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Abstract

We consider a variant of the stochastic gradient descent (SGD) with a random learning
rate and reveal its convergence properties. SGD is a widely used stochastic optimization
algorithm in machine learning, especially deep learning. Numerous studies reveal the conver-
gence properties of SGD and its theoretically favorable variants. Among these, the analysis
of convergence using a stationary distribution of updated parameters provides generalizable
results. However, to obtain a stationary distribution, the update direction of the parameters
must not degenerate, which limits the applicable variants of SGD. In this study, we consider
a novel SGD variant, Poisson SGD, which has degenerated parameter update directions and
instead utilizes a random learning rate. Consequently, we demonstrate that a distribution
of a parameter updated by Poisson SGD converges to a stationary distribution under weak
assumptions on a loss function. Based on this, we further show that Poisson SGD finds
global minima in non-convex optimization problems and also evaluate the generalization
error using this method. As a proof technique, we approximate the distribution by Poisson
SGD with that of the bouncy particle sampler (BPS) and derive its stationary distribution,
using the theoretical advance of the piece-wise deterministic Markov process (PDMP).

1 Introduction

Stochastic gradient descent (SGD) stands out as a widely employed optimization algorithm in machine learn-
ing. It falls under the category of stochastic optimization, where parameters are updated with randomness
from the mini-batch sampling. SGD is valued for two main reasons in optimization: (i) it is memory-efficient
and requires only low computational resources by updating parameters from a fraction of the training data
at each iteration (Bottou, 1991), and (ii) models optimized with SGD have less generalization error than
those optimized by other algorithms such as gradient descent (GD) for neural networks (Wu et al., 2020;
Zhu et al., 2019). Owing to these advantages, SGD has been one of the standard methods for training deep
learning models (Hoffer et al., 2017; Keskar et al., 2016; Zhu et al., 2019).

To understand the properties of SGD, the characteristics of parameters updated by SGD or its variants
have been actively studied. As for the usual SGD, Garrigos & Gower (2023) surveyed the results about
the convergence rate of SGD in convex and non-convex settings. It also mentions the global convergence
property of SGD under the strong convexity setting. Li et al. (2017); Jastrzebski et al. (2017) clarified that
the parameter updating process of SGD can be approximated by a stochastic differential equation. Zhu
et al. (2019); Nguyen et al. (2019) discussed the relation between the random noise of SGD and the escape
efficiency from the sharp minima of the loss function. One example of a variant of SGD is stochastic gradient
Langevin dynamics (SGLD), which is an extension of SGD that adds Gaussian noise to the update formula
of SGD. Raginsky et al. (2017) analyzed the dynamics of stochastic gradient Langevin dynamics (SGLD)
as a variant of SGD and proved the parameters optimized by SGLD converge to the global minima of the
generalization error. As another example, Jastrzebski et al. (2017); He et al. (2019); Mandt et al. (2017)
analyzed the dynamics of SGD with a constant learning rate under the assumptions that the noise of SGD
on the gradient induced by the mini-batch sampling is isotropic, and derived the probability distribution of
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Figure 1: Approach using stationary distributions. Under the non-convex loss Lz(θ) of a parameter θ (the left
panel), we consider a distribution of parameters θ generated from an algorithm with an inverse temperature
β, which converges to the stationary distribution µβ with sufficiently large number of iterations (the middle
panel). By varying β, the distribution µβ is concentrated on the global optimum of Lz(θ) (the right panel).

the parameters obtained by SGD. Latz (2021) analyze SGD both in the case of the constant learning rate
and of the decreasing learning rate.

Among the methods analyzing the properties of SGD, one of the most general approaches is to study a
stationary distribution of parameters updated by SGD and its variants. The stationary distribution is
a distribution that remains unchanged when the parameter is updated by one step. Analysis based on
stationary distributions is an approach that aims to characterize the probability distribution rather than the
exact values of the updated parameters. This method has been employed by researches such as Raginsky
et al. (2017) or Dieuleveut et al. (2020) for analyzing machine learning models with non-convex loss functions.
Specifically, it involves demonstrating that a distribution of parameters updated by the algorithm under
sufficient iterations converges to a stationary distribution that assigns mass across the entire parameter
space. Subsequently, by adjusting an inverse temperature parameter that affects its shape, the stationary
distribution can be concentrated around the global minimum. See Figure 1 for illustration. It is useful in
theoretical analysis, because (i) it can analyze the global convergence of the optimization algorithm, and (ii)
it can be applied to a wide range of loss functions regardless of its convexity.

Despite the above advantages, there are not many SGD variants to which stationary distribution analysis can
be applied. This is because, to use the analysis by a stationary distribution, it is required that the direction
of parameter updates by an algorithm does not degenerate; in other words, there must be no directions
that are not being explored. Examples of such variants are (i) SGLD (Welling & Teh, 2011; Dalalyan, 2017;
Durmus & Moulines, 2016), which adds a Gaussian noise to the parameter update of SGD and (ii) Gaussian
SGD (Jastrzebski et al., 2017; He et al., 2019; Mandt et al., 2017), which assumes that the noise of SGD
on the gradient induced by the mini-batch sampling is non-degenerate Gaussian. In contrast, the parameter
update of SGD degenerates in many practical cases, such as deep learning (Zhu et al., 2019; Nguyen et al.,
2019; Simsekli et al., 2019). We remark that we focus on the degeneracy of the update direction of SGD, not
on the distribution of it since there is no clear agreement that gradient noise follows a particular distribution
(the definition of degeneracy is in Remark 3). Hence, there is a gap between the variants of SGD considered
in the theoretical analysis and the empirical facts about SGD. This gap fosters the following question:

Do parameters optimized by a variant of SGD have a stationary distribution
even if the update direction degenerates - and if so, what is the form of it?

1.1 Our Contribution

We theoretically prove that a variant of SGD has a stationary distribution even if the update direction
degenerates. Specifically, we develop a novel SGD variant with a random learning rate, which follows the
Poisson process depending on a mini-batch gradient. We call the variant Poisson SGD, and prove that the
distribution of a parameter updated by Poisson SGD converges to a stationary distribution. As a result,
we provide a positive answer to the question posed above: even with a degenerated parameter update, it
is possible to construct a variant of SGD that reaches a stationary distribution by using a random learning
rate.
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Our specific contributions are as follows. We consider the empirical risk minimization problem and prove the
following results under weak assumptions on the loss function such as absolute continuity: (i) the distribution
of the parameters updated by Poisson SGD converges to a stationary distribution, and (ii) an output of
Poisson SGD converges to the global minima of the empirical risk, applying the stationary distribution while
controlling the inverse-temperature parameter. Furthermore, we evaluate the generalization error of the
updated parameter for prediction with unseen data by studying an expectation of the risk function in terms
of the obtained stationary distribution.

On the technical side, we utilize an algorithm called the Bouncy Particle Sampler (BPS) to demonstrate the
convergence to the stationary distribution by Poisson SGD. BPS is a piecewise deterministic Markov process
(PDMP) that achieves ergodicity using stochastically occurring jumps (Davis, 1984; 1993). In our proof,
we show that the distribution of parameters updated by Poisson SGD can be well approximated by that of
BPS, and we concretely construct the stationary distribution using the theory of BPS.

1.2 Related Work

There are many works which investigate the stationary distribution of SGD or its variants. Dieuleveut et al.
(2020); Chen et al. (2022) derived the stationary distribution of the parameters obtained by SGD when the
loss function is strongly-convex, through the theories about Markov processes. The parameters obtained
through the SGLD algorithm are theoretically proven to converge to the Gibbs distribution and generalize
well (Raginsky et al., 2017). He et al. (2019) and Mandt et al. (2017) assumed the noise of SGD is Gaussian
whose covariance matrix is constant and approximate the process of optimization through SGD by Ornstein-
Uhlenbeck process and derive its stationary distribution. Gradient Langevin dynamics (GLD), which is a
full-batch version of SGLD, can also be seen as a variant of SGD which assumes that the noise of SGD is
Gaussian with a covariance matrix of constant multiples of the identity matrix. Like SGLD, it converges to
a stationary distribution even in non-convex scenarios (Dalalyan, 2017; Durmus & Moulines, 2016).

In terms of a random learning rate, there are several empirical studies. Musso (2020) investigated the
dynamics of SGD with a random learning rate by analyzing the stochastic differential equation and its
Fokker-Planck equation. Blier et al. (2019) showed experimentally that SGD with random learning rates
performs well in optimizing deep neural networks. Note that these studies and ours have several major
differences. The first difference is in the design of a learning rate. Our method considers Poisson processes,
whereas existing methods consider uniform distributions and heterogeneous learning rates for each subneural
network. The second difference is the objective of the study. We aim to evaluate global convergence, while
existing studies aim at interpretability, speed of convergence, etc., and have very different motivations.

As for BPS, Deligiannidis et al. (2019) and Durmus et al. (2020) proved that the parameters updated by
continuous-time BPS converge to a stationary distribution and derived the concrete form of the stationary
distribution and its convergence rate. Sherlock & Thiery (2022) clarified the relation between discrete-time
BPS and continuous-time BPS.

