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Abstract

Generating long videos that can show complex stories, like movie scenes from1

scripts, has great promise and offers much more than short clips. However, current2

methods that use autoregression with diffusion models often struggle because3

their step-by-step process naturally leads to a serious error accumulation (drift).4

Also, many existing ways to make long videos focus on single, continuous scenes,5

making them less useful for stories with many events and changes. This paper6

introduces a new approach to solve these problems. First, we propose a novel7

way to annotate datasets at the frame-level, providing detailed text guidance8

needed for making complex, multi-scene long videos. This detailed guidance9

works with a Frame-Level Attention Mechanism to make sure text and video10

match precisely. In inference, we develop Parallel Multi-Window Denoising, a11

new method that handles a long video as multiple overlapping windows. These12

windows are processed in parallel, and the noise prediction in overlapping areas13

is averaged, which allows bidirectional information interaction and introduces no14

error accumulation. A key feature is that each part (frame) within these windows15

can be guided by its own distinct text prompt. Our training uses Diffusion Forcing16

to provide the model with the ability to handle time flexibly. We tested our approach17

on difficult VBench 2.0 benchmarks ("Complex Plots" and "Complex Landscapes")18

based on the WanX2.1-T2V-1.3B model. The results show our method is better at19

following instructions in complex, changing scenes and creates high-quality long20

videos. We plan to share our dataset annotation methods and trained models with21

the research community.22

1 Introduction23

The ability to create long video sequences from text instructions opens exciting doors for rich,24

evolving stories, such as turning scripts into videos, producing short films, or showing complex25

processes. Unlike short clips, long videos provide the needed duration for multiple connected scenes,26

detailed character interactions, and consistent plotlines that follow complex user requests [17, 42, 32,27

23, 15, 20, 22]. However, creating high-quality, consistent, and accurate long videos from text is still28

a major challenge for current generative models.29

A primary difficulty lies in the common autoregressive (step-by-step) methods used with diffusion30

models to make longer videos. Their sequential way of working naturally leads to errors accumulation31

over time. This shows up as lower visual quality, the video drifting away from the original text’s32

meaning, and a loss of consistency as the video gets longer, seriously weakening the quality of33

extended generations [14, 18, 37, 36]. Furthermore, much current research on long videos deals with34

single, continuous scenes or slowly changing environments. This limited focus reduces the usefulness35

of long video generation for dynamic stories with many events, which is a key goal for creative36
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(a). The foundational models for video generation suffer from confusion and error accumulation.

(b). Our method effectively mitigates confusion and error accumulation.

Figure 1: Illustration of issues of error accumulation and semantic confusion in the first row, and
videos generated by ours are shown in the second row.

applications. Standard methods using single, general (global) video descriptions struggle with small,37

quick changes, leading to timing issues [26, 18, 19]. While some approaches try to make multi-shot38

videos by first detecting scene cuts with tools like PySceneDetect and then processing these shots, as39

in Presto [30] and Long Context Tuning (LCT) [12], these methods can be complicated, risk losing40

information, and depend heavily on good shot detection and captioning. They often still describe41

video at a "shot-text" level, which doesn’t fully capture smooth, continuous changes.42

To solve these basic problems, our work offers a new way of thinking, focused on highly detailed,43

frame-level text guidance and a novel non-sequential method for creating the video. Our first main44

contribution is an innovative frame-level dataset annotation methodology. We move beyond45

general or shot-level captions to provide very detailed text descriptions for each conceptual part (or46

latent segment) of a video. This rich information about meaning is essential for guiding models to47

understand and create the complex, changing details needed for stories with many scenes and detailed48

prompts. This directly addresses the limits of less detailed global or shot-level captions. This detailed49

annotation is designed to work closely with our Frame-Level Attention Mechanism, which clearly50

links each video segment’s visual features to its specific text description, improving content accuracy51

and consistency over time (Section 4.2).52

To properly use such detailed and dynamic text prompts, models need to be trained to handle time53

flexibly. We achieve this using Diffusion Forcing (Section 4.3), a training strategy that shows54

the model video segments being denoised at different rates. This prepares it to manage varied55

timing patterns and allows for strong, adaptable inference. Building on these training improvements,56

we introduce our second major innovation: Parallel Multi-Window Denoising (PMWD), a new57

inference method designed to create very long videos that are highly consistent (Section 4.4). PMWD58

divides the target long video into multiple overlapping sections (windows), usually matching the59

model’s training window size. Importantly, unlike step-by-step methods, all these windows are60

processed at the same time (in parallel) during each step of the diffusion denoising process. The data61

in the overlapping areas between windows is then averaged. This averaging not only ensures smooth62

connections but also allows information to flow in both directions, meaning later parts of the video63

can help refine earlier ones. A special feature of PMWD is that each conceptual frame, even within64

these simultaneously processed windows, can be guided by its own distinct, frame-level prompt.65

We test our approach thoroughly using highly challenging benchmarks, specifically the "Complex66

