
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

END-TO-END PROBABILISTIC FRAMEWORK FOR
LEARNING WITH HARD CONSTRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present ProbHardE2E, a probabilistic forecasting framework that incorpo-
rates hard operational/physical constraints, and provides uncertainty quantification.
Our methodology uses a novel differentiable probabilistic projection layer (DPPL)
that can be combined with a wide range of neural network architectures. DPPL
allows the model to learn the system in an end-to-end manner, compared to other
approaches where constraints are satisfied either through a post-processing step or
at inference. ProbHardE2E optimizes a strictly proper scoring rule, without mak-
ing any distributional assumptions on the target, which enables it to obtain robust
distributional estimates (in contrast to existing approaches that generally optimize
likelihood-based objectives, which can be biased by their distributional assump-
tions and model choices); and it can incorporate a range of non-linear constraints
(increasing the power of modeling and flexibility). We apply ProbHardE2E in
learning partial differential equations with uncertainty estimates and to probabilistic
time-series forecasting, showcasing it as a broadly applicable general framework
that connects these seemingly disparate domains.

1 INTRODUCTION

Recently, machine learning (ML) models have been applied to a variety of engineering and scientific
tasks, including probabilistic time series forecasting (Rangapuram et al., 2021; Hyndman et al.,
2011; Taieb et al., 2017; Olivares et al., 2024b) and scientific applications (Krishnapriyan et al.,
2021; Hansen et al., 2023; Négiar et al., 2023; Mouli et al., 2024). Exact enforcement of hard
constraints can be essential in domains where any violation of operational or physical requirements
(e.g., coherency in hierarchical forecasting, conservation laws in physics, and non-negativity in
economics and robotics) is unacceptable (Gould et al., 2022; Hansen et al., 2023; Donti et al., 2021).
Limitations of data-driven ML approaches arise in various disciplines where constraints need to
be satisfied exactly (Rangapuram et al., 2021; Hansen et al., 2023). Within ML, constraints are
typically incorporated as soft penalties, e.g., with a regularization term added to the loss function
(Raissi et al., 2019; Li et al., 2024); but they are sometimes incorporated via post-training correction
mechanisms, e.g., to enforce a hard constraint (Hansen et al., 2023; Mouli et al., 2024; Cheng et al.,
2025). Some methods have managed to enforce hard constraints “end-to-end” in a general framework
as a differentiable solver (Négiar et al., 2023; Chalapathi et al., 2024; Rackauckas et al., 2020), as a
differentiable optimization layer (Amos & Kolter, 2017; Agrawal et al., 2019; Min et al., 2024), or as
an auxiliary procedure (Donti et al., 2021).

The aforementioned hard-constrained models typically provide point estimates without uncertainty
quantification (UQ), limiting their use cases in operational and physical domains requiring probabilis-
tic forecasts. Generating output distribution statistics under hard constraints is often computationally
expensive or yields only approximate solutions (Robert et al., 1999; Szechtman & Glynn, 2001;
Girolami & Calderhead, 2011). There have been domain-specific works in hierarchical probabilistic
time series forecasting, which enforce coherency constraints using end-to-end deep learning models
(Olivares et al., 2024b; Rangapuram et al., 2021). However, these works either apply only to linear
constraints, or they require a computationally expensive sampling procedure in training. Similar
approaches have been proposed for computing probabilistic solutions to partial differential equations
(PDEs) that satisfy constraints (Hansen et al., 2023; Mouli et al., 2024; Cheng et al., 2025; Gao
et al., 2023; Utkarsh et al., 2025). In these works, however, the constraints are only applied as a
post-processing step, and they do not lead to an end-to-end solution (of interest in the common
situation that one wants to incorporate a hard-constrained model within a larger model, and then
optimize the larger model) that optimizes the evaluation accuracy. In both the forecasting and PDE
application domains, none of this prior UQ work can handle complex nonlinear (hard) constraints.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we propose a novel probabilistic framework, ProbHardE2E, that integrates a broad
class of hard constraints (including non-linear constraints) in an end-to-end fashion, while incorporat-
ing UQ. By leveraging key results from statistics and optimization in a novel way, we predict both the
mean and covariance of the output data, moving beyond point estimate predictions. ProbHardE2E
enforces nonlinear constraints with an efficient sampling-free method to generate distribution statis-
tics. Our probabilistic approach enables the effective handling of exogenous spikes and jumps (or
other discontinuities) by leveraging data heteroscedasticity, enhancing the model’s robustness and
flexibility under varying data conditions.

We summarize our key contributions as follows.

• We introduce ProbHardE2E, as a general framework to learn a function in an end-to-
end manner by optimizing an objective under hard constraints. The framework enables
UQ by learning parameters of a multivariate probabilistic distribution. We show that
ProbHardE2E can incorporate a broad class of deep learning backbone models.

• The key technical novelty of ProbHardE2E is a differentiable probabilistic projection
layer (DPPL) that extends standard projection methods to accommodate UQ while enforcing
hard constraints. ProbHardE2E can handle constraints ranging from linear equality to
general nonlinear equality to convex inequality constraints.

• We use the DPPL to impose constraints directly on the marginals of the multivariate distri-
bution for an efficient sampling-free approach for posterior distribution estimation, which
reduces the computational overhead by up to 3–5× during training.

• We show that ProbHardE2E is effective in two (seemingly-unrelated, but technically-
related) tasks, where hard constraints are important: probabilistic time series forecasting; and
solving challenging PDEs in scientific machine learning (SciML). We provide an extensive
empirical analysis demonstrating that ProbHardE2E results in up to 15× lower mean-
squared error (MSE) in mean forecast and 2.5× improved uncertainty estimates, measured
by the Continuous Ranked Probability Score (CRPS), compared to the baseline methods.

• We show that training with the continuous-ranked probability score (CRPS), rather than
negative log-likelihood (NLL) leads to better predictive performance. While the need for
this is well-known in, e.g., time series forecasting, previous PDE learning works commonly
use NLL-based metrics for UQ.

2 RELATED WORK

There is a large body of related work from various communities, ranging from imposing constraints on
neural networks for point estimates (Min et al., 2024; Donti et al., 2021), to probabilistic time series
forecasting with constraints (Rangapuram et al., 2021; 2023; Olivares et al., 2024b), to imposing
constraints on deep learning solutions to PDEs (Négiar et al., 2023; Hansen et al., 2023). Table 5 in
Appendix A summarizes some advantages and disadvantages of these methods that are motivated by
enforcing hard constraints in these domains. (See Appendix A for additional details.)

3 PROBHARDE2E: A UNIFIED PROBABILISTIC OPTIMIZATION FRAMEWORK

In this section, we introduce ProbHardE2E. See Algorithm 1 for a summary. (See also Appendix B
for a universal approximation guarantee.) In Section 3.1, we discuss the proper evaluation metric
for a constrained probabilistic learner, and we define our objective function that corresponds to that
evaluation metric. In Section 3.2, we propose our differentiable probabilistic projection layer (DPPL)
that enforces the hard constraints. In Section 3.3, we describe how to compute the parameters of the
resulting constrained posterior distribution. In Section 3.4, we discuss update rules for various types
of constraints (linear equality, nonlinear equality, and convex inequality constraints). In Section 3.5,
we propose a sample-free formulation for satisfying the constraints while optimizing for the objective.

3.1 PROBABILISTIC EVALUATION METRICS AND OBJECTIVE FUNCTION

We formulate the problem of probabilistic learning under constraints. The goal of this problem is
to learn a function f̂θ : Φ → Y, where Φ ⊂ Rm denotes the input space, θ ∈ Θ̄ ⊆ Θ denotes the
feasible parameter space, and Y ⊂ Rk denotes the space of predicted distribution parameters that meet
the constraints. Given a multivariate distribution class, these learned parameters induce a predictive
multivariate random variable Yθ(ϕ

(i)), where (ϕ(i), u(i)) ∼ D, where ϕ(i) ∈ Φ, u(i) ∈ Rn, and D
denotes training data from a distribution D. Each realization of û(ϕ(i)) ∼ Yθ(ϕ

(i))∈ Rn is required

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 ProbHardE2E: Training and Inference

Require: Training data {(ϕ(i), u(i))} ∼ D, test data ϕ and constraints g(·) ≤ 0, h(·) = 0.
Ensure: Learnable function f̂θ : Φ → Y that outputs constrained distribution parameters.

1: Pick a model class Θ, initialize weights θ ∈ Θ for probabilistic unconstrained model fθ : Φ → Z .
2: while θ not converged do
3: Predict unconstrained distribution parameters (µθ(ϕ

(i)),Σθ(ϕ
(i))).

4: Training Mode: Project parameters (µ̂θ(ϕ
(i)), Σ̂θ(ϕ

(i))) = DPPL((µθ(·),Σθ(·)), g(·), h(·)).
5: Update θ ∈ Θ̄ by minimizing the CRPS loss ℓ(Yθ(ϕ

(i)), u(i)).
6: end while
7: Inference Mode: Project random variable Yθ(ϕ) = DPPL(Zθ(ϕ), g(·), h(·)), where Zθ(ϕ) and

Yθ(ϕ) denote the unconstrained and unconstrained random variables, respectively.
8: Return Feasible predicted sample u∗(zθ(ϕ)) ∼ Yθ(ϕ), where zθ(ϕ) ∼ Zθ(ϕ).

to satisfy predefined hard constraints of the form g(û(ϕ(i))) ≤ 0 and h(û(ϕ(i))) = 0. We can
formulate this constrained optimization problem as follows:

argmin
θ∈Θ, g(Yθ(ϕ

(i)))≤0, h(Yθ(ϕ
(i)))=0

E(ϕ(i),u(i))∼D ℓ
(
Yθ(ϕ

(i)), u(i)
)
, (1)

where denotes a proper scoring rule.

One widely-used (strictly) proper scoring rule for continuous distributions is the continuous ranked
probability score (CRPS) (Gneiting & Raftery, 2007). The CRPS simultaneously evaluates sharpness
(how concentrated or “narrow” the distribution is) and calibration (how well the distributional
coverage “aligns” with actual observations). More formally, for an observed scalar outcome y and a
corresponding probabilistic distributional estimate, Y , the CRPS is defined as:

CRPS(Y, y) = EY |Y − y| − 1
2EY |Y − Y ′|, (2)

where Y ′ denotes an i.i.d. copy of Y . Compared to other scoring rules, e.g., the log probability scoring
rules, which require assumptions on the outcome variable, the CRPS is robust to probabilistic model
mis-specification. Because of this unique property, the CRPS is widely used as the evaluation metric
in many applications, e.g., probabilistic time series forecasting (Gasthaus et al., 2019; Rangapuram
et al., 2021; Park et al., 2022; Olivares et al., 2024b), quantile regression (Fakoor et al., 2023),
precipitation nowcasting (Ravuri et al., 2021; Gao et al., 2023) and weather forecasting (Rasp &
Lerch, 2018; Kochkov et al., 2024; Price et al., 2025).

We align our training objective with the proposed evaluation metric above, by directly optimizing the
CRPS in Eq. (2) in Problem 1. We define the loss as the sum of the univariate CRPS:

ℓ
(
Yθ(ϕ

(i)), u(i)
)
=

n∑
j=1

CRPS((Yθ(ϕ
(i)))j , u

(i)
j). (3)

The CRPS naturally aligns with the goal of producing feasible and well-calibrated predictions, as
the metric rewards distributions that closely match observed outcomes. Enforcing our constraints in
the distribution space guarantees that every sample from the predicted distribution is physically or
operationally valid. Consequently, modeling the loss through the CRPS provides a principled way to
reconcile domain constraints with distributional accuracy.

3.2 DIFFERENTIABLE PROBABILISTIC PROJECTION LAYER (DPPL)
We transform the constrained Problem 1 into the unconstrained optimization problem:

argmin
θ∈Θ̄

E(ϕ(i),u(i))∼D ℓ
(
Yθ(ϕ

(i)), u(i)
)
, (4)

where Θ̄ ⊆ Θ denotes the feasible parameter space that ensures constraint satisfaction, and ℓ denotes
the loss function in Eq. (3). We solve this using a two-step procedure: first define a predictive output
distribution, then project it onto the constraint manifold using a differentiable probabilistic projection
layer (DPPL) for end-to-end optimization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Our framework begins with an established probabilistic backbone model. This can be a Gaussian
Process (Rasmussen & Williams, 2006), neural process (Kim et al., 2019), DeepVAR (Salinas et al.,
2019; Rangapuram et al., 2021), or ensembles of neural networks or operators (Mouli et al., 2024).
The base model fθ : Φ → Rk predicts the distribution parameters (mean µθ(ϕ

(i)) and covariance
Σθ(ϕ

(i)), for θ ∈ Θ) – without constraint awareness. We then use a reparameterization function
r : Rk × Rn → Rl to define the distribution in one of two ways: either as an identity map, where
l = k, that returns fθ(ϕ(i)) =

(
µθ(ϕ

(i)),Σθ(ϕ
(i))

)
for our efficient sample-free paradigm during

training; or as a map, where l = n, that combines the distribution parameters with noise ξ ∼ p(ξ)
∈ Rn, where p denotes a tractable sampling distribution, and gives a sample zθ(ϕ

(i)) ∼ Zθ(ϕ
(i))

∈ Rn from the predicted distribution to generate constrained samples at inference. This dual-mode
design balances training efficiency with strict constraint feasibility at inference.

The reparameterization function induces the base (unconstrained) distribution parameters or predictive
random variable as:

r(fθ(ϕ
(i)), ξ) =

{(
µθ(ϕ

(i)),Σθ(ϕ
(i))

)
, (Training)

Zθ(ϕ
(i)), (Inference)

(5)

Following this Predictor Step above, we use the DPPL in the Corrector Step to restrict the parameter
space to Θ̄ ⊆ Θ, such that for all ûθ(ϕ

(i)) ∼ Yθ(ϕ
(i)), the constraints g(ûθ(ϕ

(i))) ≤ 0 and
h(ûθ(ϕ

(i))) = 0 are satisfied. The DPPL is our core architecture innovation for leveraging the base
model to learn predictions that satisfy the given constraints. We define the projected distribution
parameters or projected predictive random variable as:

DPPL(r(fθ(ϕ(i)), ξ), g(·), h(·)) = r(f̂θ(ϕ
(i)), ξ) =

{(
µ̂θ(ϕ

(i)), Σ̂θ(ϕ
(i))

)
, (Training)

Yθ(ϕ
(i)), (Inference)

(6)

for r(fθ(ϕ(i)), ξ) in Eq. (5), where f̂θ : Φ → Y ⊂ Rk denotes the probabilistic model that outputs
the constrained distribution parameters (µ̂θ(ϕ

(i)), Σ̂θ(ϕ
(i))). Our DPPL yields a constraint-satisfying

realization u∗ ∼ Yθ(ϕ
(i)) as the final predictive random variable.

This two-step approach mirrors predictor-corrector methods (Boyd & Vandenberghe, 2004; Bertsekas,
1997), with the DPPL serving as our key architectural innovation for ensuring constraint satisfaction.
Equivalently, the DPPL can be formulated as a constrained least squares problem on the samples of
Zθ(ϕ

(i)). (See Appendix C for details.) Prior works on imposing hard constraints in time series and
solving PDEs (Rangapuram et al., 2021; Hansen et al., 2023) reduce to special cases of our method
with linear constraints. (See Appendix D for details.) We draw zθ(ϕ

(i)) ∼ Zθ(ϕ
(i)), and we solve

the following constrained optimization problem:

u∗(zθ(ϕ
(i))) := argmin

ûθ(ϕ
(i))∈Rn,g(ûθ(ϕ

(i)))≤0,h(ûθ(ϕ
(i)))=0

∥ûθ(ϕ
(i))− zθ(ϕ

(i))∥2Q, (7)

where u∗(zθ(ϕ
(i))) denotes a predicted sample of Yθ(ϕ

(i)), and where ∥x∥Q =
√

x⊤Qx for some
symmetric positive semi-definite matrix Q. (See Appendix E for details on the flexibility of learning
various forms of Q.)

3.3 DPPL ON THE DISTRIBUTION PARAMETERS FOR LOCATION-SCALE DISTRIBUTIONS

In this subsection, we detail how to directly compute the parameters for the constrained distribution by
applying our DPPL on the base distribution parameters for an efficient, sampling-free during training.
To do so, we can assume that the prior distribution F belongs to a multivariate, location-scale family,
i.e., a distribution such that any affine transformation Y of a random variable Z = µ + Σ1/2ξ ∼
F(µ,Σ) and ξ ∼ F(0, 1), remains within the same distribution family F . This is an example of how
to compute the random variable in Eq. (5) for a multivariate location-scale distribution. A familiar
case of this is when Z ∼ N (µ,Σ) and Y = AZ + B is an affine transformation; in which case
Y ∼ N (Aµ+B,AΣA⊤). Alternatively, we can show that when Y is a nonlinear transformation
of Z, it has approximately (to first-order) the same distribution Z, with an appropriately-chosen set
of parameters (given in Eq. (8) below). We state this result more formally in Theorem 3.1. The
proof, given in Appendix F, uses a first-order Taylor expansion to linearize the nonlinear function
transformation, and is similar to the Multivariate Delta Method (Casella & Berger, 2001).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 3.1. Let Z ∼ F(µ,Σ) be a random variable, where the underlying distribution F belongs
to a multivariate location-scale family of distributions, with mean µ and covariance Σ; and let
T be a function with continuous first derivatives, such that JT (µ)ΣJT (µ)⊤ is symmetric positive
semi-definite. Then, the transformed distribution Y = T (Z) converges in distribution with first-
order accuracy to F(µ̂, Σ̂) with mean µ̂ = T (µ) and covariance Σ̂ = JT (µ)ΣJT (µ)

⊤, where
JT (µ) = ∇T (µ)

⊤ denotes the Jacobian of T with respect to z evaluated at µ.

Let Z ∼ F(µ,Σ) denote the prior distribution and z ∼ Z. We apply Theorem 3.1 with T (z) = u∗(z),
where u∗(z) denotes the solution of the constrained least squares problem in Problem (7). In this
case, the projected random variable satisfies Y ∼ F(µ̂, Σ̂) with updated parameters:

µ̂ = T (µ), Σ̂ = JT (µ) ΣJT (µ)
⊤. (8)

3.4 DPPL FOR VARIOUS CONSTRAINT TYPES

In this subsection, we discuss how to compute the DPPL for various constraint types (linear equality,
nonlinear equality, and convex inequality) for both train and inference modes. Table 1 shows these
constraints types require different treatments: linear equality have closed-form projections, nonlinear
equality can be solved with iterative methods, and convex inequality require optimization solvers.

