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Abstract

Online tensor decompositions are powerful and proven techniques that address
the challenges in processing high-velocity streaming tensor data, such as traffic
flow and weather system. The main aim of this work is to propose a novel online
functional tensor decomposition (OFTD) framework, which represents a spatial-
temporal continuous function using the CP tensor decomposition parameterized
by coordinate-based implicit neural representations (INRs). The INRs allow for
natural characterization of continually expanded streaming data by simply adding
new coordinates into the network. Particularly, our method transforms the classical
online tensor decomposition algorithm into a more dynamic continual learning
paradigm of updating the INR weights to fit the new data without forgetting the
previous tensor knowledge. To this end, we introduce a long-tail memory replay
method that adapts to the local continuity property of INR. Extensive experiments
for streaming tensor completion using traffic, weather, user-item, and video data
verify the effectiveness of the OFTD approach for streaming data analysis. This
endeavor serves as a pivotal inspiration for future research to connect classical
online tensor tools with continual learning paradigms to better explore knowledge
underlying streaming tensor data.

1 Introduction

In real world, high-dimensional data often exist in a streaming form and are typically modeled as
tensor streams (such as traffic flow and video) [Yu et al.|[2015]], Smith et al. [2018]]. Tensor streams
can be categorized into two types: single-aspect streams and multi-aspect streams. Single-aspect
streams, such as traffic flow data represented by the triplet (location, route, and time), grow only along
the temporal dimension and are modeled as 3-mode temporal tensor streams. In contrast, multi-aspect
streams, such as recommendation system data represented by the triplet (user, movie, and actor),
grow along multiple dimensions simultaneously. With the increasing prevalence of streaming data,
there is a growing demand for real-time streaming data analysis (e.g., streaming data completion).

Online tensor decomposition |Abed-Meraim et al.|[2022a]] is one of the foremost methods to address
the streaming data completion problem by exploiting the potential compact structures underlying
streaming data within an online optimization framework. However, decomposing tensor streams
would lead to high computational costs owing to the significant growth in their volume over time.
Also, dynamically capturing the internal latent properties of tensor streams, such as spatial-temporal
continuity, poses difficult challenges. To address these challenges, various online tensor decom-
position methods have been developed to handle the streaming data completion problem. These
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Figure 1: (a) [lustration of the classical online tensor CP decomposition paradigm. (b) The proposed
online functional tensor decomposition paradigm for streaming tensor data. Our approach transforms
the static online optimization algorithm into a more dynamic continual learning paradigm, which
learns knowledge from streaming data by using the CP decomposition parameterized by INRs.

methods can be categorized into CP decomposition-based methods |Lee and Shin|[2021]],Zhong et al.
[2021]],/Ahn et al.|[2021]],/Abed-Meraim et al.|[2022b]], [Liu et al.| [2022], Tucker decomposition-based
methods Jang and Kang| [2023]], tensor SVD (t-SVD)-based methods Zhang et al.|[2016], Wu| [2022],
Gilman et al.|[2022]], Y1 et al.|[2022]], and other tensor network decomposition-based approaches (such
as tensor train (TT) decomposition |Le et al.|[2024])). As recent symbolic works along this line, Ahn
et al.|[2021]] proposed a streaming tensor factorization with an attention-based temporal regularization
for streaming data completion. /Abed-Meraim et al|[2022b]] proposed a scalable online CP algorithm
that efficiently estimates low-rank components from streaming tensors. |Y1 et al.| [2022] proposed
an online algorithm based on the t-SVD, which can efficiently capture the principal information of
tensor by incrementally updating a much smaller sketch. These methods enable real-time analysis
of tensor streams and achieve promising performances for streaming data completion. Nonetheless,
current online tensor decomposition methods mostly consider optimizing the factor matrices/tensors
of the tensor decomposition using discrete online optimization rules, which may limit the capability
for dynamic data structure modeling and spatial-temporal correlation excavation.

In this work, we propose a novel online functional tensor decomposition (OFTD) method for
streaming data completion (see Fig. [I{b) for quick view). OFTD represents the spatial-temporal
streaming data as a continuous function using CP tensor decomposition parameterized by implicit
neural representations (INRs)|Sitzmann et al.|[2020]], Mildenhall et al.|[2021]], which map an arbitrary
spatial-temporal coordinate to the corresponding tensor value through deep neural networks. Instead
of optimizing the factor matrices of tensor decomposition, OFTD optimizes the learnable weights of
factor INRs during online optimization, which could better explore the complex dynamic structure and
global spatial-temporal correlations of streaming data through a deep functional tensor representation.
OFTD allows for natural characterizations of continually expanded streaming data by simply adding
new coordinates into the INR network during online optimization. Although the tensor stream is
continually growing, we maintain a constant number of optimization parameters by keeping the
network structure unchanged.

Nevertheless, the incorporation of deep neural networks leads to the possible issue of forgetting the
learned historical knowledge when fitting new data. Hence, to enable effective continual learning for
processing streaming tensors using OFTD, we make a basic attempt by employing the memory replay
method, which utilizes a part of historical data during online optimization, to avoid forgetting. We
develop a regret bound of OFTD from the perspective of the loss (i.e., forgetting) of historical knowl-
edge, which theoretically shows that the OFTD model tends to forget the knowledge that is distant
from the new tensor data due to the local continuity property of INRs. Hence we correspondingly
design a memory buffer with a long-tail distribution (i.e., storing more data at more distant positions),
which substantially enhances the performance for streaming data completion. Consequently, OFTD
delivers superior performances against traditional online tensor decomposition methods, showcasing
its strong ability for streaming data analysis. We summarize the main contributions of this work as
follows:

* We introduce a novel online functional tensor decomposition (termed OFTD) method for
streaming data completion. Our method employs the CP decomposition parameterized by
INRs to learn a spatial-temporal continuous function, which enables a concise representation
of streaming tensor data by simply incorporating new coordinates into the INR during online
optimization. Furthermore, our method effectively captures spatial-temporal continuity and
low-dimensional compact structures of streaming data through functional representation.



* Our approach transforms the static online algorithm for streaming data completion into
a more dynamic continual learning paradigm, i.e., the INRs are expected to fit new data
without forgetting previous tensor knowledge. To achieve this, we theoretically develop a
regret bound for OFTD, which guides us in designing a long-tail replay continual learning
method tailored for OFTD.

* We apply OFTD to single-aspect (i.e., temporal evolution) and multi-aspect (spatial and
temporal evolutions) streaming tensor completion. Extensive experiments on real-world
datasets show the superiority of OFTD over state-of-the-art online tensor decomposition
methods.

2 Related Work

2.1 Online Tensor Decomposition

Online analysis algorithms for streaming tensors have been widely developed in recent years Najafi
et al.|[2019], |Qian et al.| [2021]], [Hu et al.[[2022]. CP decomposition is one of the mostly considered
methods for streaming tensor completion. For instance, Minh-Chinh et al.|[2016] proposed a two-
stage CP decomposition algorithm to perform streaming data completion for third-order tensors. [Lee
and Shin| [2021]] proposed a robust method for tensor streams by integrating CP factorization, outlier
removal, and temporal-pattern detection to enable accurate online prediction. [Zhong et al.|[2021]]
proposed a window-based dynamic streaming tensor analysis method using CP decomposition. |Yang
et al.|[2023] proposed a distributed streaming tensor completion method for multi-aspect streaming
tensor. More CP-based online tensor decomposition methods can be found in|Abed-Meraim et al.
[2023]], Mardani et al.| [2015]], |[Kasai| [2019]], Song et al.| [2017]], Nimishakavi et al.| [2018]], [Du
et al.| [2018]], Xiao et al.|[2018]]. These online tensor methods explicitly optimize factor matrices
of the tensor decomposition using discrete online optimization rules. Recently, [Fang et al.|[2021]]
proposed a deep neural network-based streaming Bayesian tensor factorization method, which could
better capture complicated nonlinear interactions in data. Different from this method, our OFTD
employs INRs to model streaming data as a spatial-temporal continuous function, which allows for
natural characterization of continually expanded data by adding new coordinates into INRs during
online optimization, while OFTD could also capture nonlinear interactions of data through the deep
representation of INR.

