2206 we use the same base model to Hier-E2E (i.e., DeepVAR), and we evaluate forecast accuracy
2207 compared to Hier-E2E to assess the added value of our ProbHardE2E.
2208

2209 I.2 NONLINEAR EQUALITY CONSTRAINTS
2210

2211 In this subsection, we impose the discretized form of the general nonlinear global linear conservation
2212 laws from Eq. (52) in Appendix G.1 for the PME with various ranges for the parameter m . (See
2213 Table 4 for the results and Fig. 1(b) for the solution profile.) For the PME, the flux in Eq. (52) is

given as $F(u) = -k\nabla u$, where $k(u) = u^m$. Substituting this flux into Eq. (52) and integrating in time gives the general conservation law for the PME as:

$$\int_{\Omega} u(t, x) d\Omega = \int_0^t [u^m(t, x_0) \nabla u(t, x_0) - u^m(t, x_N) \nabla u(t, x_N)] dt, \quad \forall t \in [0, 1].$$

Similar to the linear equality constraint case, we discretize the integral using the trapezoidal rule. Unlike ProbConserv (Hansen et al., 2023), which requires an analytical flux expression to evaluate the right-hand side, our ProbHardE2E can enforce arbitrary (nonlinear) conservation laws directly. In addition, ProbHardE2E with nonlinear constraints can be applied to arbitrary PDEs with any initial or boundary conditions. We impose the initial and boundary conditions as additional linear constraints and enforce positivity on the solution. We test on various training and testing ranges for the parameter m , i.e., $m \in [2, 3], [3, 4]$ and $[4, 5]$. As the exponent m is increased, the degeneracy increases, and as a result the solution becomes sharper and more challenging to solve (Maddix et al., 2018a; Hansen et al., 2023). We see in Table 4 that across all values of m , either our oblique ProbHardE2E-Ob or orthogonal projection ProbHardE2E-Or variants of our method perform better than all the baselines.

I.3 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

In this subsection, we impose a convex total variation diminishing (TVD) inequality constraint. (See Fig. 1(c) for the solution profile.) TVD numerical schemes have been commonly using in solving hyperbolic conservation laws with shocks to minimize numerical oscillations from dispersion (Harten, 1997; LeVeque, 1990; Tezaur et al., 2017). The total variation (TV) is defined in its continuous form as:

$$\text{TV}(u(t, \cdot)) = \int_{\Omega} \left| \frac{\partial u}{\partial x} \right| d\Omega.$$

This integral can be approximated as the discrete form of the total variation (TV) used in image processing as:

$$\text{TV}(u(t)) = \text{TV}(u(t, \cdot)) = \sum_{i=1}^{N_x} |u(t, x_{i+1}) - u(t, x_i)|, \quad (62)$$

where we discretize the spatial domain $\Omega = [x_1, \dots, x_{N_x}]$ into N_x gridpoints. A numerical scheme is called TVD if:

$$\text{TV}(u(t_{n+1})) \leq \text{TV}(u(t_n)), \quad \forall n = 1, \dots, N_t, \quad (63)$$

where we discretize the temporal domain $[0, T] = [t_1, \dots, t_{N_t}]$ into N_t gridpoints, and TV denotes the discretized form defined in Eq. (62).

The TVD constraint in Eq. (63) is a nonlinear inequality constraint, and enforcing it as a hard constraint is challenging with current frameworks, e.g., DCL (Agrawal et al., 2019). To address this, we perform a convex relaxation of the constraint by imposing:

$$\text{TVD} = \sum_{n=1}^{N_t} \sum_{i=1}^{N_x} |u(t_n, x_{i+1}) - u(t_n, x_i)|,$$

as a regularization term. This approach is analogous to total variation denoising in signal processing (Rudin et al., 1992; Boyd & Vandenberghe, 2004).

Fig. 1(c) demonstrates the application of the modified TVD constraint, resulting in more physically-meaningful solutions by decreasing both the artificial oscillations and probability of negative samples, which violate the monotonicity and positivity properties of the true solution, respectively. In addition, ProbHardE2E leads to improved (tighter) uncertainty estimates.

J THE USE OF LARGE LANGUAGE MODELS (LLMs)

LLMs are used for grammatical corrections and minor formatting of the paper. They are not used in the conceptualization and implementation of research.