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ABSTRACT

We present ProbHardE2E, a probabilistic forecasting framework that incorpo-
rates hard operational/physical constraints, and provides uncertainty quantification.
Our methodology uses a novel differentiable probabilistic projection layer (DPPL)
that can be combined with a wide range of neural network architectures. DPPL
allows the model to learn the system in an end-to-end manner, compared to other
approaches where constraints are satisfied either through a post-processing step or
at inference. ProbHardE2E optimizes a strictly proper scoring rule, without mak-
ing any distributional assumptions on the target, which enables it to obtain robust
distributional estimates (in contrast to existing approaches that generally optimize
likelihood-based objectives, which can be biased by their distributional assump-
tions and model choices); and it can incorporate a range of non-linear constraints
(increasing the power of modeling and flexibility). We apply ProbHardE2E in
learning partial differential equations with uncertainty estimates and to probabilistic
time-series forecasting, showcasing it as a broadly applicable general framework
that connects these seemingly disparate domains.

1 INTRODUCTION

Recently, machine learning (ML) models have been applied to a variety of engineering and scientific
tasks, including probabilistic time series forecasting (Rangapuram et al., 2021; Hyndman et al.,
2011; Taieb et al., 2017; Olivares et al., 2024b) and scientific applications (Krishnapriyan et al.,
2021; Hansen et al., 2023; Négiar et al., 2023; Mouli et al., 2024). Exact enforcement of hard
constraints can be essential in domains where any violation of operational or physical requirements
(e.g., coherency in hierarchical forecasting, conservation laws in physics, and non-negativity in
economics and robotics) is unacceptable (Gould et al., 2022; Hansen et al., 2023; Donti et al., 2021).
Limitations of data-driven ML approaches arise in various disciplines where constraints need to
be satisfied exactly (Rangapuram et al., 2021; Hansen et al., 2023). Within ML, constraints are
typically incorporated as soft penalties, e.g., with a regularization term added to the loss function
(Raissi et al., 2019; Li et al., 2024); but they are sometimes incorporated via post-training correction
mechanisms, e.g., to enforce a hard constraint (Hansen et al., 2023; Mouli et al., 2024; Cheng et al.,
2025). Some methods have managed to enforce hard constraints “end-to-end” in a general framework
as a differentiable solver (Négiar et al., 2023; Chalapathi et al., 2024; Rackauckas et al., 2020), as a
differentiable optimization layer (Amos & Kolter, 2017; Agrawal et al., 2019; Min et al., 2024), or as
an auxiliary procedure (Donti et al., 2021).

The aforementioned hard-constrained models typically provide point estimates without uncertainty
quantification (UQ), limiting their use cases in operational and physical domains requiring probabilis-
tic forecasts. Generating output distribution statistics under hard constraints is often computationally
expensive or yields only approximate solutions (Robert et al., 1999; Szechtman & Glynn, 2001;
Girolami & Calderhead, 2011). There have been domain-specific works in hierarchical probabilistic
time series forecasting, which enforce coherency constraints using end-to-end deep learning models
(Olivares et al., 2024b; Rangapuram et al., 2021). However, these works either apply only to linear
constraints, or they require a computationally expensive sampling procedure in training. Similar
approaches have been proposed for computing probabilistic solutions to partial differential equations
(PDEs) that satisfy constraints (Hansen et al., 2023; Mouli et al., 2024; Cheng et al., 2025; Gao
et al., 2023; Utkarsh et al., 2025). In these works, however, the constraints are only applied as a
post-processing step, and they do not lead to an end-to-end solution (of interest in the common
situation that one wants to incorporate a hard-constrained model within a larger model, and then
optimize the larger model) that optimizes the evaluation accuracy. In both the forecasting and PDE
application domains, none of this prior UQ work can handle complex nonlinear (hard) constraints.
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In this work, we propose a novel probabilistic framework, ProbHardE2E, that integrates a broad
class of hard constraints (including non-linear constraints) in an end-to-end fashion, while incorporat-
ing UQ. By leveraging key results from statistics and optimization in a novel way, we predict both the
mean and covariance of the output data, moving beyond point estimate predictions. ProbHardE2E
enforces nonlinear constraints with an efficient sampling-free method to generate distribution statis-
tics. Our probabilistic approach enables the effective handling of exogenous spikes and jumps (or
other discontinuities) by leveraging data heteroscedasticity, enhancing the model’s robustness and
flexibility under varying data conditions.

We summarize our key contributions as follows.

• We introduce ProbHardE2E, as a general framework to learn a function in an end-to-
end manner by optimizing an objective under hard constraints. The framework enables
UQ by learning parameters of a multivariate probabilistic distribution. We show that
ProbHardE2E can incorporate a broad class of deep learning backbone models.

• The key technical novelty of ProbHardE2E is a differentiable probabilistic projection
layer (DPPL) that extends standard projection methods to accommodate UQ while enforcing
hard constraints. ProbHardE2E can handle constraints ranging from linear equality to
general nonlinear equality to convex inequality constraints.

• We use the DPPL to impose constraints directly on the marginals of the multivariate distri-
bution for an efficient sampling-free approach for posterior distribution estimation, which
reduces the computational overhead by up to 3–5× during training.

• We show that ProbHardE2E is effective in two (seemingly-unrelated, but technically-
related) tasks, where hard constraints are important: probabilistic time series forecasting; and
solving challenging PDEs in scientific machine learning (SciML). We provide an extensive
empirical analysis demonstrating that ProbHardE2E results in up to 15× lower mean-
squared error (MSE) in mean forecast and 2.5× improved uncertainty estimates, measured
by the Continuous Ranked Probability Score (CRPS), compared to the baseline methods.

• We show that training with the continuous-ranked probability score (CRPS), rather than
negative log-likelihood (NLL) leads to better predictive performance. While the need for
this is well-known in, e.g., time series forecasting, previous PDE learning works commonly
use NLL-based metrics for UQ.

2 RELATED WORK

There is a large body of related work from various communities, ranging from imposing constraints on
neural networks for point estimates (Min et al., 2024; Donti et al., 2021), to probabilistic time series
forecasting with constraints (Rangapuram et al., 2021; 2023; Olivares et al., 2024b), to imposing
constraints on deep learning solutions to PDEs (Négiar et al., 2023; Hansen et al., 2023). Table 5 in
Appendix A summarizes some advantages and disadvantages of these methods that are motivated by
enforcing hard constraints in these domains. (See Appendix A for additional details.)

3 PROBHARDE2E: A UNIFIED PROBABILISTIC OPTIMIZATION FRAMEWORK

In this section, we introduce ProbHardE2E. See Algorithm 1 for a summary. (See also Appendix B
for a universal approximation guarantee.) In Section 3.1, we discuss the proper evaluation metric
for a constrained probabilistic learner, and we define our objective function that corresponds to that
evaluation metric. In Section 3.2, we propose our differentiable probabilistic projection layer (DPPL)
that enforces the hard constraints. In Section 3.3, we describe how to compute the parameters of the
resulting constrained posterior distribution. In Section 3.4, we discuss update rules for various types
of constraints (linear equality, nonlinear equality, and convex inequality constraints). In Section 3.5,
we propose a sample-free formulation for satisfying the constraints while optimizing for the objective.

3.1 PROBABILISTIC EVALUATION METRICS AND OBJECTIVE FUNCTION

We formulate the problem of probabilistic learning under constraints. The goal of this problem is
to learn a function f̂θ : Φ → Y, where Φ ⊂ Rm denotes the input space, θ ∈ Θ̄ ⊆ Θ denotes the
feasible parameter space, and Y ⊂ Rk denotes the space of predicted distribution parameters that meet
the constraints. Given a multivariate distribution class, these learned parameters induce a predictive
multivariate random variable Yθ(ϕ

(i)), where (ϕ(i), u(i)) ∼ D, where ϕ(i) ∈ Φ, u(i) ∈ Rn, and D
denotes training data from a distribution D. Each realization of û(ϕ(i)) ∼ Yθ(ϕ

(i))∈ Rn is required

2
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Algorithm 1 ProbHardE2E: Training and Inference

Require: Training data {(ϕ(i), u(i))} ∼ D, test data ϕ and constraints g(·) ≤ 0, h(·) = 0.
Ensure: Learnable function f̂θ : Φ → Y that outputs constrained distribution parameters.

1: Pick a model class Θ, initialize weights θ ∈ Θ for probabilistic unconstrained model fθ : Φ → Z .
2: while θ not converged do
3: Predict unconstrained distribution parameters (µθ(ϕ

(i)),Σθ(ϕ
(i))).

4: Training Mode: Project parameters (µ̂θ(ϕ
(i)), Σ̂θ(ϕ

(i))) = DPPL((µθ(·),Σθ(·)), g(·), h(·)).
5: Update θ ∈ Θ̄ by minimizing the CRPS loss ℓ(Yθ(ϕ

(i)), u(i)).
6: end while
7: Inference Mode: Project random variable Yθ(ϕ) = DPPL(Zθ(ϕ), g(·), h(·)), where Zθ(ϕ) and

Yθ(ϕ) denote the unconstrained and unconstrained random variables, respectively.
8: Return Feasible predicted sample u∗(zθ(ϕ)) ∼ Yθ(ϕ), where zθ(ϕ) ∼ Zθ(ϕ).

to satisfy predefined hard constraints of the form g(û(ϕ(i))) ≤ 0 and h(û(ϕ(i))) = 0. We can
formulate this constrained optimization problem as follows:

argmin
θ∈Θ, g(Yθ(ϕ

(i)))≤0, h(Yθ(ϕ
(i)))=0

E(ϕ(i),u(i))∼D ℓ
(
Yθ(ϕ

(i)), u(i)
)
, (1)

where denotes a proper scoring rule.

One widely-used (strictly) proper scoring rule for continuous distributions is the continuous ranked
probability score (CRPS) (Gneiting & Raftery, 2007). The CRPS simultaneously evaluates sharpness
(how concentrated or “narrow” the distribution is) and calibration (how well the distributional
coverage “aligns” with actual observations). More formally, for an observed scalar outcome y and a
corresponding probabilistic distributional estimate, Y , the CRPS is defined as:

CRPS(Y, y) = EY |Y − y| − 1
2EY |Y − Y ′|, (2)

where Y ′ denotes an i.i.d. copy of Y . Compared to other scoring rules, e.g., the log probability scoring
rules, which require assumptions on the outcome variable, the CRPS is robust to probabilistic model
mis-specification. Because of this unique property, the CRPS is widely used as the evaluation metric
in many applications, e.g., probabilistic time series forecasting (Gasthaus et al., 2019; Rangapuram
et al., 2021; Park et al., 2022; Olivares et al., 2024b), quantile regression (Fakoor et al., 2023),
precipitation nowcasting (Ravuri et al., 2021; Gao et al., 2023) and weather forecasting (Rasp &
Lerch, 2018; Kochkov et al., 2024; Price et al., 2025).

We align our training objective with the proposed evaluation metric above, by directly optimizing the
CRPS in Eq. (2) in Problem 1. We define the loss as the sum of the univariate CRPS:

ℓ
(
Yθ(ϕ

(i)), u(i)
)
=

n∑
j=1

CRPS((Yθ(ϕ
(i)))j , u

(i)
j ). (3)

The CRPS naturally aligns with the goal of producing feasible and well-calibrated predictions, as
the metric rewards distributions that closely match observed outcomes. Enforcing our constraints in
the distribution space guarantees that every sample from the predicted distribution is physically or
operationally valid. Consequently, modeling the loss through the CRPS provides a principled way to
reconcile domain constraints with distributional accuracy.

3.2 DIFFERENTIABLE PROBABILISTIC PROJECTION LAYER (DPPL)
We transform the constrained Problem 1 into the unconstrained optimization problem:

argmin
θ∈Θ̄

E(ϕ(i),u(i))∼D ℓ
(
Yθ(ϕ

(i)), u(i)
)
, (4)

where Θ̄ ⊆ Θ denotes the feasible parameter space that ensures constraint satisfaction, and ℓ denotes
the loss function in Eq. (3). We solve this using a two-step procedure: first define a predictive output
distribution, then project it onto the constraint manifold using a differentiable probabilistic projection
layer (DPPL) for end-to-end optimization.
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Our framework begins with an established probabilistic backbone model. This can be a Gaussian
Process (Rasmussen & Williams, 2006), neural process (Kim et al., 2019), DeepVAR (Salinas et al.,
2019; Rangapuram et al., 2021), or ensembles of neural networks or operators (Mouli et al., 2024).
The base model fθ : Φ → Rk predicts the distribution parameters (mean µθ(ϕ

(i)) and covariance
Σθ(ϕ

(i)), for θ ∈ Θ) – without constraint awareness. We then use a reparameterization function
r : Rk × Rn → Rl to define the distribution in one of two ways: either as an identity map, where
l = k, that returns fθ(ϕ(i)) =

(
µθ(ϕ

(i)),Σθ(ϕ
(i))

)
for our efficient sample-free paradigm during

training; or as a map, where l = n, that combines the distribution parameters with noise ξ ∼ p(ξ)
∈ Rn, where p denotes a tractable sampling distribution, and gives a sample zθ(ϕ

(i)) ∼ Zθ(ϕ
(i))

∈ Rn from the predicted distribution to generate constrained samples at inference. This dual-mode
design balances training efficiency with strict constraint feasibility at inference.

The reparameterization function induces the base (unconstrained) distribution parameters or predictive
random variable as:

r(fθ(ϕ
(i)), ξ) =

{(
µθ(ϕ

(i)),Σθ(ϕ
(i))

)
, (Training)

Zθ(ϕ
(i)), (Inference)

(5)

Following this Predictor Step above, we use the DPPL in the Corrector Step to restrict the parameter
space to Θ̄ ⊆ Θ, such that for all ûθ(ϕ

(i)) ∼ Yθ(ϕ
(i)), the constraints g(ûθ(ϕ

(i))) ≤ 0 and
h(ûθ(ϕ

(i))) = 0 are satisfied. The DPPL is our core architecture innovation for leveraging the base
model to learn predictions that satisfy the given constraints. We define the projected distribution
parameters or projected predictive random variable as:

DPPL(r(fθ(ϕ(i)), ξ), g(·), h(·)) = r(f̂θ(ϕ
(i)), ξ) =

{(
µ̂θ(ϕ

(i)), Σ̂θ(ϕ
(i))

)
, (Training)

Yθ(ϕ
(i)), (Inference)

(6)

for r(fθ(ϕ(i)), ξ) in Eq. (5), where f̂θ : Φ → Y ⊂ Rk denotes the probabilistic model that outputs
the constrained distribution parameters (µ̂θ(ϕ

(i)), Σ̂θ(ϕ
(i))). Our DPPL yields a constraint-satisfying

realization u∗ ∼ Yθ(ϕ
(i)) as the final predictive random variable.

This two-step approach mirrors predictor-corrector methods (Boyd & Vandenberghe, 2004; Bertsekas,
1997), with the DPPL serving as our key architectural innovation for ensuring constraint satisfaction.
Equivalently, the DPPL can be formulated as a constrained least squares problem on the samples of
Zθ(ϕ

(i)). (See Appendix C for details.) Prior works on imposing hard constraints in time series and
solving PDEs (Rangapuram et al., 2021; Hansen et al., 2023) reduce to special cases of our method
with linear constraints. (See Appendix D for details.) We draw zθ(ϕ

(i)) ∼ Zθ(ϕ
(i)), and we solve

the following constrained optimization problem:

u∗(zθ(ϕ
(i))) := argmin

ûθ(ϕ
(i))∈Rn,g(ûθ(ϕ

(i)))≤0,h(ûθ(ϕ
(i)))=0

∥ûθ(ϕ
(i))− zθ(ϕ

(i))∥2Q, (7)

where u∗(zθ(ϕ
(i))) denotes a predicted sample of Yθ(ϕ

(i)), and where ∥x∥Q =
√

x⊤Qx for some
symmetric positive semi-definite matrix Q. (See Appendix E for details on the flexibility of learning
various forms of Q.)