2.2 Implicit Neural Representation

In recent years, INR has attracted widespread attention for their ability to continuously and implicitly
represent signals through neural networks [Sitzmann et al.|[2020]], Mildenhall et al.| [2021]. Compared
to traditional discrete representations, INR offers advantages such as memory efficiency, continuous
trajectory modeling, and analytical computations of higher-order derivatives. Typical applications of
INR include 3D shape and scene reconstruction |Atzmon and Lipman|[2020], Jiang et al.|[2020], view
synthesis |Mildenhall et al.|[2019]], solving differential equations|Chen et al.|[2023]], and images/video
processing (Chen et al.| [2021]], Skorokhodov et al.|[2021]]. For instance, the well-known NeRF
Mildenhall et al.| [2021] represents a scene as a continuous 5D function and optimizes neural radiance
fields to synthesize novel views. [Sitzmann et al.| [2020] introduced the SIREN, which leverages
periodic activation functions to achieve high-fidelity representation of natural signals using INR.
Chen et al.|[2021]] proposed the local implicit image function, which encodes images as continuous
functions and enables arbitrary-resolution image reconstruction. Currently, INR has become an
increasingly popular research direction in mainstream Al fields|[Zhao et al.[[2024]], |Shi et al.| [2024],
Li et al.|[2024]. To our knowledge, the proposed method should be the first work to incorporate INR
into the online tensor decomposition framework.

3 Proposed Method

3.1 Preliminaries

Basic notations are shown in Table We use [] to denote the Kruskal operator Kolda and Bader
[2009]. The o and ® respectively denote the outer product and the Hadamard product. The ||-|| 7
denotes the Frobenius norm.



Table 1: Notations used in this paper.

Notations Definitions
z,x, X, X Scalar, vector, matrix, and tensor

t t t .
Xy € RIvxd2xxIy An N*"_order streaming tensor

Xi,) X(:4) The ¢-th row or the i-th column of X
(i1,iz,.in) € R The (i1,ia,...,ix)-th element of X
U™ ¢ RInxr The n-th factor of CP decomposition

[N] e ZN The vector [N] £ (1,2,--- ,N)T

Definition 1 (CP Decomposition | Kolda and Bader| [2009]). Given an N th_order tensor X €

RIxT2xXIN " jtg CP decomposition is the representation using N factor matrices {U(”)}n:1

sharing the same number of columns as follows:

N r
o (P B>
im

where the factor matrix U™ € RI»*"_ The smallest integer r satisfying is referred to as the
CP-rank of X.

Definition 2 (Streaming tensor sequence). A sequence of N*"-order tensors {X;} is called streaming
tensor sequence if for any t € ZV, X; C X,y 1 [l The t grows with time, and X, is called the snapshot
tensor taken at time t.
o . . t—1 t—1
Definition 3 (Temporal tube). Given two successive tensors X,_; € Rl *>XIN" gnd X, €
t t . . . .
ROXXIN derived from a streaming tensor sequence {X;}, the coming data (i.e., temporal tube) at

time t can be represented by Yy = X, \ X;_1, which has the same size as X, with entries given by:
_ (Xt)(ihm,izv) lf 3 Ifz_l <ip < I’fu
(V) Gir.oin) = {0 otherwise.

3.2 Problem Formulation

Given a streaming tensor sequence {X;} with missing entries, we aim to recover the missing data in
the current snapshot &;. Since X;_1 C A, and we have handled X;_; in previous time steps, the
problem is equivalent to completing the elements in V; = X} \ X;_1. Tensor streams often exhibit
low-rank properties, making tensor decomposition models, such as the CP decomposition, suitable
for modeling streaming tensors. The optimization problem at time ¢ is typically formulated as

min

{ui) ‘Pt@ (y © H{Ugn)}:_l}b +R({U"}), @)

where {UE")} denotes the set of tensor factors, P is a binary tensor representing missing and

F

observed entries of );, and R(+) is a regularization term for the factor matrices. For instance, most
tensor streams exhibit continuity (i.e., smoothness) over the spatial and time dimensions, e.g., the
current pollutant measurement is similar to those of the previous and next 10 minutes. Hence, smooth
regularizations such as the total variation [Pragliola et al.| [2023]] can be employed. However, in
this work we do not impose an explicit regularization R(+). Instead, the proposed OFTD implicitly
captures the spatial-temporal smoothness of data through the implicit smoothness of INRs (see
Lemmal T).

3.3 Online Functional Tensor Decomposition

In this section, we give the detailed formulation of the proposed online functional tensor decomposi-
tion for streaming data completion.

We use set notations (e.g., C and \) for tensors by simply viewing a tensor as a set containing its elements.



Functional Tensor Decomposition Before introducing the online algorithm, we first introduce the
batch functional tensor decomposition (FTD) (i.e., off-line setting), which uses INRs to parameterize

factor matrices of the CP decomposition. Specifically, for the n-th CP factor matrix Ug") € RInxT,
we use an INR [Sitzmann et al.| [2020] to parameterize it. Such INR is a multilayer perceptron (MLP)
fo, () : R — R" with parameters ©,,, which takes a coordinate v € R as input and returns a vector:

fo.(v) = Wa(o(Wa_y - o(Wyv))) € R, 3)

where ©,, £ {Wi}le are weight matrices with W; € R™¥" fori = 2,3,...,d and W; € R'*",
o(-) = sin(wp-) is the sine activation function that is more effective for INR |Sitzmann et al.| [2020].

To generate the factor matrix UE”), we consider the parallel notation for I’ input coordinates:

f@"(v) & (f@n(v(l))7" '7f@n(V(I;zl)))T & RI;LLXT’

where v = [It] = (1,2,...,I%)" represents the input coordinate vector and v(;) denotes the i-th

element of the vector v. We use this output matrix fg, (v) (i.., fo, ([I}])) as the factor matrix Ug")

of the CP decomposition and then obtain the FTD representation of an N*-order streaming tensor
X as

N

X = [{Fon D}, ] 2 3 Fou (HDiy o -+ 0 fon (T )
i=1

where fo, ([I%])(.,;) denotes the i-th column of the factor matrix fe,, ([1}]). We have hence used N
INRs {fo, (-)}2_, to parameterize the factor matrices of the CP decomposition.

The FTD in (@) enjoys two potential advantages for streaming data analysis. First, the functional
representation naturally allows us to model streaming data in an efficient way by simply adding new
coordinates into the model (i.e., by expanding the coordinates [/?]) during online optimization. With
the expanding of coordinates over time, the output of INR (i.e., the factor matrix of CP decomposition)
correspondingly increases in size to fit the larger size of the new data stream. Second, the FTD
is effective for modeling real-world tensor data because the CP decomposition characterizes the
intrinsic low-dimensional structure of the tensor, while the INRs capture the tensor spatial-temporal
smoothness (see Lemmal[I) to better recover the unobserved entries.

Online Functional Tensor Decomposition We now introduce the proposed OFTD. We mainly
describe the multi-aspect setting, and the single-aspect problem can be seen as a special case of the
multi-aspect problem. In the online setting, a new tensor X; € R’ XDy arrives at each time ¢
with missing values. We dynamically update the FTD model to accommodate the incremental growth
of the streaming tensor. Our streaming tensor completion algorithm consists of the initialization stage
and the online update stage.

. o . 1 1 . .
Initialization Stage: Given an initial streaming tensor X; € R %1 2% XN e optimize the following
objective function based on the FTD representation (@):

N 2
m [Pre (0= [(e. b)), 3

fgl%H 1@ (W= | {fe. (D)} _, B Q)

where P; is the initial mask, )y = A is the initial observed tensor, ©,, are learnable parameters

of the INR fg, (+), and [I}] denotes the coordinates of the tensor [[{ fo, (IIL]) }iv:l]] at dimension

n. To address the optimization problem, we use gradient descent-based methods (e.g., the Adam
optimizer) to update the INR parameters {@n}gﬂ with the loss ().