1.3 Notation

For a natural number a ∈ N, we define [a] := {1, 2, ..., a}. For a real z ∈ R, ⌊z⌋ denotes the largest integer
which is no more than z. Id is a d-dimensional identity matrix. ⟨a, b⟩ means the inner product in Euclid
space, i.e., sum of the product of each component. ∥ · ∥1 and ∥ · ∥ mean the vector norms which represent
1-norm and 2-norm respectively. Sd−1 is a unit sphere in Rd. For probability measures P, P ′ on Rd and
p ∈ [1, ∞], the p−Wasserstein distance is defined as Wp(P, P ′) := infπ∈Π(P,P ′)(

∫
Rd ∥z − z′∥p

pdπ(z, z′))1/p,
where Π(P, P ′) is a set of coupling measure between P and P ′. ∥P − P ′∥TV denotes the total variation of
P − P ′. For a compact set Θ, we denote diam(Θ) = supθ1,θ2∈Θ ∥θ1 − θ2∥. For a random variable X ∈ X ,
EX [X] denotes the expected value with regard to X, i.e.,

∫
X xdµX(dx), where µX is the probability measure

of X. 1[·] denotes an indicator function, which takes 1 if the condition in the bracket is satisfied, and 0
otherwise. We denote a+ = max{0, a}. For a ∈ R and θ ∈ Rd, θ mod a means calculating modulo a for every
elements of θ. B : R × R → R denotes the beta function, i.e., B(x, y) =

∫ 1
0 tx−1(1 − t)y−1dt. Γ : R → R

denotes the gamma function, i.e., Γ(z) =
∫∞

0 tz−1e−tdt.
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2 Preliminary

2.1 Problem Setup: Empirical Risk Minimization

We consider the following stochastic optimization problem. Let Z be a compact sample space, and consider a
probability measure P∗ on Z. Suppose that we observe n samples z = {z1, ..., zn} ⊂ Z, that are independently
and identically generated from the measure P∗. Using the samples, we consider an empirical risk with a loss
function. Let Θ ⊂ Rd be a parameter space. With a non-convex loss function ℓ : Z × Θ → R, we consider
the following empirical risk with the samples:

Lz(θ) = 1
n

n∑
i=1

ℓ(zi; θ), θ ∈ Θ. (1)

In this study, we consider a torus (R/aZ)d as the parameter space Θ. Here, a > 0 is a periodicity parameter.
Also, we define W := diam(Θ) = a

√
d.

Our goal is to find a global minimum of the empirical risk Lz(·), which is defined as a parameter θ∗ ∈ Θ
which satisfies Lz(θ∗) ∈ minθ′∈Θ Lz(θ′).
Remark 1 (Motivation of torus parameter space). We discuss the motivation for employing the torus.

First, the use of a torus parameter space is a widely adopted technique for simplifying otherwise unnecessarily
intricate arguments in the analysis of stationary distributions. Specifically, if we set Θ as Euclidean spaces
or hypercubes, the analysis often becomes technically cumbersome due to boundary effects or additional
projection steps after updating the parameters. In contrast, the torus provides a setting in which these
peripheral issues can be bypassed, enabling a focus on the mathematically essential aspects of the argument.
As a result, the torus has been utilized in a wide range of theoretical studies. In the context of stochastic
processes, Nickl & Ray (2020); Faggionato et al. (2009); Peutrec et al. (2022) considers the torus parameter
spaces, and Monmarché (2016) does in the same way in the analysis of optimization. The generality of these
assumptions has been broadly acknowledged in the literature.

Second, when the periodicity parameter a of the torus is sufficiently large, the torus becomes practically
indistinguishable from the Euclidean space in terms of behavior relevant to applications. As we will show
later, our results hold for all values of a. Therefore, by choosing a to be sufficiently large, the analysis
becomes nearly equivalent to that conducted in Rd (Lee, 2012).

2.2 Gradient Descent Algorithm and Variants

To find the global minimum θ∗ as defined in Section 2.1, we often use the optimization algorithm called
stochastic gradient descent (SGD) with momentum.

2.2.1 General Form of Stochastic Gradient Descent

We give a formal definition of SGD with a momentum term associated with empirical risk Lz(θ) in (1). Let
K ∈ N be the number of iterations. The SGD with momentum generates a sequence of Θ-valued random
parameters θ1, ..., θK and Rd-valued random vectors v1, ..., vK , by the following procedure.

Let θ0 ∈ Θ be an arbitrary parameter for the initialization, v0 ∈ Rd be an initial velocity vector, and m ∈ [n]
be a number of sub-samples, i.e., the batch size. Suppose that we observe n samples z := {z1, ..., zn}, i.e., the
full-batch. For k = 1, ..., K, we uniformly sample m integers I(k) = {i1, i2, ..., im} from [n] with replacement,
which is called mini-batch sampling with the batch-size m. We define an associated mini-batch risk as

L̂(k)
z (θ) := 1

m

∑
i∈I(k)

ℓ(zi; θ). (2)

Then, with initial values θ0 ∈ Θ and v0 ∈ Rd, the SGD with momentum generates the parameter and the
velocity vector by the following recursive formula for k = 1, ..., K:

θk = θk−1 + ηkvk−1, and vk = vk−1 − αk∇L̂(k)
z (θk), (3)
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where ηk > 0 is a learning rate and αk ∈ R is a momentum coefficient. This form is generic and can
be identical to other forms of SGD with momentum (Qian, 1999; Sutskever et al., 2013) by adjusting the
parameters η and α.
Remark 2 (Gradient Noise). For the sake of technical discussions below, we define a notion of gradient
noise ξ

(m,n)
k (θ) := ∇L̂

(k)
z (θ) − ∇Lz(θ) for k = 1, ..., N and θ ∈ Θ, which is caused by sub-sampling of the

SGD. If one assumes that ξ
(m,n)
k (θ) follows a centered Gaussian distribution with an identity covariance, the

SGD corresponds to the gradient Langevin dynamics (GLD). However, it is empirically observed that the
covariance matrix of the gradient noise often degenerates (Zhu et al., 2019; Cheng et al., 2020; HaoChen et al.,
2021). In addition, there is still much discussion on a distribution that gradient noise follows, e.g. Simsekli
et al. (2019) and Battash et al. (2024) reports the non-Gaussianity of the gradient noise in empirical studies.
Due to these situations, we do not consider a full-rank covariance matrix nor a particular distribution of the
gradient noise.
Remark 3 (Degeneracy of the gradient noise). We briefly explain the degeneracy of the gradient noise.
Since the covariance matrix of the gradient noise with the batch-size m is written as 1

m

∑m
i=1(∇ℓ(zi; θ) −

∇Lz(θ))(∇ℓ(zi; θ)−∇Lz(θ))⊤, where each term in the sum is a rank-1 matrix, the rank of a total covariance
matrix is no greater than m. Hence, in the over-parameterized models like neural networks, the matrix
becomes rank-deficient, which we refer to as degeneracy of the noise.

3 Our SGD Variant: Poisson SGD

In this section, we introduce our algorithm, Poisson SGD, which is a variant of SGD with a random learning
rate η and momentum coefficient α. We design our method so that the parameter can search the whole
parameter space owing to the design.

We describe the random learning rate. In preparation, we define the following exponential distribution
function with a function f : Θ → Rd and parameters θ ∈ Θ, v ∈ Sd−1:

E(f(·), θ, v) := exp
(

−
∫ t

0
{max{⟨f(θ + rv), v⟩, 0} + CP }dr

)
,

where CP > 0 is some constant. Then, for each update k = 1, ..., K, we design the random learning rate ηk

following the exponential distribution:

P (ηk ≥ t) = E(β∇L̂(k)
z (·), θk−1, vk−1), (4)

where β > 0 is the hyper-parameter of Poisson SGD, called an inverse temperature parameter.

Second, we select the momentum coefficient αk for each k = 1, ..., K as

αk = 2 ⟨∇L̂
(k)
z (θk), vk−1⟩

∥∇L̂
(k)
z (θk)∥2

+ Cα, (5)

where Cα ≥ 0 is the hyper-parameter. While Cα has the function of enhancing the effect of the gradient for
practical use, we set Cα = 0 in the theoretical analysis of this paper (in experiments in Section 7, we set
Cα > 0). This setup keeps the length of the velocity vector constant as ∥vk∥ = 1 for every k (See Proposition
7 in Appendix), and only uses its angle to update the parameters. We update the parameter by changing ηk

and αk in every iteration. In updating θk, we consider modulo a, which means calculating modulo a for every
elements of the vector, in order to restrict the parameter space to a torus T = (R/aZ)d. The pseudo-code of
Poisson SGD is shown in Algorithm 1.

The algorithm is designed to effectively explore large regions of the parameter space Θ. Specifically, the
update direction is determined by the velocity vector vk normalised by αk as (5), and the size of the update
is randomly set by the random learning rate ηk as (4). When the gradient ∇L̂

(k)
z (·) is small, the learning

rate ηk is chosen to be large, thus the updated parameter tends to escape local minima or saddle points.
Figure 2 illustrates that Poisson GD, which we refer to as the full-batch version of Poisson SGD explores
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Algorithm 1 Poisson SGD
1: Initialize (θ0, v0) as ∥v0∥ = 1.
2: for k = 1, 2, ..., K do
3: Sample I(k) ⊂ [n] and obtain ∇L̂

(k)
z (θk) as (2).

4: Sample ηk as (4).
5: Obtain θk as θk = (θk−1 + ηkvk−1) mod a.
6: Obtain vk as vk = vk−1 − αk∇L̂

(k)
z (θk) with αk as (5).

7: end for
8: Return (θK , vK).

a wider parameter space and discovers the global minimum owing to the random learning rate, while the
parameters updated by GD converge to the local minimum. Here, we set the learning rate of GD as η = 0.02
and the hyper-parameter of Poisson GD as CP = 100 and β = 10000. We remark that a small amount of
hyperparameter tuning was necessary to obtain this result.

Figure 2: The comparison of the trajectories of
GD (with a fixed learning rate) and Poisson GD
(with the random learning rate) in optimizing the
function z = x4 − 4x3 − 36x2 + y2. Poisson GD
represents replacing the mini-batch loss L̂z by the
full-batch loss Lz in Poisson SGD, where we set
Lz(x, y) = x4−4x3−36x2+y2. The point (−3, 0)
represents a local minimum and the point (6, 0) is
identified as the global minimum. A green point
indicates the initial position, a black line repre-
sents the trajectory of GD, and a red line repre-
sents the trajectory of Poisson GD.

Remark 4 (Moments of Poisson SGD). We claim that even if the learning rate is random, the actual updates
are not too large, by studying its moments. That is, if CP is sufficiently large, there is little chance of sampling
a large learning rate η, since the first and second moments of ηk are given as E[ηk] ≤

∫∞
0 exp(−CP t)dt = 1

CP

and E[η2
k] − E[ηk]2 ≤

∫∞
0 2s exp(−CP s)ds − 1

C2
P

= 1
C2

P

. By this property, we can avoid the case in which ηk

diverges. In addition, even if a large ηk is sampled, the parameter does not exit from the parameter space
since we consider a torus as the parameter space.

4 Convergence Theory for Poisson SGD

We provide theoretical results on the convergence of Poisson SGD (Algorithm 1). Our main interest is a
distribution of the generated parameter θK by Poisson SGD associated with the empirical risk minimization
problem.

