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Abstract

Generating long videos that can show complex stories, like movie scenes from
scripts, has great promise and offers much more than short clips. However, current
methods that use autoregression with diffusion models often struggle because
their step-by-step process naturally leads to a serious error accumulation (drift).
Also, many existing ways to make long videos focus on single, continuous scenes,
making them less useful for stories with many events and changes. This paper
introduces a new approach to solve these problems. First, we propose a novel
way to annotate datasets at the frame-level, providing detailed text guidance
needed for making complex, multi-scene long videos. This detailed guidance
works with a Frame-Level Attention Mechanism to make sure text and video
match precisely. In inference, we develop Parallel Multi-Window Denoising, a
new method that handles a long video as multiple overlapping windows. These
windows are processed in parallel, and the noise prediction in overlapping areas
is averaged, which allows bidirectional information interaction and introduces no
error accumulation. A key feature is that each part (frame) within these windows
can be guided by its own distinct text prompt. Our training uses Diffusion Forcing
to provide the model with the ability to handle time flexibly. We tested our approach
on difficult VBench 2.0 benchmarks ("Complex Plots" and "Complex Landscapes")
based on the WanX2.1-T2V-1.3B model. The results show our method is better at
following instructions in complex, changing scenes and creates high-quality long
videos. We plan to share our dataset annotation methods and trained models with
the research community.

1 Introduction

The ability to create long video sequences from text instructions opens exciting doors for rich,
evolving stories, such as turning scripts into videos, producing short films, or showing complex
processes. Unlike short clips, long videos provide the needed duration for multiple connected scenes,
detailed character interactions, and consistent plotlines that follow complex user requests [17, 42, 32,
23,1151 20} 22]]. However, creating high-quality, consistent, and accurate long videos from text is still
a major challenge for current generative models.

A primary difficulty lies in the common autoregressive (step-by-step) methods used with diffusion
models to make longer videos. Their sequential way of working naturally leads to errors accumulation
over time. This shows up as lower visual quality, the video drifting away from the original text’s
meaning, and a loss of consistency as the video gets longer, seriously weakening the quality of
extended generations [14, (18} 37,|36]]. Furthermore, much current research on long videos deals with
single, continuous scenes or slowly changing environments. This limited focus reduces the usefulness
of long video generation for dynamic stories with many events, which is a key goal for creative
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(b). Our method effectively mitigates confusion and error accumulation.

Figure 1: Illustration of issues of error accumulation and semantic confusion in the first row, and
videos generated by ours are shown in the second row.

applications. Standard methods using single, general (global) video descriptions struggle with small,
quick changes, leading to timing issues [26) 18] [19]]. While some approaches try to make multi-shot
videos by first detecting scene cuts with tools like PySceneDetect and then processing these shots, as
in Presto [30]] and Long Context Tuning (LCT) [[12]], these methods can be complicated, risk losing
information, and depend heavily on good shot detection and captioning. They often still describe
video at a "shot-text" level, which doesn’t fully capture smooth, continuous changes.

To solve these basic problems, our work offers a new way of thinking, focused on highly detailed,
frame-level text guidance and a novel non-sequential method for creating the video. Our first main
contribution is an innovative frame-level dataset annotation methodology. We move beyond
general or shot-level captions to provide very detailed text descriptions for each conceptual part (or
latent segment) of a video. This rich information about meaning is essential for guiding models to
understand and create the complex, changing details needed for stories with many scenes and detailed
prompts. This directly addresses the limits of less detailed global or shot-level captions. This detailed
annotation is designed to work closely with our Frame-Level Attention Mechanism, which clearly
links each video segment’s visual features to its specific text description, improving content accuracy
and consistency over time (Section [4.2).

To properly use such detailed and dynamic text prompts, models need to be trained to handle time
flexibly. We achieve this using Diffusion Forcing (Section [4.3), a training strategy that shows
the model video segments being denoised at different rates. This prepares it to manage varied
timing patterns and allows for strong, adaptable inference. Building on these training improvements,
we introduce our second major innovation: Parallel Multi-Window Denoising (PMWD), a new
inference method designed to create very long videos that are highly consistent (Section#-4). PMWD
divides the target long video into multiple overlapping sections (windows), usually matching the
model’s training window size. Importantly, unlike step-by-step methods, all these windows are
processed at the same time (in parallel) during each step of the diffusion denoising process. The data
in the overlapping areas between windows is then averaged. This averaging not only ensures smooth
connections but also allows information to flow in both directions, meaning later parts of the video
can help refine earlier ones. A special feature of PMWD is that each conceptual frame, even within
these simultaneously processed windows, can be guided by its own distinct, frame-level prompt.