Online Stage: In the online update stage, a new tensor X; € R’ X x Ty (t > 2) comes at each time
point and we need to update the online FTD model to accommodate the growth of streaming tensor
sizes. We take the update of the n-th dimension as an example. At time ¢, the streaming tensor
size grows by the scale of I! — I'~! along the n-th dimension. We adapt to the new tensor size by
simply adding !, — It~ coordinates to the corresponding factor INR fe (-) : R — R". Specifically,

suppose that the coordinate vector at the last time point is [I7!] = (1,---, I:~1)T, then the new
coordinate vector at the time point ¢ is [I!] £ (1,--- , I*)T. Correspondingly, the new factor matrix

of the CP decomposition along the dimension n at the time point ¢ is obtained by

fo ([IE]) 2 (fo, (1), fo,(2), ..., fo,(IL))" € RTax.
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Figure 2: (a) Illustrations of the forgetting behavior of INR for streaming data completion. (a)-Left:
The INR function fg_(x) (blue line) fits the observed data (blue scatters) well. (a)-Right: When
continually fitting the new data (green scatters) without memory buffer, the trained INR fg ()
(green line) tends to forget the previously learned knowledge (blue scatters) that is distant from
the current time position I’ due to the continuity of INR. (b)-Left: Beta distribution with different
parameters 3 and fixed o = 1. We adopt the long-tail Beta distribution with 5 > 1 to construct the
memory buffer ((b)-Right) that adapts to the forgetting behavior of INR.

We illustrate the dynamic growth of the coordinates vector [I!] and the corresponding OFTD model
in Fig. [T(b). Based on the enlarged OFTD model, we consider the following optimization problem
during the online stage ¢:
. N 2
min [Py @ (v - [{fe, (12D }L]) | - (©)

{&n}

Similarly, we use the Adam optimizer to update the INR parameters { @7,,}?7:1 with the loss (6) at each

time point ¢. Here, the observed data J; = (X, \ X;—1) € R %I contains the new data at time t,
i.e., the INRs {fo, (-)}2_, are optimized to fit the new data in X; \ X;_1, with initialization weights
{©,,} being taken from the last time point (i.e., the continual learning). Such online optimization
strategy is reasonable since it is impractical to use all historical data at each time point, as this would
result in large computational costs. Therefore, we consider only fitting the new data to optimize the
INRs in each time point . For single-aspect streams, we continually expand the temporal coordinates
of OFTD, while for multi-aspect streams, we need to continually expand the coordinates in all
dimensions n = 1,--- , N. Given a total time 7', the completion result is obtained by the FTD model

N L . .
H{ fo, (IIT) }n:l]] € RID<XIX after T optimization steps under the continual learning manner.

Notably, the streaming data completion using OFTD becomes a classical continual learning paradigm,
which learns the INR weights {©,,} from a continuous stream of information, with such information
becoming progressively available over time |Parisi et al.|[2019]]. Nevertheless, OFTD may encounter
forgetting of historical data during online optimization, which we will analyze and address next.

3.4 Theoretical Analysis

We interpret two insights of our method, i.e., the spatial-temporal continuity of OFTD brought from
INR, and the regret bound of the OFTD model that reveals its forgetting behavior, which motivates
us to design memory replay to alleviate forgetting. First, we show that our OFTD method preserves
the tensor spatial-temporal smoothness from the Lipschitz smooth perspective.

Lemma 1 (Lipschitz smooth bound for FTD). Let the tensor X; € RILx 2% satisfy FTD (@),
where each factor function fo,(-) : R = R" (n = 1,2,3) is an INR formulated as in (3) with
activation function o(-) = sin(wg-). Assume that each element of the weight matrix W in
follows i.i.d. N(0,w?). Then for any 6 € (0,1), any spatial coordinates v,v' € 72, where
v=(va),ve) Vv = (vzl)7 VE2)) and any temporal coordinates k, k' € 7Z, with probability at least
1 — 6 the following Lipschitz smoothness holds for X;:
|(Xt)(V(1),V(2),k) - (Xt)(vzl),vzm,k)' S Cl HV - V/”lly
Spatial smooth

|(Xt)(v(1)7v(2)7k) - (‘Xt)(vuwv(z)yk’)‘ < Cl|k - k/‘ )

Temporal smooth

N

where Oy = w3 3(2wr? + wln %d)gd max (I114, ILTE, ILIL) is a Lipschitz constant.



Lemma [I]shows that the FTD model preserves the spatial-temporal continuity of the estimated tensor
X (i.e., elements that are closer to each other are more likely to share similar structures). Such
continuity benefits the OFTD model by learning a continuous and robust spatial-temporal function
that enables more accurate completion results. The smooth bound is related to several factors (such
as wo and w). We experimentally evaluate such relationships in supplementary.

Based on Lemmal[I] we present a regret bound of OFTD regarding the loss of historical information
when fitting new data streams, which reveals the forgetting behavior of INR. Such forgetting exhibits
a unique characteristic—it is position-dependent due to the spatial-temporal continuity of the OFTD
model (see Fig. [2)).

Theorem 1 (Regret bound for online FTD). Denote the OFTD model learned at the historical
time point t by X; = [[{f@” ([I¢]; t)}izl]] € RIXIXI5 where fo ([I1];t) denotes the n-th factor
function at time t. Assume that

* The OFTD model learned at the new time point t + 1 using (6) is invariant at the boundary
[l 13, 1), e fo, (It +1) = fo, (I 1) (n =1,2,3).

s Each element of the weight matrix of the d-layer INRs { feo, (-)} follows i.i.d. N(0,w?)
with sine activation function o (-) = sin(wg-). The {1-norm of derivative of each factor INR

||fén (2)||¢, is bounded by r > 0.

Then for any § € (0, 1) and any historical position (i1, 12,13) (in, < I%,), the following regret bound
between the new OFTD model X, 1 = [[{f@n([lffl]; t+ 1)}221]] € RETXET I (Tuke an
example I'T1 = I + 1) and the old OFTD model X; holds with probability at least 1 — §:

[(Xt41) (61 siasia) — (X2 (i14i2,in) | < Ca ngx(ffq, +1—ip), (®)
where Ca = 6(1>3wi ™3 + kn?dwg® = Ymax(I{ 14, 1114, IL14) and n = 2wr? + win 34,

Theorem [T]shows that the regret bound (i.e., the degree of forgetting) is proportional to the positional
distance (I + 1 — 4,,) between the considered point (i1, 42,43) and the new data stream position
I' + 1. This indicates that information that is more distant from the new data stream is more likely to
be forgotten (see Fig. [2a)). To alleviate the forgetting, we design a long-tail memory replay continual
learning method.

3.5 Continual Learning via Memory Replay

OFTD transforms the classical online tensor decomposition into a continual learning paradigm,
which expects to use the INRs to fit new data without forgetting historical data. To alleviate
forgetting, we design a long-tail memory buffer that utilizes a part of historical data when fitting
new data. Theorem|[I|shows that more distant information is more likely to be forgotten. Thus we
consider the long-tail Beta distribution (see Fig. b)) to construct a memory buffer, which stores
more data that is distant from the new data stream. For multi-aspect streams, the memory buffer

M, € RID<*IN gt the time ¢ is constructed through a sampling process on the historical data X;_;
by (M), iy = (K1) (i iy B (i1, -+ i) € Iy, otherwise (M) = 0, where

(31, 4iN)

Ty = {(i1,- - in) | in =|uf 1.7, u), ~ Beta(a,8),j = 1,--- ,Jyn=1,--- ,N}.