3.3 DPPL ON THE DISTRIBUTION PARAMETERS FOR LOCATION-SCALE DISTRIBUTIONS

In this subsection, we detail how to directly compute the parameters for the constrained distribution by
applying our DPPL on the base distribution parameters for an efficient, sampling-free during training.
To do so, we can assume that the prior distribution F belongs to a multivariate, location-scale family,
i.e., a distribution such that any affine transformation Y of a random variable Z = µ + Σ1/2ξ ∼
F(µ,Σ) and ξ ∼ F(0, 1), remains within the same distribution family F . This is an example of how
to compute the random variable in Eq. (5) for a multivariate location-scale distribution. A familiar
case of this is when Z ∼ N (µ,Σ) and Y = AZ + B is an affine transformation; in which case
Y ∼ N (Aµ+B,AΣA⊤). Alternatively, we can show that when Y is a nonlinear transformation
of Z, it has approximately (to first-order) the same distribution Z, with an appropriately-chosen set
of parameters (given in Eq. (8) below). We state this result more formally in Theorem 3.1. The
proof, given in Appendix F, uses a first-order Taylor expansion to linearize the nonlinear function
transformation, and is similar to the Multivariate Delta Method (Casella & Berger, 2001).
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Theorem 3.1. Let Z ∼ F(µ,Σ) be a random variable, where the underlying distribution F belongs
to a multivariate location-scale family of distributions, with mean µ and covariance Σ; and let
T be a function with continuous first derivatives, such that JT (µ)ΣJT (µ)⊤ is symmetric positive
semi-definite. Then, the transformed distribution Y = T (Z) converges in distribution with first-
order accuracy to F(µ̂, Σ̂) with mean µ̂ = T (µ) and covariance Σ̂ = JT (µ)ΣJT (µ)

⊤, where
JT (µ) = ∇T (µ)

⊤ denotes the Jacobian of T with respect to z evaluated at µ.

Let Z ∼ F(µ,Σ) denote the prior distribution and z ∼ Z. We apply Theorem 3.1 with T (z) = u∗(z),
where u∗(z) denotes the solution of the constrained least squares problem in Problem (7). In this
case, the projected random variable satisfies Y ∼ F(µ̂, Σ̂) with updated parameters:

µ̂ = T (µ), Σ̂ = JT (µ) ΣJT (µ)
⊤. (8)

3.4 DPPL FOR VARIOUS CONSTRAINT TYPES

In this subsection, we discuss how to compute the DPPL for various constraint types (linear equality,
nonlinear equality, and convex inequality) for both train and inference modes. Table 1 shows these
constraints types require different treatments: linear equality have closed-form projections, nonlinear
equality can be solved with iterative methods, and convex inequality require optimization solvers.

Table 1: Summary of DPPL in ProbHardE2E for various constraint types. For linear equality
constraints, the oblique projection PQ−1 = I − Q−1A⊤(AQ−1A⊤)−1A; for nonlinear equality
constraints, R denotes the first-order optimality conditions.

Constraint Type Solution u∗(z) Solver Type Jacobian JT
Linear Equality PQ−1z + (I − PQ−1)A†b closed-form PQ−1

Nonlinear Equality (u∗, λ∗) s.t. R(u∗, λ∗; z) = 0 nonlinear implicit differentiation

Convex Inequality argmin
h(û)=0, g(û)≤0

∥û− z∥2Q convex opt. sensitivity analysis;
argmin differentiation

3.4.1 LINEAR EQUALITY CONSTRAINTS

For linear equality constraints, we have an underdetermined linear system h(û) = Aû− b = 0, where
A ∈ Rq×n, q < n, and has full row rank q. In this case, we can derive a closed-form solution to the
constrained least squares Problem (7). In this case, both training and inference modes are equivalent
since the DPPL projection is exact. (See Appendix C.1.)

3.4.2 NONLINEAR EQUALITY CONSTRAINTS

For nonlinear equality constraints, h(û) = 0, we can no longer derive the exact closed-form expres-
sion for the solution. Instead, we can provide an expression which is satisfied by the optimal solution.
In particular, we approximate the parameter-level projection at training time. This can then be
solved for the posterior mean µ̂ = u∗(µ) in Eq. (8) with the nonlinear transformation T (µ) = u∗(µ)
with iterative optimization methods, e.g., Newton’s Method. (We can then compute the posterior
covariance Σ̂ in Eq. (8) by estimating the Jacobian JT (µ) by differentiating the nonlinear equations
u∗(z) = z −Q−1∇h(u∗(z))⊤λ , h(u∗(z)) = 0 with respect to z via the implicit function theorem
(Blondel et al., 2022), and evaluating it at µ. (See Appendix C.2.) At inference, we project each
sample exactly with our custom, batched optimization solver to ensure strict constraint feasibility.

3.4.3 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

For convex inequality constraints, û in Problem (7) is in a convex set, C ⊂ Rn. Closed-form
expressions (such as those in previous subsections for linear and nonlinear equality constraints) do
not exist (Boyd & Vandenberghe, 2004). Instead, we rely on convex optimization solvers to ensure
computational efficiency and scalability to compute the solution u∗ in training. The gradients of the
convex program can be calculated efficiently using sensitivity analysis (Bertsekas, 1997; Bonnans &
Shapiro, 2013), argmin differentiation (Sun et al., 2022; Agrawal et al., 2019; Amos & Kolter, 2017;
Gould et al., 2016), and/or variational analysis (Rockafellar & Wets, 2009). These techniques provide
a means to compute the Jacobian JT (µ), which represents the sensitivity of the optimal solution
u∗ to changes in the input vector µ, whose projection we are essentially computing to the convex
constraints space. During inference, we solve the convex program per sample. (See Appendix C.3.)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.5 SAMPLE-FREE WITH CLOSED-FORM CRPS

We use a closed-form expression for the CRPS to enable a computationally efficient and sample-free
approach for evaluating the CRPS in the loss function ℓ in Eq. (3). Calculating the CRPS for an arbi-
trary distribution requires generating samples (Rangapuram et al., 2021; Gneiting & Raftery, 2007),
but closed-form expressions for the CRPS exist for several location-scale distributions (Gaussian, lo-
gistic, student’s t, beta, gamma, uniform). Most notably, for the univariate Gaussian, the closed-form
CRPS is given as: CRPSN (z) =

[
z · (2P(z)− 1) + 2p(z)− 1√

π

]
, where p(z) = 1√

2π
exp (−z2/2)

denotes the standard normal probability density function (PDF), and P(z) =
∫ z

−∞ p(y)dy denotes
the standard normal cumulative distribution function (CDF) for z ∼ N (0, 1) (Gneiting et al., 2005;
Taillardat et al., 2016). This sample-free formulation is especially beneficial when the DPPL is
computationally intensive, e.g., in the presence of nonlinear constraints.

4 EMPIRICAL RESULTS

In our empirical evaluations, we aim to answer the following five questions about ProbHardE2E:

(Q1) Does training end-to-end with the imposed hard constraints improve upon the performance
of imposing them only at inference time?

(Q2) Is using a general oblique projection more beneficial than using the commonly-used orthog-
onal projection, and if so when?

(Q3) Does training with the distribution-agnostic proper scoring rule, CRPS instead of NLL,
improve performance?

(Q4) What are the computational savings of projecting directly on the distribution parameters and
using the closed form CRPS vs. projecting on the samples?

(Q5) How does ProbHardE2E perform when extended to more general constraints, e.g., non-
linear equality and convex inequality constraints?

See Appendix G for details on the test datasets, Appendix H for implementation details, and Ap-
pendix I for additional empirical results.

Test Cases. We demonstrate the efficacy of ProbHardE2E in two constrained optimization
applications: PDEs; and hierarchical forecasting. We show that our methodology with DPPL is
model-agnostic, as demonstrated through its high-performance integration with different base models
across applications. We first consider a series of PDE problems with varying levels of difficulty
in learning their solutions, following the empirical evaluation from Hansen et al. (2023). These
PDEs are categorized as “easy,” “medium,” and “hard,” with the difficulty level determined by the
smoothness or sharpness of the solution. (See Appendix G.1 for details.) In addition to PDEs, we
also evaluate ProbHardE2E on five hierarchical time-series forecasting benchmark datasets from
Alexandrov et al. (2019), where the goal is to generate probabilistic predictions that are coherent with
known aggregation constraints across cross-sectional hierarchies (Rangapuram et al., 2021). (See
Appendix G.2 for details.)

Baselines. We compare two variants of ProbHardE2E, i.e., ProbHardE2E-Ob, which uses a
general oblique projection (Q = Σ−1) projection and is our default unless otherwise specified, and
ProbHardE2E-Or, which uses an orthogonal projection (Q = I), against several probabilistic
deep learning baselines commonly used for uncertainty quantification in constrained PDEs and
probabilistic time series forecasting. For PDEs, ProbHardE2E uses VarianceNO (Mouli et al.,
2024), which is a probabilisitic extension of the Fourier Neural Operator (FNO) (Li et al., 2021)
as the unconstrained model. We compare ProbHardE2E with: (i) HardC, which is based on
Négiar et al. (2023); Hansen et al. (2023), and which imposes the orthogonal projection only on
the mean, but does not update the covariance; (ii) ProbConserv (Hansen et al., 2023), which
applies the oblique projection only at inference time, and works only with linear constraints (in the
nonlinear constraint case, we compare with ProbHardInf, which is a variant of ProbConserv
that imposes the nonlinear constraint at inference time only); (iii) SoftC (Hansen et al., 2023),
which introduces a soft penalty on constraint violation à la PINNs (Raissi et al., 2019; Li et al., 2024)
during training but does not guarantee constraint satisfaction at inference; and (iv) the unconstrained
model backbone VarianceNO. For hierarchical time-series forecasting, ProbHardE2E uses
DeepVAR (Salinas et al., 2019) as the probabilistic base model. We compare ProbHardE2E with:
(i) ProbConserv; (ii) HierE2E (Rangapuram et al., 2021), which enforces linear constraints via an
end-to-end orthogonal projection; classical statistical approaches including (iii) ARIMA-NaiveBU,
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(iv) ETS-NaiveBU (Hyndman et al., 2011; 2025), (v) PERMBU-MINT (Taieb et al., 2017; Olivares
et al., 2022); and (vi) the unconstrained model backbone DeepVAR.

Evaluation. We evaluate ProbHardE2E using the following metrics: Mean Squared Error (MSE),
which measures the mean prediction accuracy; Constraint Error (CE), which measures the constraint
errors on the samples (conservation law for PDEs and coherency for hierarchical time series forecast-
ing); and Continuous Ranked Probability Score (CRPS), which measures performance in uncertainty
quantification (UQ). (See Appendix H.3 for details on the metrics.) For each model, we report these
metrics when trained with either CRPS or Negative Log-Likelihood (NLL) as the loss. Although
originally optimized with NLL, we also train a CRPS-based variant of ProbConserv to ensure a
fair comparison. The experiments are conducted on a single NVIDIA V100 GPU in the PDEs case,
and on an Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz in the time series forecasting case. To
ensure scalability, we use a diagonal covariance matrix Q in Problem 7, following prior work (Hansen
et al., 2023; Mouli et al., 2024). (See Appendix E for low-rank and full covariance structures.)

4.1 LINEAR CONSERVATION AND HIERARCHICAL CONSTRAINTS

In this subsection, we test ProbHardE2E on linear constraints. Table 2 presents our comparative
evaluation results across multiple PDE datasets under linear constraints, and Table 3 presents our
evaluation results across multiple time series forecasting datasets. We use these results to answer
questions (Q1)-(Q4) raised above.

Table 2: Test metrics on constrained PDEs across four datasets, which are ordered top to bottom in
their learning difficulty. Metrics include MSE ×10−5, constraint (conservation) error (CE) ×10−3,
and CRPS ×10−3. Each algorithm is trained with either CRPS or NLL. Best values per row are
highlighted in bold.

Dataset Metric ProbHardE2E-Ob ProbHardE2E-Or HardC ProbConserv SoftC VarianceNO (base)
CRPS NLL CRPS NLL CRPS NLL CRPS NLL CRPS NLL CRPS NLL

Heat
MSE 0.036 0.047 0.031 0.301 0.031 0.090 0.027 1.26 0.051 0.156 0.029 2.01
CE 0 0 0 0 0 0 0 0 0.852 4.806 1.76 34.3
CRPS 0.304 0.37 0.271 0.713 0.275 0.452 0.392 4.27 0.354 1.129 0.396 4.39

PME
MSE 9.59 6.16 9.01 11.08 8.870 10.55 8.801 10.5 8.187 7.362 7.945 8.132
CE 0 0 0 0 0 0 0 0 17.091 29.31 20.19 27.2
CRPS 2.01 2.65 1.798 1.80 1.785 1.667 2.03 2.49 2.065 2.444 2.02 2.43

Advection
MSE 131 262 88.09 310.82 103.78 458.38 134 277 148.11 599.11 149 605
CE 0 0 0 0 0 0 0 0 19.334 182.99 18.9 182
CRPS 4.19 7.03 2.94 8.669 3.236 11.23 3.88 7.90 3.963 9.702 3.98 10.1

Stefan
MSE 186 207 394.84 432.92 394.29 433.28 303 273 431.89 429.06 425 425
CE 0 0 0 0 0 0 0 0 166.93 168.75 180 169
CRPS 7.52 7.85 14.147 14.67 14.432 14.539 7.85 8.33 9.878 10.062 9.51 10.2

Q1. Regarding (Q1) on the benefits of training end-to-end with a hard constraint, the results demon-
strate that our method achieves superior performance compared to existing approaches. Specifically,
when measured against two accuracy metrics across four PDE datasets in Table 2, our method
with either oblique (ProbHardE2E-Ob) or orthogonal (ProbHardE2E-Or) projection consis-
tently outperforms both ProbConserv, which applies constraints only during post-processing, and
SoftC, which implements constraints as soft penalties, as measured by the desired CRPS metric.
This performance advantage directly addresses research question (Q1), showing that our end-to-end
approach is more effective than methods that treat constraints as either post-processing steps or soft
penalties. In addition, across five diverse hierarchical time-series datasets, our method achieves
state-of-the-art CRPS on the LABOUR, TOURISM-L, and WIKI datasets. On the TOURISM and
TRAFFIC datasets, it remains highly competitive, outperforming traditional approaches, e.g., ARIMA
and ETS, and offering comparable performance to specialized methods, e.g., PERMBU-MINT and
HierE2E.

Q2. Regarding (Q2) on the effectiveness of the oblique vs. orthogonal projections, Table 2
shows while both oblique (ProbHardE2E-Ob) and orthogonal (ProbHardE2E-Or) variants
of ProbHardE2E enforce zero constraint error, their impact on predictive fidelity varies signifi-
cantly, depending on the difficulty of the PDE problem. For the “easy” (smooth) Heat equation and
“medium” tasks (PME and Advection), orthogonal projection reduces CRPS by 10− 30% relative to
oblique projection and improves MSE by up to 33%. However, in the “hard” (sharp) nonlinear Stefan
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problem, the oblique projection-based method improves CRPS by more than 50% compared to the
orthogonal projection. Table 3 shows that ProbHardE2E-Or generally performs better on the time
series datasets with cross-sectional hierarchies, as it improves CRPS on LABOUR and TOURISM
datasets, compared to ProbHardE2E-Ob. This addresses (Q2) that correcting predictions along
covariance-weighted (oblique) directions better preserves the true uncertainty structure around shocks
and spikes, performing more effectively on problems with heteroscedastic data.

Table 3: CRPS ×10−3 for hierarchical time-series datasets across various probabilistic forecasting
algorithms. Constraint (coherency) error (CE) is given in parenthesis and is equal to 0 for all methods
except the base unconstrained DeepVAR. PERMBU-MINT is not available for TOURISM-L, because
the dataset has a nested hierarchical structure, and PERMBU-MINT is not well-defined on this type
of dataset (Rangapuram et al., 2021). ARIMA-NaiveBU, ETS-NaiveBU and PERMBU-MINT are
deterministic models with no model uncertainty.