We test our approach thoroughly using highly challenging benchmarks, specifically the "Complex
Plots" and "Complex Landscapes” prompt categories from VBench 2.0 [45]]. We use the state-of-
the-art open-source WanX2.1-T2V-1.3B model [32] as our base. Our experiments show that our
combined frame-level approach is much better at following prompts when creating very long videos
with multiple scenes, different characters, and complex actions.

In summary, our main contributions are:

* Scalable Frame-Level Dataset Methodology: We introduce an efficient and scalable approach for
constructing datasets with dense, frame-by-frame textual annotations. This enables highly granular
video-text alignment crucial for generating complex, multi-scene narratives without relying on
traditional shot detection.

* Frame-Level Attention for Precise Guidance: We propose a novel attention mechanism that
directly couples each video segment’s visual features with its unique frame-level prompt. This
significantly enhances semantic fidelity, content accuracy, and temporal consistency in generated
videos.
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* Parallel Multi-Window Denoising for Coherent Long Video Generation: We develop PMWD,
a inference strategy that processes a long video as multiple overlapping windows, denoised
simultaneously in parallel. Guided by distinct frame-level prompts and leveraging overlap averaging
for bidirectional context, PMWD effectively avoids the error accumulation common in sequential
methods. This is enabled by training strategies like Diffusion Forcing that provide temporal
flexibility.

 State-of-the-Art Performance on Complex Videos: Through comprehensive evaluations on
challenging VBench 2.0 benchmarks ("Complex Plots" and "Complex Landscapes") using the
WanX2.1-T2V-1.3B model, we demonstrate our integrated approach’s superior ability to follow
intricate prompts in multi-element long videos, achieving high-fidelity results with minimal error
accumulation.

2 Related Work

Video Generation Dataset. Large-scale video datasets have driven advancements in video generation,
but many existing datasets like YouCook?2 [47], VATEX [38]], and ActivityNet [15] were not designed
for this purpose and lack fine-grained annotations. Similarly, large-scale datasets like YT Temporal-
180M [43] and HD-VILA-100M [40] suffer from low-quality captions generated through speech
recognition, limiting their utility for high-quality video generation. Datasets like Panda-70M [§]
offer extensive data but rely on simplistic global descriptions, which hinder the model’s ability to
capture fine temporal details. Newer datasets, such as Koala-36M [35] and LongTake-HD [41],
provide more detailed annotations but still rely on segment-level or shot-based annotations, limiting
long-duration video generation. In contrast, our method introduces a frame-level captioning approach,
where each frame is independently annotated with a description that maintains contextual relevance
to the preceding and succeeding frames. This ensures better alignment between visual content and
text while preserving the temporal continuity and motion dynamics, ultimately improving the overall
quality of long-form video generation.

Long Video Generation. Video generation has evolved from simple single-shot models to more com-
plex long-form and multi-scene models. Early methods relied on GANs [9, 29| 31} 39], constrained
by single-domain datasets. Diffusion models [3} [11} 2} 11} [10] introduced temporal layers, enabling
motion modeling. DiT-based architectures [4, 25} 28 [17} 42l 132} [23] |15} 20] have achieved tremen-
dous success in scaling diffusion transformers, significantly enhancing video quality. However, these
models were limited to generating short clips. FreeNoise [27]] and StreamingT2V [13] extended video
sequences using auto-regressive methods and temporal attention mechanisms. Gen-L-Video [34]
processes videos as sequences of overlapping short clips and employs a temporal co-denoising
technique, wherein multiple predictions for each individual frame are averaged. Despite these
advancements, challenges in content diversity and temporal consistency persisted. The Diffusion
Forcing [6] paradigm addressed these issues by combining diffusion’s high-quality generation with
auto-regressive models for sequence extension.