Here, |-] denotes round-down and the p.d.f. of Beta(c, ) is Beta(x; , 5) = Flzgl(l)?(ﬁﬁ))xa’l(l —

x)#~1 2 € (0,1). The Z; is the index set of the memory buffer such that the indexes in Z; follow a
long-tail Beta distribution to store more information that is distant from the new data stream. This
is achieved by setting appropriate « and [ such that Beta(a, 3) is a long-tail distribution (see Fig.
b)). A total number of JV indexes in Z, are selected to construct the memory buffer M,. For
single-aspect streams, we perform sampling on the streaming dimension and store all indexes for
other dimensions.

3This assumption is reasonable since data streams in real-world often exhibit local continuity and hence the
learned OFTD models at adjacent time points would be invariant at the boundary I .



Table 2: The NRE results of single-aspect streaming data completion. Average running time during
each online update is reported.

Dataset Condition Beijing Madrid sensor radar chicago .
NRE Time (s)
SR 01 02 03]01 02 03]01 02 03|01 02 03|01 02 03]01 02 03
Grouse 1.532 1.504 1.254(2.978 2.884 1.647(1.276 1.113 1.073|2.263 1.086 0.899|4.125 2.033 1.861{1.005 1.003 1.002 1.697 0.0135
Grasta 1.580 1.044 1.021{1.179 1.119 1.066(1.161 1.065 0.899(1.091 1.050 1.002|1.497 1.391 1.193{1.026 1.013 0.975 1.132 0.0357
Petrels 0.940 0.609 0.567(1.077 0.607 0.343(0.696 0.287 0.180(1.504 1.362 1.034|1.068 1.016 0.831{0.791 0.728 0.696 0.797 0.0234
TeCPSGD  [1.025 0.985 0.738|1.317 0.912 0.842(0.891 0.201 0.145|4.583 2.683 1.807|1.670 1.254 0.933|0.838 0.753 0.730 1.239 0.0358
OLSTEC  |0.506 0.272 0.204]0.226 0.185 0.167(0.456 0.222 0.155|0.723 0.535 0.435|0.876 0.613 0.558|0.847 0.805 0.785 0.476 0.4694
SOFIA 0.125 0.065 0.070]|0.217 0.218 0.171{0.322 0.250 0.243{1.794 1.532 1.411{1.660 1.469 1.326|0.860 0.837 0.823 0.744 0.0002
STF 0.347 0.282 0.184]0.325 0.241 0.184(0.995 0.972 0.965|3.653 1.097 0.875|3.400 3.046 2.660|3.532 2.357 0.177 1.405 0.0030
ACP 0.870 0.563 0.497(0.966 0.871 0.518{1.033 1.001 0.976(1.090 1.024 1.028|1.050 1.012 0.975{1.016 1.012 1.019 0.918 0.0022
ATD 1.365 1.303 1.221{1.548 0.784 0.252(0.368 0.195 0.156(1.701 1.034 0.636|1.633 1.628 0.891{0.928 0.782 0.736 0.953 0.0043
OFTD(Ours)|0.116 0.094 0.093|0.156 0.141 0.131{0.138 0.125 0.118|0.528 0.433 0.379(0.869 0.827 0.821(0.607 0.507 0.444 0.363 0.1762

Involving the memory buffer during online optimization allows our model to retain historical data
in M; over time, preventing forgetting. By reformulating the online model (6), the new online
optimization model at time ¢ with the memory buffer M is formulated as

D)y

Hpt ® (yt - [[{f@n([jfz])} ]])Hi + Z (Pt(v) & (Mt(v) - [[{f@n (V(n))}
7
&)

vELlt
Here, ); contains new data at time ¢ and M, includes a part of historical data to avoid forgetting. The
more historical data in M, (i.e., the larger index set Z;), the more computational costs are needed for
optimization. If we use all historical data to construct the memory buffer M, then OFTD degrades
to the batch FTD method that processes the whole tensor &X; at each time. We summarize the OFTD
algorithm with memory replay in Algorithm[A.T]of the Appendix.

x In, OFTD consumes O(mrd ZnN:1 I, +r HnNzl I,,) in each

iteration, where (mrd Zgzl I,,) is the INR complexity, (r Hﬁ;l I,,) is the CP product complexity,
r is the CP rank, and m, d are network’s width and depth. We further propose a sharing strategy to
improve the computational efficiency of OFTD, as detailed in Appendix [A.2]

N

n=1

N

min n=1

{en}

Given a tensor of size I; X ---

To further improve the effectiveness of OFTD for recovering highly irregular data streams (such as
dynamic background and abrupt changes in data streams), we further proposed a temporal online
affine regularizer to address this special situation, which is introduced in the Appendix [A.3]

4 Experiments

We perform numerical experiments for both single-aspect and multi-aspect streaming data completion.
We use the normalized reconstruction error (NRE) |Ahn et al.|[2021]] for evaluation. The datasets are
summarized in Appendix [C.I] We consider the sampling rates (SRs) 0.1,0.2, 0.3 (the proportion of
observed entries w.r.t. all entries) to perform random missing. Various baselines are included: Grouse
Balzano et al.|[2010], Grasta |[He et al. [2012]], Petrels |Chi et al.| [2013]], TeCPSGD Mardani et al.
[2015]], OLSTEC Kasai|[2019]], SOFIA |Lee and Shin|[2021]], ACP|Abed-Meraim et al.|[2023]], ATD
Abed-Meraim et al.|[2023]], STF |Ahn et al.| [2021]], SIITA Nimishakavi et al.|[2018]], OnlineSGD
(OSGD) Mardani et al.|[2015]], and GOCPT |Yang et al.|[2022]. More detailed experimental settings

are put in Appendix |C.2]

4.1 Experimental Results

The quantitative results for single-aspect and multi-aspect streaming data completion are shown in
Tables [2]and [3] OFTD attains better NRE results in most cases, showcasing its strong representation
abilities and effectiveness for modeling tensor streams. This can be attributed to the compact, low-rank
representation of CP decomposition and the expressive power of INRs to model dynamic structures of
data streams. The OFTD achieves real-time updating with each online step costing less than 0.2/1.0
(single/multi-aspect) seconds. Also, from Fig. [3]it can be observed that OFTD better reconstructs
the temporal curves of tensor streams, showcasing its capability to model complex data structures
and preserve the temporal smoothness of the tensor. Overall, OFTD serves as a new state-of-the-art
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Figure 3: Temporal curves of spatial pixel (SR 0.3).

Table 3: The NRE results of multi-aspect streaming data completion. Average running time during
each online update is reported.

Dataset foreman carphone YELP

SR 01 02 03]01 02 03|01 02 03
SIITA |0.257 0.252 0.249|0.557 0.556 0.464|0.415 0.368 0.340  0.384 0.020
OSGD |0.877 0.255 0.193]0.723 0.259 0.251|2.146 2.002 1.853  0.951 0.692
GOCPT|0.146 0.140 0.140{0.168 0.153 0.153]|2.055 1.312 1.291  0.618 0.462
OFTD {0.094 0.087 0.084|0.128 0.119 0.111|0.371 0.291 0.267 0.172 0.898

Avg. NRE Time (s)

online method for both single-aspect and multi-aspect streaming data completion. We show more
experimental results in Appendix [D}

4.2 Ablation Study

The ablation studies include the tests for the memory buffer size JV in Table [4] and the Beta
distribution parameter /5 (with « fixed to 1) in Table E[ The memory buffer is effective to alleviate
forgetting (compared to 0% in Table EI), thus enhancing performances. However, a large buffer size
leads to increased computational costs, and we have set the buffer size to 33% of the whole tensor size
in experiments. When the Beta distribution parameter 5 > 1, we obtain the desired long-tail memory
buffer, resulting in good performance (Table [5) and justifying our memory buffer design. More
ablation results include the CP-rank r, the usage of INR and its parameters are shown in Appendix

Table 4: Ablation study for the memory buffer size (the proportion of buffer size J¥ w.r.t. the
whole tensor size). A larger buffer leads to improved accuracy while more floating-point operations
(FLOPs).