Dataset ProbHardE2E-Ob ProbHardE2E-Or ProbConserv HierE2E ARIMA-NaiveBU ETS-NaiveBU PERMBU-MINT DeepVAR (base)

LABOUR 36.1± 2.7 (0) 28.6±6.5 (0) 45.8±6.5 (0) 50.5±20.6 (0) 45.3 (0) 43.2 (0) 39.3 (0) 38.2±4.5 (0.215)

TOURISM 98.9±13.0 (0) 82.4±6.6 (0) 100.7±7.7 (0) 103.1±16.3 (0) 113.8 (0) 100.8 (0) 77.1 (0) 92.5±2.2 (2818.01)

TOURISM-L 155.2±3.6 (0) 156.4±9.4 (0) 176.9±21.5 (0) 161.3±10.9 (0) 174.1 (0) 169.0 (0) – 158.1±10.2 (70000)

TRAFFIC 55.0±10.6 (0) 60.6±7.8 (0) 71.0±3.9 (0) 41.8±7.8 (0) 80.8 (0) 66.5 (0) 67.7 (0) 40.0±2.6 (0.192)

WIKI 212.1±29.4 (0) 215.8±16.9 (0) 264.7± 30.7 (0) 216.5±26.7 (0) 377.2 (0) 467.3 (0) 281.2 (0) 229.4±15.8 (8398.6)

Q3. Regarding (Q3) on the training objective, Table 2 shows that training with the proper scoring
rule, such as CRPS, improves UQ (measured by CRPS) across nearly all PDE datasets compared
to training with the commonly-used NLL in previous SciML works. The only exception is HardC
in the PME. The CRPS training objective also improves mean accuracy (measured by MSE) in
approximately three-quarters of the dataset-model experiments. In addition, Table 3 shows that
on four out of five time series datasets, we improve upon the results of HierE2E, which uses
the DeepVAR base model with an orthogonal projection on the samples, and which optimizes the
sampling-based quantile loss by projecting directly on the distribution parameters.

Q4. Regarding (Q4) on the computational efficiency of our sampling-free approach, Fig. 1(a) shows
the training time per epoch for the hierarchical time series datasets. Models trained for time series
and PDEs (see Appendix I.1) with 100 posterior samples per training step incur a 3.3–4.6× increase
in epoch time relative to ProbHardE2E, which avoids sampling altogether by using a closed-form
CRPS loss. Note that the computational overhead of ProbHardE2E is approximately 2× that of
the unconstrained model. However, compared to the sampling-based probabilistic baselines, our
approach with the DPPL layer that directly projects distribution parameters and a closed-form CRPS
objective offers significant training-time speed-ups across all forecasting and PDE testbeds.

4.2 GENERAL NONLINEAR EQUALITY AND CONVEX INEQUALITY CONSTRAINTS (Q5)

In this subsection, we test ProbHardE2E on nonlinear equality and convex inequality constraints
to address question (Q5) on PDE datasets, as (current) time series forecasting applications usually
need predictions to satisfy only linear (e.g., hierarchical) constraints.

4.2.1 NONLINEAR EQUALITY CONSTRAINTS

We test ProbHardE2E with general nonlinear constraints using nonlinear conservation laws from
PDEs. (See Appendix I.2 for details.) Importantly, Table 4 shows that even in this challenging case of
nonlinear constraints, the constraint error (CE) on the samples is 0 so that we ensure strict feasibility
on the samples. In addition, we see superior performance of enforcing nonlinear constraints with
ProbHardE2E. We see an even larger MSE performance improvement of at most ≈ 15 − 17×
when trained on CRPS, and CRPS performance improvement of at most ≈ 2.5× for m ∈ [2, 3] over
the various baselines that apply the nonlinear constraint just at inference time (ProbHardInf),
as a reduced linear constraint (ProbConserv) at inference time, and the unconstrained model
(VarianceNO). These results highlight the benefit of training end-to-end with the constraint in the
nonlinear case. In particular, this validates our dual mode training and inference approach, where
we obtain the computational benefits of projecting on the parameters and approximately satisfying
the constraint during training, and exact constraint sanctification at inference time while achieving
state-of-the-art performance measured in CRPS. In addition, Fig. 1(b) shows that ProbHardE2E is
able to significantly better capture the shock and has tighter uncertainty estimates, leading to lower
CRPS values than the baselines.
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Figure 1: ProbHardE2E on the various constraint types. (a) Linear Equality: Average time per
iteration (in seconds) for ProbHardE2E, compared to the HierE2E on five hierarchical time-
series datasets; (b) Nonlinear Equality: Mean ±3 standard deviation for the PME with conservation
constraint at time t = 0.51, with PDE parameter mtrain ∈ [3, 4] and mtest = 3.88; (c) Convex
Inequality: Mean ±3 standard deviation for linear advection with TVD constraint at time t = 0.51,
with PDE parameter βtrain ∈ [1, 2] and βtest = 1.5. The horizontal axes in (b)-(c) are zoomed in to
highlight the uncertainty near the propagating front.

Table 4: Test metrics on the nonlinear PME with PDE coefficient k(u) = um, which controls the
sharpness of the solution (larger values are “harder”), for NLL and CRPS training. The training and
test parameters are sampled from this range of m. Metrics include MSE ×10−6, calibration error
(CE) ×10−3, and CRPS ×10−4. Best values per row and metric are bolded.

PME Dataset Metric ProbHardE2E-Ob ProbHardE2E-Or ProbHardInf ProbConserv VarianceNO (base)
CRPS NLL CRPS NLL CRPS NLL CRPS NLL CRPS NLL

m ∈ [2, 3]
MSE 5.04 106.638 9.38 43.5 78.185 86.147 88.539 94.467 80.342 89.212
CE 0 0 0 0 0 0 0 0 0.020 0.028
CRPS 8.648 18.867 11.34 14.8 19.005 32.977 20.672 36.724 20.779 37.140

m ∈ [3, 4]
MSE 296.4 471.3 3.19 134.7 157.8 200.2 184.5 276.4 162 201.5
CE 0 0 0 0 0 0 0 0 14.8 34.1
CRPS 11.23 16.9 7.10 11.18 22.60 30.4 24.7 35.1 23.7 48.5

m ∈ [4, 5]
MSE 424.8 716.8 1.59 206.49 280.4 332.3 276.7 619.9 199.2 341.7
CE 0 0 0 0 0 0 0 0 22.8 59.7
CRPS 10.8 19.9 5.62 9.36 23.3 32.4 25.4 41.3 27.2 35.9

4.2.2 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

We impose a convex relaxation of the total variation diminishing (TVD) constraint that has been
commonly used in numerical methods for PDEs to minimize artificial oscillations (LeVeque, 2002).
In particular, we impose TVD =

∑Nt

n=1

∑Nx

i=1 |u(tn, xi+1)− u(tn, xi)| as a regularization term.
(See Appendix I.3 for details.) Note that this discrete form is analogous to total variation denois-
ing in signal processing (Rudin et al., 1992; Boyd & Vandenberghe, 2004). Fig. 1(c) illustrates
that imposing this TVD relaxation improves the shock location prediction, compared to the uncon-
strained model VarianceNO. We see that ProbHardE2E has smaller variance, compared to both
ProbConserv, which only enforces the conservation law, and VarianceNO. Most importantly,
we see that ProbHardE2E is less likely to predict non-physical negative samples, which violates
the positivity of the true solution. In addition, the variance of the ProbHardE2E solution also has a
smaller peak above the shock, and hence it is less prone to oscillations than the other baselines.

5 CONCLUSION

à la finite volume methods (LeVeque, 2002). Future work also includes extending our method to
handle general non-convex, nonlinear inequality constraints using advanced optimization techniques
or relaxations, to richer covariance parameterizations, e.g., low-rank or dense, and to empirical
distributions other than location-scale families by sample projection.
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A RELATED WORK

In this section, we review works that have been motivated by dealing with hard constraints in various
domains including imposing constraints in neural networks (Min et al., 2024; Donti et al., 2021),
probabilistic time series forecasting (Rangapuram et al., 2023; 2021; Olivares et al., 2024b) and
scientific machine learning (Négiar et al., 2023; Hansen et al., 2023). Table 5 summarizes several
of these methods. We see that existing general methododologies, e.g., HardNet (Min et al., 2024)
and DC3 (Donti et al., 2021), work across various domains and different types of constraints—
HardNet handles convex constraints, and DC3 tackles nonlinear ones. The biggest limitation of
these methods is that they provide point estimates only. Despite having the point forecast satisfying
the constraints, they are unsuitable for PDEs and forecasting applications, which generally now
require variance estimates. Hier-E2E (Rangapuram et al., 2021) and CLOVER (Olivares et al., 2024b)
are specialized solutions for forecasting problems, which both deal with probabilistic forecasting
under linear constraints. Linear constraints are common in the time series forecasting domain. Both
methods require sampling during training, which can be computationally intensive. Within the PDE-
focused methods, ProbConserv (Hansen et al., 2023) and HardC (Hansen et al., 2023) handle linear
constraints and include variance estimates in their probabilistic models. The training procedure with
the constraint is not end-to-end since the constraint is only applied at inference time. PDE-CL (Négiar
et al., 2023) handles nonlinear constraints and supports end-to-end training, but at the cost of not
supporting variance estimation.

Table 5: Summary of methods motivated by dealing with hard constraints in various domains:
imposing constraints in neural networks (Min et al., 2024; Donti et al., 2021), probabilistic time series
forecasting (Rangapuram et al., 2023; 2021; Olivares et al., 2024b) and scientific machine learning
(Négiar et al., 2023; Hansen et al., 2023). For models that only provide point estimates, we evaluate
their capabilities on sampling-free training and satisfying constraints on distributions, while treating
the point estimate as a degenerate probabilistic distribution.

Method Domain Constraint
Type

End-to-
End

Prob.
Model w/
Variance
Estimate

Sampling-
free

Training

Constraint
on Dstbn.

HardNet (Min et al., 2024) General Convex ✓ ✗ ✓ ✓
DC3 (Donti et al., 2021) General Nonlinear ✓ ✗ ✓ ✓
Hier-E2E (Rangapuram et al., 2021; 2023) Forecasting Linear ✓ ✓ ✗ ✗
CLOVER (Olivares et al., 2024b) Forecasting Linear ✓ ✓ ✗ ✓
PDE-CL (Négiar et al., 2023) PDEs Nonlinear ✓ ✗ ✓ ✓
ProbConserv (Hansen et al., 2023) PDEs Linear ✗ ✓ ✓ ✓
HardC (Hansen et al., 2023) PDEs Linear ✗ ✓ ✓ ✓

ProbHardE2E (Ours) General Nonlinear ✓ ✓ ✓ ✓

Our proposed method ProbHardE2E bridges the gaps left by its predecessors. It combines the
flexibility of general domain application with the ability to handle nonlinear constraints, and it
maintains end-to-end training capability. Perhaps most notably, it achieves this while incorporating
probabilistic modeling with variance estimates, supporting sampling-free training, and maintaining
constraints on distributions.

A.1 IMPOSING DETERMINISTIC CONSTRAINTS ON NEURAL NETWORKS

Enforcing constraints in neural networks (NNs) has been explored in various forms. In fact, activation
functions, e.g., sigmoid, ReLU, and softmax, inherently impose implicit constraints by restricting out-
puts to specific intervals. Another well-established method for enforcing constraints in NNs involves
differentiating the Karush-Kuhn-Tucker (KKT) conditions, which enables backpropagation through
optimization problems. This technique has led to the development of differentiable optimization
layers (Amos & Kolter, 2017; Agrawal et al., 2019) and projected gradient descent methods (Rosen,
1960).

Most commonly, soft constraint methods, e.g., Lagrange duality based methods, are often employed
in ML to balance minimizing the primary objective with satisfying the constraints. These methods
typically do so by adding the constraint as a penalty term to the loss function (Battaglia et al., 2018).
For example, Lagrange dual methods and relaxed formulations are frequently used to allow flexibility
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in the optimization process, while still guiding the model toward feasible solutions. These methods
encourage—but do not strictly enforce—adherence to the constraints during training; and this lack of
strict enforcement can be undesirable in some scientific disciplines, where known constraints must be
satisfied exactly (Hansen et al., 2023; Rangapuram et al., 2021).

More recently, there have been approaches that have been motivated by satisfying hard constraints.
DC3 (Donti et al., 2021) is a general method for learning a family of constrained optimization
problems using a correction and variable completion procedure. The variable completion approach
has a strong theoretical and practical foundation. A limitation is that it does require knowledge of the
structure of the matrix A to identify these corresponding predicted and completed variables, which
hinders its generalizability. In addition for inequality constraints, it only achieves hard constraint
satisfaction asymptotically; that is, the “correction” procedure to enforce inequality constraints is
carried out through gradient-descent optimization algorithms (Min et al., 2024; Donti et al., 2021).

Projection-based methods are an alternate method for enforcing hard constraints in NNs. Min et al.
(2024) identify cases where the aforementioned DC3 framework (Donti et al., 2021) is outperformed
by their proposed HardNet projection layer approach. Additionally, Min et al. (2024) investigate the
expressiveness of projection layers, which builds on the foundational work in Agrawal et al. (2019);
Amos & Kolter (2017), to further advance the understanding of constraint enforcement in NNs.
Projection-based methods have also been used to enforce constraints on specific architectures, e.g.,
neural ordinary differential equations (Neural ODEs) (Kasim & Lim, 2022; Matsubara & Yaguchi,
2023). In particular, White et al. (2024) use a closed-form projection operator to enforce a nonlinear
constraint g(u) = 0 in a Neural ODE, using techniques from Boumal (2024). A common limitation
of these works is that they impose the constraint deterministically, on point estimates rather than on
an entire probability distribution.

A.2 PROBABILISTIC TIME SERIES FORECASTING

Probabilistic time series forecasting extends beyond predicting point estimates, e.g., the mean or
median, by providing a framework to capture uncertainty, with practical application in estimating
high quantiles, e.g., P99. Classical statistical models, e.g., autoregressive integrated moving average
(ARIMA) models (Box et al., 2015), state-space models (Kalman, 1960), and copula-based models
(Joe, 1997) are prominent examples. More recently, deep learning models, e.g., DeepAR (Salinas
et al., 2020) and its multivariate extension DeepVAR (Salinas et al., 2019), multivariate quantile
regression-based models (Wen et al., 2018; Eisenach et al., 2022; Park et al., 2022), temporal fusion
transformers (TFT) (Lim et al., 2021), and foundational models based on large language models
(LLMs) (Ansari et al., 2024; Hoo et al., 2025; Das et al., 2023; Woo et al., 2024) have shown success.
See Benidis et al. (2022) for an overview.

Linear constraints are important in hierarchical time series forecasting, where coherent aggregation
constraints are required over regions (Rangapuram et al., 2021; Olivares et al., 2024b) and over
temporal hierarchies (Rangapuram et al., 2023). This constraint is critical in scenarios where higher-
level forecasts must be aggregates of lower-level ones, which is a common requirement in time-series
forecasting. Early works in hierarchical forecasting focus on mean forecasts under linear/hierarchical
constraints, starting from the naive bottom-up and top-down approaches (Hyndman & Athanasopoulos,
2018). More recently, Hyndman et al. (2011) show that the Middle-Out projection-based method
yields better forecast accuracy. Since then, projection-based reconciliation methods, e.g., GTOP
(Van Erven & Cugliari, 2015), MinT (Wickramasuriya et al., 2019), and ERM (Ben Taieb & Koo,
2019) have been developed. These methods leverage generic time series models, e.g., ARIMA and
exponential smoothing (ETS), to derive the unconstrained mean forecast, and then they use a linear
projection to map these forecasts to the consistent space. Taieb et al. (2017) further extend the
reconciliation method (MinT) to probabilistic forecasting by developing a method called PERMBU
that constructs cross-sectional dependence through a sequence of permutations. A more thorough
review of forecasting reconciliation is provided in Athanasopoulos et al. (2024).