In multi-scene video generation, models like Mask2DiT [26], LCT [12]], VideoStudio [21],
SKYREELS-V2 [[7], MovieDreamer [44], StoryAnchors [33], and VGoT [46] focused on scene-level
consistency but struggled with temporal coherence across scenes. Recent methods, including Sto-
ryDiffusion [48] and MEVG [24], employed attention mechanisms to enhance visual and dynamic
consistency. Our approach uses frame-level attention for dynamic scene extension without fixed
scene durations, improving flexibility and coherence in long-form videos. Combined with Diffusion
Forcing [6]], our method ensures smooth scene transitions, extended video lengths, and maintains
both visual richness and temporal consistency.

3 Frame-Level Dataset

Previous video-text datasets such as Panda70M [8]] and Koala-36M [335]] provide only global-level
captions, resulting in coarse supervision that cannot reflect detailed visual changes within videos.
LongTake-HD [41]] offers shot-level sub-captions but still depends on explicit shot boundaries, making
it difficult to model continuous motion and intra-shot dynamics. In contrast, our dataset uses frame-
level uniform sampling and annotation, enabling dense and temporally continuous supervision. This
design captures both subtle and significant changes without being limited by artificial segmentation,
supporting more precise alignment between video frames and text descriptions. Overall, our dataset
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Figure 2: Overview of the proposed frame-level training method. Frame-Level Cross-Attention
links the visual data of each video segment (latent token) directly to its own specific text description.

offers finer-grained, structurally consistent, and temporally faithful video-text supervision, facilitating
improved learning of dynamic visual content.

Large-scale frame-level video dataset construction. We present a frame-level video dataset
comprising 700,000 high-quality clips, designed to enhance fine-grained text-video alignment and
provide dense semantic supervision for diffusion-based video generation models. The dataset
systematically balances visual diversity, temporal continuity, and annotation precision, and can be
further improved with larger scale in the future. We collect raw videos longer than 10 minutes from
multiple platforms, remove near-duplicate content using perceptual hashing, and discard the first and
last 10% of frames to ensure the sampled content is dynamic and semantically meaningful. Each
processed video is evenly divided into four segments, from which an 8-second continuous clip is
extracted. At a frame rate of 24 fps, one frame is sampled every 8 frames, resulting in approximately
24 frames per clip. This design balances temporal context and computational efficiency, and ensures
compatibility with mainstream video VAE tokenization schemes, enabling precise one-to-one frame-
token supervision.

Adaptive frame-level annotation. We utilize multimodal large language models to generate frame-
level captions, automatically choosing between shared or independent descriptions based on the
degree of visual change. Identical captions are assigned to frames with minimal differences, while
significant changes trigger independent frame-level descriptions, achieving unified and adaptive
semantic alignment. To enhance consistency and richness, we design structured annotation prompts
that require each frame description to cover main subjects, actions, environment, shot size, and
camera angle. Outputs strictly follow JSON format with no redundant commentary, ensuring precise
semantic and structural alignment at the frame level. We provide the full frame-level annotation
prompt, specifying formatting and content requirements to facilitate reproducibility and further
research; the template is too long to show here, see appendix. During inference, we use gemini pro
2.5 to convert a user input from short/detailed caption to a frame-level detailed caption. More details
can be found in appendix.

4 Method

Our work introduces a set of interconnected improvements for DiT-based video diffusion models,
aimed at generating complex, long videos. We focus on enhancing how models understand text
instructions for each video part, how they handle timing and changes, and how they create long,
consistent videos during inference.
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4.1 Overall Framework

Current Diffusion Transformer (DiT) based models are skilled at creating high-quality short videos.
They typically use a VAE (Variational Autoencoder) to compress videos into compact latent data, and
a DiT then generates video from these latents. However, when generating long videos with detailed
stories and dynamic action, these models face several basic problems:

* Imprecise Content Control: Using a single text description (caption) for the entire video often
leads to unclear or mixed-up details for different parts of the video, making it hard to accurately
control specific events or elements across various scenes.

* Limited Handling of Timing: Standard models usually denoise all parts of the video at the same
rate in each step. This restricts their ability to show varied motion speeds, different pacing in
scenes, or sudden changes effectively.

* Difficulty with Long Video Coherence: When creating long videos by generating segments one
after another from models trained on short clips, errors tend to build up. This can make the video
lose consistency over time.

To address these key challenges, we propose three main contributions:

1. A Frame-Level Cross-Attention mechanism (Section[4.2)) for precise, localized text-based control
over the content of each video segment during training.

2. A Diffusion Forcing training strategy (Section to teach models how to handle varied timing
by exposing them to video segments denoised at different rates.