Table 1: Summary of DPPL in ProbHardE2E for various constraint types. For linear equality
constraints, the oblique projection PQ−1 = I − Q−1A⊤(AQ−1A⊤)−1A; for nonlinear equality
constraints, R denotes the first-order optimality conditions.

Constraint Type Solution u∗(z) Solver Type Jacobian JT
Linear Equality PQ−1z + (I − PQ−1)A†b closed-form PQ−1

Nonlinear Equality (u∗, λ∗) s.t. R(u∗, λ∗; z) = 0 nonlinear implicit differentiation

Convex Inequality argmin
h(û)=0, g(û)≤0

∥û− z∥2Q convex opt. sensitivity analysis;
argmin differentiation

3.4.1 LINEAR EQUALITY CONSTRAINTS

For linear equality constraints, we have an underdetermined linear system h(û) = Aû− b = 0, where
A ∈ Rq×n, q < n, and has full row rank q. In this case, we can derive a closed-form solution to the
constrained least squares Problem (7). In this case, both training and inference modes are equivalent
since the DPPL projection is exact. (See Appendix C.1.)

3.4.2 NONLINEAR EQUALITY CONSTRAINTS

For nonlinear equality constraints, h(û) = 0, we can no longer derive the exact closed-form expres-
sion for the solution. Instead, we can provide an expression which is satisfied by the optimal solution.
In particular, we approximate the parameter-level projection at training time. This can then be
solved for the posterior mean µ̂ = u∗(µ) in Eq. (8) with the nonlinear transformation T (µ) = u∗(µ)
with iterative optimization methods, e.g., Newton’s Method. (We can then compute the posterior
covariance Σ̂ in Eq. (8) by estimating the Jacobian JT (µ) by differentiating the nonlinear equations
u∗(z) = z −Q−1∇h(u∗(z))⊤λ , h(u∗(z)) = 0 with respect to z via the implicit function theorem
(Blondel et al., 2022), and evaluating it at µ. (See Appendix C.2.) At inference, we project each
sample exactly with our custom, batched optimization solver to ensure strict constraint feasibility.

3.4.3 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

For convex inequality constraints, û in Problem (7) is in a convex set, C ⊂ Rn. Closed-form
expressions (such as those in previous subsections for linear and nonlinear equality constraints) do
not exist (Boyd & Vandenberghe, 2004). Instead, we rely on convex optimization solvers to ensure
computational efficiency and scalability to compute the solution u∗ in training. The gradients of the
convex program can be calculated efficiently using sensitivity analysis (Bertsekas, 1997; Bonnans &
Shapiro, 2013), argmin differentiation (Sun et al., 2022; Agrawal et al., 2019; Amos & Kolter, 2017;
Gould et al., 2016), and/or variational analysis (Rockafellar & Wets, 2009). These techniques provide
a means to compute the Jacobian JT (µ), which represents the sensitivity of the optimal solution
u∗ to changes in the input vector µ, whose projection we are essentially computing to the convex
constraints space. During inference, we solve the convex program per sample. (See Appendix C.3.)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.5 SAMPLE-FREE WITH CLOSED-FORM CRPS

We use a closed-form expression for the CRPS to enable a computationally efficient and sample-free
approach for evaluating the CRPS in the loss function ℓ in Eq. (3). Calculating the CRPS for an arbi-
trary distribution requires generating samples (Rangapuram et al., 2021; Gneiting & Raftery, 2007),
but closed-form expressions for the CRPS exist for several location-scale distributions (Gaussian, lo-
gistic, student’s t, beta, gamma, uniform). Most notably, for the univariate Gaussian, the closed-form
CRPS is given as: CRPSN (z) =

[
z · (2P(z)− 1) + 2p(z)− 1√

π

]
, where p(z) = 1√

2π
exp (−z2/2)

denotes the standard normal probability density function (PDF), and P(z) =
∫ z

−∞ p(y)dy denotes
the standard normal cumulative distribution function (CDF) for z ∼ N (0, 1) (Gneiting et al., 2005;
Taillardat et al., 2016). This sample-free formulation is especially beneficial when the DPPL is
computationally intensive, e.g., in the presence of nonlinear constraints.

4 EMPIRICAL RESULTS

In our empirical evaluations, we aim to answer the following five questions about ProbHardE2E:

(Q1) Does training end-to-end with the imposed hard constraints improve upon the performance
of imposing them only at inference time?

(Q2) Is using a general oblique projection more beneficial than using the commonly-used orthog-
onal projection, and if so when?

(Q3) Does training with the distribution-agnostic proper scoring rule, CRPS instead of NLL,
improve performance?

(Q4) What are the computational savings of projecting directly on the distribution parameters and
using the closed form CRPS vs. projecting on the samples?

(Q5) How does ProbHardE2E perform when extended to more general constraints, e.g., non-
linear equality and convex inequality constraints?

See Appendix G for details on the test datasets, Appendix H for implementation details, and Ap-
pendix I for additional empirical results.

Test Cases. We demonstrate the efficacy of ProbHardE2E in two constrained optimization
applications: PDEs; and hierarchical forecasting. We show that our methodology with DPPL is
model-agnostic, as demonstrated through its high-performance integration with different base models
across applications. We first consider a series of PDE problems with varying levels of difficulty
in learning their solutions, following the empirical evaluation from Hansen et al. (2023). These
PDEs are categorized as “easy,” “medium,” and “hard,” with the difficulty level determined by the
smoothness or sharpness of the solution. (See Appendix G.1 for details.) In addition to PDEs, we
also evaluate ProbHardE2E on five hierarchical time-series forecasting benchmark datasets from
Alexandrov et al. (2019), where the goal is to generate probabilistic predictions that are coherent with
known aggregation constraints across cross-sectional hierarchies (Rangapuram et al., 2021). (See
Appendix G.2 for details.)

Baselines. We compare two variants of ProbHardE2E, i.e., ProbHardE2E-Ob, which uses a
general oblique projection (Q = Σ−1) projection and is our default unless otherwise specified, and
ProbHardE2E-Or, which uses an orthogonal projection (Q = I), against several probabilistic
deep learning baselines commonly used for uncertainty quantification in constrained PDEs and
probabilistic time series forecasting. For PDEs, ProbHardE2E uses VarianceNO (Mouli et al.,
2024), which is a probabilisitic extension of the Fourier Neural Operator (FNO) (Li et al., 2021)
as the unconstrained model. We compare ProbHardE2E with: (i) HardC, which is based on
Négiar et al. (2023); Hansen et al. (2023), and which imposes the orthogonal projection only on
the mean, but does not update the covariance; (ii) ProbConserv (Hansen et al., 2023), which
applies the oblique projection only at inference time, and works only with linear constraints (in the
nonlinear constraint case, we compare with ProbHardInf, which is a variant of ProbConserv
that imposes the nonlinear constraint at inference time only); (iii) SoftC (Hansen et al., 2023),
which introduces a soft penalty on constraint violation à la PINNs (Raissi et al., 2019; Li et al., 2024)
during training but does not guarantee constraint satisfaction at inference; and (iv) the unconstrained
model backbone VarianceNO. For hierarchical time-series forecasting, ProbHardE2E uses
DeepVAR (Salinas et al., 2019) as the probabilistic base model. We compare ProbHardE2E with:
(i) ProbConserv; (ii) HierE2E (Rangapuram et al., 2021), which enforces linear constraints via an
end-to-end orthogonal projection; classical statistical approaches including (iii) ARIMA-NaiveBU,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(iv) ETS-NaiveBU (Hyndman et al., 2011; 2025), (v) PERMBU-MINT (Taieb et al., 2017; Olivares
et al., 2022); and (vi) the unconstrained model backbone DeepVAR.

Evaluation. We evaluate ProbHardE2E using the following metrics: Mean Squared Error (MSE),
which measures the mean prediction accuracy; Constraint Error (CE), which measures the constraint
errors on the samples (conservation law for PDEs and coherency for hierarchical time series forecast-
ing); and Continuous Ranked Probability Score (CRPS), which measures performance in uncertainty
quantification (UQ). (See Appendix H.3 for details on the metrics.) For each model, we report these
metrics when trained with either CRPS or Negative Log-Likelihood (NLL) as the loss. Although
originally optimized with NLL, we also train a CRPS-based variant of ProbConserv to ensure a
fair comparison. The experiments are conducted on a single NVIDIA V100 GPU in the PDEs case,
and on an Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz in the time series forecasting case. To
ensure scalability, we use a diagonal covariance matrix Q in Problem 7, following prior work (Hansen
et al., 2023; Mouli et al., 2024). (See Appendix E for low-rank and full covariance structures.)

4.1 LINEAR CONSERVATION AND HIERARCHICAL CONSTRAINTS

In this subsection, we test ProbHardE2E on linear constraints. Table 2 presents our comparative
evaluation results across multiple PDE datasets under linear constraints, and Table 3 presents our
evaluation results across multiple time series forecasting datasets. We use these results to answer
questions (Q1)-(Q4) raised above.

Table 2: Test metrics on constrained PDEs across four datasets, which are ordered top to bottom in
their learning difficulty. Metrics include MSE ×10−5, constraint (conservation) error (CE) ×10−3,
and CRPS ×10−3. Each algorithm is trained with either CRPS or NLL. Best values per row are
highlighted in bold.

Dataset Metric ProbHardE2E-Ob ProbHardE2E-Or HardC ProbConserv SoftC VarianceNO (base)
CRPS NLL CRPS NLL CRPS NLL CRPS NLL CRPS NLL CRPS NLL

Heat
MSE 0.036 0.047 0.031 0.301 0.031 0.090 0.027 1.26 0.051 0.156 0.029 2.01
CE 0 0 0 0 0 0 0 0 0.852 4.806 1.76 34.3
CRPS 0.304 0.37 0.271 0.713 0.275 0.452 0.392 4.27 0.354 1.129 0.396 4.39

PME
MSE 9.59 6.16 9.01 11.08 8.870 10.55 8.801 10.5 8.187 7.362 7.945 8.132
CE 0 0 0 0 0 0 0 0 17.091 29.31 20.19 27.2
CRPS 2.01 2.65 1.798 1.80 1.785 1.667 2.03 2.49 2.065 2.444 2.02 2.43

Advection
MSE 131 262 88.09 310.82 103.78 458.38 134 277 148.11 599.11 149 605
CE 0 0 0 0 0 0 0 0 19.334 182.99 18.9 182
CRPS 4.19 7.03 2.94 8.669 3.236 11.23 3.88 7.90 3.963 9.702 3.98 10.1

Stefan
MSE 186 207 394.84 432.92 394.29 433.28 303 273 431.89 429.06 425 425
CE 0 0 0 0 0 0 0 0 166.93 168.75 180 169
CRPS 7.52 7.85 14.147 14.67 14.432 14.539 7.85 8.33 9.878 10.062 9.51 10.2

Q1. Regarding (Q1) on the benefits of training end-to-end with a hard constraint, the results demon-
strate that our method achieves superior performance compared to existing approaches. Specifically,
when measured against two accuracy metrics across four PDE datasets in Table 2, our method
with either oblique (ProbHardE2E-Ob) or orthogonal (ProbHardE2E-Or) projection consis-
tently outperforms both ProbConserv, which applies constraints only during post-processing, and
SoftC, which implements constraints as soft penalties, as measured by the desired CRPS metric.
This performance advantage directly addresses research question (Q1), showing that our end-to-end
approach is more effective than methods that treat constraints as either post-processing steps or soft
penalties. In addition, across five diverse hierarchical time-series datasets, our method achieves
state-of-the-art CRPS on the LABOUR, TOURISM-L, and WIKI datasets. On the TOURISM and
TRAFFIC datasets, it remains highly competitive, outperforming traditional approaches, e.g., ARIMA
and ETS, and offering comparable performance to specialized methods, e.g., PERMBU-MINT and
HierE2E.

Q2. Regarding (Q2) on the effectiveness of the oblique vs. orthogonal projections, Table 2
shows while both oblique (ProbHardE2E-Ob) and orthogonal (ProbHardE2E-Or) variants
of ProbHardE2E enforce zero constraint error, their impact on predictive fidelity varies signifi-
cantly, depending on the difficulty of the PDE problem. For the “easy” (smooth) Heat equation and
“medium” tasks (PME and Advection), orthogonal projection reduces CRPS by 10− 30% relative to
oblique projection and improves MSE by up to 33%. However, in the “hard” (sharp) nonlinear Stefan

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

problem, the oblique projection-based method improves CRPS by more than 50% compared to the
orthogonal projection. Table 3 shows that ProbHardE2E-Or generally performs better on the time
series datasets with cross-sectional hierarchies, as it improves CRPS on LABOUR and TOURISM
datasets, compared to ProbHardE2E-Ob. This addresses (Q2) that correcting predictions along
covariance-weighted (oblique) directions better preserves the true uncertainty structure around shocks
and spikes, performing more effectively on problems with heteroscedastic data.

Table 3: CRPS ×10−3 for hierarchical time-series datasets across various probabilistic forecasting
algorithms. Constraint (coherency) error (CE) is given in parenthesis and is equal to 0 for all methods
except the base unconstrained DeepVAR. PERMBU-MINT is not available for TOURISM-L, because
the dataset has a nested hierarchical structure, and PERMBU-MINT is not well-defined on this type
of dataset (Rangapuram et al., 2021). ARIMA-NaiveBU, ETS-NaiveBU and PERMBU-MINT are
deterministic models with no model uncertainty.

Dataset ProbHardE2E-Ob ProbHardE2E-Or ProbConserv HierE2E ARIMA-NaiveBU ETS-NaiveBU PERMBU-MINT DeepVAR (base)

LABOUR 36.1± 2.7 (0) 28.6±6.5 (0) 45.8±6.5 (0) 50.5±20.6 (0) 45.3 (0) 43.2 (0) 39.3 (0) 38.2±4.5 (0.215)

TOURISM 98.9±13.0 (0) 82.4±6.6 (0) 100.7±7.7 (0) 103.1±16.3 (0) 113.8 (0) 100.8 (0) 77.1 (0) 92.5±2.2 (2818.01)

TOURISM-L 155.2±3.6 (0) 156.4±9.4 (0) 176.9±21.5 (0) 161.3±10.9 (0) 174.1 (0) 169.0 (0) – 158.1±10.2 (70000)

TRAFFIC 55.0±10.6 (0) 60.6±7.8 (0) 71.0±3.9 (0) 41.8±7.8 (0) 80.8 (0) 66.5 (0) 67.7 (0) 40.0±2.6 (0.192)

WIKI 212.1±29.4 (0) 215.8±16.9 (0) 264.7± 30.7 (0) 216.5±26.7 (0) 377.2 (0) 467.3 (0) 281.2 (0) 229.4±15.8 (8398.6)

Q3. Regarding (Q3) on the training objective, Table 2 shows that training with the proper scoring
rule, such as CRPS, improves UQ (measured by CRPS) across nearly all PDE datasets compared
to training with the commonly-used NLL in previous SciML works. The only exception is HardC
in the PME. The CRPS training objective also improves mean accuracy (measured by MSE) in
approximately three-quarters of the dataset-model experiments. In addition, Table 3 shows that
on four out of five time series datasets, we improve upon the results of HierE2E, which uses
the DeepVAR base model with an orthogonal projection on the samples, and which optimizes the
sampling-based quantile loss by projecting directly on the distribution parameters.

Q4. Regarding (Q4) on the computational efficiency of our sampling-free approach, Fig. 1(a) shows
the training time per epoch for the hierarchical time series datasets. Models trained for time series
and PDEs (see Appendix I.1) with 100 posterior samples per training step incur a 3.3–4.6× increase
in epoch time relative to ProbHardE2E, which avoids sampling altogether by using a closed-form
CRPS loss. Note that the computational overhead of ProbHardE2E is approximately 2× that of
the unconstrained model. However, compared to the sampling-based probabilistic baselines, our
approach with the DPPL layer that directly projects distribution parameters and a closed-form CRPS
objective offers significant training-time speed-ups across all forecasting and PDE testbeds.

4.2 GENERAL NONLINEAR EQUALITY AND CONVEX INEQUALITY CONSTRAINTS (Q5)

In this subsection, we test ProbHardE2E on nonlinear equality and convex inequality constraints
to address question (Q5) on PDE datasets, as (current) time series forecasting applications usually
need predictions to satisfy only linear (e.g., hierarchical) constraints.

4.2.1 NONLINEAR EQUALITY CONSTRAINTS

We test ProbHardE2E with general nonlinear constraints using nonlinear conservation laws from
PDEs. (See Appendix I.2 for details.) Importantly, Table 4 shows that even in this challenging case of
nonlinear constraints, the constraint error (CE) on the samples is 0 so that we ensure strict feasibility
on the samples. In addition, we see superior performance of enforcing nonlinear constraints with
ProbHardE2E. We see an even larger MSE performance improvement of at most ≈ 15 − 17×
when trained on CRPS, and CRPS performance improvement of at most ≈ 2.5× for m ∈ [2, 3] over
the various baselines that apply the nonlinear constraint just at inference time (ProbHardInf),
as a reduced linear constraint (ProbConserv) at inference time, and the unconstrained model
(VarianceNO). These results highlight the benefit of training end-to-end with the constraint in the
nonlinear case. In particular, this validates our dual mode training and inference approach, where
we obtain the computational benefits of projecting on the parameters and approximately satisfying
the constraint during training, and exact constraint sanctification at inference time while achieving
state-of-the-art performance measured in CRPS. In addition, Fig. 1(b) shows that ProbHardE2E is
able to significantly better capture the shock and has tighter uncertainty estimates, leading to lower
CRPS values than the baselines.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Labour Tourism Wiki Traffic Tourism-L
Time Series Dataset

0

10

20

30

40

50

60

T
im

e
 p

e
r

it
e
ra

ti
o
n
 (

s)

ProbHardE2E-or
ProbHardE2E-ob
HierE2E

(a) Linear Equality: Timing

0.46 0.48 0.50 0.52 0.54 0.56 0.58
x

0.0

0.2

0.4

0.6

u
(x

,t
=

0
.5

1
)

True
ProbConserv ±3
ProbHardInf ±3
ProbHardE2E ±3

(b) Nonlinear Equality: PME

0.55 0.60 0.65 0.70 0.75 0.80
x

0.5

0.0

0.5

1.0

1.5

u
(x

,t
=

0.
11

)

True
VarianceNO ±3
ProbConserv ±3
ProbHardE2E ±3

(c) Convex Inequality: TVD

Figure 1: ProbHardE2E on the various constraint types. (a) Linear Equality: Average time per
iteration (in seconds) for ProbHardE2E, compared to the HierE2E on five hierarchical time-
series datasets; (b) Nonlinear Equality: Mean ±3 standard deviation for the PME with conservation
constraint at time t = 0.51, with PDE parameter mtrain ∈ [3, 4] and mtest = 3.88; (c) Convex
Inequality: Mean ±3 standard deviation for linear advection with TVD constraint at time t = 0.51,
with PDE parameter βtrain ∈ [1, 2] and βtest = 1.5. The horizontal axes in (b)-(c) are zoomed in to
highlight the uncertainty near the propagating front.