To better handle the trade-off between forecast accuracy and coherence within the model, several
works have proposed end-to-end methodologies. For example, Rangapuram et al. (2021) propose
Hier-E2E, which is an end-to-end learning approach that imposes constraints via an orthogonal
projection on samples from the distribution. Hier-E2E produces coherent probabilistic forecasts
without requiring explicit post-processing reconciliation. One limitation is that Hier-E2E relies on
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expensive sampling techniques to achieve this coherence, by projecting directly on the samples rather
than on the distribution itself, which has a closed-form expression.

Separately, DPMN (Olivares et al., 2024a) adopts an equality constraint completion approach similar
to that in DC3 (Donti et al., 2021), rather than a projection-based approach, for satisfying the co-
herency constraint. DPMN assumes that the bottom-level series follow a Poisson mixture distribution,
with a multivariate discrete distribution on the Poisson rates across bottom-level series. Compared
to Hier-E2E, DPMN uses a CNN-based encoder rather than DeepVAR, and it shows improved
forecast accuracy over Hier-E2E. As follow-up work to DPMN, Olivares et al. (2024b) propose
CLOVER, a framework which enforces coherency as a hard constraint in probabilistic hierarchical
time series forecasting models using a CNN encoder. In particular, CLOVER only predicts the base
forecasts in the first step, and it solves for the aggregate forecasts by leveraging the constraint relation.
Finally, CLOVER models the joint distribution of all the forecasts in the scoring function calculation.
Similar to Hier-E2E, CLOVER also relies on sampling to enforce hierarchical coherency and to
generate uncertainty estimates. This affects the training time, and it requires tuning of the number of
samples for an accurate approximation of this scoring function. Although CLOVER admits constraint
satisfaction, the exact provably convergent procedure only exists for linear equality constraints (Donti
et al., 2021), and it has not been applied to nonlinear equality or convex inequality constraints.

A.3 SCIENTIFIC MACHINE LEARNING (SCIML)

Partial differential equations (PDEs) are ubiquitous in science and engineering applications, and have
been used to model various physical phenomena, ranging from nonlinear fluid flows with the Navier-
Stokes equations to nonlinear heat transfer. Classical numerical methods to solve PDEs include finite
difference (LeVeque, 2007), finite element (Hughes, 2003), and finite volume methods (LeVeque,
2002). These numerical methods discretize the solution on a spatio-temporal mesh, and the accuracy
increases as the mesh becomes finer. For this reason, numerical methods can be computationally
expensive on real-world, time dependent, 3D spatial problems that require fine meshes for high
accuracy.

Recently, Scientific Machine Learning (SciML) methods aim to alleviate the high computational
requirement of numerical methods. State-of-the-art data-driven methods include operator-based
methods, which aim to learn a mapping from PDE parameters or initial/boundary conditions to the
PDE solution, e.g., Neural Operators (NOs) (Li et al., 2020; 2021; Gupta et al., 2021) and DeepONet
(Lu et al., 2021), and message-passing Graph Neural Networks (GNNs)-based MeshGraphNets (Pfaff
et al., 2021; Fortunato et al., 2022). These data-driven methods are not guaranteed to satisfy the PDE
or known physical laws exactly, e.g., conservation laws (Hansen et al., 2023; Mouli et al., 2024) or
boundary conditions (Saad et al., 2023; Cheng et al., 2025) since they only implicitly encode the
physics through the supervised training simulation data (Kadambi et al., 2023).

Similar to imposing constraints on NNs, most work on imposing constraints in SciML has been
focused on soft constraints. One well-known type of approach is Physics-Informed Neural Networks
(PINNs) (Raissi et al., 2019; Karniadakis et al., 2021), which approximates the solution of a PDE
as a NN. PINNs and similarly Physics-Informed Neural Operators (PINOs) (Li et al., 2024) impose
the PDE as an additional term in the loss function, akin to the aforementioned soft constraint
regularization. Krishnapriyan et al. (2021); Edwards (2022) identify limitations of this approach
on problems with large PDE parameter values, where adding this regularization term can actually
make the loss landscape sharp, non-smooth and more challenging to optimize. In addition, Hansen
et al. (2023) show that adding the constraint to the loss function does not guarantee exact constraint
enforcement, which can be critical in the case of conservation and other physical laws. This constraint
violation primarily happens because the Lagrangian duals of the constrained optimization problem
are typically non-zero, i.e., the physical constraint is not exactly satisfied.

Recent work has studied imposing physical knowledge as hard constraints on various SciML methods.
Négiar et al. (2023) propose PDE-CL, which uses differentiable programming and the implicit
function theorem (Krantz & Parks, 2002) to impose nonlinear PDE constraints directly. Chalapathi
et al. (2024), extend this work by leveraging a mixture-of-experts (MoE) framework to better scale
the method. Similarly, Beucler et al. (2021) impose analytical constraints in NNs with applications to
climate modeling. In addition, Universal Differential Equations (UDEs) (Rackauckas et al., 2020;
Utkarsh et al., 2024) provide a GPU-compatible and end-to-end differentiable way to learn PDEs

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

while also enforcing implicit constraints. Chen et al. (2024) propose KKT-hPINN to enforce linear
equality constraints by using a projection layer that is derived from the KKT conditions. These
works show the benefit of imposing the PDE as a hard constraint rather than as a soft constraint. A
limitation of these methods is that they impose the constraints deterministically, and they do not
provide estimates of the underlying variance or uncertainties. To address this, Hansen et al. (2023)
propose ProbConserv, which incorporates linear conservation laws as hard constraints on probabilistic
models by performing an oblique projection to update the unconstrained mean and variance estimates.
Limitations are that this projection is only applied as a post-processing step at inference time, and the
method only supports linear constraints.

B UNIVERSAL APPROXIMATION GUARANTEES

In this section, we prove a universal approximation result for our differentiable probabilistic projection
layer (DPPL) in the case of convex constraints. As a consequence of this result, our ProbHardE2E
in Algorithm 1 is a universal approximator, and can approximate any continuous target function that
satisfies the given constraints. Our proof of this result generalizes the analysis of Min et al. (2024)
from the case Q = I to our broader framework with arbitrary Q. Since Q is symmetric positive
definite, we compute its Cholesky factorization Q = LLT , where L denotes a lower triangular matrix.
We then show that if fθ is a universal approximator, i.e., a sufficiently wide and deep neural network,
then our DPPL preserves this universal approximation capability. Hence, ProbHardE2E retains
the expressiveness of neural networks, both in its probabilistic formulation and in enforcing hard
constraints.

Our DPPL in Problem (7) is formulated in terms of projecting the samples zθ(ϕ
(i)) ∼ Zθ(ϕ

(i)),
where Zθ(ϕ

(i)) ∼ F(µθ(ϕ
(i)),Σθ(ϕ

(i))) for some multivariate location-scale distribution F , and
where (ϕ(i), u(i)) ∼ D denotes training data from a distribution D. The mean µθ(ϕ

(i)) ∈ Rn and
covariance Σθ(ϕ

(i)) ∈ Rn×n are the output from a deep neural network, fθ : Φ → Rk. The value
of k depends on the approximation for Σθ(ϕ

(i)), e.g., k = n + n2 for dense Σθ(ϕ
(i)), k = 2n for

Σθ(ϕ
(i)) = diag(σ2

1 , . . . , σ
2
n), or k = n for Σθ(ϕ

(i)) = I . For notational simplicity, we assume in
this section that fθ : Φ → Rn corresponds to the components that output the mean µθ(ϕ

(i)). By
setting zθ(ϕ

(i)) = µθ(ϕ
(i)) = fθ(ϕ

(i)) in Problem (7), our DPPL can also be formulated in terms of
projecting the mean µθ(ϕ

(i)) as the following constrained least squares problem:

µ̂θ(ϕ
(i)) := argmin

µ̃θ(ϕ
(i))∈Rn

g(µ̃θ(ϕ
(i)))≤0

h(µ̃θ(ϕ
(i)))=0

∥µ̃θ(ϕ
(i))− fθ(ϕ

(i))∥2Q, (9)

where Q denotes a symmetric positive definite matrix and g(·) ≤ 0, h(·) = 0 denote the convex
constraints. In particular, we show that the projected mean µ̂θ(ϕ

(i)) is a universal approximator of
the true solution u ∈ Rn. We now state the theorem and provide its proof below.

Theorem B.1. Consider Problem 9 with the projection step defined using a symmetric positive definite
(SPD) matrix Q ∈ Rn×n, a deep neural network that is a universal approximator, fθ : Φ → Rn,
where Φ ⊂ Rm denotes a compact set, convex constraints g(·) ≤ 0, h(·) = 0, and training data
(ϕ(i), u(i)) ∼ D from a distribution D. For any continuous target function that satisfies the constraints,
i.e., the true solution u : Φ → C ⊆ Rn, u ∈ C(Φ), where C denotes the convex set of feasible points
defined by the convex constraints and C(Φ) denotes the space of continuous functions on Φ, there
exists a choice of network parameters for fθ(ϕ(i)) = µθ(ϕ

(i)) ∈ Rn, such that the projected mean,
which is composition of fθ with the projection step, i.e., ΠQ

C
(
fθ(ϕ

(i))
)
= f̂θ(ϕ

(i)) = µ̂θ(ϕ
(i)) ∈ C ⊆

Rn, approximates the target function arbitrarily well, where f̂θ : Φ → C ⊆ Rn. Hence, under these
conditions, ProbHardE2E is a universal approximator for constrained mappings.

Proof. Let C ⊆ Rn denote the convex set of feasible points defined by the convex constraints.
Consider the projection operator onto C with respect to the Q-norm:

ΠQ
C (v) = argminµ̃θ(ϕ(i))∈C∥µ̃θ(ϕ

(i))− v∥2Q. (10)
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Since Q is symmetric positive definite (SPD), it has the following Cholesky factorization,

Q = LL⊤,

where L ∈ Rn×n denotes a lower triangular matrix with strictly positive diagonal entries, and hence
is invertible. By the definition of the Q-norm, and then substituting in its Cholesky factorization, we
have

∥µ̃θ(ϕ
(i))− v∥2Q = (µ̃θ(ϕ

(i))− v)⊤Q(µ̃θ(ϕ
(i))− v)

= (µ̃θ(ϕ
(i))− v)⊤LL⊤(µ̃θ(ϕ

(i))− v)

=
(
(µ̃θ(ϕ

(i))− v)⊤L)(L⊤(µ̃θ(ϕ
(i))− v)

)
=

(
L⊤(µ̃θ(ϕ

(i))− v))⊤(L⊤(µ̃θ(ϕ
(i))− v)

)
= ∥L⊤(µ̃θ(ϕ

(i))− v)∥22.

(11)

This shows that the Q-norm is equivalent to the standard Euclidean norm after the linear transforma-
tion L⊤.

We define the invertible linear mapping Ψ : Rn → Rn by Ψ(v) = L⊤v. Then using Eq. (11), the
Q-norm in Eq. (10) can be written as the Euclidean norm as follows:

ΠQ
C (v) = argminũθ(ϕ(i))∈C∥LT (µ̃θ(ϕ

(i))− v)∥22
= argminũθ(ϕ(i))∈C∥Ψ(µ̃θ(ϕ

(i)))−Ψ(v)∥22

= Ψ−1
(

argminw∈Ψ(C)∥w −Ψ(v)∥22
)
,

(12)

where w = Ψ(µ̃θ(ϕ
(i))). Hence, the projection can be expressed as the Euclidean projection onto

the transformed set Ψ(C). It is well known that the Euclidean projection onto a closed convex set is
nonexpansive and is Lipschitz continuous. (See, e.g., Min et al. (2024).)

Now, suppose that fθ(ϕ(i)) is a deep neural network that is a universal approximator, i.e., for any
continuous function u : Φ → Rn, u ∈ C(Φ), and for any ϵ > 0, there exists parameters θ such that

sup
ϕ(i)∈Φ

∥u(ϕ(i))− fθ(ϕ
(i))∥ < ϵ,

where Φ ⊂ Rm denotes a compact set and C(Φ) denotes the space of continuous functions on Φ.
Let u : Φ → C ⊆ Rn, u ∈ C(Φ), be any continuous target function whose outputs satisfy the
constraints. Since ΠQ

C is continuous (as the composition of the continuous mapping Ψ, the Euclidean
projection onto Ψ(C), and Ψ−1), it follows by the universal approximation theorem and properties of
continuous functions that the projected mean ΠQ

C
(
fθ(ϕ

(i))
)
= µ̂(ϕ(i)) can uniformly approximate

u(ϕ(i)) arbitrarily well on Φ. In other words, for every ϵ > 0, there exists a choice of network
parameters θ such that

sup
ϕ(i)∈Φ

∥u(ϕ(i))−ΠQ
C (fθ(ϕ

(i)))∥ < ϵ.

Thus, the composition of the neural network fθ with the Q-norm projection retains the universal
approximation property for any continuous target function satisfying the constraints.

C COMPUTATION OF POSTERIOR DISTRIBUTION FOR VARIOUS CONSTRAINT
TYPES

In this section, we discuss how to compute the differentiable probabilistic projection layer (DPPL)
that projects the distribution parameters (Eq. (6)) in ProbHardE2E for various constraint types,
which are summarized in Table 1.

C.1 LINEAR EQUALITY CONSTRAINTS

In this subsection, we provide the closed-form expressions for the constrained posterior distribution
parameters, i.e., the mean µ̂ and covariance Σ̂ in Eq. (8), from the DPPL in ProbHardE2E for linear
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equality constraints. Linear equality constraints occur in a wide range of applications, including
coherency constraints in hierarchical time series forecasting (Hyndman et al., 2011; Rangapuram et al.,
2021; Petropoulos et al., 2022; Olivares et al., 2024b), divergence-free conditions in incompressible
fluid flows (Raissi et al., 2019; Richter-Powell et al., 2022), boundary conditions in PDEs (Saad et al.,
2023), and global linear conservation law constraints (Hansen et al., 2023; Mouli et al., 2024).
Proposition C.1. For linear equality constraints, h(û) = Aû − b = 0, with A ∈ Rq×n, with
full row rank q, where q < n, and b ∈ Rq, the optimal solution u∗ to Problem (7) is given as
u∗(z) = PQ−1z+(I−PQ−1)A†b, where PQ−1 = I−Q−1A⊤(AQ−1A⊤)−1A, denotes an oblique
projection operator, and A† denotes the Moore-Penrose inverse. In addition, if Z ∼ F(µ,Σ) and
z ∼ Z for multivariate, location-scale distribution F , then u∗ ∼ Y, where Y ∼ F(µ̂, Σ̂) and
µ̂, Σ̂ are given in Eq. (8) with T (z) = u∗(z), which simplifies to the closed-form expressions,
µ̂ = PQ−1µ+ (I − PQ−1)A†b and Σ̂ = PQ−1ΣP⊤

Q−1 .

Proof. Using the Lagrange multiplier λ ∈ Rq, we can form the Lagrangian of Problem (7) with
linear constraints to obtain:

L(û, λ; z) =
1

2
û⊤Qû− z⊤Qû+ λ⊤(Aû− b).

The sufficient optimality conditions to obtain (u∗, λ∗) are the first-order gradient conditions:

∇ûL(û, λ; z)|u∗,λ∗ = Qu∗ −Q⊤z +A⊤λ∗ = 0, (13a)
∇λL(û, λ; z)|u∗,λ∗ = Au∗ − b = 0. (13b)

Since Q is SPD, Q = Q⊤ and Q−1 exists. Then from Eq. (13a), we obtain:

Q(u∗ − z) +A⊤λ∗ = 0,

which simplifies to the following expression for u∗:

u∗ = z −Q−1A⊤λ∗. (14)

We solve Eq. (13b) for u∗ using the Moore-Penrose inverse, i.e., u∗ = A†b, where A† =
A⊤(AA⊤)−1. Note that AA⊤ ∈ Rq×q is invertible with full rank q since A ∈ Rq×n has full
row rank q ≤ n. Substituting this expression into Eq. (14) for u∗ gives:

A⊤(AA⊤)−1b = z −Q−1A⊤λ∗.

Rearranging for the optimal Lagrange multiplier λ∗, and multiplying both sides by A gives:

(AQ−1A⊤)λ∗ = Az − (AA⊤)(AA⊤)−1︸ ︷︷ ︸
I

b.