3. A Synchronized Multi-Window Denoising (PMWD) inference method (Section [4.4), designed
to generate long, coherent videos by significantly reducing the build-up of errors.

While these principles can be applied to many DiT-based video models, we demonstrate our methods
by adapting and fine-tuning the WanX2.1-T2V-1.3B [32] framework, a well-known open-source
model, as our base.

4.2 Frame-Level Cross Attention

To accurately control video content in line with detailed narratives, we introduce Frame-Level Cross-
Attention. This method links the visual data of each video segment (latent token) directly to its own
specific text description. Simultaneously, the DiT’s standard self-attention mechanism continues to
capture overall temporal relationships, ensuring smooth motion. This approach provides both precise
local content guidance and global video coherence.

Our process starts by assigning an independent text description to each conceptual "frame" (latent
unit) of a video. When the original video is converted into latent data by the VAE, each resulting
latent token z; is directly paired with the embedding of its corresponding frame-level caption, c;.
This creates a detailed, one-to-one mapping between text and video segments over time, offering
exact guidance for generation. We modify the DiT’s cross-attention mechanism so that each latent
token z; attends exclusively to its paired caption embedding c, rather than to a single caption shared
by the entire video. Formally, this is:

T
W) (s W), )

where ¢ is the query projected from zy, and W, W), W, are learnable matrices. This targeted
attention mechanism reduces the unclear meaning that can arise from global captions, greatly
improving text-to-video alignment and allowing for precise control over dynamic content within each
segment.

CrossAttention(qys, ¢;) = Softmax (

4.3 Diffusion Forcing for Temporal Flexibility

Creating long videos with dynamic action and varied pacing requires the model to handle time flexibly.
Standard diffusion models are often limited in this area because they apply the same noise level to
all video segments at each step of the denoising process, restricting their ability to generate diverse
visual qualities, dynamic changes, or quick scene transitions.
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To give models this needed flexibility, we use a Diffusion Forcing (DF) strategy during training.
This technique assigns an independent noise level to each video segment (latent token) in a training
sequence. Specifically, we pick a reference segment, set its target noise removal stage (timestep), and
then determine the noise stages for other segments in relation to it: preceding segments get "cleaner”
(earlier) timesteps, and subsequent segments get "noisier" (later) timesteps. This approach maintains
temporal smoothness while training the model to manage different denoising states simultaneously
within one sequence.

This training approach makes the model highly adaptable at inference time. By adjusting a "step-size"
parameter—which controls the allowed difference in noise schedules between adjacent segments—we
can smoothly shift the generation style. We can opt for fully synchronized diffusion (small step-
size, for high consistency) or for more dynamic, evolving outputs (large step-size, resembling
autoregressive generation). This adaptability allows the model to produce either smooth, consistent
videos or to progressively unfold complex scene transitions and actions as guided by the text
prompts. Furthermore, already partially denoised historical segments can serve as stable conditions
for generating later segments, aiding long-range consistency without forcing all segments to share the
same noise level at the same time.

4.4 Flexible Inference Modes for Long Video Generation

The temporal flexibility gained from Diffusion Forcing during training allows for various inference
methods to generate videos much longer than the training segments (the "train short, test long"
approach).

Sequential Sliding Window Approaches. Common methods for long video generation use a
sequential sliding window. These include simple autoregressive techniques, where a new segment
of M latents is generated based on N — M previous latents from an N-latent window (often re-
noising the context), and more advanced methods like FIFO-Diffusion [[16l], which uses a queue with
diagonally progressing noise levels for better temporal consistency. However, a core problem with all
such step-by-step sequential methods is the unavoidable build-up of errors, which reduces quality
and long-range consistency in very long videos.

Parallel Multi-Window Denoising (PMWD). To effectively overcome this error accumulation
problem, we introduce PMWD. This novel inference strategy takes full advantage of our frame-level
prompt system to generate long videos more as a complete whole, rather than piece by piece. For a
target long video of L latents, we view it as K overlapping windows, each the length of a training
segment. Crucially, all K windows are processed in parallel (at the same time) during each step
of the diffusion denoising process. Every latent, whether new or historical context, is guided by its
own dedicated frame-level prompt. This parallel, parallel method for the entire sequence inherently
avoids the cascading error build-up seen in typical autoregressive techniques. Latents located in the
overlapping regions between adjacent windows are averaged after each denoising step. This averaging,
along with the parallel processing, allows information to flow in both directions (bidirectionally)
between an earlier and a later window. Unlike methods where only the past influences the future,
PMWD allows upcoming video segments to help refine earlier ones. This is especially useful for
creating natural-looking scene changes and maintaining consistency in stories with multiple scenes.