Dataset Beijing Madrid

Buffer size| 100%  50% 33% 0% 100%  50% 33% 0%
NRE 0.1280 0.1299 0.1308 0.2903| 0.1112 0.1160 0.1182 0.3979
FLOPs 87.97M 43.99M 29.33M 6.03M | 139.42M 69.73M 46.5M 9.09M

Table 5: Ablation study for the parameter 5 of the Beta distributed memory buffer. When 5 = 1
it degrades to the uniform distribution and 8 > 1 (or < 1) means long-tail (or heavy-tail) memory
buffer.

Dataset Beijing Madrid (average)
B8 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
NRE [0.1273 0.1271 0.1280 0.1264 0.1261 0.1245 0.1239 0.1233 0.1233

5 Conclusion

We have proposed a novel streaming data completion method OFTD, which utilizes CP decomposition
parameterized by INRs to model tensor streams. Future work can be considered to design other
advancing continual learning methods to enable life-long learning of INRs for the streaming data
completion problem. For example, we can consider using regularization-based |Sun et al.| [2023]]
or gradient projection-based Lin et al.|[2022]] methods to further boost the performance of OFTD
under the continual learning framework. Also, applying the low-rank functional parameterization
using INRs paves a novel paradigm for low-rank adaptation (LoRA) of large models, which can be
considered in future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract and introduction clearly state the claims made, including the
contributions and other important content.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitations and future works in Section 3]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We include theoretical results for our method in Section [3] and include the
complete proofs in the Appendix [B]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain our experiments in Section [f] and provide the complete set of
hyper-parameters in Appendix [C}

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide a zip file that contains the code for the proposed OFTD.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide information about the training details in Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not provide error bars, however, we run the same experiment with three
different seeds and report the one with best performance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide all the information in Appendix [C|
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The research does not have concerns about societal impacts because it is
designed for streaming data.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We do not release any data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite the open source models which we use in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide readme on how to run the code in order to reproduce our results.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A The Online FTD algorithm

A.1 Algorithm Description

Algorithm 1 Online FTD for Streaming Data Completion

Input: N*"-order tensor stream X, ..., Xp and masks Py, - - - , Pp; Maximum iteration number K;
Initialization: Randomly initialize learnable parameters of INRs {0,,}N_;: k = 0;

> (Initialization Stage)
Construct coordinate vectors {[I}]}N_;
for k < K do

Generate the estimated tensor via the FTD representation [[{ fo, ([IL]) }N ]] ;

n=1

B

Compute the loss in (3)) using the observed tensor X7, mask Py, and the generated tensor using
Update INR parameters {O,, }2_; with the loss (3)) using the Adam algorithm; Set k + k + 1;
end for
> (Online Stage)
7: while t < T do
Construct coordinate vectors {[It]}"_; by expanding the previous coordinate vectors; Set
k= 0;
9:  Construct memory buffer M, via Beta distribution;
10: fork < K do

AR

(o]

11: Generate the estimated tensor via the FTD representation [[{ fo., ([Ifl])}gzl]] ;

12: Compute the loss in (9) using the observed tensor X;, mask P;, memory buffer M, and the
generated tensor using FTD;

13: Update INR parameters {©,,}Y_; with the loss () using the Adam algorithm; Set k <«
k+1;

14:  end for

15: Sett+t+1;
16: end while

Output: The recovered tensor [[{ fo, (IT ])}N ]] ;

n=1

A.2 Computational Complexity and A Sharing Strategy

Here, we propose a sharing strategy to further reduce INR complexity. We share the first d — 1 layer
weights of the IV factor INRs and keep the last layer unshared. This reduces the INR complexity from

O(mrd 25:1 I,) to O(mr(d — 1)1 + mr 25:1 I,,), where I = max,, I,,, leading to reduction of
running time around 50% without obvious accuracy degradation (Table[6).

Table 6: OFTD (share) reduces running time around 50%.

Dataset foreman carphone YELP .
Time (s)

SR 01 02 03|01 02 03|01 02 03

GOCPT 0.146 0.140 0.140{0.168 0.153 0.153(2.055 1.312 1.291 0.462

OFTD (share)|0.097 0.092 0.088|0.133 0.124 0.121|0.374 0.336 0.281 0.454

OFTD 0.094 0.087 0.084|0.128 0.119 0.111{0.371 0.291 0.267 0.898

A.3 Temporal Online Affine Regularizer

To further enhance OFTD for highly irregular data streams, we propose a temporal online affine
regularizer to enhance the robustness of OFTD to abrupt changes in temporal streams. We assume
that the complete tensor stream X; € R71%72%15 s implicitly low-rank. In other words, there exists
an explicitly low-rank tensor [X;]7, € RY 1XI%I5 and a set of per-frame affine transformations such
that the full tensor can be expressed as a transformed version of [X}] . This formulation allows the
model to capture geometric or temporal abrupt changes in data streams while preserving the low-rank
structure.
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Our affine method is inspired by the temporal affine transform introduced in |[Miao et al.| [2024]],
but adapting this affine transform to online optimization is quite challenging. To address this
challenge, we propose to decompose the transformation into structured components, including per-

T
frame translation (z;,y;), rotation 6;, and scaling s;. The translation parameters {x;, yt}fil are
predicted via lightweight neural networks fe, (-), fo,(-) : R” — R with parameters ©, ©,, which

take each row of the time-dependent CP factor matrix fe, ([I%]) € R%*" as input and returns a
T

scalar. Rotation and scaling factors {s;, Gt}fil are directly learned as independent parameters for
each frame.

For each frame ¢, we construct the affine transformation matrix v € R2%3 as:

_ |stcosB; —spsinfy  cosB; -z —sinby - y; )
= S sin 6, stcosby sin@; - xy + cosby -y |’

where z; = fo, (fo,([I3])¢,)) and y; = fo,(fo,([I5])(,:)) are predicted translations, and s;, 6,
are directly learnable scalars for each frame.

Each pixel location (i, j) is transformed as: [i 3] - Yt J l]T, and the warped background
is obtained via bilinear sampling:

Xigwy =1 ([XJ(L’“)7 (i,j)) , 2)

where I(-) denotes the bilinear interpolation function and 1 ([X ](Lk), (1, 5)) returns the interpolation

result of the matrix [X] glk)at the coordinate (3, ).

To validate the effectiveness of the proposed temporal online affine regularizer, we performed
streaming data completion on videos "foreman" and "carphone" with sampling rates ranging from
0.1 to 0.3, keeping all other settings the same as those in the main text. The OFTD with temporal
online affine regularizer attains better NRE results (see table[7)and fig. @). This can be attributed to
the design that enables frame-wise affine modeling to adapt to temporal changes. The regularizer
provides a strong inductive bias by constraining the transformation space to physically consistent
temporal trajectories.

Table 7: Ablation study for the affine regularizer in the OFTD model.

Dataset foreman carphone

SR 01 02 03 )01 02 03
OFTD w/o affine [0.134 0.121 0.114[0.146 0.123 0.119
OFTD w/ affine |0.114 0.104 0.099 (0.134 0.119 0.112

Original
OFTD

e Original
OFTD(affine)

e Original
GOCPT

0 50 100 0 50 100 0 50 100
Temporal index Temporal index Temporal index

Figure 4: Affine regularizer enhances OFTD for irregular data.

B Deferred Proofs

B.1 Intermediate Lemmas

Lemma 1 (Lipschitz smooth bound for FTD). Let the tensor X; € RI* 2% 15 satisfy FTD (@),
where each factor function fo,(-) : R — R" (n = 1,2,3) is an INR formulated as in (3) with
activation function o(-) = sin(wo-). Assume that each element of the weight matrix W in (B)
follows i.i.d. N(0,w?). Then for any 6 € (0,1), any spatial coordinates v,v' € 72, where
v=(va),v)V = (vzl)7 VEQ)) and any temporal coordinates k, k' € 7Z, with probability at least
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1 — 6 the following Lipschitz smoothness holds for X;:

(X)) (viay vz k) = (X vy vty i | S Callv = VI,
—_—
Spatial smooth

/
|(Xt)(V(1)A,V(2),k) - (Xt>(V(1),V(2),k")‘ S Cllk - k l )

Temporal smooth

3)

where Oy = wi®™3(2wr? + wln 38 )34 max(I{ 14, IL 14, IL1%) is a Lipschitz constant.