Now, AQ−1A⊤ ∈ Rq×q is invertible since A has full row rank q. Then we obtain:

λ∗ = (AQ−1A⊤)−1(Az − b).

Substituting in the expression for λ∗ into Eq. (14) gives the following expression for the optimal
solution:

u∗ = z −Q−1A⊤(AQ−1A⊤)−1(Az − b),

= (I −Q−1A⊤(AQ−1A⊤)−1A)z +Q−1A⊤(AQ−1A⊤)−1b.
(15)

Let
PQ−1 = I −Q−1A⊤(AQ−1A⊤)−1A, (16)

be an oblique projection. To see that this is a projection, observe that

P 2
Q−1 = (I −Q−1A⊤(AQ−1A⊤)−1A)(I −Q−1A⊤(AQ−1A⊤)−1A)

= I − 2Q−1A⊤(AQ−1A⊤)−1A+Q−1A⊤(AQ−1A⊤)−1AQ−1A⊤(AQ−1A⊤)−1A

= I − 2Q−1A⊤(AQ−1A⊤)−1A+Q−1A⊤(AQ−1A⊤)−1A

= I −Q−1A⊤(AQ−1A⊤)−1A

= PQ−1 .
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Then, the expression for u∗ in Eq. (15) simplifies to:

u∗(z) = PQ−1z +Q−1A⊤(AQ−1A⊤)−1(AA†)b,

= PQ−1z + (Q−1A⊤(AQ−1A⊤)−1A)A†b,

= PQ−1z + (I − PQ−1)A†b,

(17)

since AA† = AA⊤(AA⊤)−1 = I .

Since the expression for u∗ in Eq. (17) is a linear transformation T of z ∼ F(µ,Σ), we can use
Theorem 3.1 with T (z) = u∗(z) to write the expression for u∗ ∼ F(µ̂, Σ̂), where:

µ̂ = T (µ) = u∗(µ) = PQ−1µ+ (I − PQ−1)A†b, (18a)

Σ̂ = JT (µ)ΣJT (µ)
⊤ = PQ−1ΣP⊤

Q−1 . (18b)

It can easily be verified that JT (µ) = PQ−1 by differentiating Eq. (17) with respect to z. We note
that Eq. (18) holds exactly in the case of linear constraints since T is a linear transformation of z.

We note that our probabilistic method applies to underdetermined linear systems when q < n, where
there is existence of many solutions. When q = n and A has full row rank, the solution is unique. In
this case, the projection P−1

Q has the following deterministic solution,

µ̂ = A†b, Σ̂ = 0.

In this case, it reduces to a non-probabilistic point prediction methods, similar to the HardC baseline
(Hansen et al., 2023), where only the mean is updated.

C.2 NONLINEAR EQUALITY CONSTRAINTS

In this subsection, we describe how to compute the DPPL in ProbHardE2E for general nonlinear
equality constraints. Nonlinear equality constraints naturally arise in applications that involve
structural, physical, or geometric consistency. These include closed-loop kinematics in robotics
(Toussaint et al., 2019), nonlinear conservation laws (LeVeque, 1990) in PDE-constrained surrogate
modeling (Biegler et al., 2003; Zahr & Persson, 2016; Négiar et al., 2023) with applications in climate
modeling (Bolton & Zanna, 2019; Zanna & Bolton, 2020; Beucler et al., 2021), compressible flows
in aerodynamics (Tezaur et al., 2017) and atomic modeling (Müller, 2022; Sturm & Wexler, 2022).
Proposition C.2. For nonlinear equality constraints, h(û) = 0 ∈ Rq, where h : Rn → Rq,
the optimal solution u∗(z) to Problem (7) forms a pair (u∗(z), λ∗) which satisfies u∗(z) = z −
Q−1∇h(u∗(z))⊤λ∗ and h(u∗(z)) = 0. In addition, if Z ∼ F(µ,Σ) and z ∼ Z for multivariate,
location-scale distribution F , then u∗ ∼ Y, where Y ∼ F(µ̂, Σ̂) and µ̂, Σ̂ are given in Eq. (8) with
T (z) = u∗(z).

Proof. Using the Lagrange multiplier λ ∈ Rq, we can form the Lagrangian of Problem (7) with
nonlinear equality constraints to obtain:

L(û, λ; z) =
1

2
û⊤Qû− z⊤Qû+ λ⊤h(û).

The sufficient optimality conditions to obtain (u∗, λ∗) are the first-order gradient conditions:

R(u∗, λ∗; z) =

{∇ûL(û, λ; z)|u∗,λ∗ = Q(u∗ − z) +∇h(u∗)λ∗ = 0,

∇λL(û, λ; z)|u∗,λ∗ = h(u∗) = 0.
(19)

We solve Eq. (19) via root-finding methods, e.g., Newton’s method for (u∗, λ∗) to obtain u∗(z) =
arg{ û : R(û, λ∗; z) = 0} , where the root-finding solution u∗ is implicitly dependent on z. Since
the expression for u∗ is a nonlinear transformation T of z ∼ F(µ,Σ), we can use Theorem 3.1 with
T (z) = u∗(z) to write the expression for u∗ ∼ F(µ̂, Σ̂), where:

µ̂ = T (µ) = u∗(µ), (20a)

Σ̂ = JT (µ)ΣJT (µ)
⊤, (20b)

hold to first-order accuracy. In the following Proposition C.3, we detail the iterative algorithm to
compute the terms u∗(µ) and JT (µ) in Eq. (20).
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Proposition C.3. Let h(û) = 0 ∈ Rq be a smooth nonlinear equality constraint, where h : Rn → Rq .
Consider the constrained projection problem from Problem (7) with z = µ:

u∗(µ) = argmin
û∈Rn

h(û)=0

f(û), (21)

where Q ≻ 0 and f(û) = 1
2 ∥û− µ∥2Q denotes our quadratic objective.

1. At each iteration, we solve the linearized Karush-Kuhn-Tucker (KKT) system using the Schur
complement to obtain:

λ(i+1) =
(
J (i)Q−1J (i)⊤

)−1 (
h(û(i))− J (i)(û(i) − µ)

)
, (22a)

û(i+1) = µ−Q−1J (i)⊤λ(i+1), (22b)

where J (i) = ∇h(û(i))⊤ ∈ Rq×n. At the first iteration with û(0) = µ, Eq. (22b) simplifies
to:

û(1) = µ−Q−1J⊤ (
JQ−1J⊤)−1

h(µ), (23)

where J = ∇h(µ)⊤.

2. At convergence, the Jacobian JT (µ) of the projection map T (µ) := u∗(µ) is given by:

JT (µ) :=
∂u∗(µ)

∂µ
= I −Q−1J∗⊤(J∗Q−1J∗⊤)−1J∗ ∈ Rn×n, (24)

where J∗ = ∇h(u∗)⊤.

Proof. We begin with the matrix form of the KKT system derived in Eq. (19):

R(u∗, λ∗;µ) =

[
∇ûL(u

∗, λ∗)
∇λL(u

∗, λ∗)

]
=

[
∇f(u∗) + J∗⊤λ∗

h(u∗)

]
= 0, (25)

with quadratic objective f defined in Problem 21.

1. Iteration Update. We use Newton’s Method to linearize the KKT system in Eq. (25) evaluated at
(û(i+1), λ(i+1)) about the past iterate (û(i), λ(i)). For the stationarity condition, which is the first com-
ponent of R(u∗, λ∗;µ) in Eq. (25), we use the first-order Taylor expansion of R0(û

(i+1), λ(i+1);µ)
about the past iterate (û(i), λ(i)) to obtain:

R0(û
(i+1), λ(i+1);µ) = R0(û

(i), λ(i);µ) +∇û,λR0(û
(i), λ(i);µ)⊤

[
∆û(i+1)

∆λ(i+1)

]
= ∇ûL(û

(i), λ(i)) +∇û,λ(∇f(û(i)) + J (i)⊤λ(i))⊤
[
∆û(i+1)

∆λ(i+1)

]
= ∇ûL(û

(i), λ(i)) +
[
(∇2f(û(i)) +∇2h(û(i))λ(i)) J (i)⊤] [∆û(i+1)

∆λ(i+1)

]
= ∇ûL(û

(i), λ(i)) +
[
∇2

ûûL(û
(i), λ(i)) J (i)⊤] [∆û(i+1)

∆λ(i+1)

]
= 0,

(26)
where ∆û(i+1) = û(i+1) − û(i), ∆λ(i+1) = λ(i+1) − λ(i), and ∇2h(û(i)) ∈ Rn×n×q denotes the
Hessian of the constraints. Solving for the increments we obtain:[

∇2
ûûL(û

(i), λ(i)) J (i)⊤] [∆û(i+1)

∆λ(i+1)

]
= −∇ûL(û

(i), λ(i)). (27)

For the feasibility condition, i.e., the second component of R(u∗, λ∗;µ) in Eq. (25), we also linearize
the constraint as:

R1(û
(i+1), λ(i+1);µ) = h(û(i+1)) = h(û(i)) + J (i)(û(i+1) − û(i)) = 0, (28)
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using first-order Taylor expansion (Newton’s Method). Then,

J (i)∆û(i+1) = −h(û(i)). (29)

We can then combine Eq. (27) and Eq. (29) to form the following linearized system of KKT conditions:[
∇2

ûûL(û
(i), λ(i)) J (i)⊤

J (i) 0

] [
∆û(i+1)

∆λ(i+1)

]
= −

[
∇ûL(û

(i), λ(i))
h(û(i))

]
. (30)

Note that the system of equations in Eq. (30) is used in Sequential Quadratic Programming (SQP) (Wil-
son, 1963; Nocedal & Wright, 2006; Gill & Wong, 2012) when there are no inequality constraints.
In addition, since our objective f is quadratic, we do not need to compute its second-order Taylor
expansion, and only need to linearize the constraints. SQP reduces to Newton’s Method when
there are no constraints. In particular, Eq. (30) gives the standard unconstrained Newton step
∇2f(û(i))∆û(i+1) = −∇f(û(i)) when h = 0.

Now, we use our quadratic objective f in Problem 21 to compute:

∇ûL(û
(i), λ(i)) = Q(û(i) − µ) + J (i)⊤λ(i),

∇2
ûûL(û

(i), λ(i)) = Q+∇2h(û(i))λ(i) ≈ Q.
(31)

Note that Q is symmetric positive definite, but ∇2h(û(i)) is not guaranteed to be positive definite in the
general case, especially at every iterate, which could make the Newton step undefined. Regularization
may be needed to ensure that ∇2h(û(i)) is positive semi-definite. In addition, since ∇2h(û(i)) ∈
Rn×n×q is a three-dimensional tensor, it is computationally expensive to compute this matrix of
second derivatives, especially on our large-scale problem and through auto-differentiation (Griewank
& Walther, 2008; Blondel & Roulet, 2024). Similar to the Gauss-Newton method (Björck, 1996;
Nocedal & Wright, 2006) for nonlinear least squares problems, we assume that the constraint h is
approximately affine near its optimal point u∗, and use only first-order constraint information. Hence,
we set ∇2h(û(i)) ≈ 0. We note that even with these approximations for efficiency on large-scale
problems, we still show strong performance in the nonlinear constraint results in Table 4. An alternate
approach could be to use a low-rank approximation to the Hessian as done in Quasi-Newton, e.g.,
BFGS methods (Nocedal & Wright, 2006).

Using Eq. (31) with setting ∇2h(û(i)) = 0, Eq. (30) simplifies to:[
Q J (i)⊤

J (i) 0

] [
∆û(i+1)

∆λ(i+1)

]
= −

[
Q(û(i) − µ) + J (i)⊤λ(i)

h(û(i))

]
. (32)

Then,

Q∆û(i+1) + J (i)⊤(λ(i+1) − λ(i)) = −Q(û(i) − µ)− J (i)⊤λ(i), (33a)

J (i)∆û(i+1) = −h(û(i)). (33b)

We see that the only terms involving λ(i) cancel from both sides of the equation. Note that the method
does not require tracking the dual variable, so it could also be equivalently reset to λ(i) = 0 at each
iteration, and we compute λ(i+1) only for computing the primal update in Eq. (22b).

Since Q ≻ 0, it is invertible, we can multiply Eq. (33a) by Q−1 to obtain:

∆û(i+1) = û(i+1) − û(i) = −(û(i) − µ)−Q−1J (i)⊤λ(i+1). (34)

Multiplying both sides of Eq. (34) by J (i) and using Eq. (33b), we can eliminate ∆û(i+1) to obtain:

−h(û(i)) = −J (i)(û(i) − µ)− J (i)Q−1J (i)⊤λ(i+1). (35)

Since Q ≻ 0, Q−1 ≻ 0 and then J (i)Q−1J (i)⊤ ≻ 0, and hence it is invertible. We can then solve
Eq. (35) for λ(i+1) to obtain:

λ(i+1) =
(
J (i)Q−1J (i)⊤

)−1 (
h(û(i))− J (i)(û(i) − µ)

)
, (36)

which gives the desired Eq. (22a). Then, solving Eq. (34) for û(i+1) gives:

u(i+1) = µ−Q−1J (i)⊤λ(i+1), (37)
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which is the desired Eq. (22b). Lastly, for the first iterate, substituting Eq. (36) into Eq. (37), setting
i = 0 and u(0) = µ gives the desired Eq. (23).

We can also solve Eq. (32) efficiently using block Gaussian elimination and the Schur complement
(J (i)Q−1J (i)⊤)−1 ∈ Rq×q (Golub & Greif, 2003). In particular, the block matrix in Eq. (32) can be
factored into a product of elementary matrices as:[

Q J (i)⊤

J (i) 0

]
=

[
I 0

J (i)Q−1 I

] [
Q−1 0
0 −J (i)Q−1J (i)⊤

] [
I Q−1J (i)⊤

0 I

]
. (38)

Since the matrix factorization in Eq. (38) is a product of elementary matrices and a diagonal matrix,
we can easily compute its inverse as:[

Q J (i)⊤

J (i) 0

]−1

=

[
I −Q−1J (i)⊤

0 I

] [
Q−1 0
0 −(J (i)Q−1J (i)⊤)−1

] [
I 0

−J (i)Q−1 I

]
(39)

Then multiplying by the right-hand side in Eq. (32) gives the solution:[
û(i+1)

λ(i+1)

]
=

[
û(i)

0

]
−
[
I −Q−1J (i)⊤

0 I

] [
Q−1 0
0 −(J (i)Q−1J (i)⊤)−1

] [
I 0

−J (i)Q−1 I

] [
Q(û(i) − µ)

h(û(i))

]
=

[
û(i)

0

]
−
[
I −Q−1J (i)⊤

0 I

] [
Q−1 0
0 −(J (i)Q−1J (i)⊤)−1

] [
Q(û(i) − µ)

h(û(i))− J (i)(û(i) − µ)

]
=

[
û(i)

0

]
−
[
I −Q−1J (i)⊤

0 I

] [
û(i) − µ

−(J (i)Q−1J (i)⊤)−1(h(û(i))− J (i)(û(i) − µ))

]
=

[
µ−Q−1J (i)⊤λ(i+1)

(J (i)Q−1J (i)⊤)−1(h(û(i))− J (i)(û(i) − µ))

]
.

Using the Schur complement reduces the Newton system from an indefinite (n+ q)× (n+ q) solve
to a n × n SPD solve with Q−1 and q × q SPD solve with the Schur complement, where q ≤ n.
Similarly, the Jacobian expression in Eq. (24), which we will show next, is obtained by implicitly
differentiating the linearized KKT conditions and eliminating the dual block, which also avoids the
need to invert a full (n+ q)× (n+ q) saddle-point or indefinite matrix.