Plots" and "Complex Landscapes" prompt categories from VBench 2.0 [45]. We use the state-of-67

the-art open-source WanX2.1-T2V-1.3B model [32] as our base. Our experiments show that our68

combined frame-level approach is much better at following prompts when creating very long videos69

with multiple scenes, different characters, and complex actions.70

In summary, our main contributions are:71

• Scalable Frame-Level Dataset Methodology: We introduce an efficient and scalable approach for72

constructing datasets with dense, frame-by-frame textual annotations. This enables highly granular73

video-text alignment crucial for generating complex, multi-scene narratives without relying on74

traditional shot detection.75

• Frame-Level Attention for Precise Guidance: We propose a novel attention mechanism that76

directly couples each video segment’s visual features with its unique frame-level prompt. This77

significantly enhances semantic fidelity, content accuracy, and temporal consistency in generated78

videos.79
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• Parallel Multi-Window Denoising for Coherent Long Video Generation: We develop PMWD,80

a inference strategy that processes a long video as multiple overlapping windows, denoised81

simultaneously in parallel. Guided by distinct frame-level prompts and leveraging overlap averaging82

for bidirectional context, PMWD effectively avoids the error accumulation common in sequential83

methods. This is enabled by training strategies like Diffusion Forcing that provide temporal84

flexibility.85

• State-of-the-Art Performance on Complex Videos: Through comprehensive evaluations on86

challenging VBench 2.0 benchmarks ("Complex Plots" and "Complex Landscapes") using the87

WanX2.1-T2V-1.3B model, we demonstrate our integrated approach’s superior ability to follow88

intricate prompts in multi-element long videos, achieving high-fidelity results with minimal error89

accumulation.90

2 Related Work91

Video Generation Dataset. Large-scale video datasets have driven advancements in video generation,92

but many existing datasets like YouCook2 [47], VATEX [38], and ActivityNet [5] were not designed93

for this purpose and lack fine-grained annotations. Similarly, large-scale datasets like YTTemporal-94

180M [43] and HD-VILA-100M [40] suffer from low-quality captions generated through speech95

recognition, limiting their utility for high-quality video generation. Datasets like Panda-70M [8]96

offer extensive data but rely on simplistic global descriptions, which hinder the model’s ability to97

capture fine temporal details. Newer datasets, such as Koala-36M [35] and LongTake-HD [41],98

provide more detailed annotations but still rely on segment-level or shot-based annotations, limiting99

long-duration video generation. In contrast, our method introduces a frame-level captioning approach,100

where each frame is independently annotated with a description that maintains contextual relevance101

to the preceding and succeeding frames. This ensures better alignment between visual content and102

text while preserving the temporal continuity and motion dynamics, ultimately improving the overall103

quality of long-form video generation.104

Long Video Generation. Video generation has evolved from simple single-shot models to more com-105

plex long-form and multi-scene models. Early methods relied on GANs [9, 29, 31, 39], constrained106

by single-domain datasets. Diffusion models [3, 11, 2, 1, 10] introduced temporal layers, enabling107

motion modeling. DiT-based architectures [4, 25, 28, 17, 42, 32, 23, 15, 20] have achieved tremen-108

dous success in scaling diffusion transformers, significantly enhancing video quality. However, these109

models were limited to generating short clips. FreeNoise [27] and StreamingT2V [13] extended video110

sequences using auto-regressive methods and temporal attention mechanisms. Gen-L-Video [34]111

processes videos as sequences of overlapping short clips and employs a temporal co-denoising112

technique, wherein multiple predictions for each individual frame are averaged. Despite these113

advancements, challenges in content diversity and temporal consistency persisted. The Diffusion114

Forcing [6] paradigm addressed these issues by combining diffusion’s high-quality generation with115

auto-regressive models for sequence extension.116

In multi-scene video generation, models like Mask2DiT [26], LCT [12], VideoStudio [21],117

SKYREELS-V2 [7], MovieDreamer [44], StoryAnchors [33], and VGoT [46] focused on scene-level118

consistency but struggled with temporal coherence across scenes. Recent methods, including Sto-119

ryDiffusion [48] and MEVG [24], employed attention mechanisms to enhance visual and dynamic120

consistency. Our approach uses frame-level attention for dynamic scene extension without fixed121

scene durations, improving flexibility and coherence in long-form videos. Combined with Diffusion122

Forcing [6], our method ensures smooth scene transitions, extended video lengths, and maintains123

both visual richness and temporal consistency.124

3 Frame-Level Dataset125

Previous video-text datasets such as Panda70M [8] and Koala-36M [35] provide only global-level126

captions, resulting in coarse supervision that cannot reflect detailed visual changes within videos.127

LongTake-HD [41] offers shot-level sub-captions but still depends on explicit shot boundaries, making128

it difficult to model continuous motion and intra-shot dynamics. In contrast, our dataset uses frame-129

level uniform sampling and annotation, enabling dense and temporally continuous supervision. This130

design captures both subtle and significant changes without being limited by artificial segmentation,131

supporting more precise alignment between video frames and text descriptions. Overall, our dataset132
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Figure 2: Overview of the proposed frame-level training method. Frame-Level Cross-Attention
links the visual data of each video segment (latent token) directly to its own specific text description.

offers finer-grained, structurally consistent, and temporally faithful video-text supervision, facilitating133

improved learning of dynamic visual content.134

Large-scale frame-level video dataset construction. We present a frame-level video dataset135

comprising 700,000 high-quality clips, designed to enhance fine-grained text-video alignment and136

provide dense semantic supervision for diffusion-based video generation models. The dataset137

systematically balances visual diversity, temporal continuity, and annotation precision, and can be138

further improved with larger scale in the future. We collect raw videos longer than 10 minutes from139

multiple platforms, remove near-duplicate content using perceptual hashing, and discard the first and140

last 10% of frames to ensure the sampled content is dynamic and semantically meaningful. Each141

processed video is evenly divided into four segments, from which an 8-second continuous clip is142

extracted. At a frame rate of 24 fps, one frame is sampled every 8 frames, resulting in approximately143