4.1 Stationary Distribution of Poisson SGD

In this section, we show that the parameter θK by the Poisson SGD follows a stationary distribu-
tion. Formally, we define the stationary distribution of the Markov process. In preparation, we utilize
the notion of transition probability Q(θ, dw) from a distribution p0(θ) to another p1(θ) on Θ, that is,
p1(w) =

∫
Θ Q(θ, dw)p0(dθ) holds.

Definition 1 (Stationary distribution). Let Q(θ, dw) be the transition probability of a Markov process in
Θ. If the following equation holds, we call the probability distribution π(θ) a stationary distribution of the
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Markov process:
π(dw) =

∫
Θ

Q(θ, dw)π(dθ).

A stationary distribution is an useful notion to represent a limit of the parameter distribution, and it enables
us to analyze where the parameter converges by algorithms. For example, see the theoretical framework to
analyze stochastic optimization algorithms by Raginsky et al. (2017).

4.1.1 Assumption

We provide several principal assumptions. First, we consider the basis assumptions on the loss function
ℓ(·; ·). The following conditions are fairly general for the analysis of stochastic optimization algorithms, e.g.
Bertazzi et al. (2022).
Assumption 1 (Loss function). The loss function ℓ : Z × Θ → R≥0 satisfies the following conditions:

• ℓ(z; θ) is absolutely continuous and differentiable with respect to θ ∈ Θ for every z ∈ Z.
• ∇θℓ(z; θ) is continuous in θ and z for all θ ∈ Θ and z ∈ Z.

These conditions are satisfied by a large class of models, such as linear regression model, or deep neu-
ral networks whose activation function is sigmoid function or Tanh. We define an upper bound Mℓ :=
maxθ∈Θ,z∈Z ∥∇θℓ(z; θ)∥, which is justified from the second condition on the compactness of Θ and Z.

4.1.2 Statement of Convergence

Let µz,K be a distribution of the output θK from the Poisson SGD in Algorithm 1 with the given dataset z.
We discuss the convergence of µz,K as K increases.

In preparation, we define a probability measure on Θ for arbitrary β, ε > 0, whose density is written as

µ(β,ε)
z (dθ) ∝

(
βMℓ + 1

ε
+ adβ∥∇Lz(θ)∥

)
exp(−βLz(θ))dθ, (6)

where ad := Γ(d/2)/(
√

πΓ(d/2 + 1/2)) with Γ(z) =
∫∞

0 tz−1e−tdt. The probability measure (6) is concen-
trated around the global minima of Lz(θ), since the dominant exponential term exp(−βLz(θ)) in (6) increases
in Lz(θ). In addition, as the inverse temperature parameter β increases, the measure µ

(β,ε)
z concentrates

around the global minimum.

We show our results on the convergence of the stationary distribution. The discrepancy is measured by the
Wasserstein distance W1(·, ·). We remark that this theorem is the integration of Theorem 3 and Theorem 4
appearing later in Section 5. Recall that we defined W := diam(Θ).
Theorem 1 (Stationary distribution of Poisson SGD). Fix arbitrary β, ε > 0. Suppose Assumption 1 holds.
We set the CP = 1/ε. Then, for any K ∈ N, there exists κ(β, ε, d) ∈ (0, 1) such that we have

W1(µz,K , µ(β,ε)
z ) ≤ 4

√
dKε + W · κ(β, ε, d)K . (7)

Moreover, if κ(β, ε, d) satisfies limK→∞ κ(β, δ/K, d)K = 0 with some δ > 0, there exists a sequence ε =
εK ↘ 0 as K → ∞ such that W1(µz,K , µ

(β,ε)
z ) = o(1) as K → ∞ holds.

This theorem shows that the parameter distribution µz,K by Poisson SGD converges to the stationary
distribution µ

(β,ε)
z owing to the random learning rate (4). This is contrast to ordinary SGD, which is not

shown to converge to a stationary distribution. Further, Poisson SGD does not make any assumptions on the
gradient noise ξ

(n,m)
k in Remark 2, unlike SGLD, which converges to a stationary distribution by introducing

Gaussianity in the gradient noise.

The right-hand side in (7) shows an approximation-complexity trade-off of Poisson SGD described as follows.
In preparation, we will introduce a certain stochastic process to achieve the stationary distribution µ

(β,ε)
z
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(detail is in Section 5). The first term of (7) describes an approximation error of Poisson SGD to the
stochastic process. The second term of (7) denotes a convergence error of the stochastic process to the
stationary distribution µ

(β,ε)
z , which reflects the complexity of the stochastic process. ε is a parameter for

the stochastic process and controls the balance between the approximation error and the complexity error.

We further discuss the additional assumption limK→∞ κ(β, δ/K, d)K = 0. This condition is related to the
convergence rate of the approximated stochastic process of Poisson SGD. Although the explicit form of
κ(β, δ/K, d) is not clarified in our case, there is a common example having its explicit form. One example is
SGLD: Raginsky et al. (2017) shows that a form of κ(β, δ/K, d) can be calculated, because SGLD is reduced
to the Langevin process.

Remark 5 (Form of κ(β, ε, d)). We discuss a form of κ(β, ε, d) of other related algorithms, although we
could not achieve the explicit form of κ(β, ε, d) of Poisson SGD. In the case of Langevin dynamics with
the setting of Raginsky et al. (2017), κ(β, ε, d) is Ω(cLSkη/β(β + d)), where cLS is the logarithmic Sobolev
constant. On the other hand, explicitly deriving κ(β, ε, d) for a class of PDMP is a challenging task as
described in Deligiannidis et al. (2019); Durmus et al. (2020), as well as that of Poisson-SGD.

Remark 6 (Comparison with SGLD). We discuss the difference between Poisson SGD and SGLD, which is
another method achieving a stationary distribution. First, while SGLD adds a Gaussian noise to the update
formula of SGD, Poisson SGD does not have an additive noise. The second difference is the form of the
stationary distribution. A stationary distribution of SGLD is the Gibbs distribution, and that of Poisson
SGD has the different form (6). This difference is derived from the random learning rate of Poisson SGD.

Remark 7 (Relation to flat minima). From Theorem 1, we can state the property of Poisson SGD being
easier to go to the flat minima than the sharp minima. We consider the probability of existence around a
flat minimum θ1 ∈ Θ and a sharp minimum θ2 ∈ Θ, when we find that, due to the shape of the distribution,
a measure of an ϵ-neighborhood of θ1 is greater than that within an ϵ-neighborhood of θ2. Hence, we can
claim that Poisson SGD also tends to favor flat minima.

4.2 Global Convergence

We discuss the global convergence statement, that is, the empirical risk Lz(θK) with Poisson SGD is mini-
mized with high probability. We consider the additional assumption for the loss function ℓ:

Assumption 2. With some c1 > 0, supz∈Z ∥∇ℓ(z; θ1)−∇ℓ(z; θ2)∥ ≤ c1∥θ1−θ2∥ holds for every θ1 ̸= θ2 ∈ Θ.

Then, we obtain the following global convergence theorem.

Theorem 2 (Global convergence of Poisson SGD on empirical risk). Fix arbitrary β, ε > 0. Consider
Poisson SGD in which CP = 1/ε. Let the upper bound of W1(µz,K , µ

(β,ε)
z ) obtained in Theorem 1 be

dK(β, ε, d). Suppose Assumption 1 and 2 hold, and define B := supz∈Z ∥∇ℓ(z; 0)∥ and c2 = c1W + B.
Then, it holds that

EθK∼µz,K
[Lz(θK)] − min

θ∈Θ
Lz(θ) ≤ c2

√
WdK(β, ε, d) + 1

β

(
d

2 log eW 2c1β

d
+ log

(
1 + adc2

Mℓ

))
. (8)

Theorem 2 states that we can make E[Lz(θK)] be arbitrarily close to minθ∈Θ Lz(θ) by selecting large β,
provided that we can make dK(β, ε, d) arbitrarily small by the choice of ε and K in spite of β. Intuitively,
Poisson SGD achieves global convergence by appropriately adjusting the learning rate and momentum co-
efficient based on the shape of the loss function at the current location. Poisson SGD achieves the global
convergence by the similar approach of global convergence of SGLD by Raginsky et al. (2017).

The right-hand side of (8) is divided into two terms. The first term expresses the distance between the
parameter and its stationary distribution. The second represents the degree of concentration of the stationary
distribution µ

(β,ε)
z on the global optima. The higher the inverse temperature β, the more the term decreases.

8
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Algorithm 2 Bouncy Particle Sampler

1: Initialize (θ̂0, v̂0) as ∥v̂0∥ = 1.
2: for k = 1, 2, ..., K do
3: Sample η̂k as η̂k ∼ P (η̂k ≥ t) = exp

(
−
∫ t

0 {β⟨∇Lz(θ̂k−1 + rv̂k−1), v̂k−1⟩+ + Λref + CB}dr
)

4: Update θ̂k as θ̂k = (θ̂k−1 + η̂kv̂k−1) mod a
5: With probability p̂k as (9), update v̂k as

v̂k = v̂k−1 − 2 ⟨∇Lz(θ̂k), v̂k−1⟩
∥∇Lz(θ̂k)∥2

∇Lz(θ̂k)

Otherwise, update v̂k as v̂k ∼ Unif(Sd−1)
6: end for
7: Return (θ̂K , v̂K)

5 Proof Outline

5.1 Overview

We give an overview of a proof of Theorem 1. In preparation, we present several key concepts: (i) the
property of the piece-wise deterministic Markov process (PDMP) (Davis, 1984; 1993), and (ii) the ergodicity
of bouncy particle sampler (BPS) (Peters & de With, 2012). The PDMP is a class of Markov processes
that behave deterministically for some period and jumps randomly, which easily converges to a stationary
distribution. BPS is a stochastic algorithm in the class of the PDMP. This BPS is virtually constructed to
prove the convergence of PSGD and is not actually computed in this study. Therefore, there is no need to
consider the computational cost of this BPS.

We show the statement by the following steps: (I) We show that the distribution of the parameter by Poisson
SGD is sufficiently close to that of a parameter by BPS. We show this claim by using the approximation
theory on PDMP (Theorem 3), and (II) We derive a stationary distribution and the ergodicity of BPS,
following previous researches (Theorem 4).