2. Jacobian JT (µ). Here, we compute the Jacobian JT (µ) := ∂u∗(µ)/∂µ of the transformation
T (µ) = u∗(µ) using implicit differentiation. At convergence, the optimal pair (u∗, λ∗) satisfies
Eq. (19). Differentiating both sides of the first stationarity equation in Eq. (19) w.r.t. µ gives:

∂

∂µ
R0(u

∗, λ∗;µ) =
∂

∂µ
(Q(u∗ − µ) +∇h(u∗)λ∗) = 0,

⇐⇒
(
Q+∇2h(u∗)λ∗)∂u∗

∂µ
+∇h(u∗)

∂λ∗

∂µ
= Q.

(40)

Similar to Eq. (31), we assume h(u∗) is approximately affine near the optimal point, and we
approximate ∇2h(u∗) ≈ 0.

Similarly differentiating both sides of the second feasibility equation in Eq. (19) w.r.t µ gives:

∂

∂µ
R1(u

∗, λ∗;µ) =
∂

∂µ
h(u∗) = ∇h(u∗)⊤

∂u∗

∂µ
= 0. (41)

Combining Eq. (40) and Eq. (41) leads to the following block linear system:[
Q J∗⊤

J∗ 0

] [
∂u∗/∂µ
∂λ∗/∂µ

]
=

[
Q
0

]
.

Similar to Eq. (38), we can use the Schur complement to eliminate the dual term via block substitution.
Using the block inverse in Eq. (39) with J (i) = J∗, we have
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[
∂u∗/∂µ
∂λ∗/∂µ

]
=

[
I −Q−1J∗⊤

0 I

] [
Q−1 0
0 −(J∗Q−1J∗⊤)−1

] [
I 0

−J∗Q−1 I

] [
Q
0

]
=

[
I −Q−1J∗⊤

0 I

] [
Q−1 0
0 −(J∗Q−1J∗⊤)−1

] [
Q

−J∗

]
=

[
I −Q−1J∗⊤

0 I

] [
I

(J∗Q−1J∗⊤)−1J∗

]
=

[
I −Q−1J∗⊤∂λ∗/∂µ
(J∗Q−1J∗⊤)−1J∗

]
.

Hence, the Jacobian is given by the first component as:

JT (µ) =
∂u∗(µ)

∂µ
= I −Q−1J∗⊤ (

J∗Q−1J∗⊤)−1
J∗,

which is the desired Eq. (24).

C.3 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

In this subsection, we describe how to compute the DPPL in ProbHardE2E for nonlinear convex
inequality constraints. Convex inequality constraints arise naturally in many scientific and engineering
applications. For example, total variation (TV) regularization is widely used to promote smoothness
or piecewise-constant structure in spatial fields, e.g., image denoising (Rudin et al., 1992; Boyd &
Vandenberghe, 2004) and total variation diminishing (TVD) constraints to avoid spurious artificial
oscillations in numerical solutions to PDEs (Harten, 1997; Tezaur et al., 2017; Schein et al., 2021).
Other common convex constraints include box constraints, which enforce boundedness of physical or
operational quantities (Bertsekas, 1997).

We consider the constrained projection Problem (7), where Q ≻ 0, and h : Rn → Rq , g : Rn → Rs

denote smooth functions representing equality and convex inequality constraints, respectively. This is
a convex optimization problem due to the strictly convex quadratic objective and the assumption that
g(u) is convex. The associated Lagrangian is

L(u, λ, ν; z) = 1
2 (u− z)⊤Q(u− z) + λ⊤h(u) + ν⊤g(u),

with Lagrange multipliers λ ∈ Rq for the equality constraints and ν ∈ Rs for the inequality
constraints, where ν ≥ 0. The KKT optimality conditions are given as:

(Stationarity) Q(u∗ − z) +∇h(u∗)λ∗ +∇g(u∗)ν∗ = 0,

(Primal feasibility) h(u∗) = 0, g(u∗) ≤ 0,

(Dual feasibility) ν∗ ≥ 0,

(Complementary slackness) ν∗j · gj(u∗) = 0 for all j = 1, . . . , s.

(42)

Note the first two conditions are the same as the ones for nonlinear equality constraints with ν = 0,
in Eq. (19).

The KKT conditions in Eq. (42) are necessary and sufficient for optimality, under standard constraint
qualifications, e.g., Slater’s condition (Boyd & Vandenberghe, 2004). Eq. (42) can be solved by
various optimization methods, e.g., stochastic trust-region methods with sequential quadratic pro-
gramming (SQP) (Boyd & Vandenberghe, 2004; Hong et al., 2023) and exact augmented Lagrangian
(Boyd & Vandenberghe, 2004; Fang et al., 2024). The augmented Lagrangian balances the need
for both constraint satisfaction and computational efficiency, which makes it particularly effective
in large-scale optimization problems. While the inequality constraints g(u) ≤ 0 are convex by
assumption, the equality constraints h(u) = 0 are typically required to be affine to ensure that the
feasible set remains convex (Boyd & Vandenberghe, 2004). Nonlinear equalities generally yield
non-convex level sets, which can violate problem convexity even when the objective and inequalities
are convex. Although exceptions exist where nonlinear equalities define convex sets, these cases are
rare and must be verified explicitly (Bertsekas, 1997; Boyd & Vandenberghe, 2004).

To compute the Jacobian JT (µ) := ∂u∗(µ)/∂µ of the projection map with respect to the input µ,
we could, in principle, apply implicit differentiation to the KKT conditions in Eq. (42). For general
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constrained problems with nonlinear equality and convex inequality constraints, the derivation
becomes analytically complex, particularly due to active set variability and non-affine structure. In the
special case of quadratic programs with affine constraints, OptNet (Amos & Kolter, 2017) provides
an explicit expression for the derivatives via KKT conditions. In addition, CVXPYLayers (Agrawal
et al., 2019) enables gradient-based learning for general convex cone programs by canonicalizing
them into a standard conic form. In our implementation, we use CVXPYLayers to enforce the
constraints during the projection step. Since CVXPYLayers does not currently support full Jacobian
extraction or higher-order derivatives, we estimate the variance of the projection map using Monte
Carlo methods by applying random perturbations to the inputs and computing empirical statistics
over repeated forward passes.

D SPECIAL CASES OF PROBHARDE2E

In this section, we show applications of ProbHardE2E in two seemingly unrelated but technically re-
lated domains: (1) hierarchical time series forecasting with coherency constraints (Rangapuram et al.,
2021; Olivares et al., 2024a); (2) solving partial differential equations (PDEs) with global conservation
constraints (Hansen et al., 2023; Mouli et al., 2024). Both are special cases of ProbHardE2E with
linear equality constraints, and orthogonal (Q = I) and oblique (Q = Σ−1) projections, respectively.
Fig. 2 illustrates the wide variety of cases that our framework covers.

ProbHardE2E

Probabilistic

Deterministic

Linear
Constraints

Nonlinear
Constraints

End-to-End

Inference
Time

Hetero-
scedasticHomo-

scedastic

Time-series

PDEs

General

Constraint
Application

Constraint
Type

Predictions

Domain

Figure 2: ProbHardE2E serves as a probabilistic unified framework for learning with hard con-
straints.

D.1 ENFORCING COHERENCY IN HIERARCHICAL TIME SERIES FORECASTING

Hierarchical time series forecasting is abundant in several applications, e.g., retail demand forecasting
and electricity forecasting. In retail demand forecasting, the sales are tracked at various granularities,
including item, store, and region levels. In electricity forecasting, the consumption demand is
tracked at individual and regional levels. Each time series at time t can be separated into bottom and
aggregate levels. Bottom-levels aggregate into higher-level series at each time point through known
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Total
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bt1
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City 3
bt3

Region 2
at3

City 4
bt4

City 5
bt5

City 6
bt6
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at4

City 2
bt2

City 3
bt3

Figure 3: Example hierarchical time series structure with at ∈ R4, bt ∈ R6 and Ssum =1 1 1 1 1 1
1 0 0 1 1 0
0 0 0 1 1 1
0 1 1 0 0 0

.

relationships, which can be represented as dependency graphs. Let zt = [at bt]
⊤ ∈ Rn, where

at ∈ Rq denotes the aggregate entries, bt ∈ Rq̃ denotes the bottom-level entries, and n = q + q̃. Let
Ssum ∈ {0, 1}q×q̃ denote the summation matrix, which defines the relationship between the bottom
and aggregate levels as at = Ssumbt. This coherency constraint can be equivalently expressed as:

[Iq −Ssum]

[
at
bt

]
= 0 ⇔ Azt = 0, ∀t, (43)

where Iq denotes the q × q identity matrix. See Hyndman et al. (2011); Rangapuram et al. (2021);
Olivares et al. (2024b) and the references therein for details, and Fig. 3 for an illustration.

HierE2E (Rangapuram et al., 2021) enforces the coherency constraint in Eq. (43) by projecting
the multivariate samples zt onto the null space of the constraint, i.e., Azt = 0. It uses the following
projection:

u∗(zt) = (I −A⊤(AA⊤)−1A)︸ ︷︷ ︸
PI

zt = (I −A†A)zt, (44)

where A† = A⊤(AA⊤)−1 denotes the right psuedoinverse, and PI = P 2
I = P⊤

I denotes an
orthogonal projector.

We show that HierE2E can be formulated in our ProbHardE2E framework with the following
posterior mean and covariance:

µ̂HierE2E = (I −A†A)µ, (45a)

Σ̂HierE2E = Σ−A†AΣ− ΣA†A+A†AΣA†A, (45b)

where PI is defined in Eq. (44). In particular, we show in Proposition D.1 that the HierE2E posterior
update in Eq. (45) is a special linear constraint case of our ProbHardE2E method, which uses an
orthogonal projection with Q = I and b = 0.

Proposition D.1. The projected mean and covariance for HierE2E in Eq. (45) is given by the
solution to Problem (7) with linear constraints in Proposition C.1, i.e., h(u) = Au = 0, b = 0, where
Q = I for an orthogonal projection and Z ∼ N (µ,Σ) is a multivariate Gaussian.

Proof. The oblique projection in Eq. (16) used in ProbHardE2E for linear constraints is given as
PQ−1 = I − Q−1A⊤(AQ−1A⊤)−1A. Setting Q = I , the expression simplifies to PQ−1 = PI =

I −A⊤(AA⊤)−1A = I −A†A.
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The posterior mean µ̂ for ProbHardE2E with linear constraints is given in Eq. (18a) with b = 0 as:

µ̂ = PQ−1µ

= PIµ

= (I −A†A)µ

= µ̂HierE2E,

(46)

which is the desired expression in Eq. (45a).

Similarly, the posterior covariance Σ̂ for ProbHardE2E in Eq. (18b) is given as:

Σ̂ = PQ−1ΣP⊤
Q−1

= PIΣP
⊤
I

= PIΣPI

= (I −A†A)Σ(I −A†A)

= (I −A†A)(Σ− ΣA†A)

= Σ−A†AΣ− ΣA†A+A†AΣA†A

= Σ̂HierE2E,

(47)

which is the desired expression in Eq. (45b).

Note that HierE2E does not directly project the distribution parameters, even though a closed
form exists, as shown in Eq. (46) and Eq. (47). Instead, it directly projects the samples in Eq. (44).
An improvement to HierE2E (that we do in ProbHardE2E) is to eliminate the computationally
expensive sampling in the training loop. (See Section 3.5.) HierE2E samples from the parametric
distribution generated by DeepVAR (Salinas et al., 2019; 2020; Alexandrov et al., 2019), reconciles
these samples, and computes the loss over time using the Continuous Ranked Probability Score
(CRPS). Generally, for unknown distributions, the CRPS evaluation requires sampling, which may
explain its necessity in their framework. For many standard distributions, e.g., the multivariate
Gaussian distribution in HierE2E, the CRPS can be computed analytically (Matheson & Winkler,
1976; Taillardat et al., 2016) using the mean and covariance of the output distribution.

D.2 ENFORCING CONSERVATION LAWS IN PDES

In addition to hierarchical forecasting, another (at first seemingly-unrelated) application of
ProbHardE2E is enforcing conservation laws in solutions to partial differential equations (PDEs).
A conservation law is given as ut +∇ · F (u) = 0, for unknown u(t, x) and nonlinear flux function
F (u) (LeVeque, 1990). Hansen et al. (2023) propose the ProbConserv method to enforce the
integral form of conservation laws from finite volume methods (LeVeque, 2002) as a linear con-
straint Au = b for specific problems that satisfy a boundary flux linearity assumption. In particular,
ProbConserv proposes the following update equations for the posterior mean and covariance
matrix:

µ̂ProbConserv = µ− ΣA⊤(AΣA⊤)−1(Aµ− b), (48a)

Σ̂ProbConserv = Σ− ΣA⊤(AΣA⊤)−1AΣ, (48b)

given the mean µ and the covariance matrix Σ estimated from a black-box probabilistic model, e.g.,
Gaussian Process, probabilistic Neural Operators (Mouli et al., 2024) or Attentive Neural Process
(ANP) (Hansen et al., 2023) or DeepVAR (Salinas et al., 2019) used in the hierarchical forecasting
case.

In ProbConserv, the posterior mean µ̂ in Eq. (48a) is shown to be the solution to the constrained
least squares problem:

µ̂ProbConserv = argmin
µ̃∈Rn

Aµ̃=b

1

2
||µ̃− µ||2Σ−1 .

We formulate this optimization problem more generally, and show that by assuming that z ∼ Z ∼
N (µ,Σ) is a multivariate Gaussian, a constrained sample u∗(z) ∼ Y ∼ N (µ̂, Σ̂) in ProbConserv
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is a solution to our Problem (7) with Q = Σ−1 and linear constraints. In particular, we show in
Proposition D.2 that the ProbConserv posterior update in Eq. (48) is a special linear constraint
case of our ProbHardE2E method, which uses an oblique projection with Q = Σ−1.

Proposition D.2. The projected mean and covariance for ProbConserv in Eq. (48) is given by the
solution to Problem (7) with linear constraints in Proposition C.1, i.e., h(u) = Au− b = 0, where
Q = Σ−1 for an oblique projection and Z ∼ N (µ,Σ) is a multivariate Gaussian.

Proof. The oblique projection in Eq. (16) used in ProbHardE2E for linear constraints is given
as PQ−1 = PΣ = I − Q−1A⊤(AQ−1A⊤)−1A. Setting Q = Σ−1, we have that PQ−1 = I −
ΣA⊤(AΣA⊤)−1A = PΣ.

The posterior mean µ̂ for ProbHardE2E with linear constraints is given in Eq. (18a) as:

µ̂ = PQ−1µ+ (I − PQ−1)A†b

= (I − ΣA⊤(AΣA⊤)−1A)µ+ (I − (I − ΣA⊤(AΣA⊤)−1A))A†b

= (I − ΣA⊤(AΣA⊤)−1A)µ+ΣA⊤(AΣA⊤)−1 AA†︸︷︷︸
I

b

= µ− ΣA⊤(AΣA⊤)−1(Aµ− b)

= µ̂ProbConserv,

which is equal to the desired expression in Eq. (48a).

Similarly, the posterior covariance Σ̂ for ProbHardE2E in Eq. (18b) is given as:

Σ̂ = PQ−1ΣP⊤
Q−1

= (I − ΣA⊤(AΣA⊤)−1A)Σ(I −A⊤(AΣA⊤)−1AΣ)

= (I − ΣA⊤(AΣA⊤)−1A)(Σ− ΣA⊤(AΣA⊤)−1AΣ)

= Σ− 2ΣA⊤(AΣA⊤)−1AΣ+ ΣA⊤(AΣA⊤)−1(AΣA⊤)(AΣA⊤)−1AΣ

= Σ− ΣA⊤(AΣA⊤)−1AΣ

= Σ̂ProbConserv,

which is equal to the desired expression in Eq. (48b).

Note that the projected distribution parameters in Eq. (48) are applied only at inference time in
ProbConserv. In ProbHardE2E, we show the benefits of imposing the constraints at training
time as well in an end-to-end manner.

E FLEXIBILITY IN THE CHOICE OF Q AND ITS STRUCTURE

In this section, we discuss the modeling choices for the projection matrix Q in our DPPL, which
defines the energy norm in the objective in the constrained least squares Problem (7). Its specification
significantly influences both the learning dynamics and the inductive biases of the model. Selecting
or learning Q offers a principled mechanism to reflect the statistical structure of the data, particularly
in settings involving multivariate regression or heteroscedastic noise (Kendall et al., 2018; Stirn et al.,
2023). Table 6 summarizes common structure choices for Q and their trade-offs. Of course, in many
applications, there is a single goal for the choice of Q—to optimize accuracy.