24 frames per clip. This design balances temporal context and computational efficiency, and ensures144

compatibility with mainstream video VAE tokenization schemes, enabling precise one-to-one frame-145

token supervision.146

Adaptive frame-level annotation. We utilize multimodal large language models to generate frame-147

level captions, automatically choosing between shared or independent descriptions based on the148

degree of visual change. Identical captions are assigned to frames with minimal differences, while149

significant changes trigger independent frame-level descriptions, achieving unified and adaptive150

semantic alignment. To enhance consistency and richness, we design structured annotation prompts151

that require each frame description to cover main subjects, actions, environment, shot size, and152

camera angle. Outputs strictly follow JSON format with no redundant commentary, ensuring precise153

semantic and structural alignment at the frame level. We provide the full frame-level annotation154

prompt, specifying formatting and content requirements to facilitate reproducibility and further155

research; the template is too long to show here, see appendix. During inference, we use gemini pro156

2.5 to convert a user input from short/detailed caption to a frame-level detailed caption. More details157

can be found in appendix.158

4 Method159

Our work introduces a set of interconnected improvements for DiT-based video diffusion models,160

aimed at generating complex, long videos. We focus on enhancing how models understand text161

instructions for each video part, how they handle timing and changes, and how they create long,162

consistent videos during inference.163
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4.1 Overall Framework164

Current Diffusion Transformer (DiT) based models are skilled at creating high-quality short videos.165

They typically use a VAE (Variational Autoencoder) to compress videos into compact latent data, and166

a DiT then generates video from these latents. However, when generating long videos with detailed167

stories and dynamic action, these models face several basic problems:168

• Imprecise Content Control: Using a single text description (caption) for the entire video often169

leads to unclear or mixed-up details for different parts of the video, making it hard to accurately170

control specific events or elements across various scenes.171

• Limited Handling of Timing: Standard models usually denoise all parts of the video at the same172

rate in each step. This restricts their ability to show varied motion speeds, different pacing in173

scenes, or sudden changes effectively.174

• Difficulty with Long Video Coherence: When creating long videos by generating segments one175

after another from models trained on short clips, errors tend to build up. This can make the video176

lose consistency over time.177

To address these key challenges, we propose three main contributions:178

1. A Frame-Level Cross-Attention mechanism (Section 4.2) for precise, localized text-based control179

over the content of each video segment during training.180

2. A Diffusion Forcing training strategy (Section 4.3) to teach models how to handle varied timing181

by exposing them to video segments denoised at different rates.182

3. A Synchronized Multi-Window Denoising (PMWD) inference method (Section 4.4), designed183

to generate long, coherent videos by significantly reducing the build-up of errors.184

While these principles can be applied to many DiT-based video models, we demonstrate our methods185

by adapting and fine-tuning the WanX2.1-T2V-1.3B [32] framework, a well-known open-source186

model, as our base.187

4.2 Frame-Level Cross Attention188

To accurately control video content in line with detailed narratives, we introduce Frame-Level Cross-189

Attention. This method links the visual data of each video segment (latent token) directly to its own190

specific text description. Simultaneously, the DiT’s standard self-attention mechanism continues to191

capture overall temporal relationships, ensuring smooth motion. This approach provides both precise192

local content guidance and global video coherence.193

Our process starts by assigning an independent text description to each conceptual "frame" (latent194

unit) of a video. When the original video is converted into latent data by the VAE, each resulting195

latent token zf is directly paired with the embedding of its corresponding frame-level caption, cf .196

This creates a detailed, one-to-one mapping between text and video segments over time, offering197

exact guidance for generation. We modify the DiT’s cross-attention mechanism so that each latent198

token zf attends exclusively to its paired caption embedding cf , rather than to a single caption shared199

by the entire video. Formally, this is:200

CrossAttention(qf , cf ) = Softmax
(
qfWq(cfWk)

T

√
d

)
(cfWv), (1)

where qf is the query projected from zf , and Wq,Wk,Wv are learnable matrices. This targeted201

attention mechanism reduces the unclear meaning that can arise from global captions, greatly202

improving text-to-video alignment and allowing for precise control over dynamic content within each203

segment.204

4.3 Diffusion Forcing for Temporal Flexibility205

Creating long videos with dynamic action and varied pacing requires the model to handle time flexibly.206

Standard diffusion models are often limited in this area because they apply the same noise level to207

all video segments at each step of the denoising process, restricting their ability to generate diverse208

visual qualities, dynamic changes, or quick scene transitions.209
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To give models this needed flexibility, we use a Diffusion Forcing (DF) strategy during training.210

This technique assigns an independent noise level to each video segment (latent token) in a training211

sequence. Specifically, we pick a reference segment, set its target noise removal stage (timestep), and212

then determine the noise stages for other segments in relation to it: preceding segments get "cleaner"213