Table 4: Test metrics on the nonlinear PME with PDE coefficient k(u) = um, which controls the
sharpness of the solution (larger values are “harder”), for NLL and CRPS training. The training and
test parameters are sampled from this range of m. Metrics include MSE ×10−6, calibration error
(CE) ×10−3, and CRPS ×10−4. Best values per row and metric are bolded.

PME Dataset Metric ProbHardE2E-Ob ProbHardE2E-Or ProbHardInf ProbConserv VarianceNO (base)
CRPS NLL CRPS NLL CRPS NLL CRPS NLL CRPS NLL

m ∈ [2, 3]
MSE 5.04 106.638 9.38 43.5 78.185 86.147 88.539 94.467 80.342 89.212
CE 0 0 0 0 0 0 0 0 0.020 0.028
CRPS 8.648 18.867 11.34 14.8 19.005 32.977 20.672 36.724 20.779 37.140

m ∈ [3, 4]
MSE 296.4 471.3 3.19 134.7 157.8 200.2 184.5 276.4 162 201.5
CE 0 0 0 0 0 0 0 0 14.8 34.1
CRPS 11.23 16.9 7.10 11.18 22.60 30.4 24.7 35.1 23.7 48.5

m ∈ [4, 5]
MSE 424.8 716.8 1.59 206.49 280.4 332.3 276.7 619.9 199.2 341.7
CE 0 0 0 0 0 0 0 0 22.8 59.7
CRPS 10.8 19.9 5.62 9.36 23.3 32.4 25.4 41.3 27.2 35.9

4.2.2 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

We impose a convex relaxation of the total variation diminishing (TVD) constraint that has been
commonly used in numerical methods for PDEs to minimize artificial oscillations (LeVeque, 2002).
In particular, we impose TVD =

∑Nt

n=1

∑Nx

i=1 |u(tn, xi+1)− u(tn, xi)| as a regularization term.
(See Appendix I.3 for details.) Note that this discrete form is analogous to total variation denois-
ing in signal processing (Rudin et al., 1992; Boyd & Vandenberghe, 2004). Fig. 1(c) illustrates
that imposing this TVD relaxation improves the shock location prediction, compared to the uncon-
strained model VarianceNO. We see that ProbHardE2E has smaller variance, compared to both
ProbConserv, which only enforces the conservation law, and VarianceNO. Most importantly,
we see that ProbHardE2E is less likely to predict non-physical negative samples, which violates
the positivity of the true solution. In addition, the variance of the ProbHardE2E solution also has a
smaller peak above the shock, and hence it is less prone to oscillations than the other baselines.

5 CONCLUSION

à la finite volume methods (LeVeque, 2002). Future work also includes extending our method to
handle general non-convex, nonlinear inequality constraints using advanced optimization techniques
or relaxations, to richer covariance parameterizations, e.g., low-rank or dense, and to empirical
distributions other than location-scale families by sample projection.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. In Advances in neural information processing systems,
volume 32, 2019.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, et al. Gluonts: Probabilistic and neural time series modeling in python. Journal of Machine
Learning Research, 21(116):1–6, 2019.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
Proceedings of the 34th International Conference on Machine Learning, volume 70, pp. 136–145.
PMLR, 2017.

Oren Anava, Vitaly Kuznetsov, and (Google Inc. Sponsorship). Web traffic time series forecasting,
forecast future traffic to wikipedia pages. Kaggle Competition, 2018. URL https://www.
kaggle.com/c/web-traffic-time-series-forecasting/.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. Transactions on Machine Learning Research,
2024.

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Anastasios Panagiotelis. Forecast
reconciliation: A review. International Journal of Forecasting, 40(2):430–456, 2024.

Australian Bureau of Statistics. Labour Force, Australia. Accessed Online, 2019. URL
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6202.0Dec%
202019?OpenDocument.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Souhaib Ben Taieb and Bonsoo Koo. Regularized regression for hierarchical forecasting without
unbiasedness conditions. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 1337–1347, 2019.

Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Yuyang Wang, Danielle
Maddix, Caner Turkmen, Jan Gasthaus, Michael Bohlke-Schneider, David Salinas, Lorenzo Stella,
François-Xavier Aubet, Laurent Callot, and Tim Januschowski. Deep learning for time series
forecasting: Tutorial and literature survey. ACM Comput. Surv., 55(6), 2022.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Tom Beucler, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine. Enforc-
ing analytic constraints in neural networks emulating physical systems. Physical Review Letters,
126(9):098302, 2021.

Lorenz T Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart van Bloemen Waanders. Large-
scale pde-constrained optimization: an introduction. In Large-scale PDE-constrained optimization,
pp. 3–13. Springer, 2003.

ke Björck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied
Mathematics, 1996.

Mathieu Blondel and Vincent Roulet. The elements of differentiable programming. arXiv preprint
arXiv:2403.14606, 2024.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation. In
Advances in Neural Information Processing Systems, volume 35, pp. 5230–5242, 2022.

10

https://www.kaggle.com/c/web-traffic-time-series-forecasting/
https://www.kaggle.com/c/web-traffic-time-series-forecasting/
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6202.0Dec%202019?OpenDocument
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6202.0Dec%202019?OpenDocument

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Thomas Bolton and Laure Zanna. Applications of Deep Learning to Ocean Data Inference and
Subgrid Parameterization. Journal of Advances in Modeling Earth Systems, 11(1):376–399, 2019.

J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization problems. Springer
Science & Business Media, 2013.

Nicholas Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge University
Press, 2024.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

George Casella and Roger Berger. Statistical Inference. Duxbury Resource Center, June 2001.

Nithin Chalapathi, Yiheng Du, and Aditi Krishnapriyan. Scaling physics-informed hard constraints
with mixture-of-experts. In International Conference on Learning Representations, 2024.

Hao Chen, Gonzalo E. Constante Flores, and Can Li. Physics-informed neural networks with hard
linear equality constraints. Computers and Chemical Engineering, 189:108764, 2024.

Chaoran Cheng, Boran Han, Danielle C. Maddix, Abdul Fatir Ansari, Andrew Stuart, Michael W. Ma-
honey, and Yuyang Wang. Gradient-free generation for hard-constrained systems. In International
Conference on Learning Representations, 2025.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv preprint arXiv:2310.10688, 2023.

Priya L Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with hard
constraints. In International Conference on Learning Representations, 2021.

Chris Edwards. Neural networks learn to speed up simulations. Communications of the ACM, 65(5):
27–29, 2022.

Carson Eisenach, Yagna Patel, and Dhruv Madeka. Mqtransformer: Multi-horizon forecasts with
context dependent and feedback-aware attention. arXiv preprint arXiv:2009.14799, 2022.

Rasool Fakoor, Taesup Kim, Jonas Mueller, Alexander J. Smola, and Ryan J. Tibshirani. Flexible
model aggregation for quantile regression. Journal of Machine Learning Research, 24(162):1–45,
2023.

Yuchen Fang, Sen Na, Michael W Mahoney, and Mladen Kolar. Fully stochastic trust-region
sequential quadratic programming for equality-constrained optimization problems. SIAM Journal
on Optimization, 34(2):2007–2037, 2024.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
meshgraphnets. 2nd AI4Science Workshop at the 39th International Conference on Machine
Learning (ICML, 2022.

Zhihan Gao, Xingjian Shi, Boran Han, Hao Wang, Xiaoyong Jin, Danielle C. Maddix, Yi Zhu, Mu Li,
and Yuyang Wang. PreDiff: Precipitation nowcasting with latent diffusion models. In Advances in
Neural Information Processing Systems, 2023.

Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar Rangapuram, David Salinas,
Valentin Flunkert, and Tim Januschowski. Probabilistic forecasting with spline quantile function
rnns. In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, volume 89, pp. 1901–1910. PMLR, 2019.

Philip E. Gill and Elizabeth Wong. Sequential quadratic programming methods. In Mixed Integer
Nonlinear Programming, pp. 147–224, New York, NY, 2012. Springer New York.

Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(2):123–214,
2011.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378, 2007.

Tilmann Gneiting, Adrian E Raftery, Anton H Westveld, and Tom Goldman. Calibrated probabilistic
forecasting using ensemble model output statistics and minimum crps estimation. Monthly Weather
Review, 133(5):1098–1118, 2005.

Gene H. Golub and Chen Greif. On solving block-structured indefinite linear systems. SIAM Journal
on Scientific Computing, 24(6):2076–2092, 2003.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447, 2016.

Stephen Gould, Richard Hartley, and Dylan Campbell. Deep declarative networks. IEEE Trans.
Pattern Anal. Mach. Intell., 44(8):3988–4004, 2022.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM, 2008.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. In Advances in Neural Information Processing Systems, volume 34, pp. 24048–24062,
2021.

Derek Hansen, Danielle C. Maddix, Shima Alizadeh, Gaurav Gupta, and Michael W. Mahoney. Learn-
ing physical models that can respect conservation laws. In Proceedings of the 40th International
Conference on Machine Learning, volume 202, pp. 12469–12510. PMLR, 2023.

Ami Harten. High resolution schemes for hyperbolic conservation laws. Journal of computational
physics, 135(2):260–278, 1997.

Ilgee Hong, Sen Na, Michael W Mahoney, and Mladen Kolar. Constrained optimization via exact
augmented lagrangian and randomized iterative sketching. In Proceedings of the 40th International
Conference on Machine Learning, volume 202, pp. 13174–13198. PMLR, 2023.

Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. The tabular foundation model tabpfn
outperforms specialized time series forecasting models based on simple features. arXiv preprint
arXiv:2501.02945, 2025.

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2003.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

Rob J. Hyndman, Roman A. Ahmed, George Athanasopoulos, and Han Lin Shang. Optimal com-
bination forecasts for hierarchical time series. Computational statistics & data analysis, 55(9):
2579–2589, 2011.

Rob J Hyndman, George Athanasopoulos, Azul Garza, Cristian Challu, Max Mergenthaler, and
Kin G. Olivares. Forecasting: Principles and Practice, the Pythonic Way. OTexts, Melbourne,
Australia, 2025. available at https://otexts.com/fpppy/.

Harry Joe. Multivariate models and multivariate dependence concepts. CRC press, 1997.

A. Kadambi, C. de Melo, CJ. Hsieh, M. Srivastava, and S. Soatto. Incorporating physics into
data-driven computer vision. Nat Mach Intell, 5:572–580, 2023.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35–45, 1960.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Muhammad Firmansyah Kasim and Yi Heng Lim. Constants of motion network. In Advances in
Neural Information Processing Systems, volume 35, pp. 25295–25305, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 5580–5590. Curran Associates Inc., 2017.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7482–7491. Computer Vision Foundation / IEEE Computer Society,
2018.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

D. Kingma and J. Ba. A method for stochastic optimization. In International Conference on Learning
Representations, 2015.

Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Milan
Klöwer, James Lottes, Stephan Rasp, Peter Düben, et al. Neural general circulation models for
weather and climate. Nature, 632(8027):1060–1066, 2024.

Steven George Krantz and Harold R. Parks. The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2002.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. In Advances in neural
information processing systems, volume 34, pp. 26548–26560, 2021.

Quoc V Le, Alex J Smola, and Stéphane Canu. Heteroscedastic gaussian process regression. In
Proceedings of the 22nd International Conference on Machine Learning, pp. 489–496. PMLR,
2005.

Randall J. LeVeque. Numerical Methods for Conservation Laws. Lectures in mathematics ETH
Zürich. Birkhäuser Verlag, 1990.

Randall J. LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge
university press, 2002.

Randall J. LeVeque. Finite difference methods for ordinary and partial differential equations:
steady-state and time-dependent problems. SIAM, 2007.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential
Equations. In International Conference on Learning Representations, 2021.

Zongyi Li, Hongkai Zheng, Nikola B. Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM / IMS J. Data Sci., 1(3), 2024.

Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):
1748–1764, 2021.

Konstantin Lipnikov, Gianmarco Manzini, J. David Moulton, and Mikhail Shashkov. The mimetic
finite difference method for elliptic and parabolic problems with a staggered discretization of
diffusion coefficient. Journal of Computational Physics, 305:111–126, 2016.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Danielle C Maddix, Luiz Sampaio, and Margot Gerritsen. Numerical artifacts in the generalized
porous medium equation: Why harmonic averaging itself is not to blame. Journal of Computational
Physics, 361:280–298, 2018a.

Danielle C Maddix, Luiz Sampaio, and Margot Gerritsen. Numerical artifacts in the discontinuous
generalized porous medium equation: How to avoid spurious temporal oscillations. Journal of
Computational Physics, 368:277–298, 2018b.

James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions.
Management science, 22(10):1087–1096, 1976.

Takashi Matsubara and Takaharu Yaguchi. Finde: Neural differential equations for finding and
preserving invariant quantities. In International Conference on Learning Representations, 2023.

Youngjae Min, Anoopkumar Sonar, and Navid Azizan. Hard-constrained neural networks with
universal approximation guarantees. arXiv preprint arXiv:2410.10807, 2024.

S. Chandra Mouli, Danielle C. Maddix, Shima Alizadeh, Gaurav Gupta, Andrew Stuart, Michael W.
Mahoney, and Yuyang Wang. Using Uncertainty Quantification to Characterize and Improve
Out-of-Domain Learning for PDEs. In Proceedings of the 40th International Conference on
Machine Learning, volume 235, pp. 36372–36418. PMLR, 2024.

Eike Hermann Müller. Exact conservation laws for neural network integrators of dynamical systems.
arXiv preprint arXiv:2209.11661, 2022.

Jorge Nocedal and J. Wright, Steven. Numerical Optimization. Springer, 2006.

Geoffrey Négiar, Michael W. Mahoney, and Aditi S. Krishnapriyan. Learning differentiable solvers
for systems with hard constraints. In International Conference on Learning Representations, 2023.

Kin G. Olivares, Federico Garza, David Luo, Cristian Challú, Max Mergenthaler, Souhaib Ben
Taieb, Shanika L. Wickramasuriya, and Artur Dubrawski. HierarchicalForecast: A reference
framework for hierarchical forecasting in python. Work in progress paper, submitted to Journal
of Machine Learning Research., abs/2207.03517, 2022. URL https://arxiv.org/abs/
2207.03517.

Kin G Olivares, O Nganba Meetei, Ruijun Ma, Rohan Reddy, Mengfei Cao, and Lee Dicker. Proba-
bilistic hierarchical forecasting with deep poisson mixtures. International Journal of Forecasting,
40(2):470–489, 2024a.

Kin G Olivares, Geoffrey Négiar, Ruijun Ma, Oinam Nganba Meetei, Mengfei Cao, and Michael W
Mahoney. ♣ CLOVER ♣: Probabilistic forecasting with coherent learning objective reparameteri-
zation. Transactions on Machine Learning Research, 2024b.

Youngsuk Park, Danielle C. Maddix, François-Xavier Aubet, Kelvin Kan, Jan Gasthaus, and Yuyang
Wang. Learning quantile functions without quantile crossing for distribution-free time series
forecasting. In Proceedings of The 25th International Conference on Artificial Intelligence and
Statistics, volume 151, pp. 8127–8150. PMLR, 2022.

Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K
Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak, John E Boylan,
et al. Forecasting: theory and practice. International Journal of Forecasting, 38(3):705–871, 2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
based simulation with graph networks. In International Conference on Learning Representations,
2021.

I. Price, A. Sanchez-Gonzalez, F. Alet, TR Andersson, A El-Kadi, D Masters, T Ewalds, J Stott,
S Mohamed, P Battaglia, R Lam, and M. Willson. Probabilistic weather forecasting with machine
learning. Nature, 637(8044):84–90, 2025.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar,
Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for scientific
machine learning. arXiv preprint arXiv:2001.04385, 2020.

14

https://arxiv.org/abs/2207.03517
https://arxiv.org/abs/2207.03517

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Syama Sundar Rangapuram, Lucien D. Werner, Konstantinos Benidis, Pedro Mercado, Jan Gasthaus,
and Tim Januschowski. End-to-end learning of coherent probabilistic forecasts for hierarchical
time series. In International Conference on Machine Learning, pp. 8832–8843. PMLR, 2021.

Syama Sundar Rangapuram, Shubham Kapoor, Rajbir Singh Nirwan, Pedro Mercado, Tim
Januschowski, Yuyang Wang, and Michael Bohlke-Schneider. Coherent probabilistic forecasting of
temporal hierarchies. In Proceedings of The 26th International Conference on Artificial Intelligence
and Statistics, volume 206, pp. 9362–9376. PMLR, 2023.

C.E. Rasmussen and C.K. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

Stephan Rasp and Sebastian Lerch. Neural networks for postprocessing ensemble weather forecasts.
Monthly Weather Review, 146(11):3885 – 3900, 2018.

Suman Ravuri, Karel Lenc, Matthew Willson, Dmitry Kangin, Remi Lam, Piotr Mirowski, Megan
Fitzsimons, Maria Athanassiadou, Sheleem Kashem, Sam Madge, et al. Skilful precipitation
nowcasting using deep generative models of radar. Nature, 597(7878):672–677, 2021.

Jack Richter-Powell, Yaron Lipman, and Ricky T. Q. Chen. Neural conservation laws: A divergence-
free perspective. In Advances in Neural Information Processing Systems, 2022.

Christian P Robert, George Casella, and George Casella. Monte Carlo statistical methods, volume 2.
Springer, 1999.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

Jo Bo Rosen. The gradient projection method for nonlinear programming. part i. linear constraints.
Journal of the society for industrial and applied mathematics, 8(1):181–217, 1960.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268, 1992.

Nadim Saad, Gaurav Gupta, Shima Alizadeh, and Danielle C. Maddix. Guiding continuous operator
learning through physics-based boundary constraints. In International Conference on Learning
Representations, 2023.

David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus. High-
dimensional multivariate forecasting with low-rank gaussian copula processes. In Advances in
neural information processing systems, volume 32, 2019.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181–1191, 2020.

Alexander Schein, Kevin T. Carlberg, and Matthew J. Zahr. Preserving general physical properties
in model reduction of dynamical systems via constrained-optimization projection. International
Journal for Numerical Methods in Engineering, 122(14):3368–3399, 2021.

James A. Sethian and John Strain. Crystal growth and dendritic solidification. Journal of Computa-
tional Physics, 98(2):231–253, 1992.

Nicki Skafte, Martin Jørgensen, and Søren Hauberg. Reliable training and estimation of variance
networks. In Advances in Neural Information Processing Systems, volume 32, 2019.