S Experimental Results

5.1 Experimental Setup

We fully fine-tune the open-source WanX-2.1-T2V-1.3B model with Diffusion Forcing technique
on resolution 81x480x832 for 100,000 iterations using our internal dataset (detailed in SectionE]) of
dense frame-level annotations. Training occurred on H-series GPUs with a global batch size of 64.

5.2 [Evaluation Dataset

We evaluate the model’s capability to generate complex videos by utilizing prompts from the VBench
2.0 benchmark, specifically focusing on the Complex Plots and Complex Landscapes.

Complex Plots assess the model’s ability to construct coherent and consistent multi-scene narratives
based on prompts describing multi-stage events. These prompts often involve extended descriptions
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(150+ words) outlining a sequence of actions or a story with multiple acts, challenging the model to
maintain plot consistency and logical flow throughout the generated video.

Complex Landscapes evaluate whether the model can faithfully translate long-form landscape
descriptions (150+ words) into video, including multiple scene transitions dictated by camera move-
ments. These prompts test the model’s understanding of spatial relationships and its ability to render
dynamic changes in the environment as described in the text.

5.3 Evaluation Metrics

We evaluate video quality using metrics for overall video-text alignment and also propose a new
metric for the issue of semantic confusion in multi scenes generation. Let P, be the global prompt,
V the generated video, { Py, ..., Pr} the sequence of F' frame-level prompts, and {V1, ..., Vp} the
corresponding sequence of generated frames.

Standard VBench Evaluation. To provide a comprehensive assessment of fundamental video
quality aspects, particularly for the complex scenarios presented by our chosen VBench 2.0 prompt
categories (Complex Plots and Complex Landscapes), we incorporate a curated subset of established
metrics from the VBench benchmark. This evaluation focuses on key indicators such as: aesthetic
quality, image quality, and motion smoothness. These selected metrics offer standardized measures
of the perceptual quality and spatio-temporal coherence of the generated videos.

Video-Level Video-Text Similarity. This standard metric evaluates overall coherence between P,
and V. @y (V) represents overall video features (uniformly sample 8 frames as input of ViClip).

Sgtobal = SIM(P7(FPy), Py (V)) @

where we use a pre-trained vision-language model (e.g., ViCLIP) for text embeddings ®(-) and
video/latent *frame’ embeddings @y (-), with Sim(-, -) denoting cosine similarity.

Confusion Degree (CD). Despite the widespread use of Sgiopar, this global metric may assign
favorable scores even when content from different scenes are inappropriately combined. To pinpoint
such temporal and semantic inaccuracies, we introduce the Confusion Degree (CD). A high CD score
reveals a model’s difficulty in maintaining a clear, sequential narrative, often resulting in a muddled
or incoherent visual story. We first define two fundamental frame-level similarity metrics as follows:

Srr(P;, Pj) = Sim(®7(P;), @17 (F;))
Srr(P;, V) = Sim(Qr(F;), @v(V;))

, where S7r(P;, P;) represents frame-level text-text similarity and St (P;, V;) represents frame-
level text-frame similarity. Then Srr(P;, P;) = Srr(F;, P;)/Str(P;, P;) and Srp(P;,V;) =

Str(P;, V;)/Srr(P;,V;) are applied as normalization function to ensure S'TT(Pi, P)=1and
STF(PL'a ‘/L) =1.

The confusion degree of a text P; in the generated video V is defined as:

CD(PZ) = Z HlaX(O, STF(Pia‘/j) 7‘§TT(Pi7Pj)) (4)
je{l,..,F}

3

where Srp(Pi, V;) — Srr(Pi, P;) indicates that the content of P; is more aligned with frame V;
than its inherent semantic relationship with P; would suggest, thereby signaling confusion. Then the
confusion of a video V is defined as

P
1
D=—-Y cD,
¢ F;C i 5)

, representing the average confusion degree across all frames. Lower CD values indicate superior
narrative consistency and reduced semantic confusion throughout the video.