(earlier) timesteps, and subsequent segments get "noisier" (later) timesteps. This approach maintains214

temporal smoothness while training the model to manage different denoising states simultaneously215

within one sequence.216

This training approach makes the model highly adaptable at inference time. By adjusting a "step-size"217

parameter—which controls the allowed difference in noise schedules between adjacent segments—we218

can smoothly shift the generation style. We can opt for fully synchronized diffusion (small step-219

size, for high consistency) or for more dynamic, evolving outputs (large step-size, resembling220

autoregressive generation). This adaptability allows the model to produce either smooth, consistent221

videos or to progressively unfold complex scene transitions and actions as guided by the text222

prompts. Furthermore, already partially denoised historical segments can serve as stable conditions223

for generating later segments, aiding long-range consistency without forcing all segments to share the224

same noise level at the same time.225

4.4 Flexible Inference Modes for Long Video Generation226

The temporal flexibility gained from Diffusion Forcing during training allows for various inference227

methods to generate videos much longer than the training segments (the "train short, test long"228

approach).229

Sequential Sliding Window Approaches. Common methods for long video generation use a230

sequential sliding window. These include simple autoregressive techniques, where a new segment231

of M latents is generated based on N − M previous latents from an N -latent window (often re-232

noising the context), and more advanced methods like FIFO-Diffusion [16], which uses a queue with233

diagonally progressing noise levels for better temporal consistency. However, a core problem with all234

such step-by-step sequential methods is the unavoidable build-up of errors, which reduces quality235

and long-range consistency in very long videos.236

Parallel Multi-Window Denoising (PMWD). To effectively overcome this error accumulation237

problem, we introduce PMWD. This novel inference strategy takes full advantage of our frame-level238

prompt system to generate long videos more as a complete whole, rather than piece by piece. For a239

target long video of L latents, we view it as K overlapping windows, each the length of a training240

segment. Crucially, all K windows are processed in parallel (at the same time) during each step241

of the diffusion denoising process. Every latent, whether new or historical context, is guided by its242

own dedicated frame-level prompt. This parallel, parallel method for the entire sequence inherently243

avoids the cascading error build-up seen in typical autoregressive techniques. Latents located in the244

overlapping regions between adjacent windows are averaged after each denoising step. This averaging,245

along with the parallel processing, allows information to flow in both directions (bidirectionally)246

between an earlier and a later window. Unlike methods where only the past influences the future,247

PMWD allows upcoming video segments to help refine earlier ones. This is especially useful for248

creating natural-looking scene changes and maintaining consistency in stories with multiple scenes.249

5 Experimental Results250

5.1 Experimental Setup251

We fully fine-tune the open-source WanX-2.1-T2V-1.3B model with Diffusion Forcing technique252

on resolution 81x480x832 for 100,000 iterations using our internal dataset (detailed in Section 3) of253

dense frame-level annotations. Training occurred on H-series GPUs with a global batch size of 64.254

5.2 Evaluation Dataset255

We evaluate the model’s capability to generate complex videos by utilizing prompts from the VBench256

2.0 benchmark, specifically focusing on the Complex Plots and Complex Landscapes.257

Complex Plots assess the model’s ability to construct coherent and consistent multi-scene narratives258

based on prompts describing multi-stage events. These prompts often involve extended descriptions259
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(150+ words) outlining a sequence of actions or a story with multiple acts, challenging the model to260

maintain plot consistency and logical flow throughout the generated video.261

Complex Landscapes evaluate whether the model can faithfully translate long-form landscape262

descriptions (150+ words) into video, including multiple scene transitions dictated by camera move-263

ments. These prompts test the model’s understanding of spatial relationships and its ability to render264

dynamic changes in the environment as described in the text.265

5.3 Evaluation Metrics266

We evaluate video quality using metrics for overall video-text alignment and also propose a new267

metric for the issue of semantic confusion in multi scenes generation. Let Pg be the global prompt,268

V the generated video, {P1, . . . , PF } the sequence of F frame-level prompts, and {V1, . . . , VF } the269

corresponding sequence of generated frames.270

Standard VBench Evaluation. To provide a comprehensive assessment of fundamental video271

quality aspects, particularly for the complex scenarios presented by our chosen VBench 2.0 prompt272

categories (Complex Plots and Complex Landscapes), we incorporate a curated subset of established273

metrics from the VBench benchmark. This evaluation focuses on key indicators such as: aesthetic274

quality, image quality, and motion smoothness. These selected metrics offer standardized measures275

of the perceptual quality and spatio-temporal coherence of the generated videos.276

Video-Level Video-Text Similarity. This standard metric evaluates overall coherence between Pg277

and V . ΦV (V ) represents overall video features (uniformly sample 8 frames as input of ViClip).278

Sglobal = Sim(ΦT (Pg),ΦV (V )) (2)

where we use a pre-trained vision-language model (e.g., ViCLIP) for text embeddings ΦT (·) and279

video/latent ’frame’ embeddings ΦV (·), with Sim(·, ·) denoting cosine similarity.280

Confusion Degree (CD). Despite the widespread use of Sglobal, this global metric may assign281

favorable scores even when content from different scenes are inappropriately combined. To pinpoint282

such temporal and semantic inaccuracies, we introduce the Confusion Degree (CD). A high CD score283

reveals a model’s difficulty in maintaining a clear, sequential narrative, often resulting in a muddled284

or incoherent visual story. We first define two fundamental frame-level similarity metrics as follows:285

STT (Pi, Pj) = Sim(ΦT (Pi),ΦT (Pj))

STF (Pi, Vj) = Sim(ΦT (Pi),ΦV (Vj))
(3)