In practice, the space of symmetric positive definite (SPD) matrices is too large to be explored (and
“learned”) without additional structure, especially in high-dimensional settings. To address this,
structural constraints are often imposed on Q, reducing the number of parameters, and acting as a
form of regularization (Willette et al., 2021). These structures encode modeling assumptions, e.g.,
output independence, sparsity, or low-rank correlations, and they trade off statistical expressivity
against computational efficiency.

In many cases, the choice of Q (or the form of Q) should ideally reflect (knowledge or assumptions
or hope about) the structure of the underlying data distribution. The simplest choice, Q = I ,
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Structure of Q Example Form Merits and Demerits

Identity Q = I
+ Simplest choice, no parameters
+ Strong regularization
– Ignores uncertainty and correlations

Diagonal (learned) Q = diag(q1, . . . , qn)
+ Captures heteroscedasticity
+ Efficient to compute and invert
– Ignores correlations

Low-rank (learned L) Q = LL⊤, L ∈ Rn×d
+ Captures dominant correlations
+ Fewer parameters than full
– Still computationally involved

Full (learned L) Q = LL⊤, L ∈ Rn×n
+ Fully expressive
– High memory and compute cost
– Prone to overfitting

Table 6: Several structure choices for the matrix Q and their associated trade-offs.

assumes isotropy across output dimensions, and is often used for its regularization benefits and
ease of implementation. This choice neglects any correlation structure in the data, and it tends to
perform poorly in the presence of strong heteroscedasticity. A diagonal matrix Q = diag(q1, . . . , qn)
introduces per-dimension weighting, and is well-suited to heteroscedastic tasks where the variance
differs across outputs (Kendall & Gal, 2017; Skafte et al., 2019). Low-rank approximations provide a
compromise between model complexity and expressivity, by capturing dominant correlation directions
(Willette et al., 2021). Full-rank matrices allow flexibility and often require strong priors or large
datasets to avoid overfitting (Weinberger & Saul, 2009).

We focus on two concrete realizations of Q: the identity matrix Q = I that is used in the
HierE2E (Rangapuram et al., 2021) (see Appendix D.1), and a diagonal matrix defined as the
inverse of a predicted diagonal covariance, Q = Σ−1 that is used in ProbConserv (Hansen et al.,
2023) (see Appendix D.2), where Σ = diag(σ2

1 , . . . , σ
2
d) denote the empirical variances output by

the model. This latter choice corresponds to a heteroscedastic formulation that scales residuals based
on their predicted precision, which emphasizes more confident predictions, and down-weights less
certain ones (Stirn et al., 2023; Le et al., 2005; Hansen et al., 2023).

F PROOF OF THEOREM 3.1

In this section, we begin by first restating Theorem 3.1, which provides a closed-form update for
our DPPL in Eq. (8) for a prior distribution that belongs to a multivariate local-scale family of
distributions; and then we provide its proof.

Theorem 3.1. Let Z ∼ F(µ,Σ) be a random variable, where the underlying distribution F belongs
to a multivariate location-scale family of distributions, with mean µ and covariance Σ; and let
T be a function with continuous first derivatives, such that JT (µ)ΣJT (µ)⊤ is symmetric positive
semi-definite. Then, the transformed distribution Y = T (Z) converges in distribution with first-
order accuracy to F(µ̂, Σ̂) with mean µ̂ = T (µ) and covariance Σ̂ = JT (µ)ΣJT (µ)

⊤, where
JT (µ) = ∇T (µ)

⊤ denotes the Jacobian of T with respect to z evaluated at µ.

Proof. Recall that a family of probability distributions is said to be a location-scale family if for
any random variable Z whose distribution belongs to the family Z ∼ F(µ,Σ), then there exists a
transformation (re-parameterization) of the form

Y
d
= AZ+B,

where A denotes a scale transformation matrix, B denotes the location parameter, and d
= denotes

equality in distribution.
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Let Y = T (Z) be a nonlinear transformation. We calculate the first-order Taylor series expansion to
linearize the function about the mean µ as:

Y = T (Z) ≈ T (µ) + JT (µ)(Z− µ) (49)
= JT︸︷︷︸

A

(µ)Z+ (T (µ)− JT (µ)µ)︸ ︷︷ ︸
B

.

Then, since Z belongs to the location-scale family of distributions, the linearization of Y ∼ F(µ̂, Σ̂)

also belongs to the family with mean µ̂ and covariance Σ̂, which we compute below.

Taking the expectation of both sides of Eq. (49) we get:

µ̂ = E[T (Z)] ≈ E[T (µ) + JT (µ)(Z− µ)]

= E[T (µ)] + E[JT (µ)(Z− µ)] (by linearity of expectation)
= T (µ) + JT (µ) (E[Z]− µ)︸ ︷︷ ︸

0

(since µ is not a random variable)

= T (µ). (50)

Then, the covariance Σ̂ is given as:

Σ̂ = E[(T (Z)− E[T (Z)])(T (Z)− E[T (Z)])⊤]

= E[(T (Z)− T (µ))(T (Z)− T (µ))⊤] (by Eq. (50))

≈ E[(T (µ) + JT (µ)(Z− µ)− T (µ))(T (µ) + JT (µ)(Z− µ)− T (µ))⊤] (by Eq. (49))

= E[(JT (µ)(Z− µ))(JT (µ)(Z− µ))⊤]

= JT (µ)E[(Z− µ)(Z− µ)⊤]JT (µ)
⊤

= JT (µ)ΣJT (µ)
T .

Importantly, the approximation error between the nonlinear transformation and its linearization
converges to zero in probability (Van der Vaart, 2000), which ensures the validity of this approach
asymptotically. We note that this result is closely related to the Multivariate Delta Method (Casella &
Berger, 2001), which shows that for a nonlinear function T , the sample mean of T (z1, . . . , zn) also
converges in distribution, under mild conditions. Specifically, if the sample mean of n i.i.d. draws
from Z converges to a multivariate Gaussian (by the CLT), then the same linearization argument and
Slutsky’s theorem imply that the sample mean of the projected samples converges to a multivariate
Gaussian, with parameters given in Eq. (8). Second-order approximations (via a quadratic expansion
of T ) yield higher-order corrections, and can lead to non-Gaussian outcomes (e.g., chi-squared)
(Casella & Berger, 2001).

G BENCHMARKING DATASETS

In this section, we detail the benchmarking datasets in both applications domains, i.e., PDEs and
probabilistic time series forecasting.

G.1 PDES

We consider a series of conservative PDEs with varying levels of difficulties, where the goal is to learn
an approximation of the solution that satisfies known conservation laws. We follow the empirical
evaluation protocol from Hansen et al. (2023). The PDEs we study are conservation laws, which take
the following differential form:

ut +∇ · F (u) = 0, (51)
for some nonlinear flux function F (u). These equations can be written in their conservative form as:

d

dt

∫
Ω

u(t, x)dΩ = F (u(t, x0))− F (u(t, xN )), (52)
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by applying the divergence term in 1D over the domain Ω = [x0, xN ] (LeVeque, 1990; Hansen et al.,
2023). This global conservation law states that the rate of change of total mass or energy in this
system is given by the difference of the flux into the domain and the flux out of the domain. Note
that in higher dimensions, the flux difference on the right-hand side of Eq. (52) can be written as a
surface integral along the boundary of the domain. This conservative form is at the heart of numerical
finite volume methods (LeVeque, 2002), which discretize the domain into control volumes and solve
this equation locally in each control volume, to enforce local conservation, i.e., so that the flux into
a control volume is equal to the flux out of it. In the following, we summarize the PDE test cases
with their initial and boundary conditions, exact solutions, and derived linear conservation constraints
from Hansen et al. (2023).

G.1.1 GENERALIZED POROUS MEDIUM EQUATION (GPME)

The Generalized Porous Medium Equation (GPME) is given by the following degenerate parabolic
PDE:

ut −∇ · (k(u)∇u) = 0, (53)
where the flux in Eq. (51) is given as F (u) = −k(u)∇u, and k(u) denotes the diffusivity parameter.
This diffusivity parameter k(u) may depend nonlinearly and/or discontinuously on the solution u.
We consider three representative cases within the GPME family, by changing this parameter k(u).
Each instance of the GPME increases in difficulty based on the regularity of the solution and the
presence of shocks or discontinuities.

Heat Equation (“Easy”). The classical parabolic heat equation arises when the diffusivity is
constant, i.e., k(u) = k in Eq. (53). We use the heat equation with the following sinusoidal initial
condition and periodic boundary conditions from Krishnapriyan et al. (2021); Hansen et al. (2023):

ut = k∆u, ∀x ∈ Ω = [0, 2π], ∀t ∈ [0, 1],

u(0, x) = sin(x), ∀x ∈ [0, 2π],

u(t, 0) = u(2π, t), ∀t ∈ [0, 1],

(54)

respectively. The exact solution, which can be solved using the Fourier Transform, is given as:

uexact(t, x) = e−kt sin(x).

The solution is a smooth sinusoidal curve that exponentially decays or dissipates over time, and has
an infinite speed of propagation. With these specific initial and boundary conditions in Eq. (54), the
global conservation law in Eq. (52) reduces to the following linear equation:∫ 2π

0

u(t, x) dx = 0, ∀t ∈ [0, 1], (55)

since the net flux on the boundaries is 0.

Porous Medium Equation (PME) (“Medium”). The PME is a nonlinear degenerate subclass of
the GPME, where the diffusivity is a nonlinear, monomial of the solution, i.e., k(u) = um in Eq. (53).
It has been using in modeling nonlinear heat transfer (Vázquez, 2007; Maddix et al., 2018a). We use
the PME with the following initial condition and growing in time left Dirichlet boundary condition
from Lipnikov et al. (2016); Maddix et al. (2018a); Hansen et al. (2023):

ut −∇ · (um∇u) = 0, ∀x ∈ Ω = [0, 1], ∀t ∈ [0, 1],

u(0, x) = 0, ∀x ∈ [0, 1],

u(t, 0) = (mt)1/m, ∀t ∈ [0, 1].

(56)

The exact solution is given as:

uexact(t, x) = (mReLU(t− x))
1/m

.

For small values of k(u), this degenerate parabolic equation behaves hyperbolic in nature. The
solution exhibits a sharp front at the degeneracy point t = x with a finite speed of propagation. With
these specific initial and boundary conditions in Eq. (56), the global conservation law in Eq. (52)
reduces to the following linear equation:∫ 1

0

u(t, x) dx =
(mt)1+1/m

m+ 1
, ∀t ∈ [0, 1]. (57)
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Stefan Equation (“Hard”). The Stefan equation has been used in foam modeling (van der Meer
et al., 2016) and crystallization (Sethian & Strain, 1992), and models phase transitions with the
following discontinuous diffusivity:

k(u) =

{
1, u ≥ u∗

0, u < u∗ , u∗ ≥ 0,

in Eq. (53). We use the Stefan equation with the following initial condition and Dirichlet boundary
conditions from Maddix et al. (2018b); Hansen et al. (2023):

ut −∇ · (k(u)∇u) = 0, ∀x ∈ Ω = [0, 1], t ∈ [0, 1],

u(0, x) = 0, ∀x ∈ [0, 1],

u(t, 0) = 1, ∀t ∈ [0, 1].

(58)

The exact solution is given as:

uexact(t, x) = 1u≥u∗

[
1− 1− u∗

erf(α/2)
erf

(
x

2
√
t

)]
,

where 1 denotes the indicator function, erf(z) = (2/
√
π)

∫ z

0
exp(−y2)dy denotes the error function,

and α = 2α̃ and α̃ satisfies the following nonlinear equation:

1− u∗
√
π

= u∗ erf(α̃)α̃eα̃
2

.

The solution is a rightward moving shock. With these specific initial and boundary conditions in
Eq. (58), the global conservation law in Eq. (52) reduces to the following linear equation:∫ 1

0

u(t, x) dx =
2(1− u∗)

erf(α/2)

√
t

π
, ∀t ∈ [0, 1]. (59)

G.1.2 HYPERBOLIC LINEAR ADVECTION EQUATION

The hyperbolic linear advection equation models fluids transported at a constant velocity, and is given
by Eq. (51) with linear flux F (u) = βu. We use the 1D linear advection problem with the following
step-function initial condition and inflow Dirichlet boundary conditions from Hansen et al. (2023):

ut + βux = 0, ∀x ∈ Ω = [0, 1],∀t ∈ [0, 1],

u(0, x) = 1x≤0.5, ∀x ∈ [0, 1],

u(t, 0) = 1, ∀t ∈ [0, 1].

(60)

The exact solution is given as:
u(x, t) = h(x− βt),

where h(x) = 1x≤0.5 denotes the initial condition. The solution remains a shock, which travels to
the right with a finite speed of propagation β. With these specific initial and boundary conditions in
Eq. (60), the global conservation law in Eq. (52) reduces to the following linear equation:∫ 1

0

u(x, t) dx =
1

2
+ βt, (61)

which shows that the total mass increases linearly with time due to the fixed inflow.

G.2 PROBABILISTIC TIME SERIES FORECASTING

In addition to PDEs, we also evaluate ProbHardE2E on five hierarchical time series forecasting
benchmark datasets, where the goal is to generate probabilistic predictions that are coherent with
known aggregation constraints across cross-sectional hierarchies (Rangapuram et al., 2021).

Table 7 provides an overview of the time series datasets used in our empirical evaluation. For each
benchmarking dataset, it details the total number of series, the number of bottom level series (i.e., the
leaf nodes in the hierarchy), the number of series aggregated from the bottom-level series, the depth
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of the hierarchy in terms of the number of levels, the number of time series observations, and the
prediction horizon τ .

We adopt the same dataset configurations as in Rangapuram et al. (2021), from which we use the
hierarchical forecasting benchmarks and pre-processing pipeline. These datasets are available in Glu-
onTS package (Alexandrov et al., 2019). The LABOUR dataset (Australian Bureau of Statistics, 2019)
contains monthly Australian employment statistics from 1978 to 2020, organized into a 57-series hi-
erarchy. The TRAFFIC dataset (Ben Taieb & Koo, 2019) includes sub-hourly freeway lane occupancy
data, aggregated into daily observations forming a 207-series structure. TOURISM (Tourism Australia,
Canberra, 2005) consists of quarterly tourism counts across 89 Australian regions (1998–2006), and
the extended TOURISM-L dataset (Wickramasuriya et al., 2019) comprises 555 grouped series based
on both geography and travel purpose. Lastly, WIKI contains daily page view counts from 199
Wikipedia pages collected over two years (Anava et al., 2018).

Table 7: A summary of the time-series datasets. TOURISM-L has two hierarchies, defined by
geography and travel purpose; consequently, it has different numbers of bottom series and different
depths in each hierarchy.

Dataset Total Bottom Aggregated Levels Obs. Horizon τ Frequency
TOURISM 89 56 33 4 36 8 Quarterly
TOURISM-L 555 76; 304 175 4; 5 228 12 Monthly
LABOUR 57 32 25 4 514 8 Monthly
TRAFFIC 207 200 7 4 366 1 Daily
WIKI 199 150 49 5 366 1 Daily

H IMPLEMENTATION DETAILS

In this section, we provide the implementation details of ProbHardE2E. Fig. 4 illustrates the overall
pipeline of ProbHardE2E, which integrates probabilistic modeling, constraint enforcement, and
loss-based calibration into a unified differentiable architecture. The core contribution lies in the DPPL,
which acts as a “corrector” to the “predictor,” which is the unconstrained distribution predicted by a
wide class of models. Conceptually, this layer parallels classical predictor-corrector and primal-dual
methods from numerical optimization (Boyd & Vandenberghe, 2004; Bertsekas, 1997), where a
candidate solution is refined to satisfy known constraints before evaluation.