5.4 Comparison and Discussion

Analysis of Video Generation under Complex Prompts. Tab. |l|provides a comparative analysis of
models trained and inferenced using either global video-level or granular frame-level prompts. When
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Method Video Prompts Confusion Video-level Frame-level Motion Aesthetic  Image

Length Type Degree] Text-Video Consistency?  Text-Video Consistency? Smoothnesst  Quality?  Quality?
DF + Video-level Prompt Ss Complex Plot 0.2952 =+ 0.0461 0.2100 = 0.0410 0.1635 + 0.0282 98.43 59.20 67.92
DF + Video-level Prompt 30s Complex Plot 0.2962 =+ 0.0487 0.2053 =+ 0.0368 0.1518 £ 0.0258 98.63 52.02 58.07
DF + Frame-level Prompt ~ 30s Complex Plot 0.1385 + 0.0498 0.2196 + 0.0309 0.2054 -+ 0.0231 98.53 55.04 61.56
DF + Video-level Prompt 5s Complex Landscape | 0.2745 £ 0.0412 0.2101 £ 0.0341 0.1831 £ 0.0227 98.70 61.32 59.61
DF + Video-level Prompt 30s Complex Landscape | 0.2806 £ 0.0474 0.2066 £ 0.0351 0.1723 £ 0.0230 98.58 52.63 51.02
DF + Frame-level Prompt 30s Complex Landscape | 0.1528 = 0.0479 0.2195 =+ 0.0326 0.2139 £ 0.0167 98.99 56.31 55.98

Table 1: Comparing video-level versus frame-level prompting for complex narrative videos. While
global Video-Level Text-Video Consistency can yield misleadingly high scores despite internal scene
blending or semantic confusion, metrics like Confusion Degree and frame-level consistency more
effectively expose these flaws, highlighting the superior prompt adherence of frame-level strategies.
Further analysis in Section[5.4]

- Video-level 1 Frame-level 1 Motion 1 Aesthetic T Image 1
Method Prompt Level | Confusion Degree | Text-Video Consistency  Text-Video Consistency ~Smoothness Quality Quality
First-In-First-Out (FIFO) Video 0.2962 =+ 0.0487 0.2053 + 0.0368 0.1518 + 0.0258 98.63 52.02 58.07
First-In-First-Out (FIFO) Frame 0.2416 + 0.0514 0.2100 = 0.0370 0.1660 + 0.0266 98.81 51.32 59.25
Sequential Sliding Window Frame 0.1773 £ 0.0550 0.2134 + 0.0312 0.1842 + 0.0227 98.80 52.04 60.11
Parallel Multi-Window Denosing Frame 0.1385 + 0.0498 0.2196 + 0.0309 0.2054 + 0.0231 98.53 55.04 61.56

Table 2: Inference method comparison for 30s complex plot videos. Parallel Multi-Window Denoising
(PMWD) achieves lower error accumulation (improved aesthetic/image quality) and better prompt
adherence (reduced Confusion Degree, higher text-video consistency) versus causal methods (FIFO,
Sliding Window). Detailed analysis in Section[5.4]

generating short videos (e.g., 5 seconds) conditioned on a single video-level prompt, the model
operates closer to an ideal scenario without temporal error accumulation. However, such prompts
often lead to a high Confusion Degree (CD), as the model struggles to render extensive semantic
information within a condensed timeframe, resulting in blended or muddled content.

Conversely, employing frame-level prompts demonstrates a marked improvement in prompt adher-
ence, evidenced by lower CD scores alongside high frame-level consistency metrics. This enhanced
ability to follow detailed, segmented instructions makes the frame-level prompting strategy more
reliable and effective for generating coherent multi-scene long videos. Furthermore, metrics such
as aesthetic and image quality serve as indirect indicators of error accumulation; significant degra-
dation in these scores over time typically reflects compounding errors. This accumulation is an
inherent consequence of the causal nature of sequential generation processes, a fundamental issue
that even precise frame-level semantic guidance cannot resolve on its own when operating within
such autoregressive frameworks.

Comparative Analysis of Long Video Inference Strategies. We further analyze the efficacy of
different inference strategies for extending video generation beyond training lengths, comparing
our proposed Parallel Multi-Window Denoising (PMWD) with established sequential methods like
FIFO-Diffusion and naive sliding windows.