Proof. Since each element of the weight matrix W € R™*" follows i.i.d. A'(0,w?), we have the tail
bound
P([Wlle, <n) > 1 = exp(—n/w +2r7), @)

and hence the probability of all the 3d (where d denotes the number of layers for each factor INR)
weight matrices of the OFTD model have ¢;-norm less that 7 is at least 1 — 3dexp(—n/w + 2r?).
Let 1 — 3dexp(—n/w + 2r?) = 1 — § we have n = 2wr? + wn 3¢. Note that the sine activation

function satisfies | sin(woz)| < wol|z| (wo > 0). Hence we have Hf@ (@))le, < n%wd="|2|. For any
(1,7, k) we have

(X)) = D, Jou (1) iom) fou (13)) (um) o ([T8]) (i) - @)

m=1
Then for any (¢, j, k) we have

r

(X)) — (X @rg| = | D (for (D) im) — for (1)) ir.m)) fou (13)) ) foou (LT3]) (e |

m=1

§||f®1([jﬂ)(i,) fo, (I11]) (i Hel Hf®2 I2 (L)Hzl ||f03 IS (K, )He1
= [lfe. (1) = fo, (@)ll,, [lfos (D, I fos (B, -

(6)
The bound on the first term holds
1fo, (i) — fo, (), = IWa(c(Wa—1---0(W1i)))— Wa(o(Wa-1---a(Wii")))ll,,
<nlo(Wa-1- - 0(Wii)) —0(Wa_1---a(Wii))||,
S nwo ||Wd,1~~a(W1i) _Wdfl"'o—(wli/)”gl (7)
< nlwdti 4.
Thus we have
(X)) i,k — (X i gy | < 10, (8) = fo, (i) lg, 1 for (DI, 1 fos (R,
< ntwf i — ' ntwg " 1] nfwg k| ®)
< P33 i — i)
Similarly, we can derive:
{|(Xt)(¢,j,k) — () i,y | < Py - 5| ©
(X (igky — () igoeny| < PP ISk — ).

Hence from the triangle inequality one can easily derive that for any spatial coordinates v, v’ and
temporal coordinates &, &’ the following bound holds with probability at least 1 — J:

(X vy vio k) = (X (viy vy ) [ Callv =V,
|(Xt)(V(1),V(2),kT) - (Xt)(V(l),V(Q),k/)|S Ol|k - kl'?

where Cy =wi?™?(2wr? + win 3¢)3d max (1114, IL T4, I4TE). The proof is completed. O

(10)
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B.2 Proof of Online FTD

Theorem 1 (Regret bound for online FTD). Denote the OFTD model learned at the historical
time point t by Xy = [[{f@n ([1L]; t)}izl]] € RIV*EXTs where fo ([IL];t) denotes the n-th factor

function at time t. Assume that

e The OFTD model learned at the new time point t + 1 using (7) is invariant at the boundar}ﬂ
(IL, 15, 1Y), ie, fo, (IL;t+1) = fo, (IL;t) (n=1,2,3).

s Each element of the weight matrix of the d-layer INRs { feo, (-)} follows i.i.d. N(0,w?)
with sine activation function o(-) = sin(wg-). The £1-norm of derivative of each factor INR

||fén (2)||¢, is bounded by r > 0.

Then for any § € (0, 1) and any historical position (i1, i2,13) (i, < I%), the following regret bound

between the new OFTD model X;1, = [[{f@n([fﬁl]; t+ 1)}i:1]] € RET XTSI (Tuke an

example I'T1 = I + 1) and the old OFTD model X; holds with probability at least 1 — §:
[(Xt 1) (61 iasia) — (X2 (i14i2,in) | < Ca ngx(ffl +1—1i,), (11)

where Cy = 6(1>wi®® + kn?4wd?™ ) max(ILI5, 1114, IS TE) and n = 2wr? 4+ wln 32,

Proof. First we derive the regret bound for each factor INR fg, (-) : R — R". For any = € [0, I{]
we have

It +1
fo, (z;t+1) —/ fo, (s;t+1)ds

t
In

Ife, (z;t+1) = fo,(z;t)],, <

£1

It+1 It+1
/ fo, (s;t+1)ds — / fo, (s;t)ds
I

1

+ (12)

4y

It +1
/I fo, (s;t)ds — fo, (x;t)

£y
From Lemma [I] and its proof, we have that with probability at least 1 — § the first term on the
right-hand side of (12) admits

I +1 It 41
fo, (x;t+1)— / fo, (s;t+ Dyds|| = / fo, (x;t+1) — fo,(s;t + 1)ds
I 0 I 0
It +1
< / ntwd=(s — z)ds
It
n [1
It +1
< / ntwdHIL +1 — z)ds
It
n A
= ndwgfl ‘Ifb +1 -z,
(13)
where 7 = 2wr? +wln %. Similarly we can get
It +1
/ fo(sit)ds — fo, (z:t)|| < n'wy ' [L, +1—a]. (14)
It
n El

Define h,(z) = fo, (z;t + 1) — fo, (x;t), and from assumptions we have h,, (%) = 0. From the
mean value theorem for integral, the second term on the right-hand side of (12)) admits

It +1 It +1 It +1
/ fo.(s;t+1)ds — / fo, (s;t)ds / b (s)ds
I I

t t t
n I n n

= 1A (Oll, > (15

@1 el

“This assumption is reasonable since data streams in real-world often exhibit local continuity and hence the
learned OFTD models at adjacent time points would be invariant at the boundary I .
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where ¢ € (It, I! + 1). By the Lagrange mean value theorem we have

1 (g, = 12 (€) = BTl = {[An ()€ = 1) = 2|1, +1—al, (16)
where ¢ € (I',¢). Here, we have used the assumption that ||h, (€)|ls, = ||fé)n &t+1) —
fén (& 1)]le, < 2k. Combining all the results, we obtain:

fon (@it +1) = fo, (@st)l,, < 20n"wg™" +m)I +1 —al. (17)

Now we can derive the regret bound for online FTD. Write each element of the tensor X as
() (i i2is) = 2omet Jou (L1 8) (in,m) fou ([L3)3 ) (in,m) fos ([I§]; 1) 35 m)- Then for any (i1, ia, i3)
(in < It) we have

[(Xe1) (i1 iz ,i2) — (X (i1,i0) |

s

=1 fou (it + )iy my foo ([T8]; £+ 1) 13m) fos ([I8); £+ 1) i.m)

m=1

—fo, (115 8) iy m) oo (IS5 ) ig.m) fos (LT85 ) ig.m) |

r

= Z(f@l([lﬂ;t"i_l)(il,m) _fel([‘[ﬂ; )H,m)) f@2([‘[2] )ig,m)f@3([‘[§];t)(i3,m)

m=1

+(fo, ([13);t + 1) i.m) — for (13); ) (i.m)) fou (1115t + 1) (i m) fou (L1515 ) (i m)

+(fou (It 4 1) (ig.m) — fou (I8 6) (iy.m)) fou (1) + 1) iy my fo (3] 4 1) iy |
<|fe. (st +1) = fo,(i1; )l [[foo (i2s D), [l fos (i3 t)ll,,

+ | fo,(izit + 1) = fo,(i2; )4, [Ifer (st + 1), [[fos (55 2)l,,

+[[fos(isst +1) — fo,(is; V)|l [ fo, (st + D)l | fo, (i2;t + 1), -

(18)
Substituting into (I8) we obtain:

|(Xes1) (51.0215) — (X (110,100 | < 200%™ + )1+ 1 — iq| (nwl 1) 414

+ 2(n%wd 4 R)|IE + 1 — d|(nfwd )21 I} "
T2l )|+ 1 — gttty )

< Cymax(Ih +1 —1iy,),
n

where Cy = 6(1>4w3? 3 4 k024w ) max(IL 14, ILTL, I41%). The proof is completed. O

C Implementation Details

C.1 Dataset Details

We introduce details of the used datasets here. For single-aspect streaming, Air Qualityﬂ contains
hourly measurements of pollutant concentrations at different monitoring stations. Indoor Conditio
includes measurements of humidity and temperature across various indoor locations over time. Radar
Trafﬁ<ﬂ records traffic flow data over time at different locations. Chicago Taxiﬁ represents taxi trip
data in Chicago. Intel Lab Sensmﬂ comprises measurements of humidity, temperature, light, and
voltage collected by sensors in a laboratory. For multi-aspect streaming, video datasets foreman and
carphonem and the business review dataset YELPE| are used. The detailed information is shown in
Table Bl

Shttps://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data,  https://www.kaggle.com/
datasets/decide-soluciones/air-quality-madrid.