5.2 Design of BPS

We introduce BPS, which is one of the most popular algorithms in PDMPs, and actively studied in terms
of MCMC algorithm (Deligiannidis et al., 2019; Bouchard-Côté et al., 2018). BPS generates a sequence of
parameters {θ̂k}K

k=1 ⊂ Θ and velocity vectors {v̂k}K
k=1 ⊂ Rd in its recursive manner, as shown in Algorithm 2.

Let (θ̂0, v̂0) be the initialization. For the k-th iteration, BPS generates a learning rate η̂k from an exponential
distribution whose intensity depends on the previous pair (θ̂k−1, v̂k−1) and the positive constants Λref and
CB . In the same way as Poisson SGD, we calculate modulo a when updating θ̂k for restricting the parameter
space to a torus. After obtaining the parameter θ̂k, we consider the stochastic update of the velocity vector.
That is, with the probability

p̂k := β⟨∇Lz(θ̂k), v̂k−1⟩+ + CB

β⟨∇Lz(θ̂k), v̂k−1⟩+ + Λref + CB

, (9)

we update the velocity vector with the gradient of the full-batch loss ∇Lz, otherwise with the sample from
the uniform distribution on Sd−1. The former update is called reflection, and the latter is refreshment. We
remark that ∥v̂k∥ is constant for k = 1, 2, ..., K in the same way as Poisson SGD (See Proposition 7 in
Appendix).

5.3 Connect Poisson SGD and BPS

We show that the output distribution of Poisson SGD and that of BPS are sufficiently close as follows:

9
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Theorem 3 (Distance between Poisson SGD and BPS). Fix arbitrary β, ε > 0. As for Poisson SGD, we set
CP = 1/ε. As for BPS, we set Λref and CB as Λref + CB = βMℓ + 1/ε. Let the distribution of the obtained
parameter by Poisson SGD and BPS be µz,K and µ̂z,K respectively. We set the same initial value between
Poisson SGD and BPS. Then, the following holds:

W1(µz,K , µ̂z,K) ≤ 4
√

dKε.

For proving this theorem, we calculate the distance between Poisson SGD and BPS by a one-step update.
Then, we simply accumulate this error for K times. In this discussion, we mainly use the property that if
learning rate ηk and η̂k are small, the difference of vk and v̂k is also made to be small. This type of discussion
is also used in Raginsky et al. (2017).

5.4 The Stationary Distribution and Ergodicity of BPS

We investigate the stationary distribution and ergodicity of BPS. First, we define the term ergodicity.
Definition 2 (Ergodicity). We consider the discrete-time Markov process. If the process converges to a
unique stationary distribution, we call the process has the ergodicity. Especially, if the ergodic process
converges to its stationary distribution by the exponential rate about the number of iteration k, the process
is called exponentially ergodic.

Without ergodicity, the stochastic process may converge to more than one stationary distribution, or not
converge to any stationary distribution due to stacking to a saddle point in the parameter space. So we have
to prove this property when we try to analyze the stationary distribution of a stochastic process.

Now, we show our result about BPS.
Theorem 4 (Stationary Distribution of BPS). Suppose that Assumption 1 holds. Set the parameter of BPS,
Λref and CB as in Theorem 3. Then, the distribution µ̂z,K of the obtained parameters θ̂K by BPS satisfies
the following inequality with some constant κ(β, ε, d) ∈ (0, 1):

∥µ̂z,K − µ(β,ε)
z ∥TV ≤ κ(β, ε, d)K .

In its proof, we use the discussion in Deligiannidis et al. (2019) which showed that continuous-time BPS
converges to the unique stationary distribution π(θ) ∝ exp(−U(θ)) by the exponential rate in TV distance.

6 Generalization Error Analysis

We define an expected risk of θ ∈ Θ, also known as the generalization error L(θ) := Ez∼P∗ [ℓ(z; θ)], which
measures a prediction performance with unseen data. We calculate the generalization error of the parameter
obtained by the Poisson SGD, using the discussion in Raginsky et al. (2017).

Now, we give our results. We define A := supz∈Z |ℓ(z; 0)| by following Assumption 1.
Theorem 5 (Generalization Error of Poisson SGD). Suppose that Assumption 1 and 2 hold. Let θK be the
parameter obtained by Poisson SGD with CP = 1/ε. Then, we obtain the following bound:

Ez∼P n
∗

[EθK ∼µz,K
[L(θK)]] − min

θ∈Θ
L(θ)

≤ c2

(√
WdK(β, ε, d) + 2W

((
C ′

d

n

)1/2
+
(

C ′
d

n

)1/4
))

+ 1
β

(
d

2 log eW 2c1β

d
+ log

(
1 + adCd

Mℓ

))
,

where dK(β, ε, d) is the upper bound of the Wasserstein distance in Theorem 1, Cd = 4ad(c1W + B)/Mℓ,
C ′

d = Cd + βC and C = c1W 2 + 2BW + 2A.

Theorem 5 states that the expected value of the generalization error of Poisson SGD can be arbitrarily close
to its global optima in θ ∈ Θ, by selecting small ε, large K, large β, and large n, provided that dK(β, ε, d)
can be arbitrarily small only by the choice of ε and K.

10
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We further discuss a way of improve an order of the generalization bound in Theorem 5. While our bound
has the order O((1/n)1/4), we can obtain an order O(1/n) by using the dissipativity condition of the loss
function, which is used in Raginsky et al. (2017) for SGLD. The dissipativity condition allows us to derive
log-Sobolev inequality for Lz(θ), which leads the improved sample complexity. We state this fact in the
following proposition.
Proposition 6. Suppose that the same condition and setting as Theorem 5 hold. In addition, we assume that
the Gibbs distribution ν

(β)
z ∝ exp(−βLz(θ)) satisfies the log-Sobolev inequality for any dataset z = {z1, ..., zn},

that is, E[f(θ)2 log f(θ)2] −E[f(θ)2] logE[f(θ)2] ≤ c
(β)
LS E[∥∇f(θ)∥2] holds for all smooth functions f and any

data z = {z1, ..., zn}, where θ ∼ ν
(β)
z and c

(β)
LS < ∞ is a constant. Then, the following holds:

Ez∼P n
∗

[EθK ∼µz,K
[L(θK)]] − min

θ∈Θ
L(θ)

≤ c2

(√
WdK(β, ε, d) + 2c

(β)
LS βMℓ

n

)
+ W

√
2c

(β)
LS log (1 + adβεMℓ) + d

2β
log
(

eW 2c1β

d

)
.

7 Experiments

We give several experimental results to validate our theoretical claim. For all experiments, the detailed setup
such as the choice of the hyper-parameter is described in Section A.2.

7.1 Convergence to Stationary Distribution

We consider a distribution of parameters updated by Poisson SGD, then experimentally validate whether the
distribution converges to the derived stationary distribution as the number of updates increases. Specifically,
we numerically study whether the distribution µz,K of parameters generated by Poisson SGD converges to
the theoretical stationary distribution µ

(β,ε)
z we have derived.

We describe an outline of the setup. We set d = 2 and consider a parameter θ = (θ1, θ2) in the 2-dimensional
torus Θ = (R/aZ)2 with a = 20. The loss function is set as ℓ(z; θ) = ((θ2

1 −θ2
2)x2

1 +(θ2
1 −θ2

2)x2
2 −y)2, then the

stationary distribution µ
(β,ε)
z is well approximated by exp(−β′(θ2

1 −θ2
2 −1)2), where β′ is a constant multiple

of β. Hence, the stationary distribution µ
(β,ε)
z concentrates around a set {(θ1, θ2) ∈ Θ | θ2

1 − θ2
2 − 1 = 0}.

We obtain the numerical distribution µz,K of the parameter θ by Poisson SGD for 10, 100, and 1000 epoch.

Figure 3 shows the distribution µz,K on the parameter space Θ. We remark that the value of the parameter
is in [0, 20] since the parameter space is the torus (R/aZ)2, and the tick starts from 10 instead of 0 for the
sake of clarity. The contour shows the value of (θ2

1 −θ2
2 −1)2. As the epoch increases, the parameter sampled

from Poisson SGD is distributed around a set {(θ1, θ2) ∈ Θ | θ2
1 −θ2

2 −1 = 0}. This shows that the parameter
distribution by Poisson SGD converges to the stationary distribution µ

(β,ε)
z .

Figure 3: Sample from Poisson SGD for 10 (left), 100 (middle), and 1000 (right) epochs.

Also, Figure 4 shows the Wasserstein distance between the stationary distribution µ
(β,ε)
z and the distribution

of parameters learned by SGD or Poisson SGD. The horizontal axis represents the epochs and the vertical

11
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Figure 5: Error rates against the update steps for each dataset/network.

axis shows the Wasserstein distance. While the Wasserstein distance does not converge in the SGD case, it
converges toward zero in the Poisson SGD case. This result indicates that the parameter learned by Poisson
SGD has the distribution µz,K which converges to the stationary distribution µ

(β,ε)
z .

7.2 Optimization and Generalization Performance

Figure 4: Wasserstein distance from the dis-
tribution of parameters updated by SGD
(orange) and Poisson SGD (blue) to µ

(β,ε)
z .

We verify the training and generalization performance of Pois-
son SGD in a practical situation. Note that our aim is not to
develop an effective method with high generalization perfor-
mance, but to develop a method that can guarantee the global
convergence.

We conducted experiments with several datasets and models.
First is MNIST dataset (Deng, 2012) on a fully connected
neural network of 4 layers, and each layer has 200 units and
the sigmoid activation function. Second is CIFAR-10 dataset
(Krizhevsky et al., 2009) on a convolutional neural network of 3 layers with the ReLU activation function,
a 3 × 3 kernel, and the dropout rate 0.25. Third is the CIFAR-100 dataset (Krizhevsky et al., 2009) on
VGG16 (Simonyan & Zisserman, 2015). And the last is Cifar-100 dataset on ResNet18 (He et al., 2015). We
compared the performance of Poisson SGD with several existing optimization methods.

We display the overall result in Figure 5. In all the cases, the performance of Poisson SGD is better or
comparable to other methods.