, where STT (Pi, Pj) represents frame-level text-text similarity and STF (Pi, Vj) represents frame-286

level text-frame similarity. Then S̃TT (Pi, Pj) = STT (Pi, Pj)/STT (Pi, Pi) and S̃TF (Pi, Vj) =287

STF (Pi, Vj)/STF (Pi, Vi) are applied as normalization function to ensure S̃TT (Pi, Pi) = 1 and288

S̃TF (Pi, Vi)=1.289

The confusion degree of a text Pi in the generated video V is defined as:290

CD(Pi) =
∑

j∈{1,...,F}

max(0, S̃TF (Pi, Vj)− S̃TT (Pi, Pj)) (4)

where S̃TF (Pi, Vj) − S̃TT (Pi, Pj) indicates that the content of Pi is more aligned with frame Vj291

than its inherent semantic relationship with Pj would suggest, thereby signaling confusion. Then the292

confusion of a video V is defined as293

CD =
1

F

F∑
i=1

CDi (5)

, representing the average confusion degree across all frames. Lower CD values indicate superior294

narrative consistency and reduced semantic confusion throughout the video.295

5.4 Comparison and Discussion296

Analysis of Video Generation under Complex Prompts. Tab. 1 provides a comparative analysis of297

models trained and inferenced using either global video-level or granular frame-level prompts. When298
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Method Video Prompts Confusion Video-level Frame-level Motion Aesthetic Image
Length Type Degree↓ Text-Video Consistency↑ Text-Video Consistency↑ Smoothness↑ Quality↑ Quality↑

DF + Video-level Prompt 5s Complex Plot 0.2952 ± 0.0461 0.2100 ± 0.0410 0.1635 ± 0.0282 98.43 59.20 67.92
DF + Video-level Prompt 30s Complex Plot 0.2962 ± 0.0487 0.2053 ± 0.0368 0.1518 ± 0.0258 98.63 52.02 58.07
DF + Frame-level Prompt 30s Complex Plot 0.1385 ± 0.0498 0.2196 ± 0.0309 0.2054 ± 0.0231 98.53 55.04 61.56

DF + Video-level Prompt 5s Complex Landscape 0.2745 ± 0.0412 0.2101 ± 0.0341 0.1831 ± 0.0227 98.70 61.32 59.61
DF + Video-level Prompt 30s Complex Landscape 0.2806 ± 0.0474 0.2066 ± 0.0351 0.1723 ± 0.0230 98.58 52.63 51.02
DF + Frame-level Prompt 30s Complex Landscape 0.1528 ± 0.0479 0.2195 ± 0.0326 0.2139 ± 0.0167 98.99 56.31 55.98

Table 1: Comparing video-level versus frame-level prompting for complex narrative videos. While
global Video-Level Text-Video Consistency can yield misleadingly high scores despite internal scene
blending or semantic confusion, metrics like Confusion Degree and frame-level consistency more
effectively expose these flaws, highlighting the superior prompt adherence of frame-level strategies.
Further analysis in Section 5.4.

Method Prompt Level Confusion Degree ↓ Video-level ↑ Frame-level ↑ Motion ↑ Aesthetic ↑ Image ↑
Text-Video Consistency Text-Video Consistency Smoothness Quality Quality

First-In-First-Out (FIFO) Video 0.2962 ± 0.0487 0.2053 ± 0.0368 0.1518 ± 0.0258 98.63 52.02 58.07
First-In-First-Out (FIFO) Frame 0.2416 ± 0.0514 0.2100 ± 0.0370 0.1660 ± 0.0266 98.81 51.32 59.25
Sequential Sliding Window Frame 0.1773 ± 0.0550 0.2134 ± 0.0312 0.1842 ± 0.0227 98.80 52.04 60.11
Parallel Multi-Window Denosing Frame 0.1385 ± 0.0498 0.2196 ± 0.0309 0.2054 ± 0.0231 98.53 55.04 61.56

Table 2: Inference method comparison for 30s complex plot videos. Parallel Multi-Window Denoising
(PMWD) achieves lower error accumulation (improved aesthetic/image quality) and better prompt
adherence (reduced Confusion Degree, higher text-video consistency) versus causal methods (FIFO,
Sliding Window). Detailed analysis in Section 5.4.

generating short videos (e.g., 5 seconds) conditioned on a single video-level prompt, the model299

operates closer to an ideal scenario without temporal error accumulation. However, such prompts300

often lead to a high Confusion Degree (CD), as the model struggles to render extensive semantic301

information within a condensed timeframe, resulting in blended or muddled content.302

Conversely, employing frame-level prompts demonstrates a marked improvement in prompt adher-303

ence, evidenced by lower CD scores alongside high frame-level consistency metrics. This enhanced304

ability to follow detailed, segmented instructions makes the frame-level prompting strategy more305

reliable and effective for generating coherent multi-scene long videos. Furthermore, metrics such306

as aesthetic and image quality serve as indirect indicators of error accumulation; significant degra-307

dation in these scores over time typically reflects compounding errors. This accumulation is an308

inherent consequence of the causal nature of sequential generation processes, a fundamental issue309

that even precise frame-level semantic guidance cannot resolve on its own when operating within310

such autoregressive frameworks.311

Comparative Analysis of Long Video Inference Strategies. We further analyze the efficacy of312

different inference strategies for extending video generation beyond training lengths, comparing313

our proposed Parallel Multi-Window Denoising (PMWD) with established sequential methods like314