Shttps://archive.ics.uci.edu/dataset/374/appliances+energy+prediction

"https://www.kaggle.com/datasets/vinayshanbhag/radar-traffic-data

8https://data.cityofchicago.org/Transportation/Taxi- Trips-2013-2023-/wrvz-psew

“https://db.csail.mit.edu/labdata/labdata.htm]

http://trace.eas.asu.edu/yuv/

https://www.yelp.com/dataset
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Table 8: Real-world tensor datasets used in experiments.

Name Modes Tensor Size
Beijing Air Quality locations x pollutants x time 12 X 6 X 5994
Madrid Air Quality locations x pollutants x time 26 X 17 x 3043
Indoor Condition locations x sensors x time 9 X 2x 2623
Radar Traffic locations x directions X time 17 X 5 X 6419
Chicago Taxi sources X destinations x time 77T X 77 x 2904
Intel Lab Sensor locations x sensors X time 52 X 4 x 1152
Video foreman height x width x frames 144 x 176 x 100
Video carphone height x width x frames 144 x 176 x 100
YELP user x business x year-month 1000 x 992 x 93

C.2 Experimental Settings

In experiments, the rank parameter r is set to 100 for all datasets. And the width of INR networks is
set to 128 for all datasets. The sine activation sin(wyg-) is used as nonlinear activation with Lipschitz
continuous property. For single-aspect streaming, wy is set to 1.5 for madrid and sensor, and 0.3 for
other datasets. For multi-aspect streaming, wy is set to 1.5 for foreman and carphone, and 0.01 for
YELP due to its intense sparsity. The Beta distribution parameter « is set to 1, and 3 is set to 1.2. A
proportion of 1/3 historical data is randomly selected according to the Beta distribution to construct
the memory buffer M, at each time point ¢. The learning rate of the Adam optimizer is set to 0.001.
We perform 100 iterations for single-aspect streaming and 500 iterations for multi-aspect streaming
at each time point, using the Adam optimizer. For baseline methods, we tuned their hyperparameters
using grid search or following their authors’ suggestions to obtain their best performances. For
single-aspect streaming, we set the temporal dimension of the data stream to grow by 1 at each time
point. For multi-aspect streaming, we set each dimension of the data stream to grow by 10% w.r.t.
the total length of the data at each time point. All the experiments are conducted on a computer with
15-12600KF CPU, RTX 4070 Ti SUPER GPU, and 64 GB memories. The Pytorch framework and
MATLAB 2024a are used to conduct experiments.

D More Results

In this section, we present three main components: additional ablation study results, further discussion
of the proposed theory, and several attempts to improve the proposed method.

We provide ablation study of the usage of INR (i.e., OFTD with or without INR) in Fig. [5]and Fig.
[6] by using the radar traffic dataset. The use of INR helps to preserve the spatial continuity of the
completion results, thus enhancing performances for OFTD (Fig. [5). What’s more, OFTD w/ INR
better preserves the smoothness of the temporal curve, highlighting the contribution of the INR to the
robustness and accuracy of the completion results (Fig. [6).

——

- - | =
OFTD w/o INR OFTD w/ INR OFTD w/o INR OFTD w/ INR
NRE 0.205 NRE 0.084 NRE 0.226 NRE 0.111

Figure 5: Ablation study for the proposed method without (w/o0) and with (w/) the INR on video
datasets foreman and carphone. OFTD w/o INR degrades to the classical online CP decomposition.

Dataset radar Dataset radar

Value
Value

Original
OFTD w/o INR

Original
OFTD w/ INR

0 50 100 150 0 50 100 150
Temporal index Temporal index

Figure 6: Temporal curves of a spatial pixel reconstructed by OFTD without or with INR under SR
0.3.

Additional ablation study regarding the CP-rank r is shown in Table[9] which shows that our method
is quite robust w.r.t. the CP-rank . We also tested the influence of the complexity of the INR (i.e.,
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width and depth), as shown in the Table[I0]and Table [IT] Our OFTD is relatively robust to these
parameters. In experiments, we have consistently set the width to 128 and the depth to 3, which
suffice to achieve satisfactory performance across datasets, while further fine-tuning these parameters
could achieve even better performance.

Table 9: Ablation study for the CP-rank r in the OFTD model.
Dataset Beijing Madrid (average)
Rank 20 40 60 80 100 120 140 160 180
NRE 0.1253 0.1255 0.1243 0.1242 0.1245 0.1251 0.1235 0.1246 0.1252

Table 10: Ablation study for the depth (number of layers) of INRs on the Condition data. We vary
each factor while fixing the other ones to assess its individual effects.

Depth 2 3 4 5 6 7 8 9 10

NRE 0.099 0.093 0.088 0.086 0.085 0.088 0.089 0.096 0.109

Table 11: Ablation study for the width of INRs on the Condition data. We vary each factor while
fixing the other ones to assess its individual effects.

Width 32 64 128 192 256 320 384 448 512

NRE 0.128 0.106 0.093 0.085 0.087 0.082 0.083 0.081 0.085

Also, we have tested our method with ReLU, WIRE |Saragadam et al.|[2023]], FINER |[Liu et al.|[2024]],
and Sine [Sitzmann et al| [2020] activation functions, and the results in the Table[12]show that the
default Sine activation function is effective and suitable for our OFTD method. The higher NRE with
ReLU activation highlights the importance of activation functions with suitable spectral properties
for coordinate-based INRs |Sitzmann et al.|[2020], like the ones used in our method.

Table 12: Ablation study for the activation functions used in the INRs on the Condition data.

Activation function WIRE FINER ReLU Sine

NRE 0.105 0.103 0.215 0.093

To further demonstrate the applicability of our OFTD on large-scale (e.g., higher-order) tensor
datasets, we consider testing on a fourth-order color video dataset of size 3 x 144 x 176 x 100. Our
method can readily extend to the higher-order case by using higher-order CP decomposition parame-
terized by INRs. The OFTD outperforms the baseline GOCPT for the fourth-order streaming tensor
completion: NRE 0.187 vs. 0.235 (OFTD vs. GOCPT) using single-aspect settings, demonstrating
the effectiveness of OFTD on higher-order tensors. We also provide more experimental results in
Fig.[/| Our OFTD achieves generally better performances by observing the more accurate temporal
curves.

Regarding the theoretical Lemma [I]and Theorem|I] proposed in the main text, we have the following
discussion. First, we qualitatively prove the empirical validity of Lemma [I] We provide more
experimental results about the smoothness of the OFTD model w.r.t. parameters wq (the sine
activation function parameter) and w? (the variance of the initialization of weight matrices of the
MLP) in Table[I3]and[T4]

We define a smooth metric S(X) := ), ’|X(:7:7k+1) — Xk Hel to evaluate the smoothness of the

recovered tensor. It can be observed that the smoothness of the model is enhanced (i.e., the smooth
metric S decreases) with smaller wy and w, which coincides with Lemma [I] that smaller wq and w
lead to lower Lipschitz smooth bound (Tables [I3]and[T4). And our method could benefit from an
appropriate degree of smoothness brought by tuning these hyperparameters.

Table 13: Ablation study for the hyperparameter wy in the sine activation function sin(wy-) used in
the INRs of the OFTD model.