Sequential approaches, by their nature, tackle long video generation segment by segment. Naive
sliding window techniques autoregressively generate a new chunk of latents conditioned on a lim-
ited history of prior latents (often re-noised to manage error). FIFO-Diffusion [[16] offers a more
sophisticated sequential mechanism, processing a queue of latents with diagonally increasing noise
levels to output one clean latent per step, thereby aiming for better temporal consistency through
extended context. While these methods incorporate mechanisms to manage error, such as FIFO’s
broader context or the re-noising of historical data in naive sliding windows, they fundamentally
struggle with the inevitable accumulation of errors over very long sequences. This compounding
error degrades long-range coherence and overall video quality.

Our proposed Parallel Multi-Window Denoising (PMWD) is architecturally designed to overcome
this critical limitation. Instead of sequential generation, PMWD processes the entire target long video
(composed of multiple overlapping windows) simultaneously at each denoising step, with each latent
guided by its specific frame-level prompt. This parallel, holistic approach fundamentally disrupts
the chain of error propagation seen in sequential methods. The averaging of latents in overlapping
regions is a key aspect of PMWD. This, combined with parallel processing, not only fuses information
effectively but also transforms the strictly causal dependency of sequential models into a bidirectional
contextual influence, where information from temporally subsequent windows can refine earlier ones.
This capability is particularly advantageous for rendering naturalistic scene transitions and ensuring
global narrative consistency.
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The Ugly Duckling was born into a warm family of ducks but was rejected by the other ducklings due to its unique appearance. It decided to leave home and embark on a journey to find its true place. Throughout the
journey, the Ugly Duckling faced many challenges, often feeling lonely and sad. In the harsh winter, it braved the cold and struggled to survive. As spring arrived, the Ugly Duckling discovered that it had transformed into a
beautiful swan. Finally finding its true home among other swans, it soared gracefully, becoming the most striking member of the flock. The Ugly Duckling realized that one should never let the opinions of others define them
but should trust in the beauty within themselves. The scene is captured in a heartwarming and uplifting style, with soft lighting and a gentle camera movement following the Ugly Duckling's journey from rejection to

acceptance and self-discovery.
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A single, large, greyish cgg sits amongst a ‘The same Ugly Duckling sits alone at the ‘The landscape is now covered in a light Now noticeably larger and more graceful, ‘The same swan, now confident and the

clutch of smaller, white duck eges ina edge of the reeds, watching its siblings and layer of frost as winter approaches. The the young ereature, which s the same Ugly most radiant of the flock, takes flight with
cozy nest made of reeds and soft grass, mother duck swim and play happily in the same Ugly Duckling shivers, secking Duckling, sees a flock of majestic white the other swans. They soar gracefully
located near a tranquil pond. Soft, warm pond. A clear sense of sadness is on its shelter from the cold wind under a bare, swans flying gracefully overhead. It together against a beautiful, clear blue sky,
‘morning light filters through the reeds. face. Soft, warm light. [Medium Shot, Eye- thomy bush. Soft, cool, dim light. [Medium watches them with awe and a deep symbolizing its complete self-discovery
[Extreme Close-Up, Eye-Level] Level, gentle camera slowly pushes in Shot, Eye-Level] yearning. Soft, warm, golden hour light. and happiness. Uplifting music swells. Soft,
slightly] [Medium Shot, Low-Angle, looking up at bright, warm light. [Long Shot, Eye-Level,
the sky] camera gently tilts upwards following their
ascent, ending on a wide shot of them
flying frecly]

Figure 3: Complex Plot Generation. This figure illustrates the impact of different prompting strategies
on visual storytelling performance in a complex narrative task based on The Ugly Duckling. The first
row shows results generated using DF with a single global prompt, while the second row presents
results from our proposed method that combines DF with multiple tailored prompts (multi-prompting).
Our method demonstrates significantly improved coherence, reduced error accumulation, and less
narrative confusion across the sequence. The images generated with multi-prompting maintain better
stylistic and semantic consistency, showcasing its superiority over the global prompt approach in
handling complex plot developments.

. V\ ; .