Andrew Stirn, Harm Wessels, Megan Schertzer, Laura Pereira, Neville Sanjana, and David Knowles.
Faithful heteroscedastic regression with neural networks. In International Conference on Artificial
Intelligence and Statistics, pp. 5593–5613. PMLR, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Patrick Obin Sturm and Anthony S. Wexler. Conservation laws in a neural network architecture:
enforcing the atom balance of a julia-based photochemical model (v0.2.0). Geosci. Model Dev.,
15:3417–3431, 2022.

Haixiang Sun, Ye Shi, Jingya Wang, Hoang Duong Tuan, H Vincent Poor, and Dacheng Tao.
Alternating differentiation for optimization layers. arXiv preprint arXiv:2210.01802, 2022.

Roberto Szechtman and Peter W Glynn. Constrained monte carlo and the method of control variates.
In Proceeding of the 2001 Winter Simulation Conference (Cat. No. 01CH37304), volume 1, pp.
394–400. IEEE, 2001.

Souhaib Ben Taieb, James W. Taylor, and Rob J. Hyndman. Coherent probabilistic forecasts for
hierarchical time series. In International Conference on Machine Learning, pp. 3348–3357. PMLR,
2017.

Maxime Taillardat, Olivier Mestre, Michaël Zamo, and Philippe Naveau. Calibrated ensemble
forecasts using quantile regression forests and ensemble model output statistics. Monthly Weather
Review, 144(6):2375–2393, 2016.

Irina Kalashnikova Tezaur, Jeffrey A. Fike, Kevin Thomas Carlberg, Matthew F. Barone, Danielle
Maddix, Erin E. Mussoni, and Maciej Balajewicz. Advanced fluid reduced order models for
compressible flow. Sandia National Laboratories Report, Sand No. 2017-10335, 2017.

Tourism Australia, Canberra. Tourism Research Australia (2005), Travel by Australians. https:
//www.kaggle.com/luisblanche/quarterly-tourism-in-australia/, 2005.

Marc Toussaint, Kelsey R. Allen, Kevin A. Smith, and Joshua B. Tenenbaum. Differentiable physics
and stable modes for tool-use and manipulation planning - extended abtract. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 6231–6235.
International Joint Conferences on Artificial Intelligence Organization, 2019.

Utkarsh Utkarsh, Valentin Churavy, Yingbo Ma, Tim Besard, Prakitr Srisuma, Tim Gymnich, Adam R
Gerlach, Alan Edelman, George Barbastathis, Richard D Braatz, et al. Automated translation and
accelerated solving of differential equations on multiple gpu platforms. Computer Methods in
Applied Mechanics and Engineering, 419:116591, 2024.

Utkarsh Utkarsh, Pengfei Cai, Alan Edelman, Rafael Gomez-Bombarelli, and Christopher Vincent
Rackauckas. Physics-constrained flow matching: Sampling generative models with hard constraints.
arXiv preprint arXiv:2506.04171, 2025.

J.M. van der Meer, J.F.B.M. Kraaijevanger, M. Möller, and J.D. Jansen. Temporal oscillations in
the simulation of foam enhanced oil recovery. ECMOR XV - 15th European Conference on the
Mathematics of Oil Recovery, pp. 1–20, 2016.

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

Tim Van Erven and Jairo Cugliari. Game-theoretically optimal reconciliation of contemporaneous
hierarchical time series forecasts. In Modeling and stochastic learning for forecasting in high
dimensions, pp. 297–317. Springer, 2015.

J.L. Vázquez. The Porous Medium Equation: Mathematical Theory. The Clarendon Press, Oxford
University Press, Oxford, 2007.

Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of machine learning research, 10(2), 2009.

Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-horizon
quantile recurrent forecaster. arXiv preprint arXiv:1711.11053, 2018.

Alistair White, Anna Büttner, Maximilian Gelbrecht, Valentin Duruisseaux, Niki Kilbertus, Frank
Hellmann, and Niklas Boers. Projected neural differential equations for learning constrained
dynamics. arXiv preprint arXiv:2410.23667, 2024.

16

https://www.kaggle.com/luisblanche/quarterly-tourism-in-australia/
https://www.kaggle.com/luisblanche/quarterly-tourism-in-australia/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Shanika L. Wickramasuriya, George Athanasopoulos, and Rob J. Hyndman and. Optimal forecast
reconciliation for hierarchical and grouped time series through trace minimization. Journal of the
American Statistical Association, 114(526):804–819, 2019.

Jeffrey Willette, Hae Beom Lee, Juho Lee, and Sung Ju Hwang. Meta learning low rank covariance
factors for energy-based deterministic uncertainty. arXiv preprint arXiv:2110.06381, 2021.

R.B. Wilson. A Simplicial Method for Convex Programming. PhD thesis, Harvard University, 1963.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. arXiv preprint arXiv:2402.02592,
2024.

M.J. Zahr and P.-O. Persson. An adjoint method for a high-order discretization of deforming domain
conservation laws for optimization of flow problems. Journal of Computational Physics, 326:
516–543, 2016.

Laure Zanna and Thomas Bolton. Data-Driven Equation Discovery of Ocean Mesoscale Closures.
Geophysical Research Letters, 47(17), 2020.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A RELATED WORK

In this section, we review works that have been motivated by dealing with hard constraints in various
domains including imposing constraints in neural networks (Min et al., 2024; Donti et al., 2021),
probabilistic time series forecasting (Rangapuram et al., 2023; 2021; Olivares et al., 2024b) and
scientific machine learning (Négiar et al., 2023; Hansen et al., 2023). Table 5 summarizes several
of these methods. We see that existing general methododologies, e.g., HardNet (Min et al., 2024)
and DC3 (Donti et al., 2021), work across various domains and different types of constraints—
HardNet handles convex constraints, and DC3 tackles nonlinear ones. The biggest limitation of
these methods is that they provide point estimates only. Despite having the point forecast satisfying
the constraints, they are unsuitable for PDEs and forecasting applications, which generally now
require variance estimates. Hier-E2E (Rangapuram et al., 2021) and CLOVER (Olivares et al., 2024b)
are specialized solutions for forecasting problems, which both deal with probabilistic forecasting
under linear constraints. Linear constraints are common in the time series forecasting domain. Both
methods require sampling during training, which can be computationally intensive. Within the PDE-
focused methods, ProbConserv (Hansen et al., 2023) and HardC (Hansen et al., 2023) handle linear
constraints and include variance estimates in their probabilistic models. The training procedure with
the constraint is not end-to-end since the constraint is only applied at inference time. PDE-CL (Négiar
et al., 2023) handles nonlinear constraints and supports end-to-end training, but at the cost of not
supporting variance estimation.

Table 5: Summary of methods motivated by dealing with hard constraints in various domains:
imposing constraints in neural networks (Min et al., 2024; Donti et al., 2021), probabilistic time series
forecasting (Rangapuram et al., 2023; 2021; Olivares et al., 2024b) and scientific machine learning
(Négiar et al., 2023; Hansen et al., 2023). For models that only provide point estimates, we evaluate
their capabilities on sampling-free training and satisfying constraints on distributions, while treating
the point estimate as a degenerate probabilistic distribution.

Method Domain Constraint
Type

End-to-
End

Prob.
Model w/
Variance
Estimate

Sampling-
free

Training

Constraint
on Dstbn.

HardNet (Min et al., 2024) General Convex ✓ ✗ ✓ ✓
DC3 (Donti et al., 2021) General Nonlinear ✓ ✗ ✓ ✓
Hier-E2E (Rangapuram et al., 2021; 2023) Forecasting Linear ✓ ✓ ✗ ✗
CLOVER (Olivares et al., 2024b) Forecasting Linear ✓ ✓ ✗ ✓
PDE-CL (Négiar et al., 2023) PDEs Nonlinear ✓ ✗ ✓ ✓
ProbConserv (Hansen et al., 2023) PDEs Linear ✗ ✓ ✓ ✓
HardC (Hansen et al., 2023) PDEs Linear ✗ ✓ ✓ ✓

ProbHardE2E (Ours) General Nonlinear ✓ ✓ ✓ ✓

Our proposed method ProbHardE2E bridges the gaps left by its predecessors. It combines the
flexibility of general domain application with the ability to handle nonlinear constraints, and it
maintains end-to-end training capability. Perhaps most notably, it achieves this while incorporating
probabilistic modeling with variance estimates, supporting sampling-free training, and maintaining
constraints on distributions.

A.1 IMPOSING DETERMINISTIC CONSTRAINTS ON NEURAL NETWORKS

Enforcing constraints in neural networks (NNs) has been explored in various forms. In fact, activation
functions, e.g., sigmoid, ReLU, and softmax, inherently impose implicit constraints by restricting out-
puts to specific intervals. Another well-established method for enforcing constraints in NNs involves
differentiating the Karush-Kuhn-Tucker (KKT) conditions, which enables backpropagation through
optimization problems. This technique has led to the development of differentiable optimization
layers (Amos & Kolter, 2017; Agrawal et al., 2019) and projected gradient descent methods (Rosen,
1960).

Most commonly, soft constraint methods, e.g., Lagrange duality based methods, are often employed
in ML to balance minimizing the primary objective with satisfying the constraints. These methods
typically do so by adding the constraint as a penalty term to the loss function (Battaglia et al., 2018).
For example, Lagrange dual methods and relaxed formulations are frequently used to allow flexibility

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

in the optimization process, while still guiding the model toward feasible solutions. These methods
encourage—but do not strictly enforce—adherence to the constraints during training; and this lack of
strict enforcement can be undesirable in some scientific disciplines, where known constraints must be
satisfied exactly (Hansen et al., 2023; Rangapuram et al., 2021).

More recently, there have been approaches that have been motivated by satisfying hard constraints.
DC3 (Donti et al., 2021) is a general method for learning a family of constrained optimization
problems using a correction and variable completion procedure. The variable completion approach
has a strong theoretical and practical foundation. A limitation is that it does require knowledge of the
structure of the matrix A to identify these corresponding predicted and completed variables, which
hinders its generalizability. In addition for inequality constraints, it only achieves hard constraint
satisfaction asymptotically; that is, the “correction” procedure to enforce inequality constraints is
carried out through gradient-descent optimization algorithms (Min et al., 2024; Donti et al., 2021).

Projection-based methods are an alternate method for enforcing hard constraints in NNs. Min et al.
(2024) identify cases where the aforementioned DC3 framework (Donti et al., 2021) is outperformed
by their proposed HardNet projection layer approach. Additionally, Min et al. (2024) investigate the
expressiveness of projection layers, which builds on the foundational work in Agrawal et al. (2019);
Amos & Kolter (2017), to further advance the understanding of constraint enforcement in NNs.
Projection-based methods have also been used to enforce constraints on specific architectures, e.g.,
neural ordinary differential equations (Neural ODEs) (Kasim & Lim, 2022; Matsubara & Yaguchi,
2023). In particular, White et al. (2024) use a closed-form projection operator to enforce a nonlinear
constraint g(u) = 0 in a Neural ODE, using techniques from Boumal (2024). A common limitation
of these works is that they impose the constraint deterministically, on point estimates rather than on
an entire probability distribution.

A.2 PROBABILISTIC TIME SERIES FORECASTING

Probabilistic time series forecasting extends beyond predicting point estimates, e.g., the mean or
median, by providing a framework to capture uncertainty, with practical application in estimating
high quantiles, e.g., P99. Classical statistical models, e.g., autoregressive integrated moving average
(ARIMA) models (Box et al., 2015), state-space models (Kalman, 1960), and copula-based models
(Joe, 1997) are prominent examples. More recently, deep learning models, e.g., DeepAR (Salinas
et al., 2020) and its multivariate extension DeepVAR (Salinas et al., 2019), multivariate quantile
regression-based models (Wen et al., 2018; Eisenach et al., 2022; Park et al., 2022), temporal fusion
transformers (TFT) (Lim et al., 2021), and foundational models based on large language models
(LLMs) (Ansari et al., 2024; Hoo et al., 2025; Das et al., 2023; Woo et al., 2024) have shown success.
See Benidis et al. (2022) for an overview.

Linear constraints are important in hierarchical time series forecasting, where coherent aggregation
constraints are required over regions (Rangapuram et al., 2021; Olivares et al., 2024b) and over
temporal hierarchies (Rangapuram et al., 2023). This constraint is critical in scenarios where higher-
level forecasts must be aggregates of lower-level ones, which is a common requirement in time-series
forecasting. Early works in hierarchical forecasting focus on mean forecasts under linear/hierarchical
constraints, starting from the naive bottom-up and top-down approaches (Hyndman & Athanasopoulos,
2018). More recently, Hyndman et al. (2011) show that the Middle-Out projection-based method
yields better forecast accuracy. Since then, projection-based reconciliation methods, e.g., GTOP
(Van Erven & Cugliari, 2015), MinT (Wickramasuriya et al., 2019), and ERM (Ben Taieb & Koo,
2019) have been developed. These methods leverage generic time series models, e.g., ARIMA and
exponential smoothing (ETS), to derive the unconstrained mean forecast, and then they use a linear
projection to map these forecasts to the consistent space. Taieb et al. (2017) further extend the
reconciliation method (MinT) to probabilistic forecasting by developing a method called PERMBU
that constructs cross-sectional dependence through a sequence of permutations. A more thorough
review of forecasting reconciliation is provided in Athanasopoulos et al. (2024).

To better handle the trade-off between forecast accuracy and coherence within the model, several
works have proposed end-to-end methodologies. For example, Rangapuram et al. (2021) propose
Hier-E2E, which is an end-to-end learning approach that imposes constraints via an orthogonal
projection on samples from the distribution. Hier-E2E produces coherent probabilistic forecasts
without requiring explicit post-processing reconciliation. One limitation is that Hier-E2E relies on

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

expensive sampling techniques to achieve this coherence, by projecting directly on the samples rather
than on the distribution itself, which has a closed-form expression.

Separately, DPMN (Olivares et al., 2024a) adopts an equality constraint completion approach similar
to that in DC3 (Donti et al., 2021), rather than a projection-based approach, for satisfying the co-
herency constraint. DPMN assumes that the bottom-level series follow a Poisson mixture distribution,
with a multivariate discrete distribution on the Poisson rates across bottom-level series. Compared
to Hier-E2E, DPMN uses a CNN-based encoder rather than DeepVAR, and it shows improved
forecast accuracy over Hier-E2E. As follow-up work to DPMN, Olivares et al. (2024b) propose
CLOVER, a framework which enforces coherency as a hard constraint in probabilistic hierarchical
time series forecasting models using a CNN encoder. In particular, CLOVER only predicts the base
forecasts in the first step, and it solves for the aggregate forecasts by leveraging the constraint relation.
Finally, CLOVER models the joint distribution of all the forecasts in the scoring function calculation.
Similar to Hier-E2E, CLOVER also relies on sampling to enforce hierarchical coherency and to
generate uncertainty estimates. This affects the training time, and it requires tuning of the number of
samples for an accurate approximation of this scoring function. Although CLOVER admits constraint
satisfaction, the exact provably convergent procedure only exists for linear equality constraints (Donti
et al., 2021), and it has not been applied to nonlinear equality or convex inequality constraints.

A.3 SCIENTIFIC MACHINE LEARNING (SCIML)

Partial differential equations (PDEs) are ubiquitous in science and engineering applications, and have
been used to model various physical phenomena, ranging from nonlinear fluid flows with the Navier-
Stokes equations to nonlinear heat transfer. Classical numerical methods to solve PDEs include finite
difference (LeVeque, 2007), finite element (Hughes, 2003), and finite volume methods (LeVeque,
2002). These numerical methods discretize the solution on a spatio-temporal mesh, and the accuracy
increases as the mesh becomes finer. For this reason, numerical methods can be computationally
expensive on real-world, time dependent, 3D spatial problems that require fine meshes for high
accuracy.

Recently, Scientific Machine Learning (SciML) methods aim to alleviate the high computational
requirement of numerical methods. State-of-the-art data-driven methods include operator-based
methods, which aim to learn a mapping from PDE parameters or initial/boundary conditions to the
PDE solution, e.g., Neural Operators (NOs) (Li et al., 2020; 2021; Gupta et al., 2021) and DeepONet
(Lu et al., 2021), and message-passing Graph Neural Networks (GNNs)-based MeshGraphNets (Pfaff
et al., 2021; Fortunato et al., 2022). These data-driven methods are not guaranteed to satisfy the PDE
or known physical laws exactly, e.g., conservation laws (Hansen et al., 2023; Mouli et al., 2024) or
boundary conditions (Saad et al., 2023; Cheng et al., 2025) since they only implicitly encode the
physics through the supervised training simulation data (Kadambi et al., 2023).

Similar to imposing constraints on NNs, most work on imposing constraints in SciML has been
focused on soft constraints. One well-known type of approach is Physics-Informed Neural Networks
(PINNs) (Raissi et al., 2019; Karniadakis et al., 2021), which approximates the solution of a PDE
as a NN. PINNs and similarly Physics-Informed Neural Operators (PINOs) (Li et al., 2024) impose
the PDE as an additional term in the loss function, akin to the aforementioned soft constraint
regularization. Krishnapriyan et al. (2021); Edwards (2022) identify limitations of this approach
on problems with large PDE parameter values, where adding this regularization term can actually
make the loss landscape sharp, non-smooth and more challenging to optimize. In addition, Hansen
et al. (2023) show that adding the constraint to the loss function does not guarantee exact constraint
enforcement, which can be critical in the case of conservation and other physical laws. This constraint
violation primarily happens because the Lagrangian duals of the constrained optimization problem
are typically non-zero, i.e., the physical constraint is not exactly satisfied.

Recent work has studied imposing physical knowledge as hard constraints on various SciML methods.
Négiar et al. (2023) propose PDE-CL, which uses differentiable programming and the implicit
function theorem (Krantz & Parks, 2002) to impose nonlinear PDE constraints directly. Chalapathi
et al. (2024), extend this work by leveraging a mixture-of-experts (MoE) framework to better scale
the method. Similarly, Beucler et al. (2021) impose analytical constraints in NNs with applications to
climate modeling. In addition, Universal Differential Equations (UDEs) (Rackauckas et al., 2020;
Utkarsh et al., 2024) provide a GPU-compatible and end-to-end differentiable way to learn PDEs

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

while also enforcing implicit constraints. Chen et al. (2024) propose KKT-hPINN to enforce linear
equality constraints by using a projection layer that is derived from the KKT conditions. These
works show the benefit of imposing the PDE as a hard constraint rather than as a soft constraint. A
limitation of these methods is that they impose the constraints deterministically, and they do not
provide estimates of the underlying variance or uncertainties. To address this, Hansen et al. (2023)
propose ProbConserv, which incorporates linear conservation laws as hard constraints on probabilistic
models by performing an oblique projection to update the unconstrained mean and variance estimates.
Limitations are that this projection is only applied as a post-processing step at inference time, and the
method only supports linear constraints.