Dataset Beijing Madrid (average)

wo 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

S(x10M)| 9.2 126 137 138 159 21.7 234 243 250
NRE 0.1410 0.1319 0.1184 0.1168 0.1196 0.1272 0.1358 0.1430 0.1478
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Figure 7: Temporal curves of a spatial pixel reconstructed by different methods for different datasets.
The proposed OFTD could better recover the complex nonlinear temporal curves, showcasing its
higher accuracy for the streaming data completion problem.

Table 14: Ablation study for the variance w? of the initialization of weight matrices in the INRs.

Dataset Beijing Madrid (average)

w? 0.0l 0.02 0.03 004 005 006 007 008 0.09
S(x10%)] 133 149 158 162 165 169 176 184 186
NRE 0.1245 0.1280 0.1305 0.1327 0.1337 0.1344 0.1367 0.1405 0.1416

Then we have the following explanation regarding the assumption of invariance in Theorem[I] The
invariant assumption was deduced for general scenarios, i.e., real-world data streams often gradually
and smoothly change across the evolving directions, and hence the learned OFTD models at adjacent
time points would be invariant at the boundary. In this case, nearby points will not be negatively
affected by the new data since they are similar in structure.

To empirically validate the invariant assumption, we calculate the relative error between boundary
[[£ (1) = £ (1)

[ (2|
[T3] we see that the relative error is less than 5%, validating the rationality of the invariant assumption.
We note that even without the invariant assumption, the theoretical regret bound and qualitative
conclusion of Theorem [I] could still be deduced analogously by adding a small constant € that
indicates the change of boundary variables.

variables 2 before and after the online optimization at time ¢ + 1. In the Table

Table 15: Relative error between the boundary variables before and after the online optimization at
t+ 1.

t+1 20 40 60 80

Foreman 4.10% 2.23% 3.99% 1.19%
Condition 1.70% 4.25% 3.40% 1.99%

Finally, to empirically validate Theorem[I] we test OFTD without memory buffer and report the NRE
at different positions after the online optimization at I, = 100, as shown in the Table More distant
positions (i.e., smaller 7,) tend to hold larger NRE without memory buffer, indicating that distant
information is more likely to be forgotten. This result precisely aligns with Theorem [I] which states
that more distant information holds larger regret bound. Hence, the theoretical result in Theorem [T]is
empirically satisfied in practice.
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Table 16: NRE results at different positions %,, with and without memory buffer.

Position i,, 10 20 30 40 50 60 70 80 90

Without memory buffer 0.440 0.314 0.300 0.275 0.256 0.228 0.170 0.127 0.101
With memory buffer ~ 0.075 0.104 0.074 0.071 0.078 0.098 0.077 0.100 0.093

Next, we will present some interesting attempts to improve our methods. According to the definition
of )V, in Definition (3), the tensor can be extremely sparse. Thus We further conducted experiments
by imposing an /1 -norm sparse regularization on the factors of the CP decomposition to incorporate
the sparse prior: A 25:1 [| fr. ([Z¢]) |1, » where A is a sparse regularization parameter. The results with
different values are shown in the Table[I7] The results show that the sparse regularization with a
suitable has the potential to improve the performance of our method, while higher may over-constrain
the model. It would be interesting to develop other effective sparse regularizations under the OFTD
framework, and we leave it to future research.

Table 17: NRE results with different intensities of the sparse regularization.

A 0 001 0.03 005 0.07 0.09

Foreman 0.084 0.081 0.079 0.078 0.078 0.080
Condition 0.093 0.091 0.088 0.088 0.090 0.092

Currently the Beta parameter [ is fixed. It is a great idea to dynamically adjust the Beta parameter
based on the learning process. We conduct experiments using a linear dynamic scheme for S (i.e.,
Bt = Bo + tAB, where 5y = 1), as shown in Table 8] Better NRE results are observed when Af is
a positive value (i.e., long-tail distribution). Conversely, when Af is a negative number, the gains are
negative. We attribute this result to the nature of our forgetting bound, which depends on the relative
position (I}, + 1 — i,,) (as shown in Eq. (§) of the main text). It shows that distant information is
more likely to be forgotten, and hence a long-tail memory buffer with A5 > 0 is favored. The design
of more complex (3; schedules and their theoretical analysis are not trivial due to the complexity of
the optimization problem. We leave this promising direction to future research.

Table 18: NRE results with dynamic scheme 5; = 1 + tAf on the Foreman data.

ApB -0.01 -0.005 0 0.005 0.01 0.015 0.02 Fix 8 =1.2

NRE 0.092 0.087 0.086 0.083 0.083 0.084 0.084 0.084

If we want to further reduce the computational complexity associated with memory buffer, we can
consider using fixed-size memory buffer strategies (non-increasing memory buffer size). Especially,
we utilize the Beta distribution to construct long-tail memory buffer that contains up to 100 historical
samples, which strictly restricts computational complexity.

From the results in the Table[I9] we can observe that OFTD still performs stably under the fixed-size
memory buffer. In particular, OFTD with fixed-size memory buffer achieves a significantly lower
NRE of 0.1311 (vs. 0.3979 without memory buffer) with only a moderate increase in FLOPs (10.79M
vs. 9.09M) on the Madrid case. The results demonstrate the practical efficiency and effectiveness of
the fixed-size memory buffer strategy. It is also possible to consider other continual learning strategies
such as memory buffer-free methods (e.g., gradient projection |Lin et al.| [2022]] and prototype-
sampling |Asadi et al.|[2023]]) to further enhance the efficiency of OFTD, yet the combination is not
trivial due to the distinct structures of OFTD. Hence, we leave this direction for future research .

Table 19: Ablation study for the memory buffer size (percentage of buffer size w.r.t. the whole tensor
size), including a fixed-size memory buffer (up to 100 samples).

Dataset Beijing Madrid

Buffer size| 100%  50% 33% 20%  Fixed-size 0% 100% 50% 33% 20%  Fixed-size 0%
NRE 0.1280 0.1299 0.1308 0.1324  0.1422 0.2903| 0.1112 0.1160 0.1182 0.1204 0.1311  0.3979
FLOPs 87.97TM 43.99M 29.33M 17.61M 8.89M  6.03M |139.42M 69.73M 46.50M 27.93M 10.79M 9.09M

In addition to the above attempts, the OFTD method can be readily generalized by combining with
other tensor decomposition paradigms such as Tucker decomposition and tensor-train decomposition.
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Especially, we define the Tucker functional tensor decomposition (Tucker-FTD) as

X =Cxa fu (1)) %2 f2 ([I5)) s fs (1I5]) € RIS,
where C € R™%72X7s ig a core tensor and f,, ([I1]) € RI»*" (n = 1,2,3) are factor functions
parameterized by INRs.

Moreover, we define the tensor-train functional tensor decomposition (TT-FTD) as
X, = fo ([I3)) x1 f1 (1)) x5 f5 ([I5]) € RI < T2xTs,

where f, ([If]) € Rm*Bxrs_ £ ([I1]) € RE*™, and f3 ([I%]) € R"**%5 are factor functions
parameterized by INRs.

To adapt the Tucker-FTD and TT-FTD for streaming data, we consider their online versions by
progressively expanding the input coordinate vectors [I%] of INRs, and hence expanding the sizes
of factor matrices/tensors to fit the new tensor size. We give a numerical example by comparing
different tensor decompositions under the OFTD framework, as shown in the Table @} We control
the rank of different methods such that they hold similar number of learnable parameters.

Table 20: NRE results by OFTD with different tensor decomposition paradigms on the Foreman
data.

Method TT CP Tucker

NRE 0.085 0.084 0.082
Number of Params. 3.12 x 10° 2.76 x 10° 2.93 x 10°

Tucker-FTD achieves a relatively better result in this case, which can be rationally explained by the
additional core tensor parameter C that enhances the representation ability of Tucker-FTD. In future
research, we can consider more tensor decomposition paradigms such as the tensor SVD under the
OFTD framework.
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