FIFO-Diffusion and naive sliding windows.315

Sequential approaches, by their nature, tackle long video generation segment by segment. Naive316

sliding window techniques autoregressively generate a new chunk of latents conditioned on a lim-317

ited history of prior latents (often re-noised to manage error). FIFO-Diffusion [16] offers a more318

sophisticated sequential mechanism, processing a queue of latents with diagonally increasing noise319

levels to output one clean latent per step, thereby aiming for better temporal consistency through320

extended context. While these methods incorporate mechanisms to manage error, such as FIFO’s321

broader context or the re-noising of historical data in naive sliding windows, they fundamentally322

struggle with the inevitable accumulation of errors over very long sequences. This compounding323

error degrades long-range coherence and overall video quality.324

Our proposed Parallel Multi-Window Denoising (PMWD) is architecturally designed to overcome325

this critical limitation. Instead of sequential generation, PMWD processes the entire target long video326

(composed of multiple overlapping windows) simultaneously at each denoising step, with each latent327

guided by its specific frame-level prompt. This parallel, holistic approach fundamentally disrupts328

the chain of error propagation seen in sequential methods. The averaging of latents in overlapping329

regions is a key aspect of PMWD. This, combined with parallel processing, not only fuses information330

effectively but also transforms the strictly causal dependency of sequential models into a bidirectional331

contextual influence, where information from temporally subsequent windows can refine earlier ones.332

This capability is particularly advantageous for rendering naturalistic scene transitions and ensuring333

global narrative consistency.334
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The Ugly Duckling was born into a warm family of ducks but was rejected by the other ducklings due to its unique appearance. It decided to leave home and embark on a journey to find its true place. Throughout the 
journey, the Ugly Duckling faced many challenges, often feeling lonely and sad. In the harsh winter, it braved the cold and struggled to survive. As spring arrived, the Ugly Duckling discovered that it had transformed into a 
beautiful swan. Finally finding its true home among other swans, it soared gracefully, becoming the most striking member of the flock. The Ugly Duckling realized that one should never let the opinions of others define them 
but should trust in the beauty within themselves. The scene is captured in a heartwarming and uplifting style, with soft lighting and a gentle camera movement following the Ugly Duckling's journey from rejection to 
acceptance and self-discovery.

A single, large, greyish egg sits amongst a 
clutch of smaller, white duck eggs in a 
cozy nest made of reeds and soft grass, 
located near a tranquil pond. Soft, warm 
morning light filters through the reeds. 
[Extreme Close-Up, Eye-Level]

Now noticeably larger and more graceful, 
the young creature, which is the same Ugly 
Duckling, sees a flock of majestic white 
swans flying gracefully overhead. It 
watches them with awe and a deep 
yearning. Soft, warm, golden hour light. 
[Medium Shot, Low-Angle, looking up at 
the sky]

The same swan, now confident and the 
most radiant of the flock, takes flight with 
the other swans. They soar gracefully 
together against a beautiful, clear blue sky, 
symbolizing its complete self-discovery 
and happiness. Uplifting music swells. Soft, 
bright, warm light. [Long Shot, Eye-Level, 
camera gently tilts upwards following their 
ascent, ending on a wide shot of them 
flying freely]

The landscape is now covered in a light 
layer of frost as winter approaches. The 
same Ugly Duckling shivers, seeking 
shelter from the cold wind under a bare, 
thorny bush. Soft, cool, dim light. [Medium 
Shot, Eye-Level]

The same Ugly Duckling sits alone at the 
edge of the reeds, watching its siblings and 
mother duck swim and play happily in the 
pond. A clear sense of sadness is on its 
face. Soft, warm light. [Medium Shot, Eye-
Level, gentle camera slowly pushes in 
slightly]

Figure 3: Complex Plot Generation. This figure illustrates the impact of different prompting strategies
on visual storytelling performance in a complex narrative task based on The Ugly Duckling. The first
row shows results generated using DF with a single global prompt, while the second row presents
results from our proposed method that combines DF with multiple tailored prompts (multi-prompting).
Our method demonstrates significantly improved coherence, reduced error accumulation, and less
narrative confusion across the sequence. The images generated with multi-prompting maintain better
stylistic and semantic consistency, showcasing its superiority over the global prompt approach in
handling complex plot developments.

The camera begins with an aerial view of snow-capped mountains, their peaks gleaming with silver under the sunlight. Glaciers wind their way through the landscape, extending into the distance, their icy surfaces reflecting 
the bright light. A cold wind stirs the air, causing snowflakes to dance in the breeze, the ground sparkling as the snow reflects the intense light. The camera slowly descends into a serene valley, where snow-covered trees 
stand silent and still, their branches heavy with frost. The camera then moves closer to a rushing glacial river, its waters tumbling over icy rocks, with chunks of ice floating along the surface. As the camera continues its 
journey, the distant mountain range gradually disappears into the clouds, with only the snow-capped peaks faintly visible through the mist. Finally, the camera pulls back, revealing the vastness of the snow-covered 
landscape, where the ice and sky merge into a frozen, serene vista. The scene is captured in a realistic, nature documentary style, with a focus on the beauty and tranquility of the winter landscape.