B UNIVERSAL APPROXIMATION GUARANTEES

In this section, we prove a universal approximation result for our differentiable probabilistic projection
layer (DPPL) in the case of convex constraints. As a consequence of this result, our ProbHardE2E
in Algorithm 1 is a universal approximator, and can approximate any continuous target function that
satisfies the given constraints. Our proof of this result generalizes the analysis of Min et al. (2024)
from the case Q = I to our broader framework with arbitrary Q. Since Q is symmetric positive
definite, we compute its Cholesky factorization Q = LLT , where L denotes a lower triangular matrix.
We then show that if fθ is a universal approximator, i.e., a sufficiently wide and deep neural network,
then our DPPL preserves this universal approximation capability. Hence, ProbHardE2E retains
the expressiveness of neural networks, both in its probabilistic formulation and in enforcing hard
constraints.

Our DPPL in Problem (7) is formulated in terms of projecting the samples zθ(ϕ
(i)) ∼ Zθ(ϕ

(i)),
where Zθ(ϕ

(i)) ∼ F(µθ(ϕ
(i)),Σθ(ϕ

(i))) for some multivariate location-scale distribution F , and
where (ϕ(i), u(i)) ∼ D denotes training data from a distribution D. The mean µθ(ϕ

(i)) ∈ Rn and
covariance Σθ(ϕ

(i)) ∈ Rn×n are the output from a deep neural network, fθ : Φ → Rk. The value
of k depends on the approximation for Σθ(ϕ

(i)), e.g., k = n + n2 for dense Σθ(ϕ
(i)), k = 2n for

Σθ(ϕ
(i)) = diag(σ2

1 , . . . , σ
2
n), or k = n for Σθ(ϕ

(i)) = I . For notational simplicity, we assume in
this section that fθ : Φ → Rn corresponds to the components that output the mean µθ(ϕ

(i)). By
setting zθ(ϕ

(i)) = µθ(ϕ
(i)) = fθ(ϕ

(i)) in Problem (7), our DPPL can also be formulated in terms of
projecting the mean µθ(ϕ

(i)) as the following constrained least squares problem:

µ̂θ(ϕ
(i)) := argmin

µ̃θ(ϕ
(i))∈Rn

g(µ̃θ(ϕ
(i)))≤0

h(µ̃θ(ϕ
(i)))=0

∥µ̃θ(ϕ
(i))− fθ(ϕ

(i))∥2Q, (9)

where Q denotes a symmetric positive definite matrix and g(·) ≤ 0, h(·) = 0 denote the convex
constraints. In particular, we show that the projected mean µ̂θ(ϕ

(i)) is a universal approximator of
the true solution u ∈ Rn. We now state the theorem and provide its proof below.

Theorem B.1. Consider Problem 9 with the projection step defined using a symmetric positive definite
(SPD) matrix Q ∈ Rn×n, a deep neural network that is a universal approximator, fθ : Φ → Rn,
where Φ ⊂ Rm denotes a compact set, convex constraints g(·) ≤ 0, h(·) = 0, and training data
(ϕ(i), u(i)) ∼ D from a distribution D. For any continuous target function that satisfies the constraints,
i.e., the true solution u : Φ → C ⊆ Rn, u ∈ C(Φ), where C denotes the convex set of feasible points
defined by the convex constraints and C(Φ) denotes the space of continuous functions on Φ, there
exists a choice of network parameters for fθ(ϕ(i)) = µθ(ϕ

(i)) ∈ Rn, such that the projected mean,
which is composition of fθ with the projection step, i.e., ΠQ

C
(
fθ(ϕ

(i))
)
= f̂θ(ϕ

(i)) = µ̂θ(ϕ
(i)) ∈ C ⊆

Rn, approximates the target function arbitrarily well, where f̂θ : Φ → C ⊆ Rn. Hence, under these
conditions, ProbHardE2E is a universal approximator for constrained mappings.

Proof. Let C ⊆ Rn denote the convex set of feasible points defined by the convex constraints.
Consider the projection operator onto C with respect to the Q-norm:

ΠQ
C (v) = argminµ̃θ(ϕ(i))∈C∥µ̃θ(ϕ

(i))− v∥2Q. (10)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Since Q is symmetric positive definite (SPD), it has the following Cholesky factorization,

Q = LL⊤,

where L ∈ Rn×n denotes a lower triangular matrix with strictly positive diagonal entries, and hence
is invertible. By the definition of the Q-norm, and then substituting in its Cholesky factorization, we
have

∥µ̃θ(ϕ
(i))− v∥2Q = (µ̃θ(ϕ

(i))− v)⊤Q(µ̃θ(ϕ
(i))− v)

= (µ̃θ(ϕ
(i))− v)⊤LL⊤(µ̃θ(ϕ

(i))− v)

=
(
(µ̃θ(ϕ

(i))− v)⊤L)(L⊤(µ̃θ(ϕ
(i))− v)

)
=

(
L⊤(µ̃θ(ϕ

(i))− v))⊤(L⊤(µ̃θ(ϕ
(i))− v)

)
= ∥L⊤(µ̃θ(ϕ

(i))− v)∥22.

(11)

This shows that the Q-norm is equivalent to the standard Euclidean norm after the linear transforma-
tion L⊤.

We define the invertible linear mapping Ψ : Rn → Rn by Ψ(v) = L⊤v. Then using Eq. (11), the
Q-norm in Eq. (10) can be written as the Euclidean norm as follows:

ΠQ
C (v) = argminũθ(ϕ(i))∈C∥LT (µ̃θ(ϕ

(i))− v)∥22
= argminũθ(ϕ(i))∈C∥Ψ(µ̃θ(ϕ

(i)))−Ψ(v)∥22

= Ψ−1
(

argminw∈Ψ(C)∥w −Ψ(v)∥22
)
,

(12)

where w = Ψ(µ̃θ(ϕ
(i))). Hence, the projection can be expressed as the Euclidean projection onto

the transformed set Ψ(C). It is well known that the Euclidean projection onto a closed convex set is
nonexpansive and is Lipschitz continuous. (See, e.g., Min et al. (2024).)

Now, suppose that fθ(ϕ(i)) is a deep neural network that is a universal approximator, i.e., for any
continuous function u : Φ → Rn, u ∈ C(Φ), and for any ϵ > 0, there exists parameters θ such that

sup
ϕ(i)∈Φ

∥u(ϕ(i))− fθ(ϕ
(i))∥ < ϵ,

where Φ ⊂ Rm denotes a compact set and C(Φ) denotes the space of continuous functions on Φ.
Let u : Φ → C ⊆ Rn, u ∈ C(Φ), be any continuous target function whose outputs satisfy the
constraints. Since ΠQ

C is continuous (as the composition of the continuous mapping Ψ, the Euclidean
projection onto Ψ(C), and Ψ−1), it follows by the universal approximation theorem and properties of
continuous functions that the projected mean ΠQ

C
(
fθ(ϕ

(i))
)
= µ̂(ϕ(i)) can uniformly approximate

u(ϕ(i)) arbitrarily well on Φ. In other words, for every ϵ > 0, there exists a choice of network
parameters θ such that

sup
ϕ(i)∈Φ

∥u(ϕ(i))−ΠQ
C (fθ(ϕ

(i)))∥ < ϵ.

Thus, the composition of the neural network fθ with the Q-norm projection retains the universal
approximation property for any continuous target function satisfying the constraints.

C COMPUTATION OF POSTERIOR DISTRIBUTION FOR VARIOUS CONSTRAINT
TYPES

In this section, we discuss how to compute the differentiable probabilistic projection layer (DPPL)
that projects the distribution parameters (Eq. (6)) in ProbHardE2E for various constraint types,
which are summarized in Table 1.

C.1 LINEAR EQUALITY CONSTRAINTS

In this subsection, we provide the closed-form expressions for the constrained posterior distribution
parameters, i.e., the mean µ̂ and covariance Σ̂ in Eq. (8), from the DPPL in ProbHardE2E for linear

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

equality constraints. Linear equality constraints occur in a wide range of applications, including
coherency constraints in hierarchical time series forecasting (Hyndman et al., 2011; Rangapuram et al.,
2021; Petropoulos et al., 2022; Olivares et al., 2024b), divergence-free conditions in incompressible
fluid flows (Raissi et al., 2019; Richter-Powell et al., 2022), boundary conditions in PDEs (Saad et al.,
2023), and global linear conservation law constraints (Hansen et al., 2023; Mouli et al., 2024).
Proposition C.1. For linear equality constraints, h(û) = Aû − b = 0, with A ∈ Rq×n, with
full row rank q, where q < n, and b ∈ Rq, the optimal solution u∗ to Problem (7) is given as
u∗(z) = PQ−1z+(I−PQ−1)A†b, where PQ−1 = I−Q−1A⊤(AQ−1A⊤)−1A, denotes an oblique
projection operator, and A† denotes the Moore-Penrose inverse. In addition, if Z ∼ F(µ,Σ) and
z ∼ Z for multivariate, location-scale distribution F , then u∗ ∼ Y, where Y ∼ F(µ̂, Σ̂) and
µ̂, Σ̂ are given in Eq. (8) with T (z) = u∗(z), which simplifies to the closed-form expressions,
µ̂ = PQ−1µ+ (I − PQ−1)A†b and Σ̂ = PQ−1ΣP⊤

Q−1 .

Proof. Using the Lagrange multiplier λ ∈ Rq, we can form the Lagrangian of Problem (7) with
linear constraints to obtain:

L(û, λ; z) =
1

2
û⊤Qû− z⊤Qû+ λ⊤(Aû− b).

The sufficient optimality conditions to obtain (u∗, λ∗) are the first-order gradient conditions:

∇ûL(û, λ; z)|u∗,λ∗ = Qu∗ −Q⊤z +A⊤λ∗ = 0, (13a)
∇λL(û, λ; z)|u∗,λ∗ = Au∗ − b = 0. (13b)

Since Q is SPD, Q = Q⊤ and Q−1 exists. Then from Eq. (13a), we obtain:

Q(u∗ − z) +A⊤λ∗ = 0,

which simplifies to the following expression for u∗:

u∗ = z −Q−1A⊤λ∗. (14)

We solve Eq. (13b) for u∗ using the Moore-Penrose inverse, i.e., u∗ = A†b, where A† =
A⊤(AA⊤)−1. Note that AA⊤ ∈ Rq×q is invertible with full rank q since A ∈ Rq×n has full
row rank q ≤ n. Substituting this expression into Eq. (14) for u∗ gives:

A⊤(AA⊤)−1b = z −Q−1A⊤λ∗.

Rearranging for the optimal Lagrange multiplier λ∗, and multiplying both sides by A gives:

(AQ−1A⊤)λ∗ = Az − (AA⊤)(AA⊤)−1︸ ︷︷ ︸
I

b.

Now, AQ−1A⊤ ∈ Rq×q is invertible since A has full row rank q. Then we obtain:

λ∗ = (AQ−1A⊤)−1(Az − b).

Substituting in the expression for λ∗ into Eq. (14) gives the following expression for the optimal
solution:

u∗ = z −Q−1A⊤(AQ−1A⊤)−1(Az − b),

= (I −Q−1A⊤(AQ−1A⊤)−1A)z +Q−1A⊤(AQ−1A⊤)−1b.
(15)

Let
PQ−1 = I −Q−1A⊤(AQ−1A⊤)−1A, (16)

be an oblique projection. To see that this is a projection, observe that

P 2
Q−1 = (I −Q−1A⊤(AQ−1A⊤)−1A)(I −Q−1A⊤(AQ−1A⊤)−1A)

= I − 2Q−1A⊤(AQ−1A⊤)−1A+Q−1A⊤(AQ−1A⊤)−1AQ−1A⊤(AQ−1A⊤)−1A

= I − 2Q−1A⊤(AQ−1A⊤)−1A+Q−1A⊤(AQ−1A⊤)−1A

= I −Q−1A⊤(AQ−1A⊤)−1A

= PQ−1 .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Then, the expression for u∗ in Eq. (15) simplifies to:

u∗(z) = PQ−1z +Q−1A⊤(AQ−1A⊤)−1(AA†)b,

= PQ−1z + (Q−1A⊤(AQ−1A⊤)−1A)A†b,

= PQ−1z + (I − PQ−1)A†b,

(17)

since AA† = AA⊤(AA⊤)−1 = I .

Since the expression for u∗ in Eq. (17) is a linear transformation T of z ∼ F(µ,Σ), we can use
Theorem 3.1 with T (z) = u∗(z) to write the expression for u∗ ∼ F(µ̂, Σ̂), where:

µ̂ = T (µ) = u∗(µ) = PQ−1µ+ (I − PQ−1)A†b, (18a)

Σ̂ = JT (µ)ΣJT (µ)
⊤ = PQ−1ΣP⊤

Q−1 . (18b)

It can easily be verified that JT (µ) = PQ−1 by differentiating Eq. (17) with respect to z. We note
that Eq. (18) holds exactly in the case of linear constraints since T is a linear transformation of z.

We note that our probabilistic method applies to underdetermined linear systems when q < n, where
there is existence of many solutions. When q = n and A has full row rank, the solution is unique. In
this case, the projection P−1

Q has the following deterministic solution,

µ̂ = A†b, Σ̂ = 0.

In this case, it reduces to a non-probabilistic point prediction methods, similar to the HardC baseline
(Hansen et al., 2023), where only the mean is updated.

C.2 NONLINEAR EQUALITY CONSTRAINTS

In this subsection, we describe how to compute the DPPL in ProbHardE2E for general nonlinear
equality constraints. Nonlinear equality constraints naturally arise in applications that involve
structural, physical, or geometric consistency. These include closed-loop kinematics in robotics
(Toussaint et al., 2019), nonlinear conservation laws (LeVeque, 1990) in PDE-constrained surrogate
modeling (Biegler et al., 2003; Zahr & Persson, 2016; Négiar et al., 2023) with applications in climate
modeling (Bolton & Zanna, 2019; Zanna & Bolton, 2020; Beucler et al., 2021), compressible flows
in aerodynamics (Tezaur et al., 2017) and atomic modeling (Müller, 2022; Sturm & Wexler, 2022).
Proposition C.2. For nonlinear equality constraints, h(û) = 0 ∈ Rq, where h : Rn → Rq,
the optimal solution u∗(z) to Problem (7) forms a pair (u∗(z), λ∗) which satisfies u∗(z) = z −
Q−1∇h(u∗(z))⊤λ∗ and h(u∗(z)) = 0. In addition, if Z ∼ F(µ,Σ) and z ∼ Z for multivariate,
location-scale distribution F , then u∗ ∼ Y, where Y ∼ F(µ̂, Σ̂) and µ̂, Σ̂ are given in Eq. (8) with
T (z) = u∗(z).

Proof. Using the Lagrange multiplier λ ∈ Rq, we can form the Lagrangian of Problem (7) with
nonlinear equality constraints to obtain:

L(û, λ; z) =
1

2
û⊤Qû− z⊤Qû+ λ⊤h(û).

The sufficient optimality conditions to obtain (u∗, λ∗) are the first-order gradient conditions:

R(u∗, λ∗; z) =

{∇ûL(û, λ; z)|u∗,λ∗ = Q(u∗ − z) +∇h(u∗)λ∗ = 0,

∇λL(û, λ; z)|u∗,λ∗ = h(u∗) = 0.
(19)

We solve Eq. (19) via root-finding methods, e.g., Newton’s method for (u∗, λ∗) to obtain u∗(z) =
arg{ û : R(û, λ∗; z) = 0} , where the root-finding solution u∗ is implicitly dependent on z. Since
the expression for u∗ is a nonlinear transformation T of z ∼ F(µ,Σ), we can use Theorem 3.1 with
T (z) = u∗(z) to write the expression for u∗ ∼ F(µ̂, Σ̂), where:

µ̂ = T (µ) = u∗(µ), (20a)

Σ̂ = JT (µ)ΣJT (µ)
⊤, (20b)

hold to first-order accuracy. In the following Proposition C.3, we detail the iterative algorithm to
compute the terms u∗(µ) and JT (µ) in Eq. (20).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proposition C.3. Let h(û) = 0 ∈ Rq be a smooth nonlinear equality constraint, where h : Rn → Rq .
Consider the constrained projection problem from Problem (7) with z = µ:

u∗(µ) = argmin
û∈Rn

h(û)=0

f(û), (21)

where Q ≻ 0 and f(û) = 1
2 ∥û− µ∥2Q denotes our quadratic objective.

1. At each iteration, we solve the linearized Karush-Kuhn-Tucker (KKT) system using the Schur
complement to obtain:

λ(i+1) =
(
J (i)Q−1J (i)⊤

)−1 (
h(û(i))− J (i)(û(i) − µ)

)
, (22a)

û(i+1) = µ−Q−1J (i)⊤λ(i+1), (22b)

where J (i) = ∇h(û(i))⊤ ∈ Rq×n. At the first iteration with û(0) = µ, Eq. (22b) simplifies
to:

û(1) = µ−Q−1J⊤ (
JQ−1J⊤)−1

h(µ), (23)

where J = ∇h(µ)⊤.

2. At convergence, the Jacobian JT (µ) of the projection map T (µ) := u∗(µ) is given by:

JT (µ) :=
∂u∗(µ)

∂µ
= I −Q−1J∗⊤(J∗Q−1J∗⊤)−1J∗ ∈ Rn×n, (24)

where J∗ = ∇h(u∗)⊤.

Proof. We begin with the matrix form of the KKT system derived in Eq. (19):

R(u∗, λ∗;µ) =

[
∇ûL(u

∗, λ∗)
∇λL(u

∗, λ∗)

]
=

[
∇f(u∗) + J∗⊤λ∗

h(u∗)

]
= 0, (25)

with quadratic objective f defined in Problem 21.