We evaluate ProbHardE2E on two scientific domains: (1) PDEs, where structured physical con-
straints, e.g., conservation laws and boundary conditions, must be enforced (see Appendix G.1),
and (2) probabilistic hierarchical time series forecasting, where aggregation coherency is required
(see Appendix G.2). We show that ProbHardE2E is model-agnostic by using a base probabilistic
model (predictor) from each application domain, i.e., VarianceNO (Mouli et al., 2024) for PDEs
and DeepVAR (Salinas et al., 2019) for forecasting. We then enforce the corresponding constraint
with our DPPL (corrector). We provide the experimental details for each application in the following
subsections.

H.1 PDES

All the experiments are performed on a single NVIDIA V100 GPU. We use a probabilistic Fourier
Neural Operator (FNO) (Li et al., 2021), i.e., VarianceNO (Mouli et al., 2024) to learn a mapping
from PDE parameters to solutions, e.g., the diffusivity mapping k(u) 7→ u(t, x) in the (degenerate)
parabolic Generalized Porous Medium Equation (GPME), or the velocity mapping β 7→ u(t, x) in
the hyperbolic linear advection equation. (See Appendix G.1 for details on the datasets.)

H.1.1 DATASET GENERATION

Table 8 provides an overview of the PDE data generation. For each PDE in Appendix G.1, we
generate a dataset of N = 200 parameter-solution pairs {ϕ(i), u(i)}Ni=1 ∼ D, where ϕ(i) denotes the
input PDE parameters, e.g., k,m, u∗, β, and u(i) denotes the corresponding spatiotemporal solution
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Figure 4: Schematic representation of ProbHardE2E (see Algorithm 1). Here, a known pathwise-
differentiable probabilistic model is chosen to predict a (unconstrained) prior distribution. (Optionally,
the projection matrix can be specified as a part of the prediction from the probabilistic model or
modeled separately.) Next, we transform the distribution with our DPPL to obtain the transformed
distribution, done empirically or via the Delta Method (see Section 3.3), which enforces the constraints.
Lastly, we choose an appropriate loss function, e.g., CRPS, to calibrate the transformed distribution
with the target variable.

field. Each solution u(i)(t, x) is simulated over a grid of 100 equidistant points in both space and
time, yielding a total of 100× 100 observations per instance. During evaluation, we predict the final
20 equidistant time slices while conditioning on the earlier time steps.

Table 8: Overview of PDE dataset generation. Each dataset contains 200 samples with a fixed 160/40
train-test split.

PDE Parameter range Spatial domain Time domain Train/Test (%)
Heat k ∈ [1, 5] [0, 2π] [0, 1] 80/20
PME m ∈ [2, 3] [0, 1] [0, 1] 80/20
Stefan u∗ ∈ [0.6, 0.65] [0, 1] [0, 1] 80/20
Linear Advection β ∈ [1, 2] [0, 1] [0, 1] 80/20

H.1.2 ARCHITECTURAL DETAILS

We use VarianceNO (Mouli et al., 2024) as our base unconstrained probabilistic model.
VarianceNO is an augmented Fourier Neural Operator (FNO) (Li et al., 2021) that updates the
last layer to output two prediction heads instead of one, i.e, one for the mean and the other for the
variance of the multivariate Gaussian distribution. Table 9 details the model hyperparameters.

H.1.3 TRAINING AND TESTING SETUP

We follow the standard training procedure for FNO-based models as proposed by Li et al. (2021).
Specifically, we use the Adam optimizer (Kingma & Ba, 2015) with weight decay and train using
mini-batches of fixed size B = 20. A step-based learning rate scheduler is applied, which reduces
the learning rate by half every 50 epochs. During evaluation, we uniformly sample parameters from
the specified parameter ranges in Table 8 to construct test sets and compute the evaluation metrics.
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Table 9: Hyperparameters for the VarianceNO model.

Hyperparameter Values
VarianceNO

Number of Fourier layers 4
Channel width {32, 64}
Number of Fourier modes 12
Batch size 20
Learning rate {10−4, 10−3, 10−2}

H.2 PROBABILISTIC TIME SERIES FORECASTING

The experiments are performed on an Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz.

H.2.1 DATASET GENERATION

We adopt the hierarchical forecasting benchmarks and preprocessing pipeline introduced in Ranga-
puram et al. (2021), using five standard datasets: LABOUR, TRAFFIC, TOURISM, TOURISM-L, and
WIKI. Each dataset contains a hierarchy of time series with varying depth and number of aggregation
levels (see Table 7). The train/test splits, seasonal resolutions, and prediction horizons follow the
standardized setup provided in Rangapuram et al. (2021).

H.2.2 ARCHITECTURAL DETAILS

We use DeepVAR (Salinas et al., 2019) as our base unconstrained probabilistic model, which is
aligned with Hier-E2E. DeepVAR is a probabilistic autoregressive LSTM-based model that
leverages a multivariate Gaussian distribution assumption on the multivariate target. DeepVAR
models the joint dynamics of all the time series in the hierarchy through latent temporal dependencies,
and outputs both the mean and scale of the predictive distribution, by optimizing the negative log
likelihood (NLL). Our ProbHardE2E model in the time series application is developed based
on Hier-E2E in GluonTS (Alexandrov et al., 2019). We use the default base model architecture
DeepVAR, and make further modifications to Hier-E2E. Specifically, we tune the hyperparameters
in Table 10, and adjust the loss to CRPS for structured probabilistic evaluation. We disable sampling-
based projection during training because ProbHardE2E optimizes the closed-from CRPS for
Gaussian distributions, and our projection methodology ensures that linear constraints are met
probabilistically. During inference, we report CRPS through samples, in order to align the evaluation
definition with the various hierarchical forecasting baselines.

Table 10: Key hyperparameters for DeepVAR across hierarchical forecasting datasets.

Dataset Epochs Batch Size Learning Rate Context Length No. of Prediction Samples
LABOUR 5 32 0.01 24 400
TRAFFIC 10 32 0.001 40 400
TOURISM 10 32 0.01 24 200
TOURISM-L 10 4 0.001 36 200
WIKI 25 32 0.001 15 200

H.2.3 TRAINING AND TESTING SETUP

We follow the standard GluonTS (Alexandrov et al., 2019) training setup using the Adam opti-
mizer (Kingma & Ba, 2015) and mini-batch updates. Each epoch consists of 50 batches, with batch
size set according to Table 10. We run our evaluation five times and report the mean and variance of
the CRPS values in Table 3.

Unlike Hier-E2E (Rangapuram et al., 2021), which samples forecast trajectories during training
and projects them to ensure structural coherence on samples, our method operates entirely in the
parameter space during training. We avoid sampling and instead minimize the closed-form CRPS
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loss (Gneiting et al., 2005) directly on the predicted mean and variance. This makes the training
process sampling-free and reduces training time, similar to the PDE case discussed later in Figure 5.
This key distinction avoids the use of coherent train samples, as described in the Appendix
of Rangapuram et al. (2021).

At inference time, because the reported CRPS is computed on the samples in the hierarchical baselines,
we enable structured projection by drawing predicted samples from the learned distribution, and
we apply our DPPL to ensure that they satisfy the hierarchical aggregation constraints. This setup
parallels the coherent pred samples mode in HierE2E, and we implement the inference step
with this approach for experimentation simplicity. Table 10 shows the number of prediction samples
in evaluation to compute the CRPS and calibration metrics over the projected outputs. Alternatively,
we can also evaluate the CRPS using samples from the projected distribution.

H.3 METRICS

We evaluate ProbHardE2E and the various baselines using the following metrics. We denote the
exact solution or ground truth observations as u, and we report the metrics on the mean µ̂, covariance
Σ̂, and samples {u∗

i }Ni=1 drawn from the constrained multivariate Gaussian distribution N (µ̂, Σ̂).

Mean Squared Error (MSE). The MSE measures the mean prediction accuracy and is given as:

MSE(µ̂) =
1

n
∥u− µ̂∥2F ,

where the Frobenius norm is taken over all the datapoints n in µ̂.

Constraint Error (CE). The CE measures the error in the various equality constraints h(u∗) = 0,
i.e., conservation laws for PDEs and coherency for hierarchical time series forecasting, on the samples,
and is given as:

CE(u∗) =

N∑
i=1

∥h(u∗
i )∥22,

where we compute the average error over N = 100 samples {u∗
i }Ni=1.

Continuous Ranked Probability Score (CRPS). The CRPS (Gneiting & Raftery, 2007) measures
the quality of uncertainty quantification by comparing a predictive distribution to a ground-truth
observation. For a multivariate Gaussian distribution with independent components N (µ,diag(σ̂2)),
where σ̂2

ii denotes the i-th diagonal entry of the predictive covariance Σ̂, the CRPS is given in
closed-form as:

CRPSN (µ̂, σ̂;u) =

n∑
i=1

σ̂ii

[
zi (2P (zi)− 1) + 2p(zi)−

1√
π

]
,

where zi = (ui − µ̂i)/σ̂ii, p(zi) = (1/
√
2π) exp(−z2i /2) denotes the standard normal PDF, and

P (zi) =
∫ zi
−∞ p(y)dy denotes the standard normal CDF (Gneiting et al., 2005; Taillardat et al.,

2016).

I ADDITIONAL EMPIRICAL RESULTS AND DETAILS

In this section, we include additional empirical results and details for ProbHardE2E with various
constraint types, i.e., linear equality, nonlinear equality and convex inequality.

I.1 LINEAR EQUALITY CONSTRAINTS

In this subsection, we show additional results and details for ProbHardE2E with linear equality
constraints in both PDEs and hierarchical time series forecasting.
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I.1.1 PDES WITH CONSERVATION LAW CONSTRAINTS

Here, we impose the discretized form of the simplified linear global conservation laws given in
Appendix G.1 for the heat equation (Eq. (55)), PME (Eq. (57)), Stefan (Eq. (59)) and linear advection
equation (Eq. (61)). We use the trapezoidal discretizations of the integrals from Hansen et al. (2023).

Fig. 5 shows the analogous training time per epoch to Fig. 1(a) for PDE datasets. Models trained
with 100 posterior samples per training step incur a 3.5–3.6× increase in epoch time relative to our
ProbHardE2E, which avoids sampling altogether by using a closed-form CRPS loss. See Table 2
for the accuracy results.
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Figure 5: ProbHardE2E: PDE timing comparisons for our sampling-free approach.

I.1.2 HIERARCHICAL TIME SERIES FORECASTING WITH COHERENCY CONSTRAINTS

Here, we test ProbHardE2E on probabilistic hierarchical forecasting with coherency constraints.
(See Appendix G.2 for details and Table 3 for the results.) We compare the two variants of
ProbHardE2E, i.e., with oblique Q = Σ−1 (ProbHardE2E-Ob) and with orthogonal Q = I
(ProbHardE2E-Or) projection to the following baselines:

• DeepVAR (Salinas et al., 2019) is the base unconstrained probabilistic model, which
assumes a multivariate Gaussian distribution for Z ∼ N (µ,Σ) with mean µ and diagonal
covariance Σ.

• Hier-E2E (Rangapuram et al., 2021) uses DeepVAR as the base model, and enforces the
exact coherency constraint by applying the orthogonal projection directly on the samples in
an end-to-end manner. Another difference from their approach is that we use the closed-form
CRPS expression rather than the approximate weighted quantile loss.

• ProbConserv (Hansen et al., 2023) enforces the coherency constraint as an oblique
projection at inference time only.

• ARIMA-NaiveBU and ETS-NaiveBU are two simple baseline models that use ARIMA
and exponential smoothing (ETS), respectively. These methods use a naive bottom-up
approach of deriving aggregated level forecasts (Hyndman & Athanasopoulos, 2018).

• PERMBU-MINT (Taieb et al., 2017) is a hierarchical probabilistic forecasting model that
is based on a linear projection method MINT (Wickramasuriya et al., 2019). It generates
probabilistic forecasts for aggregated series using permuted bottom-level forecasts.

We do not include DPMN (Olivares et al., 2024a) or CLOVER (Olivares et al., 2024b) in our experi-
ments because the implementations are proprietary. Given that Hier-E2E is the best open-access
hierarchical forecasting model, through GluonTS (Alexandrov et al., 2019), to the best of our knowl-
edge, we use the same base model to Hier-E2E (i.e., DeepVAR), and we evaluate forecast accuracy
compared to Hier-E2E to assess the added value of our ProbHardE2E.

I.2 NONLINEAR EQUALITY CONSTRAINTS

In this subsection, we impose the discretized form of the general nonlinear global linear conservation
laws from Eq. (52) in Appendix G.1 for the PME with various ranges for the parameter m. (See
Table 4 for the results and Fig. 1(b) for the solution profile.) For the PME, the flux in Eq. (52) is
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given as F (u) = −k∇u, where k(u) = um. Substituting this flux into Eq. (52) and integrating in
time gives the general conservation law for the PME as:∫

Ω

u(t, x)dΩ =

∫ t

0

[um(t, x0)∇u(t, x0)− um(t, xN )∇u(t, xN )]dt, ∀t ∈ [0, 1].

Similar to the linear equality constraint case, we discretize the integral using the trapezoidal rule.
Unlike ProbConserv (Hansen et al., 2023), which requires an analytical flux expression to evaluate
the right-hand side, our ProbHardE2E can enforce arbitrary (nonlinear) conservation laws directly.
In addition, ProbHardE2E with nonlinear constraints can be applied to arbitrary PDEs with any
initial or boundary conditions. We impose the initial and boundary conditions as additional linear
constraints and enforce positivity on the solution. We test on various training and testing ranges for
the parameter m, i.e., m ∈ [2, 3], [3, 4] and [4, 5]. As the exponent m is increased, the degeneracy
increases, and as a result the solution becomes sharper and more challenging to solve (Maddix
et al., 2018a; Hansen et al., 2023). We see in Table 4 that across all values of m, either our oblique
ProbHardE2E-Ob or orthogonal projection ProbHardE2E-Or variants of our method perform
better than all the baselines.

I.3 (NONLINEAR) CONVEX INEQUALITY CONSTRAINTS

In this subsection, we impose a convex total variation diminishing (TVD) inequality constraint. (See
Fig. 1(c) for the solution profile.) TVD numerical schemes have been commonly using in solving
hyperbolic conservation laws with shocks to minimize numerical oscillations from dispersion (Harten,
1997; LeVeque, 1990; Tezaur et al., 2017). The total variation (TV) is defined in its continuous form
as:

TV(u(t, ·)) =
∫
Ω

∣∣∣∣∂u∂x
∣∣∣∣ dΩ.

This integral can be approximated as the discrete form of the total variation (TV) used in image
processing as:

TV(u(t)) = TV(u(t, ·, )) =
Nx∑
i=1

|u(t, xi+1)− u(t, xi)| , (62)

where we discretize the spatial domain Ω = [x1, . . . , xNx ] into Nx gridpoints. A numerical scheme
is called TVD if:

TV(u(tn+1)) ≤ TV(u(tn)), ∀ n = 1, . . . , Nt, (63)
where we discretize the temporal domain [0, T ] = [t1, . . . , tNt

] into Nt gridpoints, and TV denotes
the discretized form defined in Eq. (62).

The TVD constraint in Eq. (63) is a nonlinear inequality constraint, and enforcing it as a hard
constraint is challenging with current frameworks, e.g., DCL (Agrawal et al., 2019). To address this,
we perform a convex relaxation of the constraint by imposing:

TVD =

Nt∑
n=1

Nx∑
i=1

|u(tn, xi+1)− u(tn, xi)| ,

as a regularization term. This approach is analogous to total variation denoising in signal processing
(Rudin et al., 1992; Boyd & Vandenberghe, 2004).

Fig. 1(c) demonstrates the application of the modified TVD constraint, resulting in more physically-
meaningful solutions by decreasing both the artificial oscillations and probability of negative samples,
which violate the monotonicity and positivity properties of the true solution, respectively. In addition,
ProbHardE2E leads to improved (tighter) uncertainty estimates.

J THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are used for grammatical corrections and minor formatting of the paper. They are not used in
the conceptualization and implementation of research.
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