The camera begins with a majestic aerial 
view of snow-capped mountains, their 
peaks gleaming with silver under the 
brilliant sunlight. [Bird's Eye View, Long 
Shot]

The camera holds on the view of the 
distant mountain range, which gradually 
begins to be touched by wisps of incoming 
clouds. The peaks are still clearly visible. 
[Long Shot, Eye-Level, static]

The camera pulls back to its final position, 
a breathtaking high-angle view of the vast 
snow-covered landscape, where the ice and 
sky merge completely into a frozen, serene, 
and tranquil vista. Realistic, nature 
documentary style. [Extreme Long Shot, 
High-Angle, static]

As the camera continues its journey 
alongside the river, the distant mountain 
range becomes a more prominent feature in 
the background, still snow-capped and 
gleaming. [Long Shot, Eye-Level, camera 
panning slightly up towards mountains]

The camera gently drifts past the frost-
laden branches of the same snow-covered 
trees, emphasizing their still and silent 
presence in the serene valley. [Close-Up on 
branches, Eye-Level, slow drift]

Figure 4: Complex Landscapes Generation. This figure compares two prompting strategies for
generating complex scenes. The top row uses DF + global prompt, while the bottom row shows
results from our method: DF + multi-prompt. Our approach significantly reduces content drift and
error accumulation across frames. By using multiple prompts tailored to each scene segment, it
achieves higher accuracy and coherence, capturing the complexity and progression of the winter
landscape more effectively than the global prompt method.

6 Conclusion335

Generating long, narratively complex videos with high fidelity remains challenging, primarily due336

to issues with coarse semantic guidance and the error accumulation inherent in common sequential337

generation techniques. We propose a comprehensive solution combining fine-grained frame-level338

annotations, novel training strategies, and a Parallel Multi-Window Denoising (PMWD) inference339

method. Our experiments on demanding VBench 2.0 benchmarks demonstrate that this integrated340

system significantly improves prompt adherence for complex, multi-scene narratives in ultra-long341

videos, achieving high-quality results with minimal error accumulation.342
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that is necessary to appreciate the results and make sense of them.621

• The full details can be provided either with the code, in appendix, or as supplemental622

material.623

7. Experiment statistical significance624

Question: Does the paper report error bars suitably and correctly defined or other appropriate625

information about the statistical significance of the experiments?626

Answer: [Yes]627

Justification: The paper reports means and variances of the experiments. We made sure that628

for all the experiments conducted throughout the paper, we averaged across multi runs to629

make sure that the results are reliable.630

Guidelines:631

• The answer NA means that the paper does not include experiments.632

• The authors should answer "Yes" if the results are accompanied by error bars, confi-633

dence intervals, or statistical significance tests, at least for the experiments that support634

the main claims of the paper.635

• The factors of variability that the error bars are capturing should be clearly stated (for636

example, train/test split, initialization, random drawing of some parameter, or overall637

run with given experimental conditions).638
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• The method for calculating the error bars should be explained (closed form formula,639

call to a library function, bootstrap, etc.)640

• The assumptions made should be given (e.g., Normally distributed errors).641

• It should be clear whether the error bar is the standard deviation or the standard error642

of the mean.643

• It is OK to report 1-sigma error bars, but one should state it. The authors should644

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis645

of Normality of errors is not verified.646

• For asymmetric distributions, the authors should be careful not to show in tables or647

figures symmetric error bars that would yield results that are out of range (e.g. negative648

error rates).649

• If error bars are reported in tables or plots, The authors should explain in the text how650

they were calculated and reference the corresponding figures or tables in the text.651

8. Experiments compute resources652

Question: For each experiment, does the paper provide sufficient information on the com-653

puter resources (type of compute workers, memory, time of execution) needed to reproduce654

the experiments?655

Answer: [Yes]656

Justification: We explained our settings in Section 5.657

Guidelines:658

• The answer NA means that the paper does not include experiments.659

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,660

or cloud provider, including relevant memory and storage.661

• The paper should provide the amount of compute required for each of the individual662

experimental runs as well as estimate the total compute.663

• The paper should disclose whether the full research project required more compute664

than the experiments reported in the paper (e.g., preliminary or failed experiments that665

didn’t make it into the paper).666

9. Code of ethics667

Question: Does the research conducted in the paper conform, in every respect, with the668

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?669

Answer: [Yes]670

Justification: The paper adheres to the ethical guidelines set forth by NeurIPS. We ensured671

that the research is conducted responsibly, with considerations for potential biases, fairness,672

and the broader impact on society.673

Guidelines:674

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.675

• If the authors answer No, they should explain the special circumstances that require a676

deviation from the Code of Ethics.677

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-678

eration due to laws or regulations in their jurisdiction).679

10. Broader impacts680

Question: Does the paper discuss both potential positive societal impacts and negative681

societal impacts of the work performed?682

Answer: [Yes]683

Justification: The paper discusses both potential positive societal impacts and negative684

societal impacts of the work performed in Section 6.685

Guidelines:686

• The answer NA means that there is no societal impact of the work performed.687

• If the authors answer NA or No, they should explain why their work has no societal688

impact or why the paper does not address societal impact.689
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• Examples of negative societal impacts include potential malicious or unintended uses690