1. Iteration Update. We use Newton’s Method to linearize the KKT system in Eq. (25) evaluated at
(û(i+1), λ(i+1)) about the past iterate (û(i), λ(i)). For the stationarity condition, which is the first com-
ponent of R(u∗, λ∗;µ) in Eq. (25), we use the first-order Taylor expansion of R0(û

(i+1), λ(i+1);µ)
about the past iterate (û(i), λ(i)) to obtain:

R0(û
(i+1), λ(i+1);µ) = R0(û

(i), λ(i);µ) +∇û,λR0(û
(i), λ(i);µ)⊤

[
∆û(i+1)

∆λ(i+1)

]
= ∇ûL(û

(i), λ(i)) +∇û,λ(∇f(û(i)) + J (i)⊤λ(i))⊤
[
∆û(i+1)

∆λ(i+1)

]
= ∇ûL(û

(i), λ(i)) +
[
(∇2f(û(i)) +∇2h(û(i))λ(i)) J (i)⊤] [∆û(i+1)

∆λ(i+1)

]
= ∇ûL(û

(i), λ(i)) +
[
∇2

ûûL(û
(i), λ(i)) J (i)⊤] [∆û(i+1)

∆λ(i+1)

]
= 0,

(26)
where ∆û(i+1) = û(i+1) − û(i), ∆λ(i+1) = λ(i+1) − λ(i), and ∇2h(û(i)) ∈ Rn×n×q denotes the
Hessian of the constraints. Solving for the increments we obtain:[

∇2
ûûL(û

(i), λ(i)) J (i)⊤] [∆û(i+1)

∆λ(i+1)

]
= −∇ûL(û

(i), λ(i)). (27)

For the feasibility condition, i.e., the second component of R(u∗, λ∗;µ) in Eq. (25), we also linearize
the constraint as:

R1(û
(i+1), λ(i+1);µ) = h(û(i+1)) = h(û(i)) + J (i)(û(i+1) − û(i)) = 0, (28)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

using first-order Taylor expansion (Newton’s Method). Then,

J (i)∆û(i+1) = −h(û(i)). (29)

We can then combine Eq. (27) and Eq. (29) to form the following linearized system of KKT conditions:[
∇2

ûûL(û
(i), λ(i)) J (i)⊤

J (i) 0

] [
∆û(i+1)

∆λ(i+1)

]
= −

[
∇ûL(û

(i), λ(i))
h(û(i))

]
. (30)

Note that the system of equations in Eq. (30) is used in Sequential Quadratic Programming (SQP) (Wil-
son, 1963; Nocedal & Wright, 2006; Gill & Wong, 2012) when there are no inequality constraints.
In addition, since our objective f is quadratic, we do not need to compute its second-order Taylor
expansion, and only need to linearize the constraints. SQP reduces to Newton’s Method when
there are no constraints. In particular, Eq. (30) gives the standard unconstrained Newton step
∇2f(û(i))∆û(i+1) = −∇f(û(i)) when h = 0.

Now, we use our quadratic objective f in Problem 21 to compute:

∇ûL(û
(i), λ(i)) = Q(û(i) − µ) + J (i)⊤λ(i),

∇2
ûûL(û

(i), λ(i)) = Q+∇2h(û(i))λ(i) ≈ Q.
(31)

Note that Q is symmetric positive definite, but ∇2h(û(i)) is not guaranteed to be positive definite in the
general case, especially at every iterate, which could make the Newton step undefined. Regularization
may be needed to ensure that ∇2h(û(i)) is positive semi-definite. In addition, since ∇2h(û(i)) ∈
Rn×n×q is a three-dimensional tensor, it is computationally expensive to compute this matrix of
second derivatives, especially on our large-scale problem and through auto-differentiation (Griewank
& Walther, 2008; Blondel & Roulet, 2024). Similar to the Gauss-Newton method (Björck, 1996;
Nocedal & Wright, 2006) for nonlinear least squares problems, we assume that the constraint h is
approximately affine near its optimal point u∗, and use only first-order constraint information. Hence,
we set ∇2h(û(i)) ≈ 0. We note that even with these approximations for efficiency on large-scale
problems, we still show strong performance in the nonlinear constraint results in Table 4. An alternate
approach could be to use a low-rank approximation to the Hessian as done in Quasi-Newton, e.g.,
BFGS methods (Nocedal & Wright, 2006).

Using Eq. (31) with setting ∇2h(û(i)) = 0, Eq. (30) simplifies to:[
Q J (i)⊤

J (i) 0

] [
∆û(i+1)

∆λ(i+1)

]
= −

[
Q(û(i) − µ) + J (i)⊤λ(i)

h(û(i))

]
. (32)

Then,

Q∆û(i+1) + J (i)⊤(λ(i+1) − λ(i)) = −Q(û(i) − µ)− J (i)⊤λ(i), (33a)

J (i)∆û(i+1) = −h(û(i)). (33b)

We see that the only terms involving λ(i) cancel from both sides of the equation. Note that the method
does not require tracking the dual variable, so it could also be equivalently reset to λ(i) = 0 at each
iteration, and we compute λ(i+1) only for computing the primal update in Eq. (22b).

Since Q ≻ 0, it is invertible, we can multiply Eq. (33a) by Q−1 to obtain:

∆û(i+1) = û(i+1) − û(i) = −(û(i) − µ)−Q−1J (i)⊤λ(i+1). (34)

Multiplying both sides of Eq. (34) by J (i) and using Eq. (33b), we can eliminate ∆û(i+1) to obtain:

−h(û(i)) = −J (i)(û(i) − µ)− J (i)Q−1J (i)⊤λ(i+1). (35)

Since Q ≻ 0, Q−1 ≻ 0 and then J (i)Q−1J (i)⊤ ≻ 0, and hence it is invertible. We can then solve
Eq. (35) for λ(i+1) to obtain:

λ(i+1) =
(
J (i)Q−1J (i)⊤

)−1 (
h(û(i))− J (i)(û(i) − µ)

)
, (36)

which gives the desired Eq. (22a). Then, solving Eq. (34) for û(i+1) gives:

u(i+1) = µ−Q−1J (i)⊤λ(i+1), (37)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

which is the desired Eq. (22b). Lastly, for the first iterate, substituting Eq. (36) into Eq. (37), setting
i = 0 and u(0) = µ gives the desired Eq. (23).

We can also solve Eq. (32) efficiently using block Gaussian elimination and the Schur complement
(J (i)Q−1J (i)⊤)−1 ∈ Rq×q (Golub & Greif, 2003). In particular, the block matrix in Eq. (32) can be
factored into a product of elementary matrices as:[

Q J (i)⊤

J (i) 0

]
=

[
I 0

J (i)Q−1 I

] [
Q−1 0
0 −J (i)Q−1J (i)⊤

] [
I Q−1J (i)⊤

0 I

]
. (38)

Since the matrix factorization in Eq. (38) is a product of elementary matrices and a diagonal matrix,
we can easily compute its inverse as:[

Q J (i)⊤

J (i) 0

]−1

=

[
I −Q−1J (i)⊤

0 I

] [
Q−1 0
0 −(J (i)Q−1J (i)⊤)−1

] [
I 0

−J (i)Q−1 I

]
(39)

Then multiplying by the right-hand side in Eq. (32) gives the solution:[
û(i+1)

λ(i+1)

]
=

[
û(i)

0

]
−
[
I −Q−1J (i)⊤

0 I

] [
Q−1 0
0 −(J (i)Q−1J (i)⊤)−1

] [
I 0

−J (i)Q−1 I

] [
Q(û(i) − µ)

h(û(i))

]
=

[
û(i)

0

]
−
[
I −Q−1J (i)⊤

0 I

] [
Q−1 0
0 −(J (i)Q−1J (i)⊤)−1

] [
Q(û(i) − µ)

h(û(i))− J (i)(û(i) − µ)

]
=

[
û(i)

0

]
−
[
I −Q−1J (i)⊤

0 I

] [
û(i) − µ

−(J (i)Q−1J (i)⊤)−1(h(û(i))− J (i)(û(i) − µ))

]
=

[
µ−Q−1J (i)⊤λ(i+1)

(J (i)Q−1J (i)⊤)−1(h(û(i))− J (i)(û(i) − µ))

]
.

Using the Schur complement reduces the Newton system from an indefinite (n+ q)× (n+ q) solve
to a n × n SPD solve with Q−1 and q × q SPD solve with the Schur complement, where q ≤ n.
Similarly, the Jacobian expression in Eq. (24), which we will show next, is obtained by implicitly
differentiating the linearized KKT conditions and eliminating the dual block, which also avoids the
need to invert a full (n+ q)× (n+ q) saddle-point or indefinite matrix.

2. Jacobian JT (µ). Here, we compute the Jacobian JT (µ) := ∂u∗(µ)/∂µ of the transformation
T (µ) = u∗(µ) using implicit differentiation. At convergence, the optimal pair (u∗, λ∗) satisfies
Eq. (19). Differentiating both sides of the first stationarity equation in Eq. (19) w.r.t. µ gives:

∂

∂µ
R0(u

∗, λ∗;µ) =
∂

∂µ
(Q(u∗ − µ) +∇h(u∗)λ∗) = 0,

⇐⇒
(
Q+∇2h(u∗)λ∗)∂u∗

∂µ
+∇h(u∗)

∂λ∗

∂µ
= Q.

(40)

Similar to Eq. (31), we assume h(u∗) is approximately affine near the optimal point, and we
approximate ∇2h(u∗) ≈ 0.

Similarly differentiating both sides of the second feasibility equation in Eq. (19) w.r.t µ gives:

∂

∂µ
R1(u

∗, λ∗;µ) =
∂

∂µ
h(u∗) = ∇h(u∗)⊤

∂u∗

∂µ
= 0. (41)

Combining Eq. (40) and Eq. (41) leads to the following block linear system:[
Q J∗⊤

J∗ 0

] [
∂u∗/∂µ
∂λ∗/∂µ

]
=

[
Q
0

]
.

Similar to Eq. (38), we can use the Schur complement to eliminate the dual term via block substitution.
Using the block inverse in Eq. (39) with J (i) = J∗, we have

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

[
∂u∗/∂µ
∂λ∗/∂µ

]
=

[
I −Q−1J∗⊤

0 I

] [
Q−1 0
0 −(J∗Q−1J∗⊤)−1

] [
I 0

−J∗Q−1 I

] [
Q
0

]
=

[
I −Q−1J∗⊤

0 I

] [
Q−1 0
0 −(J∗Q−1J∗⊤)−1

] [
Q

−J∗

]
=

[
I −Q−1J∗⊤

0 I

] [
I

(J∗Q−1J∗⊤)−1J∗

]
=

[
I −Q−1J∗⊤∂λ∗/∂µ
(J∗Q−1J∗⊤)−1J∗

]
.

Hence, the Jacobian is given by the first component as:

JT (µ) =
∂u∗(µ)

∂µ
= I −Q−1J∗⊤ (

J∗Q−1J∗⊤)−1
J∗,

which is the desired Eq. (24).

C.3 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

In this subsection, we describe how to compute the DPPL in ProbHardE2E for nonlinear convex
inequality constraints. Convex inequality constraints arise naturally in many scientific and engineering
applications. For example, total variation (TV) regularization is widely used to promote smoothness
or piecewise-constant structure in spatial fields, e.g., image denoising (Rudin et al., 1992; Boyd &
Vandenberghe, 2004) and total variation diminishing (TVD) constraints to avoid spurious artificial
oscillations in numerical solutions to PDEs (Harten, 1997; Tezaur et al., 2017; Schein et al., 2021).
Other common convex constraints include box constraints, which enforce boundedness of physical or
operational quantities (Bertsekas, 1997).

We consider the constrained projection Problem (7), where Q ≻ 0, and h : Rn → Rq , g : Rn → Rs

denote smooth functions representing equality and convex inequality constraints, respectively. This is
a convex optimization problem due to the strictly convex quadratic objective and the assumption that
g(u) is convex. The associated Lagrangian is

L(u, λ, ν; z) = 1
2 (u− z)⊤Q(u− z) + λ⊤h(u) + ν⊤g(u),

with Lagrange multipliers λ ∈ Rq for the equality constraints and ν ∈ Rs for the inequality
constraints, where ν ≥ 0. The KKT optimality conditions are given as:

(Stationarity) Q(u∗ − z) +∇h(u∗)λ∗ +∇g(u∗)ν∗ = 0,

(Primal feasibility) h(u∗) = 0, g(u∗) ≤ 0,

(Dual feasibility) ν∗ ≥ 0,

(Complementary slackness) ν∗j · gj(u∗) = 0 for all j = 1, . . . , s.

(42)

Note the first two conditions are the same as the ones for nonlinear equality constraints with ν = 0,
in Eq. (19).

The KKT conditions in Eq. (42) are necessary and sufficient for optimality, under standard constraint
qualifications, e.g., Slater’s condition (Boyd & Vandenberghe, 2004). Eq. (42) can be solved by
various optimization methods, e.g., stochastic trust-region methods with sequential quadratic pro-
gramming (SQP) (Boyd & Vandenberghe, 2004; Hong et al., 2023) and exact augmented Lagrangian
(Boyd & Vandenberghe, 2004; Fang et al., 2024). The augmented Lagrangian balances the need
for both constraint satisfaction and computational efficiency, which makes it particularly effective
in large-scale optimization problems. While the inequality constraints g(u) ≤ 0 are convex by
assumption, the equality constraints h(u) = 0 are typically required to be affine to ensure that the
feasible set remains convex (Boyd & Vandenberghe, 2004). Nonlinear equalities generally yield
non-convex level sets, which can violate problem convexity even when the objective and inequalities
are convex. Although exceptions exist where nonlinear equalities define convex sets, these cases are
rare and must be verified explicitly (Bertsekas, 1997; Boyd & Vandenberghe, 2004).

To compute the Jacobian JT (µ) := ∂u∗(µ)/∂µ of the projection map with respect to the input µ,
we could, in principle, apply implicit differentiation to the KKT conditions in Eq. (42). For general

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

constrained problems with nonlinear equality and convex inequality constraints, the derivation
becomes analytically complex, particularly due to active set variability and non-affine structure. In the
special case of quadratic programs with affine constraints, OptNet (Amos & Kolter, 2017) provides
an explicit expression for the derivatives via KKT conditions. In addition, CVXPYLayers (Agrawal
et al., 2019) enables gradient-based learning for general convex cone programs by canonicalizing
them into a standard conic form. In our implementation, we use CVXPYLayers to enforce the
constraints during the projection step. Since CVXPYLayers does not currently support full Jacobian
extraction or higher-order derivatives, we estimate the variance of the projection map using Monte
Carlo methods by applying random perturbations to the inputs and computing empirical statistics
over repeated forward passes.

D SPECIAL CASES OF PROBHARDE2E

In this section, we show applications of ProbHardE2E in two seemingly unrelated but technically re-
lated domains: (1) hierarchical time series forecasting with coherency constraints (Rangapuram et al.,
2021; Olivares et al., 2024a); (2) solving partial differential equations (PDEs) with global conservation
constraints (Hansen et al., 2023; Mouli et al., 2024). Both are special cases of ProbHardE2E with
linear equality constraints, and orthogonal (Q = I) and oblique (Q = Σ−1) projections, respectively.
Fig. 2 illustrates the wide variety of cases that our framework covers.

ProbHardE2E

Probabilistic

Deterministic

Linear
Constraints

Nonlinear
Constraints

End-to-End

Inference
Time

Hetero-
scedasticHomo-

scedastic

Time-series

PDEs

General

Constraint
Application

Constraint
Type

Predictions

Domain

Figure 2: ProbHardE2E serves as a probabilistic unified framework for learning with hard con-
straints.

D.1 ENFORCING COHERENCY IN HIERARCHICAL TIME SERIES FORECASTING

Hierarchical time series forecasting is abundant in several applications, e.g., retail demand forecasting
and electricity forecasting. In retail demand forecasting, the sales are tracked at various granularities,
including item, store, and region levels. In electricity forecasting, the consumption demand is
tracked at individual and regional levels. Each time series at time t can be separated into bottom and
aggregate levels. Bottom-levels aggregate into higher-level series at each time point through known

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Total
at1

Region 1
at2

City 1
bt1

City 2
bt2

City 3
bt3

Region 2
at3

City 4
bt4

City 5
bt5

City 6
bt6

Region 3
at4

City 2
bt2

City 3
bt3

Figure 3: Example hierarchical time series structure with at ∈ R4, bt ∈ R6 and Ssum =1 1 1 1 1 1
1 0 0 1 1 0
0 0 0 1 1 1
0 1 1 0 0 0

.

relationships, which can be represented as dependency graphs. Let zt = [at bt]
⊤ ∈ Rn, where

at ∈ Rq denotes the aggregate entries, bt ∈ Rq̃ denotes the bottom-level entries, and n = q + q̃. Let
Ssum ∈ {0, 1}q×q̃ denote the summation matrix, which defines the relationship between the bottom
and aggregate levels as at = Ssumbt. This coherency constraint can be equivalently expressed as:

[Iq −Ssum]

[
at
bt

]
= 0 ⇔ Azt = 0, ∀t, (43)

where Iq denotes the q × q identity matrix. See Hyndman et al. (2011); Rangapuram et al. (2021);
Olivares et al. (2024b) and the references therein for details, and Fig. 3 for an illustration.

HierE2E (Rangapuram et al., 2021) enforces the coherency constraint in Eq. (43) by projecting
the multivariate samples zt onto the null space of the constraint, i.e., Azt = 0. It uses the following
projection:

u∗(zt) = (I −A⊤(AA⊤)−1A)︸ ︷︷ ︸
PI

zt = (I −A†A)zt, (44)

where A† = A⊤(AA⊤)−1 denotes the right psuedoinverse, and PI = P 2
I = P⊤

I denotes an
orthogonal projector.

We show that HierE2E can be formulated in our ProbHardE2E framework with the following
posterior mean and covariance:

µ̂HierE2E = (I −A†A)µ, (45a)

Σ̂HierE2E = Σ−A†AΣ− ΣA†A+A†AΣA†A, (45b)

where PI is defined in Eq. (44). In particular, we show in Proposition D.1 that the HierE2E posterior
update in Eq. (45) is a special linear constraint case of our ProbHardE2E method, which uses an
orthogonal projection with Q = I and b = 0.

Proposition D.1. The projected mean and covariance for HierE2E in Eq. (45) is given by the
solution to Problem (7) with linear constraints in Proposition C.1, i.e., h(u) = Au = 0, b = 0, where
Q = I for an orthogonal projection and Z ∼ N (µ,Σ) is a multivariate Gaussian.

Proof. The oblique projection in Eq. (16) used in ProbHardE2E for linear constraints is given as
PQ−1 = I − Q−1A⊤(AQ−1A⊤)−1A. Setting Q = I , the expression simplifies to PQ−1 = PI =

I −A⊤(AA⊤)−1A = I −A†A.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

The posterior mean µ̂ for ProbHardE2E with linear constraints is given in Eq. (18a) with b = 0 as:

µ̂ = PQ−1µ

= PIµ

= (I −A†A)µ

= µ̂HierE2E,

(46)

which is the desired expression in Eq. (45a).

Similarly, the posterior covariance Σ̂ for ProbHardE2E in Eq. (18b) is given as:

Σ̂ = PQ−1ΣP⊤
Q−1

= PIΣP
⊤
I

= PIΣPI

= (I −A†A)Σ(I −A†A)

= (I −A†A)(Σ− ΣA†A)

= Σ−A†AΣ− ΣA†A+A†AΣA†A

= Σ̂HierE2E,

(47)

which is the desired expression in Eq. (45b).