8 Conclusion

We developed a new variant of SGD, Poisson SGD, whose search direction degenerates and derived its
stationary distribution by incorporating a modification on the learning rate. The parameters trained by
Poisson SGD are close enough to the global minima to take advantage of convergence to the stationary
distribution. The generalization error is also evaluated. Our study suggests that even local search methods
such as SGD may be able to achieve global convergence by adding certain randomness. Since our work
largely depends on the modification of the learning rate, eliminating this dependence is an interesting open
question. Hence, the dynamics of constant learning rate SGD should be clarified as a future direction.
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A Supportive Information

A.1 Normalization by Momentum Coefficient

We verify that the velocity vector is normalized by the choice of the momentum coefficient for Poisson SGD
and BPS.
Proposition 7. Consider the update (3) for vk with its momentum coefficient (5). Then, for ∀k ∈
{1, 2, ..., K}, we have ∥vk∥ = 1. Further, for v̂k defined in Algorithm 2, we obtain ∥v̂k∥ = 1 for every
k = 1, ..., K.

Proof. We first consider vk with the Poisson SGD case. Simply, we have

∥vk∥ =
∥∥∥∥∥vk−1 − 2 ⟨∇L̂

(k)
z (θk), vk−1⟩

∥∇L̂
(k)
z (θk)∥2

∇L̂(k)
z (θk)

∥∥∥∥∥
=
∥∥∥∥∥
(

Id − 2∇L̂
(k)
z (θk)∇L̂

(k)
z (θk)⊤

∥∇L̂
(k)
z (θk)∥2

)
vk−1

∥∥∥∥∥
=

√√√√v⊤
k−1

(
Id − 2∇L̂

(k)
z (θk)∇L̂

(k)
z (θk)⊤

∥∇L̂
(k)
z (θk)∥2

)2

vk−1

=∥vk−1∥.

Since we set ∥v0∥ = 1 for initialization, the statement holds.

For v̂k with the BPS case, the reflection does not change the norm of v̂k in the same way, and the refreshment
also keeps ∥v̂k∥ = 1, which completes the proof.
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A.2 Details of Experiments in Section 7

A.2.1 Details of Section 7.1

As a design of the experiment, we set a distribution of a sample z = (x, y) as x = (x1, x2) ∼ (Unif(−5, 5))⊗2

and y|x ∼ N (x2
1 + x2

2, 1) hold. For training, we set d = 2 and consider a parameter θ = (θ1, θ2) ∈ Θ and a
loss function ℓ(z; θ) = ((θ2

1 − θ2
2)x2

1 + (θ2
1 − θ2

2)x2
2 − y)2, then update the parameters by Poisson SGD with

n = 10000 samples, batch size m = 100. For the training of SGD, we set its learning rate as 0.002. Since
the empirical risk Lz(θ) is approximated by Eε∼N (0,1),x1,x2 [{(θ2

1 − θ2
2)x2

1 + (θ2
1 − θ2

2)x2
2 − (x2

1 + x2
2 + ε)}2] =

(θ2
1 − θ2

2 − 1)2Ex1,x2 [{(x2
1 + x2

2)2] + (const) and the dominant term of µ
(β,ε)
z is exp(−βLz(θ)), the stationary

distribution µ
(β,ε)
z is approximated by exp(−β′(θ2

1 − θ2
2 − 1)2), where β′ is a constant multiple of β.

A.2.2 Details of MNIST Experiment in Section 7.2

We consider a fully connected neural network of 4 layers, and each layer has 200 units and the sigmoid
activation function. We compare the performance of Poisson SGD with SGD, SGD with Momentum, SGLD.
We set the batch size as 256, the learning rate of the SGD, the SGD with momentum and SGLD as 0.01, and
the momentum coefficient as 0.9. We choose the hyperparameter of Poisson SGD as CP = 100, Cα = 100,
and β = 10000. We also use β = 10000 for SGLD. We use 60000 images for training and 10000 images for
validation.

A.2.3 Details of CIFAR10 Experiment in Section 7.2

We trained a convolutional neural network of 3 layers with the ReLU activation function, a 3 × 3 kernel,
and the dropout rate 0.25. We compare the performance of Poisson SGD with SGD, SGD with Momentum,
SGLD. We set the batch size as 256, the learning rate of SGD, SGD with momentum and SGLD as 0.01, and
the momentum coefficient as 0.9. We choose the hyper-parameter of Poisson SGD as CP = 100, Cα = 1, and
β = 10000. We also use β = 10000 for SGLD. We use 45000 data for training and 5000 data for validation.

A.2.4 Details of CIFAR100 Experiment for VGG16 in Section 7.2

We adapted the VGG16 (Simonyan & Zisserman, 2015) for training. We set the batch size as 128 and the
learning rate of SGD as 0.01. We choose the hyper-parameter of Poisson SGD as CP = 100, Cα = 0.01, and
β = 10000. We use 50000 data for training and 10000 data for validation.

A.2.5 Details of CIFAR100 Experiment for ResNet18 in Section 7.2

We adapted the ResNet18 (He et al., 2015) for training. We set the batch size as 128 and the learning rate
of SGD and Adam as 0.01. As for the hyper-parameter for Adam, we set β1 = 0.9, β2 = 0.999 and ϵ = 10−8.
We choose the hyper-parameter of Poisson SGD as CP = 100, Cα = 0.01, and β = 10000. We use 50000
data for training and 10000 data for validation.

B Proof of Theorem 1

Proof. By Theorem 3 and 4, we can bound the approximation error

W1(µz,K , µ̂z,K) ≤ 4
√

dKε,

and the convergence error of BPS as

∥µ̂z,K − µ(β,ε)
z ∥TV ≤ κ(β, ε, d)K .

From Theorem 4 in Gibbs & Su (2002) (explicit form is Theorem 13 in Appendix H), we can bound the
Wasserstein distance by the total variation, then obtain

W1(µ̂z,K , µ(β,ε)
z ) ≤ W∥µ̂z,K − µ(β,ε)

z ∥TV ≤ Wκ(β, ε, d)K .

The triangle inequality completes the proof.
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C Proof of Theorem 3

Proof. From the definition of Wasserstein distance,

W1(µz,k, µ̂z,k) = inf
π∈Π(µz,k,µ̂z,k)

Eπ[∥θk − θ̂k∥1]

holds, so we study the distance between θk and θ̂k in terms of the norm ∥ ·∥1. Since ∥vk∥ = ∥vk−1∥ = ∥v̂k∥ =
∥v̂k−1∥ = 1 holds by Proposition 7, we have

Eπ[∥θk − θ̂k∥1] =Eπ[∥θk−1 + ηkvk−1 − (θ̂k−1 + η̂kv̂k−1)∥1]
≤Eπ[∥θk−1 − θ̂k−1∥1] + Eπ[∥(η̂k − ηk)v̂k−1 + ηk(v̂k−1 − vk−1)∥1]
≤Eπ[∥θk−1 − θ̂k−1∥1] + Eπ[∥(η̂k − ηk)v̂k−1∥1] + Eπ[∥ηk(v̂k−1 − vk−1)∥1]
≤Eπ[∥θk−1 − θ̂k−1∥1] +

√
dEπ[|ηk − η̂k|] + 2

√
dEπ[ηk], (10)

where we use ∥ · ∥1 ≤
√

d∥ · ∥ in the last inequality.

We first evaluate the second term of (10). There exists a coupling π such that

Eπ[|ηk − η̂k|] = W1(Pηk
, P

η̂k
)

holds, where Pηk
and P

η̂k
denote the distribution of ηk and η̂k respectively. We use such a coupling as

π. In evaluating W1(Pηk
, P

η̂k
), we consider the following analysis. ηk and η̂k are 1-dimensional and their

cumulative distribution function is written as

F1(t) = 1 − exp
(

−
∫ t

0
(β⟨∇L̂(k)

z (θ + rv), v⟩+ + CP )dr

)
,

F2(t) = 1 − exp
(

−
∫ t

0
(β⟨∇Lz(θ + rv), v⟩+ + CB + Λref)dr

)
,

respectively, and we also have

β⟨∇L̂(k)
z (θ + rv), v⟩+ + CP ≥ CP ,

β⟨∇Lz(θ + rv), v⟩+ + CB + Λref ≥ CB + Λref , and
|(β⟨∇L̂(k)

z (θ + rv), v⟩+ + CP ) − (β⟨∇Lz(θ + rv), v⟩+ + CB + Λref)|
≤ max{| − βMℓ + CP − (CB + Λref)|, |βMℓ + CP − (CB + Λref)|}.

Hence, we can use Lemma 8 and obtain

W1(Pηk
, P

η̂k
) ≤ max{| − βMℓ + CP − (CB + Λref)|, |βMℓ + CP − (CB + Λref)|}

CP (CB + Λref)
. (11)

Next, we evaluate the third term of (10). We have

E[ηk] =
∫ ∞

0
P (ηk ≥ t)dt

=
∫ ∞

0
exp

(
−
∫ t

0
{β⟨∇L̂(k)

z (θk−1 + rvk−1), vk−1⟩+ + CP }dr

)
dt

≤
∫ ∞

0
exp (−CP t) dt

= 1
CP

. (12)
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Substituting (11) and (12) into (10), we have

Eπ[∥θk − θ̂k∥1] ≤Eπ[∥θk−1 − θ̂k−1∥1] (13)

+
√

d max{| − βMℓ + CP − (CB + Λref)|, |βMℓ + CP − (CB + Λref)|}
CP (CB + Λref)

+ 2
√

d

CP
.

Since we take CP in Poisson SGD as CP = 1/ε and CB and Λref in BPS as CB + Λref = βMℓ + 1/ε, (13)
can be written as

Eπ[∥θk − θ̂k∥1] ≤Eπ[∥θk−1 − θ̂k−1∥1] + 4
√

dε.

Hence, solving this recursive inequality with θ0 = θ̂0, we have

Eπ[∥θK − θ̂K∥1] ≤ 4
√

dKε,

which is the desired conclusion.