The camera begins with an aerial view of snow-capped mountains, their peaks gleaming with silver under the sunlight. Glaciers wind their way through the landscape, extending into the distance, their icy surfaces reflecting
the bright light. A cold wind stirs the air, causing snowflakes to dance in the breeze, the ground sparkling as the snow reflects the intense light. The camera slowly descends into a serene valley, where snow-covered trees
stand silent and still their branches heavy with frost. The camera then moves closer to a rushing glacial river, its waters tumbling over icy rocks, with chunks of ice floating along the surface. As the camera continues its
journey, the distant mountain range gradually disappears into the clouds, with only the snow-capped peaks faintly visible through the mist. Finally, the camera pulls back, revealing the vastness of the snow-covered
landscape, where the ice and sky merge into a frozen, serene vista. The scene is captured in a realistic, nature documentary style, with a focus on the beauty and tranquility of the winter landscape.

W N . = A .
The camera begins with a majestic acrial The camera gently drifs past the frost- As the camera continues its journey The camera holds on the view of the The camera pulls back to is final position,
View of snow-capped mountains, their laden branches of the same snow-covered alongside the river, the distant mountain distant mountain range, which gradually a breathtaking high-angle view of the vast
peaks gleaming with silver under the trecs, emphasizing their stll and silent range becomes a more prominent feature in begins to be touched by wisps of incoming, snow-covered landscape, where the ice and
brilliant sunlight. [Bird's Eye View, Long presence in the serene valley. [Close-Up on the background, still snow-capped and clouds. The peaks are sill clearly visible. sky merge completely into a frozen, serene,
Shot] branches, Eye-Level, slow driff gleaming. [Long Shot, Eye-Level, camera [Long Shot, Eye-Level, static] and tranquil vista, Realistic, nature

panning slightly up towards mountains] documentary style. [Extreme Long Shot,
High-Angle, static]

Figure 4: Complex Landscapes Generation. This figure compares two prompting strategies for
generating complex scenes. The top row uses DF + global prompt, while the bottom row shows
results from our method: DF + multi-prompt. Our approach significantly reduces content drift and
error accumulation across frames. By using multiple prompts tailored to each scene segment, it
achieves higher accuracy and coherence, capturing the complexity and progression of the winter
landscape more effectively than the global prompt method.

6 Conclusion

Generating long, narratively complex videos with high fidelity remains challenging, primarily due
to issues with coarse semantic guidance and the error accumulation inherent in common sequential
generation techniques. We propose a comprehensive solution combining fine-grained frame-level
annotations, novel training strategies, and a Parallel Multi-Window Denoising (PMWD) inference
method. Our experiments on demanding VBench 2.0 benchmarks demonstrate that this integrated
system significantly improves prompt adherence for complex, multi-scene narratives in ultra-long
videos, achieving high-quality results with minimal error accumulation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are aligned with the theoretical
and experimental results presented in the paper. The introduction provides a concise
summary of what the reader can expect from the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Primarily covered in Section [6]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This is not a purely theoretical paper.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We explained our framework in Section 4 and experiment settings in Section 3}
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will release code with instructions to reproduce the results.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies training and test details in Section[3]
Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports means and variances of the experiments. We made sure that
for all the experiments conducted throughout the paper, we averaged across multi runs to
make sure that the results are reliable.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We explained our settings in Section 3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper adheres to the ethical guidelines set forth by NeurIPS. We ensured
that the research is conducted responsibly, with considerations for potential biases, fairness,
and the broader impact on society.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed in Section [6]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work doesn’t pose any risks. We either generated our own data or used a
justified reliable benchmark.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credited the author for the code package and benchmark dataset that have
been used in the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release code with detailed documentation and an appropriate license.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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793 * We recognize that the procedures for this may vary significantly between institutions

794 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
795 guidelines for their institution.

796 * For initial submissions, do not include any information that would break anonymity (if
797 applicable), such as the institution conducting the review.

798 16. Declaration of LLM usage

799 Question: Does the paper describe the usage of LLMs if it is an important, original, or
800 non-standard component of the core methods in this research? Note that if the LLM is used
801 only for writing, editing, or formatting purposes and does not impact the core methodology,
802 scientific rigorousness, or originality of the research, declaration is not required.

803 Answer: [Yes]

804 Justification: During inference, we employ LLMs to transform video-level prompts into
805 frame-level prompts. During training, we similarly use the LLM to assist in constructing
806 frame-level annotations, including generating shared or independent captions based on
807 visual changes. The detailed LLM usage in both stages is described in the Section [3]

808 Guidelines:

809 * The answer NA means that the core method development in this research does not
810 involve LLMs as any important, original, or non-standard components.

811 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
812 for what should or should not be described.
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