Note that HierE2E does not directly project the distribution parameters, even though a closed
form exists, as shown in Eq. (46) and Eq. (47). Instead, it directly projects the samples in Eq. (44).
An improvement to HierE2E (that we do in ProbHardE2E) is to eliminate the computationally
expensive sampling in the training loop. (See Section 3.5.) HierE2E samples from the parametric
distribution generated by DeepVAR (Salinas et al., 2019; 2020; Alexandrov et al., 2019), reconciles
these samples, and computes the loss over time using the Continuous Ranked Probability Score
(CRPS). Generally, for unknown distributions, the CRPS evaluation requires sampling, which may
explain its necessity in their framework. For many standard distributions, e.g., the multivariate
Gaussian distribution in HierE2E, the CRPS can be computed analytically (Matheson & Winkler,
1976; Taillardat et al., 2016) using the mean and covariance of the output distribution.

D.2 ENFORCING CONSERVATION LAWS IN PDES

In addition to hierarchical forecasting, another (at first seemingly-unrelated) application of
ProbHardE2E is enforcing conservation laws in solutions to partial differential equations (PDEs).
A conservation law is given as ut +∇ · F (u) = 0, for unknown u(t, x) and nonlinear flux function
F (u) (LeVeque, 1990). Hansen et al. (2023) propose the ProbConserv method to enforce the
integral form of conservation laws from finite volume methods (LeVeque, 2002) as a linear con-
straint Au = b for specific problems that satisfy a boundary flux linearity assumption. In particular,
ProbConserv proposes the following update equations for the posterior mean and covariance
matrix:

µ̂ProbConserv = µ− ΣA⊤(AΣA⊤)−1(Aµ− b), (48a)

Σ̂ProbConserv = Σ− ΣA⊤(AΣA⊤)−1AΣ, (48b)

given the mean µ and the covariance matrix Σ estimated from a black-box probabilistic model, e.g.,
Gaussian Process, probabilistic Neural Operators (Mouli et al., 2024) or Attentive Neural Process
(ANP) (Hansen et al., 2023) or DeepVAR (Salinas et al., 2019) used in the hierarchical forecasting
case.

In ProbConserv, the posterior mean µ̂ in Eq. (48a) is shown to be the solution to the constrained
least squares problem:

µ̂ProbConserv = argmin
µ̃∈Rn

Aµ̃=b

1

2
||µ̃− µ||2Σ−1 .

We formulate this optimization problem more generally, and show that by assuming that z ∼ Z ∼
N (µ,Σ) is a multivariate Gaussian, a constrained sample u∗(z) ∼ Y ∼ N (µ̂, Σ̂) in ProbConserv

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

is a solution to our Problem (7) with Q = Σ−1 and linear constraints. In particular, we show in
Proposition D.2 that the ProbConserv posterior update in Eq. (48) is a special linear constraint
case of our ProbHardE2E method, which uses an oblique projection with Q = Σ−1.

Proposition D.2. The projected mean and covariance for ProbConserv in Eq. (48) is given by the
solution to Problem (7) with linear constraints in Proposition C.1, i.e., h(u) = Au− b = 0, where
Q = Σ−1 for an oblique projection and Z ∼ N (µ,Σ) is a multivariate Gaussian.

Proof. The oblique projection in Eq. (16) used in ProbHardE2E for linear constraints is given
as PQ−1 = PΣ = I − Q−1A⊤(AQ−1A⊤)−1A. Setting Q = Σ−1, we have that PQ−1 = I −
ΣA⊤(AΣA⊤)−1A = PΣ.

The posterior mean µ̂ for ProbHardE2E with linear constraints is given in Eq. (18a) as:

µ̂ = PQ−1µ+ (I − PQ−1)A†b

= (I − ΣA⊤(AΣA⊤)−1A)µ+ (I − (I − ΣA⊤(AΣA⊤)−1A))A†b

= (I − ΣA⊤(AΣA⊤)−1A)µ+ΣA⊤(AΣA⊤)−1 AA†︸︷︷︸
I

b

= µ− ΣA⊤(AΣA⊤)−1(Aµ− b)

= µ̂ProbConserv,

which is equal to the desired expression in Eq. (48a).

Similarly, the posterior covariance Σ̂ for ProbHardE2E in Eq. (18b) is given as:

Σ̂ = PQ−1ΣP⊤
Q−1

= (I − ΣA⊤(AΣA⊤)−1A)Σ(I −A⊤(AΣA⊤)−1AΣ)

= (I − ΣA⊤(AΣA⊤)−1A)(Σ− ΣA⊤(AΣA⊤)−1AΣ)

= Σ− 2ΣA⊤(AΣA⊤)−1AΣ+ ΣA⊤(AΣA⊤)−1(AΣA⊤)(AΣA⊤)−1AΣ

= Σ− ΣA⊤(AΣA⊤)−1AΣ

= Σ̂ProbConserv,

which is equal to the desired expression in Eq. (48b).

Note that the projected distribution parameters in Eq. (48) are applied only at inference time in
ProbConserv. In ProbHardE2E, we show the benefits of imposing the constraints at training
time as well in an end-to-end manner.

E FLEXIBILITY IN THE CHOICE OF Q AND ITS STRUCTURE

In this section, we discuss the modeling choices for the projection matrix Q in our DPPL, which
defines the energy norm in the objective in the constrained least squares Problem (7). Its specification
significantly influences both the learning dynamics and the inductive biases of the model. Selecting
or learning Q offers a principled mechanism to reflect the statistical structure of the data, particularly
in settings involving multivariate regression or heteroscedastic noise (Kendall et al., 2018; Stirn et al.,
2023). Table 6 summarizes common structure choices for Q and their trade-offs. Of course, in many
applications, there is a single goal for the choice of Q—to optimize accuracy.

In practice, the space of symmetric positive definite (SPD) matrices is too large to be explored (and
“learned”) without additional structure, especially in high-dimensional settings. To address this,
structural constraints are often imposed on Q, reducing the number of parameters, and acting as a
form of regularization (Willette et al., 2021). These structures encode modeling assumptions, e.g.,
output independence, sparsity, or low-rank correlations, and they trade off statistical expressivity
against computational efficiency.

In many cases, the choice of Q (or the form of Q) should ideally reflect (knowledge or assumptions
or hope about) the structure of the underlying data distribution. The simplest choice, Q = I ,

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Structure of Q Example Form Merits and Demerits

Identity Q = I
+ Simplest choice, no parameters
+ Strong regularization
– Ignores uncertainty and correlations

Diagonal (learned) Q = diag(q1, . . . , qn)
+ Captures heteroscedasticity
+ Efficient to compute and invert
– Ignores correlations

Low-rank (learned L) Q = LL⊤, L ∈ Rn×d
+ Captures dominant correlations
+ Fewer parameters than full
– Still computationally involved

Full (learned L) Q = LL⊤, L ∈ Rn×n
+ Fully expressive
– High memory and compute cost
– Prone to overfitting

Table 6: Several structure choices for the matrix Q and their associated trade-offs.

assumes isotropy across output dimensions, and is often used for its regularization benefits and
ease of implementation. This choice neglects any correlation structure in the data, and it tends to
perform poorly in the presence of strong heteroscedasticity. A diagonal matrix Q = diag(q1, . . . , qn)
introduces per-dimension weighting, and is well-suited to heteroscedastic tasks where the variance
differs across outputs (Kendall & Gal, 2017; Skafte et al., 2019). Low-rank approximations provide a
compromise between model complexity and expressivity, by capturing dominant correlation directions
(Willette et al., 2021). Full-rank matrices allow flexibility and often require strong priors or large
datasets to avoid overfitting (Weinberger & Saul, 2009).

We focus on two concrete realizations of Q: the identity matrix Q = I that is used in the
HierE2E (Rangapuram et al., 2021) (see Appendix D.1), and a diagonal matrix defined as the
inverse of a predicted diagonal covariance, Q = Σ−1 that is used in ProbConserv (Hansen et al.,
2023) (see Appendix D.2), where Σ = diag(σ2

1 , . . . , σ
2
d) denote the empirical variances output by

the model. This latter choice corresponds to a heteroscedastic formulation that scales residuals based
on their predicted precision, which emphasizes more confident predictions, and down-weights less
certain ones (Stirn et al., 2023; Le et al., 2005; Hansen et al., 2023).

F PROOF OF THEOREM 3.1

In this section, we begin by first restating Theorem 3.1, which provides a closed-form update for
our DPPL in Eq. (8) for a prior distribution that belongs to a multivariate local-scale family of
distributions; and then we provide its proof.

Theorem 3.1. Let Z ∼ F(µ,Σ) be a random variable, where the underlying distribution F belongs
to a multivariate location-scale family of distributions, with mean µ and covariance Σ; and let
T be a function with continuous first derivatives, such that JT (µ)ΣJT (µ)⊤ is symmetric positive
semi-definite. Then, the transformed distribution Y = T (Z) converges in distribution with first-
order accuracy to F(µ̂, Σ̂) with mean µ̂ = T (µ) and covariance Σ̂ = JT (µ)ΣJT (µ)

⊤, where
JT (µ) = ∇T (µ)

⊤ denotes the Jacobian of T with respect to z evaluated at µ.

Proof. Recall that a family of probability distributions is said to be a location-scale family if for
any random variable Z whose distribution belongs to the family Z ∼ F(µ,Σ), then there exists a
transformation (re-parameterization) of the form

Y
d
= AZ+B,

where A denotes a scale transformation matrix, B denotes the location parameter, and d
= denotes

equality in distribution.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Let Y = T (Z) be a nonlinear transformation. We calculate the first-order Taylor series expansion to
linearize the function about the mean µ as:

Y = T (Z) ≈ T (µ) + JT (µ)(Z− µ) (49)
= JT︸︷︷︸

A

(µ)Z+ (T (µ)− JT (µ)µ)︸ ︷︷ ︸
B

.

Then, since Z belongs to the location-scale family of distributions, the linearization of Y ∼ F(µ̂, Σ̂)

also belongs to the family with mean µ̂ and covariance Σ̂, which we compute below.

Taking the expectation of both sides of Eq. (49) we get:

µ̂ = E[T (Z)] ≈ E[T (µ) + JT (µ)(Z− µ)]

= E[T (µ)] + E[JT (µ)(Z− µ)] (by linearity of expectation)
= T (µ) + JT (µ) (E[Z]− µ)︸ ︷︷ ︸

0

(since µ is not a random variable)

= T (µ). (50)

Then, the covariance Σ̂ is given as:

Σ̂ = E[(T (Z)− E[T (Z)])(T (Z)− E[T (Z)])⊤]

= E[(T (Z)− T (µ))(T (Z)− T (µ))⊤] (by Eq. (50))

≈ E[(T (µ) + JT (µ)(Z− µ)− T (µ))(T (µ) + JT (µ)(Z− µ)− T (µ))⊤] (by Eq. (49))

= E[(JT (µ)(Z− µ))(JT (µ)(Z− µ))⊤]

= JT (µ)E[(Z− µ)(Z− µ)⊤]JT (µ)
⊤

= JT (µ)ΣJT (µ)
T .

Importantly, the approximation error between the nonlinear transformation and its linearization
converges to zero in probability (Van der Vaart, 2000), which ensures the validity of this approach
asymptotically. We note that this result is closely related to the Multivariate Delta Method (Casella &
Berger, 2001), which shows that for a nonlinear function T , the sample mean of T (z1, . . . , zn) also
converges in distribution, under mild conditions. Specifically, if the sample mean of n i.i.d. draws
from Z converges to a multivariate Gaussian (by the CLT), then the same linearization argument and
Slutsky’s theorem imply that the sample mean of the projected samples converges to a multivariate
Gaussian, with parameters given in Eq. (8). Second-order approximations (via a quadratic expansion
of T) yield higher-order corrections, and can lead to non-Gaussian outcomes (e.g., chi-squared)
(Casella & Berger, 2001).

G BENCHMARKING DATASETS

In this section, we detail the benchmarking datasets in both applications domains, i.e., PDEs and
probabilistic time series forecasting.

G.1 PDES

We consider a series of conservative PDEs with varying levels of difficulties, where the goal is to learn
an approximation of the solution that satisfies known conservation laws. We follow the empirical
evaluation protocol from Hansen et al. (2023). The PDEs we study are conservation laws, which take
the following differential form:

ut +∇ · F (u) = 0, (51)
for some nonlinear flux function F (u). These equations can be written in their conservative form as:

d

dt

∫
Ω

u(t, x)dΩ = F (u(t, x0))− F (u(t, xN)), (52)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

by applying the divergence term in 1D over the domain Ω = [x0, xN] (LeVeque, 1990; Hansen et al.,
2023). This global conservation law states that the rate of change of total mass or energy in this
system is given by the difference of the flux into the domain and the flux out of the domain. Note
that in higher dimensions, the flux difference on the right-hand side of Eq. (52) can be written as a
surface integral along the boundary of the domain. This conservative form is at the heart of numerical
finite volume methods (LeVeque, 2002), which discretize the domain into control volumes and solve
this equation locally in each control volume, to enforce local conservation, i.e., so that the flux into
a control volume is equal to the flux out of it. In the following, we summarize the PDE test cases
with their initial and boundary conditions, exact solutions, and derived linear conservation constraints
from Hansen et al. (2023).

G.1.1 GENERALIZED POROUS MEDIUM EQUATION (GPME)

The Generalized Porous Medium Equation (GPME) is given by the following degenerate parabolic
PDE:

ut −∇ · (k(u)∇u) = 0, (53)
where the flux in Eq. (51) is given as F (u) = −k(u)∇u, and k(u) denotes the diffusivity parameter.
This diffusivity parameter k(u) may depend nonlinearly and/or discontinuously on the solution u.
We consider three representative cases within the GPME family, by changing this parameter k(u).
Each instance of the GPME increases in difficulty based on the regularity of the solution and the
presence of shocks or discontinuities.

Heat Equation (“Easy”). The classical parabolic heat equation arises when the diffusivity is
constant, i.e., k(u) = k in Eq. (53). We use the heat equation with the following sinusoidal initial
condition and periodic boundary conditions from Krishnapriyan et al. (2021); Hansen et al. (2023):

ut = k∆u, ∀x ∈ Ω = [0, 2π], ∀t ∈ [0, 1],

u(0, x) = sin(x), ∀x ∈ [0, 2π],

u(t, 0) = u(2π, t), ∀t ∈ [0, 1],

(54)

respectively. The exact solution, which can be solved using the Fourier Transform, is given as:

uexact(t, x) = e−kt sin(x).

The solution is a smooth sinusoidal curve that exponentially decays or dissipates over time, and has
an infinite speed of propagation. With these specific initial and boundary conditions in Eq. (54), the
global conservation law in Eq. (52) reduces to the following linear equation:∫ 2π

0

u(t, x) dx = 0, ∀t ∈ [0, 1], (55)

since the net flux on the boundaries is 0.

Porous Medium Equation (PME) (“Medium”). The PME is a nonlinear degenerate subclass of
the GPME, where the diffusivity is a nonlinear, monomial of the solution, i.e., k(u) = um in Eq. (53).
It has been using in modeling nonlinear heat transfer (Vázquez, 2007; Maddix et al., 2018a). We use
the PME with the following initial condition and growing in time left Dirichlet boundary condition
from Lipnikov et al. (2016); Maddix et al. (2018a); Hansen et al. (2023):

ut −∇ · (um∇u) = 0, ∀x ∈ Ω = [0, 1], ∀t ∈ [0, 1],

u(0, x) = 0, ∀x ∈ [0, 1],

u(t, 0) = (mt)1/m, ∀t ∈ [0, 1].

(56)

The exact solution is given as:

uexact(t, x) = (mReLU(t− x))
1/m

.

For small values of k(u), this degenerate parabolic equation behaves hyperbolic in nature. The
solution exhibits a sharp front at the degeneracy point t = x with a finite speed of propagation. With
these specific initial and boundary conditions in Eq. (56), the global conservation law in Eq. (52)
reduces to the following linear equation:∫ 1

0

u(t, x) dx =
(mt)1+1/m

m+ 1
, ∀t ∈ [0, 1]. (57)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Stefan Equation (“Hard”). The Stefan equation has been used in foam modeling (van der Meer
et al., 2016) and crystallization (Sethian & Strain, 1992), and models phase transitions with the
following discontinuous diffusivity:

k(u) =

{
1, u ≥ u∗

0, u < u∗ , u∗ ≥ 0,

in Eq. (53). We use the Stefan equation with the following initial condition and Dirichlet boundary
conditions from Maddix et al. (2018b); Hansen et al. (2023):

ut −∇ · (k(u)∇u) = 0, ∀x ∈ Ω = [0, 1], t ∈ [0, 1],

u(0, x) = 0, ∀x ∈ [0, 1],

u(t, 0) = 1, ∀t ∈ [0, 1].

(58)

The exact solution is given as:

uexact(t, x) = 1u≥u∗

[
1− 1− u∗

erf(α/2)
erf

(
x

2
√
t

)]
,

where 1 denotes the indicator function, erf(z) = (2/
√
π)

∫ z

0
exp(−y2)dy denotes the error function,

and α = 2α̃ and α̃ satisfies the following nonlinear equation:

1− u∗
√
π

= u∗ erf(α̃)α̃eα̃
2

.

The solution is a rightward moving shock. With these specific initial and boundary conditions in
Eq. (58), the global conservation law in Eq. (52) reduces to the following linear equation:∫ 1

0

u(t, x) dx =
2(1− u∗)

erf(α/2)

√
t

π
, ∀t ∈ [0, 1]. (59)

G.1.2 HYPERBOLIC LINEAR ADVECTION EQUATION

The hyperbolic linear advection equation models fluids transported at a constant velocity, and is given
by Eq. (51) with linear flux F (u) = βu. We use the 1D linear advection problem with the following
step-function initial condition and inflow Dirichlet boundary conditions from Hansen et al. (2023):

ut + βux = 0, ∀x ∈ Ω = [0, 1],∀t ∈ [0, 1],

u(0, x) = 1x≤0.5, ∀x ∈ [0, 1],

u(t, 0) = 1, ∀t ∈ [0, 1].

(60)

The exact solution is given as:
u(x, t) = h(x− βt),

where h(x) = 1x≤0.5 denotes the initial condition. The solution remains a shock, which travels to
the right with a finite speed of propagation β. With these specific initial and boundary conditions in
Eq. (60), the global conservation law in Eq. (52) reduces to the following linear equation:∫ 1

0

u(x, t) dx =
1

2
+ βt, (61)

which shows that the total mass increases linearly with time due to the fixed inflow.

G.2 PROBABILISTIC TIME SERIES FORECASTING

In addition to PDEs, we also evaluate ProbHardE2E on five hierarchical time series forecasting
benchmark datasets, where the goal is to generate probabilistic predictions that are coherent with
known aggregation constraints across cross-sectional hierarchies (Rangapuram et al., 2021).