Lemma 8. Let a1 and a2 be R-valued random variables whose cumulative distribution functions are

F1(t) = 1 − exp
(

−
∫ t

0
f1(r)dr

)
, and F2(t) = 1 − exp

(
−
∫ t

0
f2(r)dr

)
,

respectively, where f1, f2 : R → R are continuous functions. Let the distributions of a1 and a2 be P1 and
P2 respectively. Suppose that there exists M, m1, m2 > 0 such that |f2(t) − f1(t)| ≤ M , m1 ≤ f1(t), and
m2 ≤ f2(t) hold for ∀t ∈ R. Then, the Wasserstein distance between P1 and P2 satisfies

W1(P1, P2) ≤ M

m1m2
.

Proof. Since a1 and a2 are 1-dimensional, we have

W1(P1, P2) =
∫ 1

0

∣∣F −1
1 (q) − F −1

2 (q)
∣∣ dq.

We introduce several notation δ(r) = f2(r) − f1(r), t = F −1
1 (q), and t′ = F −1

2 (q), then∫ t

0
f1(r)dr = log 1

1 − q∫ t′

0
(f1(r) + δ(r))dr = log 1

1 − q

holds. So, we obtain ∫ t

t′
f1(r)dr =

∫ t′

0
δ(r)dr.

Hence, we have ∣∣∣∣∫ t

t′
f1(r)dr

∣∣∣∣ =
∫ max{t,t′}

min{t,t′}
f1(r)dr ≤ Mt′.

In addition,
∫max{t,t′}

min{t,t′} f1(r)dr ≥ m1|t − t′| holds, so we have

|t − t′| ≤ Mt′

m1
.
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We have the upper bound of t′ as

log 1
1 − q

=
∫ t′

0
f2(r)dr ≥ m2t′,

so we have

|t − t′| ≤ M

m1m2
log 1

1 − q
.

Since
∫ 1

0 | log(1 − q)|dq = 1 holds, we obtain∫ 1

0

∣∣F −1
1 (q) − F −1

2 (q)
∣∣ dq ≤ M

m1m2
.

D Proof of Theorem 4

We prove this theorem by two steps. First, we prove that BPS has µ
(β,ε)
z as one of its stationary distributions

in section D.1. At this stage, BPS may have other forms of stationary distribution or may not converge to
its stationary distribution. Second, we prove that BPS has a unique stationary distribution and converges
to its stationary distribution at exponential rate, in other words, it has the exponential ergodicity, in section
D.2.

D.1 The form of the stationary distribution

In this section, we check that BPS has µ
(β,ε)
z as a stationary distribution. In the proof, we define λ(θ, v) :=

β⟨∇Lz(θ), v⟩+, λ̄(θ, v) := λ(θ, v)+Λref , and Rz(θ) := Id−2 ∇Lz(θ)∇Lz(θ)⊤

∥∇Lz(θ)∥2 . We remark that Rz is a symmetric
matrix and satisfies Rz(θ)2 = Id, so it is also an orthogonal matrix.

From the proof of Lemma 1 in the supplementary material of Deligiannidis et al. (2019), we can write the
transition probability Q̂ of BPS as following for arbitrary measurable sets A ⊂ Θ and B ⊂ Sd−1:

Q̂((θ, v), A × B) =
∫ ∞

0
exp

{
−
∫ s

0

(
λ̄(θ + uv, v) + CB

)
du

}
×
(
λ̄(θ + uv, v) + CB

)
K((θ + sv, v), A × B)ds, (14)

where a transition kernel K is expressed as

K((θ, v), A × B) =λ(θ, v) + CB

λ̄(θ, v) + CB

1[θ ∈ A]1[Rz(θ)v ∈ B] (15)

+ Λref

λ̄(θ, v) + CB

1[θ ∈ A]µunif(B),

where µunif is the uniform probability measure on Sd−1.
Lemma 9. Under Assumption 1, a probability measure on Θ × Sd−1

µ̂z(A × B) ∝
∫

A×B

(
λ̄(θ, −v) + CB

)
exp(−βLz(θ))dθµunif(dv)

is the stationary distribution induced from the transition probability Q̂ as (14).

Proof. Our proof is almost the same as the proof of Lemma 1 in Deligiannidis et al. (2019). Let πz(dθ, dv) =
exp(−βLz(θ))dθµunif(dv).
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First, we prove ∫
(λ̄(θ, v) + CB)πz(dθ, dv)K((θ, v), A × B) ∝ µ̂z(A × B). (16)

Substituting (15), the left side of (16) is rewritten as∫
πz(dθ, dv)(λ(θ, v) + CB)1[θ ∈ A]1[Rz(θ)v ∈ B] +

∫
πz(dθ, dv)Λref1[θ ∈ A]µunif(B).

We consider changing the variable as v′ = Rz(θ)v. Since Rz(θ)−1 = Rz(θ) holds, we get λ(θ, Rz(θ)−1v′) =
λ(θ, −v′). In addition, since |det(Rz(θ))| = 1, and µunif(Rz(θ)−1dv′) = µunif(dv′) hold due to the rotational
invariance of µunif , we obtain∫

A×B

πz(dθ, dv′)(λ(θ, −v′) + CB) +
∫

A×B

πz(dθ, dv′)Λref ,

which is proportional to the right side of (16) from the definition of µ̂z.

Second, we prove
∫

Q̂((θ, v), (dy, dw))µ̂z(dθ, dv) = µ̂z(dy, dw). We have∫
Q̂((θ, v), (dy, dw))µ̂z(dθ, dv)

∝
∫ ∞

0
exp

(
−
∫ s

0
{λ̄(θ + uv, v) + CB}du

)
{λ̄(θ + sv, v) + CB}

× K((θ + sv, v), (dy, dw)){λ̄(θ, −v) + CB}πz(dθ, dv)ds.

If we change θ as t = θ + sv, then this integral becomes∫ ∞

0
exp

(
−
∫ s

0
{λ̄(t + (u − s)v, v) + CB}du

)
{λ̄(t, v) + CB}

× K((t, v), (dy, dw)){λ̄(t − sv, −v) + CB}πz(dθ, dv)ds.

Since Lz(θ) is absolutely continuous,

exp(−βLz(t − sv)) = exp
(

−βLz(t) −
∫ s

0
λ(t − wv, −v)dw +

∫ s

0
λ(t − wv, v)dw

)
holds in the same way as Deligiannidis et al. (2019). Substituting it into πz(dx, dv) and changing u as
u − s = −w, ∫ ∞

0
exp

(
−
∫ s

0
{λ̄(t − wv, −v) + CB}dw

)
{λ̄(t − sv, −v) + CB}ds

×{λ̄(t, v) + CB}K((t, v), (dy, dw))πz(dt, dv)

holds. The first line can be calculated as
[
− exp

(
−
∫ s

0 {λ̄(t − wv, −v) + CB}dw
)]∞

0 = 1, so it is equal to∫
{λ̄(t, v) + CB}K((t, v), (dy, dw))πz(dt, dv).

Using (16), it is proportional to µ̂z(dy, dw), which completes the proof.

By the following proposition, we prove that µ
(β,ε)
z is one of the stationary distributions of BPS. Recall that

we defined ad := Γ(d/2)/(
√

πΓ(d/2 + 1/2)).
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Proposition 10. The marginal distribution of the stationary distribution expressed in Lemma 9 is written
as

µ̂z(dθ) ∝ (Λref + CB + adβ∥∇Lz(θ)∥) exp(−βLz(θ))dθ.

Hence, if we put Λref and CB as Λref + CB = βMℓ + 1/ε, it corresponds to µ
(β,ε)
z .

Proof. We only need to integrate with v the distribution µ̂z expressed in Lemma 9. We have

µ̂z(dθ) ∝
∫

v∈Sd−1
(Λref + CB + β⟨∇Lz(θ), −v⟩+) exp(−βLz(θ))dθµunif(dv)

=(Λref + CB) exp(−βLz(θ))dθ + exp(−βLz(θ))dθβEv∼µunif [⟨∇Lz(θ), v⟩+].

We can calculate the expected value in the last term as

Ev∼µunif [⟨∇Lz(θ), v⟩+] = Ev∼µunif [∥∇Lz(θ)∥(cos ϕ)+] = ∥∇Lz(θ)∥Ev∼µunif [(cos ϕ)+],

where ϕ ∈ R is a random variable dependent on v which satisfies

cos ϕ =
〈

∇Lz(θ)
∥∇Lz(θ)∥ , v

〉
. (17)

From the symmetry of the uniform distribution, we can calculate Ev∼µunif [(cos ϕ)+] by replacing ∇Lz(θ)
∥∇Lz(θ)∥ in

(17) by (1, 0, · · · , 0). Hence,

Ev∼µunif [(cos ϕ)+] = Ev∼µunif [(v1)+] = E

[(
x1√

x2
1 + · · · + x2

d

)
+

]

holds, where v1 is the first component of v and xi(i = 1, ..., d) is i.i.d. standard Gaussian variables.

For (x1, . . . , xd) ∼ N (0, Id), we have

E

[√
x2

1
x2

1 + · · · + x2
d

]
=
∫
Rd

√
z2

1
z2

1 + · · · + z2
d

1
(2π)d/2 exp

(
−z2

1 + · · · + z2
d

2

)
dz1 · · · dzd

=
∫

[0,∞)2

√
r

r + s

r−1/2 exp (−r/2)√
2π

s(d−1)/2−1 exp (−s/2)
Γ((d − 1)/2)2(d−1)/2 drds

=
∫

[0,1]
t1/2 t1/2−1(1 − t)(d−1)/2−1

B(1/2, (d − 1)/2) dt

= B(1, (d − 1)/2)
B(1/2, (d − 1)/2)

= Γ(1)Γ((d − 1)/2)Γ(d/2)
Γ(1/2)Γ((d − 1)/2)Γ(d/2 + 1/2)

= Γ(d/2)√
πΓ(d/2 + 1/2) .