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations691

(e.g., deployment of technologies that could make decisions that unfairly impact specific692

groups), privacy considerations, and security considerations.693

• The conference expects that many papers will be foundational research and not tied694

to particular applications, let alone deployments. However, if there is a direct path to695

any negative applications, the authors should point it out. For example, it is legitimate696

to point out that an improvement in the quality of generative models could be used to697

generate deepfakes for disinformation. On the other hand, it is not needed to point out698

that a generic algorithm for optimizing neural networks could enable people to train699

models that generate Deepfakes faster.700

• The authors should consider possible harms that could arise when the technology is701

being used as intended and functioning correctly, harms that could arise when the702

technology is being used as intended but gives incorrect results, and harms following703

from (intentional or unintentional) misuse of the technology.704

• If there are negative societal impacts, the authors could also discuss possible mitigation705

strategies (e.g., gated release of models, providing defenses in addition to attacks,706

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from707

feedback over time, improving the efficiency and accessibility of ML).708

11. Safeguards709

Question: Does the paper describe safeguards that have been put in place for responsible710

release of data or models that have a high risk for misuse (e.g., pretrained language models,711

image generators, or scraped datasets)?712

Answer: [NA]713

Justification: The work doesn’t pose any risks. We either generated our own data or used a714

justified reliable benchmark.715

Guidelines:716

• The answer NA means that the paper poses no such risks.717

• Released models that have a high risk for misuse or dual-use should be released with718

necessary safeguards to allow for controlled use of the model, for example by requiring719

that users adhere to usage guidelines or restrictions to access the model or implementing720

safety filters.721

• Datasets that have been scraped from the Internet could pose safety risks. The authors722

should describe how they avoided releasing unsafe images.723

• We recognize that providing effective safeguards is challenging, and many papers do724

not require this, but we encourage authors to take this into account and make a best725

faith effort.726

12. Licenses for existing assets727

Question: Are the creators or original owners of assets (e.g., code, data, models), used in728

the paper, properly credited and are the license and terms of use explicitly mentioned and729

properly respected?730

Answer: [Yes]731

Justification: We credited the author for the code package and benchmark dataset that have732

been used in the paper.733

Guidelines:734

• The answer NA means that the paper does not use existing assets.735

• The authors should cite the original paper that produced the code package or dataset.736

• The authors should state which version of the asset is used and, if possible, include a737

URL.738

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.739

• For scraped data from a particular source (e.g., website), the copyright and terms of740

service of that source should be provided.741
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• If assets are released, the license, copyright information, and terms of use in the742

package should be provided. For popular datasets, paperswithcode.com/datasets743

has curated licenses for some datasets. Their licensing guide can help determine the744

license of a dataset.745

• For existing datasets that are re-packaged, both the original license and the license of746

the derived asset (if it has changed) should be provided.747

• If this information is not available online, the authors are encouraged to reach out to748

the asset’s creators.749

13. New assets750

Question: Are new assets introduced in the paper well documented and is the documentation751

provided alongside the assets?752

Answer: [Yes]753

Justification: We will release code with detailed documentation and an appropriate license.754

Guidelines:755

• The answer NA means that the paper does not release new assets.756

• Researchers should communicate the details of the dataset/code/model as part of their757

submissions via structured templates. This includes details about training, license,758

limitations, etc.759

• The paper should discuss whether and how consent was obtained from people whose760

asset is used.761

• At submission time, remember to anonymize your assets (if applicable). You can either762

create an anonymized URL or include an anonymized zip file.763

14. Crowdsourcing and research with human subjects764

Question: For crowdsourcing experiments and research with human subjects, does the paper765

include the full text of instructions given to participants and screenshots, if applicable, as766

well as details about compensation (if any)?767

Answer: [NA]768

Justification: The paper does not involve crowdsourcing nor research with human subjects.769

Guidelines:770

• The answer NA means that the paper does not involve crowdsourcing nor research with771

human subjects.772

• Including this information in the supplemental material is fine, but if the main contribu-773

tion of the paper involves human subjects, then as much detail as possible should be774

included in the main paper.775

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,776

or other labor should be paid at least the minimum wage in the country of the data777

collector.778

15. Institutional review board (IRB) approvals or equivalent for research with human779

subjects780

Question: Does the paper describe potential risks incurred by study participants, whether781

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)782

approvals (or an equivalent approval/review based on the requirements of your country or783

institution) were obtained?784

Answer: [NA]785

Justification: We do not involve crowdsourcing nor research with human subjects.786

Guidelines:787

• The answer NA means that the paper does not involve crowdsourcing nor research with788

human subjects.789

• Depending on the country in which research is conducted, IRB approval (or equivalent)790

may be required for any human subjects research. If you obtained IRB approval, you791

should clearly state this in the paper.792
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• We recognize that the procedures for this may vary significantly between institutions793

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the794

guidelines for their institution.795

• For initial submissions, do not include any information that would break anonymity (if796

applicable), such as the institution conducting the review.797

16. Declaration of LLM usage798

Question: Does the paper describe the usage of LLMs if it is an important, original, or799

non-standard component of the core methods in this research? Note that if the LLM is used800

only for writing, editing, or formatting purposes and does not impact the core methodology,801

scientific rigorousness, or originality of the research, declaration is not required.802

Answer: [Yes]803

Justification: During inference, we employ LLMs to transform video-level prompts into804

frame-level prompts. During training, we similarly use the LLM to assist in constructing805

frame-level annotations, including generating shared or independent captions based on806

visual changes. The detailed LLM usage in both stages is described in the Section 3.807

Guidelines:808

• The answer NA means that the core method development in this research does not809

involve LLMs as any important, original, or non-standard components.810

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)811

for what should or should not be described.812
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