Table 7 provides an overview of the time series datasets used in our empirical evaluation. For each
benchmarking dataset, it details the total number of series, the number of bottom level series (i.e., the
leaf nodes in the hierarchy), the number of series aggregated from the bottom-level series, the depth

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

of the hierarchy in terms of the number of levels, the number of time series observations, and the
prediction horizon τ .

We adopt the same dataset configurations as in Rangapuram et al. (2021), from which we use the
hierarchical forecasting benchmarks and pre-processing pipeline. These datasets are available in Glu-
onTS package (Alexandrov et al., 2019). The LABOUR dataset (Australian Bureau of Statistics, 2019)
contains monthly Australian employment statistics from 1978 to 2020, organized into a 57-series hi-
erarchy. The TRAFFIC dataset (Ben Taieb & Koo, 2019) includes sub-hourly freeway lane occupancy
data, aggregated into daily observations forming a 207-series structure. TOURISM (Tourism Australia,
Canberra, 2005) consists of quarterly tourism counts across 89 Australian regions (1998–2006), and
the extended TOURISM-L dataset (Wickramasuriya et al., 2019) comprises 555 grouped series based
on both geography and travel purpose. Lastly, WIKI contains daily page view counts from 199
Wikipedia pages collected over two years (Anava et al., 2018).

Table 7: A summary of the time-series datasets. TOURISM-L has two hierarchies, defined by
geography and travel purpose; consequently, it has different numbers of bottom series and different
depths in each hierarchy.

Dataset Total Bottom Aggregated Levels Obs. Horizon τ Frequency
TOURISM 89 56 33 4 36 8 Quarterly
TOURISM-L 555 76; 304 175 4; 5 228 12 Monthly
LABOUR 57 32 25 4 514 8 Monthly
TRAFFIC 207 200 7 4 366 1 Daily
WIKI 199 150 49 5 366 1 Daily

H IMPLEMENTATION DETAILS

In this section, we provide the implementation details of ProbHardE2E. Fig. 4 illustrates the overall
pipeline of ProbHardE2E, which integrates probabilistic modeling, constraint enforcement, and
loss-based calibration into a unified differentiable architecture. The core contribution lies in the DPPL,
which acts as a “corrector” to the “predictor,” which is the unconstrained distribution predicted by a
wide class of models. Conceptually, this layer parallels classical predictor-corrector and primal-dual
methods from numerical optimization (Boyd & Vandenberghe, 2004; Bertsekas, 1997), where a
candidate solution is refined to satisfy known constraints before evaluation.

We evaluate ProbHardE2E on two scientific domains: (1) PDEs, where structured physical con-
straints, e.g., conservation laws and boundary conditions, must be enforced (see Appendix G.1),
and (2) probabilistic hierarchical time series forecasting, where aggregation coherency is required
(see Appendix G.2). We show that ProbHardE2E is model-agnostic by using a base probabilistic
model (predictor) from each application domain, i.e., VarianceNO (Mouli et al., 2024) for PDEs
and DeepVAR (Salinas et al., 2019) for forecasting. We then enforce the corresponding constraint
with our DPPL (corrector). We provide the experimental details for each application in the following
subsections.

H.1 PDES

All the experiments are performed on a single NVIDIA V100 GPU. We use a probabilistic Fourier
Neural Operator (FNO) (Li et al., 2021), i.e., VarianceNO (Mouli et al., 2024) to learn a mapping
from PDE parameters to solutions, e.g., the diffusivity mapping k(u) 7→ u(t, x) in the (degenerate)
parabolic Generalized Porous Medium Equation (GPME), or the velocity mapping β 7→ u(t, x) in
the hyperbolic linear advection equation. (See Appendix G.1 for details on the datasets.)

H.1.1 DATASET GENERATION

Table 8 provides an overview of the PDE data generation. For each PDE in Appendix G.1, we
generate a dataset of N = 200 parameter-solution pairs {ϕ(i), u(i)}Ni=1 ∼ D, where ϕ(i) denotes the
input PDE parameters, e.g., k,m, u∗, β, and u(i) denotes the corresponding spatiotemporal solution

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Differentiable Probabilistic
Projection Layer (DPPL)

User-Specified
Constraints

CRPS Loss Computation

Projection
Matrix

Unconstrained
Random Variable

 Base Probabilistic
Model

End-to-end training

Constrained
Random Variable

(Corrector)

(Predictor)

Figure 4: Schematic representation of ProbHardE2E (see Algorithm 1). Here, a known pathwise-
differentiable probabilistic model is chosen to predict a (unconstrained) prior distribution. (Optionally,
the projection matrix can be specified as a part of the prediction from the probabilistic model or
modeled separately.) Next, we transform the distribution with our DPPL to obtain the transformed
distribution, done empirically or via the Delta Method (see Section 3.3), which enforces the constraints.
Lastly, we choose an appropriate loss function, e.g., CRPS, to calibrate the transformed distribution
with the target variable.

field. Each solution u(i)(t, x) is simulated over a grid of 100 equidistant points in both space and
time, yielding a total of 100× 100 observations per instance. During evaluation, we predict the final
20 equidistant time slices while conditioning on the earlier time steps.

Table 8: Overview of PDE dataset generation. Each dataset contains 200 samples with a fixed 160/40
train-test split.

PDE Parameter range Spatial domain Time domain Train/Test (%)
Heat k ∈ [1, 5] [0, 2π] [0, 1] 80/20
PME m ∈ [2, 3] [0, 1] [0, 1] 80/20
Stefan u∗ ∈ [0.6, 0.65] [0, 1] [0, 1] 80/20
Linear Advection β ∈ [1, 2] [0, 1] [0, 1] 80/20

H.1.2 ARCHITECTURAL DETAILS

We use VarianceNO (Mouli et al., 2024) as our base unconstrained probabilistic model.
VarianceNO is an augmented Fourier Neural Operator (FNO) (Li et al., 2021) that updates the
last layer to output two prediction heads instead of one, i.e, one for the mean and the other for the
variance of the multivariate Gaussian distribution. Table 9 details the model hyperparameters.

H.1.3 TRAINING AND TESTING SETUP

We follow the standard training procedure for FNO-based models as proposed by Li et al. (2021).
Specifically, we use the Adam optimizer (Kingma & Ba, 2015) with weight decay and train using
mini-batches of fixed size B = 20. A step-based learning rate scheduler is applied, which reduces
the learning rate by half every 50 epochs. During evaluation, we uniformly sample parameters from
the specified parameter ranges in Table 8 to construct test sets and compute the evaluation metrics.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 9: Hyperparameters for the VarianceNO model.

Hyperparameter Values
VarianceNO

Number of Fourier layers 4
Channel width {32, 64}
Number of Fourier modes 12
Batch size 20
Learning rate {10−4, 10−3, 10−2}

H.2 PROBABILISTIC TIME SERIES FORECASTING

The experiments are performed on an Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz.

H.2.1 DATASET GENERATION

We adopt the hierarchical forecasting benchmarks and preprocessing pipeline introduced in Ranga-
puram et al. (2021), using five standard datasets: LABOUR, TRAFFIC, TOURISM, TOURISM-L, and
WIKI. Each dataset contains a hierarchy of time series with varying depth and number of aggregation
levels (see Table 7). The train/test splits, seasonal resolutions, and prediction horizons follow the
standardized setup provided in Rangapuram et al. (2021).

H.2.2 ARCHITECTURAL DETAILS

We use DeepVAR (Salinas et al., 2019) as our base unconstrained probabilistic model, which is
aligned with Hier-E2E. DeepVAR is a probabilistic autoregressive LSTM-based model that
leverages a multivariate Gaussian distribution assumption on the multivariate target. DeepVAR
models the joint dynamics of all the time series in the hierarchy through latent temporal dependencies,
and outputs both the mean and scale of the predictive distribution, by optimizing the negative log
likelihood (NLL). Our ProbHardE2E model in the time series application is developed based
on Hier-E2E in GluonTS (Alexandrov et al., 2019). We use the default base model architecture
DeepVAR, and make further modifications to Hier-E2E. Specifically, we tune the hyperparameters
in Table 10, and adjust the loss to CRPS for structured probabilistic evaluation. We disable sampling-
based projection during training because ProbHardE2E optimizes the closed-from CRPS for
Gaussian distributions, and our projection methodology ensures that linear constraints are met
probabilistically. During inference, we report CRPS through samples, in order to align the evaluation
definition with the various hierarchical forecasting baselines.

Table 10: Key hyperparameters for DeepVAR across hierarchical forecasting datasets.

Dataset Epochs Batch Size Learning Rate Context Length No. of Prediction Samples
LABOUR 5 32 0.01 24 400
TRAFFIC 10 32 0.001 40 400
TOURISM 10 32 0.01 24 200
TOURISM-L 10 4 0.001 36 200
WIKI 25 32 0.001 15 200

H.2.3 TRAINING AND TESTING SETUP

We follow the standard GluonTS (Alexandrov et al., 2019) training setup using the Adam opti-
mizer (Kingma & Ba, 2015) and mini-batch updates. Each epoch consists of 50 batches, with batch
size set according to Table 10. We run our evaluation five times and report the mean and variance of
the CRPS values in Table 3.

Unlike Hier-E2E (Rangapuram et al., 2021), which samples forecast trajectories during training
and projects them to ensure structural coherence on samples, our method operates entirely in the
parameter space during training. We avoid sampling and instead minimize the closed-form CRPS

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

loss (Gneiting et al., 2005) directly on the predicted mean and variance. This makes the training
process sampling-free and reduces training time, similar to the PDE case discussed later in Figure 5.
This key distinction avoids the use of coherent train samples, as described in the Appendix
of Rangapuram et al. (2021).

At inference time, because the reported CRPS is computed on the samples in the hierarchical baselines,
we enable structured projection by drawing predicted samples from the learned distribution, and
we apply our DPPL to ensure that they satisfy the hierarchical aggregation constraints. This setup
parallels the coherent pred samples mode in HierE2E, and we implement the inference step
with this approach for experimentation simplicity. Table 10 shows the number of prediction samples
in evaluation to compute the CRPS and calibration metrics over the projected outputs. Alternatively,
we can also evaluate the CRPS using samples from the projected distribution.

H.3 METRICS

We evaluate ProbHardE2E and the various baselines using the following metrics. We denote the
exact solution or ground truth observations as u, and we report the metrics on the mean µ̂, covariance
Σ̂, and samples {u∗

i }Ni=1 drawn from the constrained multivariate Gaussian distribution N (µ̂, Σ̂).

Mean Squared Error (MSE). The MSE measures the mean prediction accuracy and is given as:

MSE(µ̂) =
1

n
∥u− µ̂∥2F ,

where the Frobenius norm is taken over all the datapoints n in µ̂.

Constraint Error (CE). The CE measures the error in the various equality constraints h(u∗) = 0,
i.e., conservation laws for PDEs and coherency for hierarchical time series forecasting, on the samples,
and is given as:

CE(u∗) =

N∑
i=1

∥h(u∗
i)∥22,

where we compute the average error over N = 100 samples {u∗
i }Ni=1.

Continuous Ranked Probability Score (CRPS). The CRPS (Gneiting & Raftery, 2007) measures
the quality of uncertainty quantification by comparing a predictive distribution to a ground-truth
observation. For a multivariate Gaussian distribution with independent components N (µ,diag(σ̂2)),
where σ̂2

ii denotes the i-th diagonal entry of the predictive covariance Σ̂, the CRPS is given in
closed-form as:

CRPSN (µ̂, σ̂;u) =

n∑
i=1

σ̂ii

[
zi (2P (zi)− 1) + 2p(zi)−

1√
π

]
,

where zi = (ui − µ̂i)/σ̂ii, p(zi) = (1/
√
2π) exp(−z2i /2) denotes the standard normal PDF, and

P (zi) =
∫ zi
−∞ p(y)dy denotes the standard normal CDF (Gneiting et al., 2005; Taillardat et al.,

2016).

I ADDITIONAL EMPIRICAL RESULTS AND DETAILS

In this section, we include additional empirical results and details for ProbHardE2E with various
constraint types, i.e., linear equality, nonlinear equality and convex inequality.

I.1 LINEAR EQUALITY CONSTRAINTS

In this subsection, we show additional results and details for ProbHardE2E with linear equality
constraints in both PDEs and hierarchical time series forecasting.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

I.1.1 PDES WITH CONSERVATION LAW CONSTRAINTS

Here, we impose the discretized form of the simplified linear global conservation laws given in
Appendix G.1 for the heat equation (Eq. (55)), PME (Eq. (57)), Stefan (Eq. (59)) and linear advection
equation (Eq. (61)). We use the trapezoidal discretizations of the integrals from Hansen et al. (2023).

Fig. 5 shows the analogous training time per epoch to Fig. 1(a) for PDE datasets. Models trained
with 100 posterior samples per training step incur a 3.5–3.6× increase in epoch time relative to our
ProbHardE2E, which avoids sampling altogether by using a closed-form CRPS loss. See Table 2
for the accuracy results.

Heat PME Advection
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Ti

m
e

pe
r E

po
ch

 (s
)

No Sampling With Sampling (100)

Figure 5: ProbHardE2E: PDE timing comparisons for our sampling-free approach.

I.1.2 HIERARCHICAL TIME SERIES FORECASTING WITH COHERENCY CONSTRAINTS

Here, we test ProbHardE2E on probabilistic hierarchical forecasting with coherency constraints.
(See Appendix G.2 for details and Table 3 for the results.) We compare the two variants of
ProbHardE2E, i.e., with oblique Q = Σ−1 (ProbHardE2E-Ob) and with orthogonal Q = I
(ProbHardE2E-Or) projection to the following baselines:

• DeepVAR (Salinas et al., 2019) is the base unconstrained probabilistic model, which
assumes a multivariate Gaussian distribution for Z ∼ N (µ,Σ) with mean µ and diagonal
covariance Σ.

• Hier-E2E (Rangapuram et al., 2021) uses DeepVAR as the base model, and enforces the
exact coherency constraint by applying the orthogonal projection directly on the samples in
an end-to-end manner. Another difference from their approach is that we use the closed-form
CRPS expression rather than the approximate weighted quantile loss.

• ProbConserv (Hansen et al., 2023) enforces the coherency constraint as an oblique
projection at inference time only.

• ARIMA-NaiveBU and ETS-NaiveBU are two simple baseline models that use ARIMA
and exponential smoothing (ETS), respectively. These methods use a naive bottom-up
approach of deriving aggregated level forecasts (Hyndman & Athanasopoulos, 2018).

• PERMBU-MINT (Taieb et al., 2017) is a hierarchical probabilistic forecasting model that
is based on a linear projection method MINT (Wickramasuriya et al., 2019). It generates
probabilistic forecasts for aggregated series using permuted bottom-level forecasts.

We do not include DPMN (Olivares et al., 2024a) or CLOVER (Olivares et al., 2024b) in our experi-
ments because the implementations are proprietary. Given that Hier-E2E is the best open-access
hierarchical forecasting model, through GluonTS (Alexandrov et al., 2019), to the best of our knowl-
edge, we use the same base model to Hier-E2E (i.e., DeepVAR), and we evaluate forecast accuracy
compared to Hier-E2E to assess the added value of our ProbHardE2E.

I.2 NONLINEAR EQUALITY CONSTRAINTS

In this subsection, we impose the discretized form of the general nonlinear global linear conservation
laws from Eq. (52) in Appendix G.1 for the PME with various ranges for the parameter m. (See
Table 4 for the results and Fig. 1(b) for the solution profile.) For the PME, the flux in Eq. (52) is

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

given as F (u) = −k∇u, where k(u) = um. Substituting this flux into Eq. (52) and integrating in
time gives the general conservation law for the PME as:∫

Ω

u(t, x)dΩ =

∫ t

0

[um(t, x0)∇u(t, x0)− um(t, xN)∇u(t, xN)]dt, ∀t ∈ [0, 1].

Similar to the linear equality constraint case, we discretize the integral using the trapezoidal rule.
Unlike ProbConserv (Hansen et al., 2023), which requires an analytical flux expression to evaluate
the right-hand side, our ProbHardE2E can enforce arbitrary (nonlinear) conservation laws directly.
In addition, ProbHardE2E with nonlinear constraints can be applied to arbitrary PDEs with any
initial or boundary conditions. We impose the initial and boundary conditions as additional linear
constraints and enforce positivity on the solution. We test on various training and testing ranges for
the parameter m, i.e., m ∈ [2, 3], [3, 4] and [4, 5]. As the exponent m is increased, the degeneracy
increases, and as a result the solution becomes sharper and more challenging to solve (Maddix
et al., 2018a; Hansen et al., 2023). We see in Table 4 that across all values of m, either our oblique
ProbHardE2E-Ob or orthogonal projection ProbHardE2E-Or variants of our method perform
better than all the baselines.

I.3 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

In this subsection, we impose a convex total variation diminishing (TVD) inequality constraint. (See
Fig. 1(c) for the solution profile.) TVD numerical schemes have been commonly using in solving
hyperbolic conservation laws with shocks to minimize numerical oscillations from dispersion (Harten,
1997; LeVeque, 1990; Tezaur et al., 2017). The total variation (TV) is defined in its continuous form
as:

TV(u(t, ·)) =
∫
Ω

∣∣∣∣∂u∂x
∣∣∣∣ dΩ.

This integral can be approximated as the discrete form of the total variation (TV) used in image
processing as:

TV(u(t)) = TV(u(t, ·,)) =
Nx∑
i=1

|u(t, xi+1)− u(t, xi)| , (62)

where we discretize the spatial domain Ω = [x1, . . . , xNx] into Nx gridpoints. A numerical scheme
is called TVD if:

TV(u(tn+1)) ≤ TV(u(tn)), ∀ n = 1, . . . , Nt, (63)
where we discretize the temporal domain [0, T] = [t1, . . . , tNt

] into Nt gridpoints, and TV denotes
the discretized form defined in Eq. (62).

The TVD constraint in Eq. (63) is a nonlinear inequality constraint, and enforcing it as a hard
constraint is challenging with current frameworks, e.g., DCL (Agrawal et al., 2019). To address this,
we perform a convex relaxation of the constraint by imposing:

TVD =

Nt∑
n=1

Nx∑
i=1

|u(tn, xi+1)− u(tn, xi)| ,

as a regularization term. This approach is analogous to total variation denoising in signal processing
(Rudin et al., 1992; Boyd & Vandenberghe, 2004).

Fig. 1(c) demonstrates the application of the modified TVD constraint, resulting in more physically-
meaningful solutions by decreasing both the artificial oscillations and probability of negative samples,
which violate the monotonicity and positivity properties of the true solution, respectively. In addition,
ProbHardE2E leads to improved (tighter) uncertainty estimates.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used for grammatical corrections and minor formatting of the paper. They are not used in
the conceptualization and implementation of research.

42