Note that for all d ≥ 2,
1√
d/2

≤ Γ(d/2)
Γ(d/2 + 1/2) ≤ 1√

d/2 − 1/2
holds (e.g., see Qi & Luo (2013)). Therefore, for all d ≥ 2, we have

E

[(
x1√

x2
1 + · · · + x2

d

)
+

]
= Γ(d/2)

2
√

πΓ(d/2 + 1/2) ∈

[
1√
2πd

,
1√

2π(d − 1)

]
.
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D.2 The exponential ergodicity of BPS

The next proposition is on the minorization condition of the 2-skeletons of BPS on the restricted domains.
In short, minorization means that the stochastic process can go from any measurable set to any measurable
set in the parameter space, which is a sufficient condition for the exponential ergodicity in the compact
parameter space. 2-Skeleton means 2 step of the stochastic process. This proposition completes the proof of
Theorem 4.
Proposition 11. Under Assumption 1, the 2-skeletons of BPS satisfies the minorization condition; that is,
for some c > 0, for all (θ, v) ∈ Θ × Sd−1 and all measurable E ⊂ Θ × Sd−1, we have

Q̂2((θ, v), E) ≥ c

∫
Θ

∫
Sd−1

1[(θ, v) ∈ E]dθµunif(dv).

Moreover, BPS is exponentially ergodic in total variation distance.

Proof. We partially follow the proof of Lemma 4 in Deligiannidis et al. (2019).

Let f : Θ × Sd−1 → [0, ∞) be a non-negative and bounded function. We also use the notation M ′ =
sup(θ,v)∈Θ×Sd−1(λ̄(θ, v)+CB) < ∞. By considering the event where the first update of v is refreshment from
Unif(Sd−1), we see that for any (θ0, v0) ∈ Θ × Sd−1,∫

Θ×Sd−1
f(θ, v)Q̂2((θ0, v0), (dθ, dv))

=
∫

Θ×Sd−1

∫
Θ×Sd−1

f(θ, v)Q̂((θ1, v1), (dθ, dv))Q̂((θ0, v0), (dθ1, dv1))

≥ Λref

M ′ inf
θ1∈Θ

∫
Θ×Sd−1

f(θ, v)Q̂((θ1, v1), (dθ, dv))µunif(dv1)

holds. We also obtain that for T ∼ Exp(M ′), V1, V2 ∼i.i.d. Unif(Sd−1), we have

inf
θ1∈Θ

∫
Θ×Sd−1

f(θ, v)Q̂((θ1, v1), dθdv)µunif(dv1)

≥ inf
θ1∈Θ

Λref

M ′ E [1[θ1 + TV1 ∈ Θ]f(θ1 + TV1, V2)]

≥ inf
θ1∈Θ

Λ2
ref

M ′

∫
[0,∞)×Sd−1×Sd−1

1[θ1 + tv1 ∈ Θ]e−M ′tf(θ1 + tv1, v)dtµunif(dv1)µunif(dv)

≥ inf
θ1∈Θ

Λ2
refe

−M ′diam(Θ)

M ′

∫
[0,∞)×Sd−1×Sd−1

1[θ1 + tv1 ∈ Θ]f(θ1 + tv1, v)dtµunif(dv1)µunif(dv)

= inf
θ1∈Θ

Λ2
refe

−M ′diam(Θ)

M ′

∫
Θ×Sd−1

1[θ ∈ Θ]f(θ, v)∥θ − θ1∥1−ddθµunif(dv)

≥ Λ2
refe

−M ′diam(Θ)

M ′diam(Θ)d−1

∫
Θ×Sd−1

f(θ, v)dθµunif(dv),

where the second last equality uses a change of coordinates. Since f is generic, the minorization condition
holds. Harris’s theorem thus gives the exponential ergodicity of BPS.

E Proof of Theorem 5

Proof. We prove in the same way as the proof of Theorem 2.1 in Raginsky et al. (2017). Let θµ be a random
variable satisfying θµ ∼ µ

(β,ε)
z , where µ

(β,ε)
z is defined in (6). We denote θK ∼ µz,K as the output of Poisson

SGD (Algorithm 1). We have
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Ez[EθK
[L(θK)]] − inf

θ∈Θ
L(θ)

= Ez[EθK
[L(θK)] − Eθµ

[L(θµ)]] + {Ez[Eθµ
[L(θµ)]] − inf

θ∈Θ
L(θ)},

and the second term of right-hand side is written as

Ez[Eθµ
[L(θµ)]] − inf

θ∈Θ
L(θ)

= Ez[Eθµ [L(θµ)]] − Ez[Eθµ [Lz(θµ)]] +
(
Ez[Eθµ [Lz(θµ)]] − inf

θ∈Θ
L(θ)

)
.

Letting θ◦ = argminθ∈Θ L(θ), the second part of the right-hand side in the equation above is

Ez[Eθµ
[Lz(θµ)]] − inf

θ∈Θ
L(θ) =Ez[Eθµ

[Lz(θµ)] − inf
θ∈Θ

Lz(θ)] +
(
Ez

[
inf
θ∈Θ

Lz(θ) − Lz(θ◦)
])

≤Ez[Eθµ [Lz(θµ)] − inf
θ∈Θ

Lz(θ)].

As a result, we have

Ez[EθK
[L(θK)]] − inf

θ∈Θ
L(θ) ≤Ez[EθK

[L(θK)] − Eθµ [L(θµ)]] (18)

+Ez[Eθµ [L(θµ)] − Eθµ [Lz(θµ)]] (19)
+Ez[Eθµ [Lz(θµ)] − inf

θ∈Θ
Lz(θ)]. (20)

To evaluate the terms (18), (19), and (20), we prepare the following lemma to calculate the upper bound of
the difference between two expected value by the Wasserstein distance.

Lemma 12. Consider probability measures µ and ν on Θ. Suppose that supz∈Z |ℓ(z; 0)| ≤ A and
supz∈Z ∥∇ℓ(z; 0)∥ ≤ B hold. Then, we obtain

|Eθ1∼µ[ℓ(z; θ1)] − Eθ2∼ν [ℓ(z; θ2)]| ≤ (c1W + B)
√

WW1(µ, ν), and (21)
|Eθ1∼µ[L(θ1)] − Eθ2∼ν [L(θ2)]| ≤ (c1W + B)

√
WW1(µ, ν). (22)

Proof. Under the assumption, Lemma 3.1 in Raginsky et al. (2017) holds. Hence, we have

∥∇ℓ(z; θ)∥ ≤ c1∥θ∥ + B, ∀θ ∈ Θ, ∀z ∈ Z (23)

ℓ(z; θ) ≤ c1

2 ∥θ∥2 + B∥θ∥ + A, ∀θ ∈ Θ, ∀z ∈ Z. (24)

Moreover, from Lemma 3.5 in Raginsky et al. (2017), for arbitrary two probability measures µ and ν, if we
let

σ2 = max{Eθ1∼µ[∥θ1∥2],Eθ2∼ν [∥θ2∥2]},

then we have
|Eθ1∼µ[ℓ(z; θ1)] − Eθ2∼ν [ℓ(z; θ2)]| ≤ (c1σ + B)W2(µ, ν).

Obviously, it also holds that

|Eθ1∼µ[L(θ1)] − Eθ2∼ν [L(θ2)]| ≤ (c1σ + B)W2(µ, ν).

Since we have σ ≤ W and W2(µ, ν) = infπ∈Π(µ,ν)(
∫

Θ ∥z − z′∥2dπ(z, z′))1/2 ≤ infπ∈Π(µ,ν)(
∫

Θ W∥z −
z′∥1dπ(z, z′))1/2 =

√
WW1(µ, ν), we obtain the statement.
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We start evaluating each of the terms (18), (19), and (20).

First, we study (18). From (22) in Lemma 12, we have

EθK
[L(θK)] − Eθµ [L(θµ)] ≤(c1W + B)

√
WW1(µz,K , µ

(β,ε)
z )

≤(c1W + B)
√

WdK(β, ε, d). (25)

Second, we evaluate (19) using the same approach as Raginsky et al. (2017). Here, we need to evaluate

Eθµ
[ℓ(z; θµ)] − Eθµ′ [ℓ(z; θµ′)],

where z ∈ Z is an arbitrary sampled data, θµ′ ∼ µ
(β,ε)
z′ and µ

(β,ε)
z′ is the stationary distribution of BPS when

one of the data zi is changed to arbitrary z̄i ∈ Z and z′ is a dataset with replacing zi to z̄i, and Lz′ be its
corresponding empirical risk. From (21) in Lemma 12, we have

Eθµ
[ℓ(z; θµ)] − Eθµ′ [ℓ(z; θµ′)] ≤(c1W + B)W2(µ(β,ε)

z , µ
(β,ε)
z′ )

≤(c1W + B)Cµ′

√D(µ(β,ε)
z ||µ(β,ε)

z′ ) +
(

D(µ(β,ε)
z ||µ(β,ε)

z′ )
2

) 1
4
 ,

where D(·||·) is KL-divergence and

Cµ′ := 2 inf
λ>0

(
1
λ

(
3
2 + log

∫
Θ

eλ∥θ∥2
µ

(β,ε)
z′ (dθ)

)) 1
2

,

which is from Corollary 2.3 in Bolley & Villani (2005) (explicit form is Theorem 14 in Section H). Also,
since we have ∥θ∥ ≤ W , Cµ′ ≤ 2W holds. We denote the density functions of µ

(β,ε)
z , µ

(β,ε)
z′ as pz, pz′ , and the

normalization constants as Λz, Λz′ respectively. Let us calculate D(µ(β,ε)
z ||µ(β,ε)

z′ ). We have

pz(θ)
pz′(θ) = Λz′

Λz
· βMℓ + 1/ε + adβ∥∇Lz(θ)∥

βMℓ + 1/ε + adβ∥∇Lz′(θ)∥ exp (−β(Lz(θ) − Lz′(θ))) , (26)

so in order to obtain the upper bound of D(µ(β,ε)
z ||µ(β,ε)

z′ ), we suppress each of the three terms of the
right-hand side of (26). First, we suppress the second term.

∥∇Lz(θ)∥ =
∥∥∥∥∇Lz′(θ) + 1

n
(∇ℓ(zi; θ) − ∇ℓ(z̄i; θ)

∥∥∥∥
≤ ∥∇Lz′(θ)∥ + 1

n
∥∇ℓ(zi; θ) − ∇ℓ(z̄i; θ)∥

≤ ∥∇Lz′(θ)∥ + 2
n

(c1∥θ∥ + B) ,

where the last inequality is from (23). Hence,

βMℓ + 1/ε + adβ∥∇Lz(θ)∥
βMℓ + 1/ε + adβ∥∇Lz′(θ)∥ ≤

βMℓ + 1/ε + adβ
(
∥∇Lz′(θ)∥ + 2

n (c1∥θ∥ + B)
)

βMℓ + 1/ε + adβ∥∇Lz′(θ)∥

≤1 + 2adβ(c1W + B)
n(βMℓ + 1/ε)

≤1 + 2ad(c1W + B)
nMℓ

(27)

holds. Second, we suppress the third term. We have

exp (−β(Lz(θ) − Lz′(θ))) = exp
(

−β

(
1
n

(ℓ(zi; θ) − ℓ(z̄i; θ))
))
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≤ exp
(

β

n

(
c1∥θ∥2

2 + B∥θ∥ + A

))
≤ exp

(
β

n

(
c1W 2

2 + BW + A

))
, (28)

where we use (24). Finally, we suppress the first term. Using (27) and (28), we have

Λz′

Λz
=
∫

θ∈Θ (βMℓ + 1/ε + adβ∥∇Lz′(θ)∥) exp (−βLz′(θ)) dθ∫
θ∈Θ (βMℓ + 1/ε + adβ∥∇Lz(θ)∥) exp (−βLz(θ)) dθ

≤
(

1 + 2ad(c1W + B)
nMℓ

)
exp

(
β

n

(
c1W 2

2 + BW + A

))
. (29)

Combining (27), (28) and (29), we have

log pz(θ)
pz′(θ) ≤2 log

(
1 + 2ad(c1W + B)

nMℓ

)
+ 2β

n

(
c1W 2

2 + BW + A

)
≤ 1

n

(
4ad(c1W + B)

Mℓ
+ β(c1W 2 + 2BW + 2A)

)
,

so
D(µ(β,ε)

z ||µ(β,ε)
z′ ) ≤ 1

n

(
4ad(c1W + B)

Mℓ
+ β(c1W 2 + 2BW + 2A)

)
holds. We set Cd = 4ad(c1W + B)/Mℓ and C = c1W 2 + 2BW + 2A, then we have

(19) ≤ 2W (c1W + B)
((

Cd + βC

n

) 1
2

+
(

Cd + βC

n

) 1
4
)

. (30)

Finally, we evaluate (20). Let us denote

Λz(θ) = Λ
βMℓ + 1/ε + adβ∥∇Lz(θ)∥

Λ =
∫

θ∈Θ
(βMℓ + 1/ε + adβ∥∇Lz(θ)∥)e−βLz(θ)dθ.

Since the distribution of θµ is

µ(β,ε)
z (dθ) ∝

(
βMℓ + 1

ε
+ adβ∥∇Lz(θ)∥

)
exp(−βLz(θ)),

we have

Eθµ
[Lz(θµ)] = − 1

β

(
Eθµ

[
log e−βLz(θµ)

Λz(θµ)

]
+ Eθµ

[log Λz(θµ)]
)

= 1
β

(
Eθµ

[− log pz(θµ)] − Eθµ
[log Λz(θµ)]

)
.

Since we have Eθµ
[∥θµ∥2] ≤ W 2, we can calculate the upper bound of Eθµ

[− log pz(θµ)] by the differential
entropy of Gaussian distribution in the same way as the discussion of Section 3.5 in Raginsky et al. (2017):

Eθµ
[− log pz(θµ)] ≤ d

2 log
(

2πe

d
W 2
)

.

Using (23), we have

log Λz(θ) ≥ log Λ
βMℓ + 1/ε + adβ(c1W + B)) .
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In addition,

log Λ = log
∫

θ∈Θ
(βMℓ + 1/ε + adβ∥∇Lz(θ)∥)e−βLz(θ)dθ

≥ log
∫

θ∈Θ
(βMℓ + 1/ε)e−βLz(θ)dθ

= log(βMℓ + 1/ε) + log
∫

θ∈Θ
e−βLz(θ)dθ

≥ log(βMℓ + 1/ε) − βL∗
z + d

2 log 2π

c1β

holds, where the last inequality is from the equation (3.21) in Raginsky et al. (2017). Here, we denote
L∗

z = infθ∈Θ Lz(θ). Hence, we have

(20) ≤ 1
β

(
d

2 log
(

2πe

d
W 2
)

+ log βMℓ + 1/ε + adβ(c1W + B)
βMℓ + 1/ε

+ βL∗
z − d

2 log 2π

c1β

)
− L∗

z

≤ 1
β

(
d

2 log eW 2c1β

d
+ log

(
1 + ad(c1W + B)

Mℓ

))
. (31)

We combine the result (25), (30), and (31), then obtain the statement.

F Proof of Proposition 6

Proof. Let θµ and θν be the random variable which obey the distributions µ
(β,ε)
z and ν

(β)
z respectively.

In the same way as Theorem 5, we have

Ez[EθK
[L(θK)]] − inf

θ∈Θ
L(θ) ≤Ez[EθK

[L(θK)] − Eθµ [L(θµ)]] (32)

+Ez[Eθµ [L(θµ)] − Eθν [L(θν)]] (33)
+Ez[Eθν [L(θν)] − Eθν [Lz(θν)]] (34)
+Ez[Eθν [Lz(θν)] − inf

θ∈Θ
Lz(θ)]. (35)

(32) can be evaluated in the same as Theorem 5.

First, we evaluate (33). We have

Eθµ
[L(θµ)] − Eθν

[L(θν)] ≤ WW2(µ(β,ε)
z , ν(β)

z )

from the same discussion in the proof of Theorem 5. Since both θµ and θν satisfy the log-Sobolev inequality,
we can use Otto-Villani theorem (Bakry et al., 2014) (explicit form is Theorem 15 in Section H), and

W2(µ(β,ε)
z , ν(β)

z ) ≤
√

2c
(β)
LS D(µ(β,ε)

z ||ν(β)
z )

holds, where D denotes the KL-divergence and c
(β)
LS is the log-Sobolev constant of ν

(β)
z . We have

D(µ(β,ε)
z ||ν(β)

z ) =Eθ∼µ

[
log (βMℓ + 1/ε + adβ∥∇Lz(θ)∥) exp (−βLz(θ)) /Λµ

exp (−βLz(θ)) /Λν

]
≤Eθ∼µ

[
log(βMℓ + 1/ε + adβMℓ)

Λν

Λµ

]
,

where Λµ and Λν are normalizing constants of the density functions of µ
(β,ε)
z and ν

(β)
z respectively. We have

Λν

Λµ
=

∫
Θ exp (−βLz(θ)) dθ∫

Θ(βMℓ + 1/ε + adβ∥∇Lz(θ)∥) exp (−βLz(θ)) dθ
≤ 1

βMℓ + 1/ε
,
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hence we have

D(µ(β,ε)
z ||ν(β)

z ) ≤ log (1 + adβεMℓ) .

As a result, we obtain

Eθµ
[L(θµ)] − Eθν

[L(θν)] ≤ W

√
2c

(β)
LS log (1 + adβεMℓ). (36)

Second, we evaluate (34). Let ν
(β)
z′ be the Gibbs distribution when one of the data zi is replaced by z′

i. In
the same way as Section 3.6 in Raginsky et al. (2017), we have

W2(ν(β)
z , ν

(β)
z′ ) ≤

2c
(β)
LS βMℓ

n
.

Hence, we have

Eθν
[L(θν)] − Eθν

[Lz(θν)] ≤ (c1W + B)2c
(β)
LS βMℓ

n
. (37)

Finally, we evaluate (35). This term can be evaluated on the same way as Proposition 3.4 in Raginsky et al.
(2017) and we have

Eθν [Lz(θν)] − inf
θ∈Θ

Lz(θ) ≤ 1
β

(
d

2 log
(

2πeW 2

d

)
− d

2 log 2π

c1β

)
= d

2β
log
(

eW 2c1β

d

)
. (38)

We combine the result (36), (37), and (38), then obtain the statement.

G Proof of Theorem 2

Proof. Let θK , θµ be the random variables whose distribution is µ
(β,ε)
z,K and µ

(β,ε)
z respectively. Let L∗

z =
minθ∈Θ Lz(θ). We have

EθK
[Lz(θK)] − L∗

z =(EθK
[Lz(θK)] − Eθµ [Lz(θµ)]) + (Eθµ [Lz(θµ)] − L∗

z).

As the first term of the right-hand side, we can use the Wasserstein distance in the same way as the proof
of Theorem 5 as in (25). Hence, we have

EθK
[Lz(θK)] − Eθµ [Lz(θµ)] ≤ (c1W + B)

√
WdK(β, ε, d).

Further, using (31) in the Proof of Theorem 5,

Eθµ
[Lz(θµ)] ≤ 1

β

(
d

2 log eW 2c1β

d
+ log

(
1 + ad(c1W + B)

Mℓ

))
+ L∗

z

holds, which completes the proof.

H Explicit citation of the existing theorems

Theorem 13 (Theorem 4, Gibbs & Su (2002)). On the compact set Ω, the Wasserstein metric dW and the
total variation distance dT V satisfy the following relation:

dW ≤ diam(Ω) · dT V ,

where diam(Ω) = sup{d(x, y)|x, y ∈ Ω}.
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Theorem 14 (Corollary 2.3, Bolley & Villani (2005)). Let X be a measurable space equipped with a mea-
surable distance d, let p ≥ 1 and let ν be a probability measure on X. Assume that there exist x0 ∈ X and
α > 0 such that

∫
eαd(x0,x)p

dν(x) is finite. Then, ∀µ ∈ P (X),

Wp(µ, ν) ≤ C

[
H(µ|ν)

1
p +

(
H(µ|ν)

2

) 1
2p

]
,

where

C = 2 inf
x0∈X,α>0

(
1
α

(
3
2 + log

∫
eαd(x0,x)p

dν(x)
)) 1

p

< ∞.

Theorem 15 (Theorem 9.6.1, Bakry et al. (2014)). Let µ be a probability measure on M . If µ satisfies a
logarithmic Sobolev inequality LS(C) for some constant C > 0, then it satisfies following for every probability
measure ν on M :

W2(µ, ν)2 ≤ 2C · D(ν||µ),

where W2 denotes the Wasserstein-2 distance and D denotes the Kullback-Leibler divergence.
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