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Abstract

This work proposes a cost-effective approach for developing a powerful conversa-
tional healthcare AI, Med-Nirvana 8B, utilizing the QLoRA supervised fine-tuning
(SFT) technique. Given the significant computational demands for the full fine-
tuning of large language models (LLMs), a two-stage QLoRA-based fine-tuning
process is adopted using the open-source LLaMA 3.1 8B Instruct model. The
first stage focuses on fine-tuning the model on a mixture of medical benchmark
datasets (MedQA, MedMCQA, and PubMedQA) to strengthen the model’s factual
knowledge, reasoning, and decision-making skills in a structured environment.
In the second stage, the model is fine-tuned using the NoteChat dataset, which
contains synthetic patient-physician conversations, enabling it to handle more
complex, real-life situations, such as diagnosing patients and managing conver-
sations with them. The composition of SFT data significantly impacts an LLM’s
ability to acquire multiple skills. Hence, we implemented a novel SFT strategy
known as Dual-stage Mixed Fine-tuning (DMT). By employing this approach, we
successfully developed a promising and cost-effective conversational healthcare
LLM. Med-Nirvana 8B demonstrates strong performance on medical benchmarks
compared to similar-scale models and excels in providing accurate, concise, and
human-like responses in real patient interactions, validating the effectiveness of
this low-resource fine-tuning methodology.

1 Introduction

Instruction-following large language models (LLMs), such as GPT-4, LLaMA-3 and PaLM 2 [2, 9, 3]
have attracted considerable interest for their proficiency in interpreting instructions and producing
human-like responses. These autoregressive LLMs undergo pre-training on vast amounts of natural
language data from the web, using next-token prediction. They are then fine-tuned on extensive
datasets of human instructions to improve their ability to follow instructions [19]. In the development
of LLMs, Instruction Tuning is often viewed as a specialized form of Supervised Fine-Tuning
(SFT) [37, 34, 27, 21]. While SFT refers broadly to the process of refining pre-trained models
on task-specific labeled datasets, instruction tuning focuses specifically on fine-tuning models to
follow explicit human instructions across diverse tasks. By leveraging large-scale datasets where
human instructions are paired with expected outputs, instruction tuning aligns model behavior with
human intent. In this way, instruction tuning serves as a targeted SFT strategy, optimizing models
for generalized, instruction-based task completion while enhancing their flexibility and usability in
real-world applications. Throughout this paper, we refer to Instruction Tuning as a form of SFT,
where the model is trained to follow specific human instructions.

Standard (or full) SFT involves updating all model parameters on a task-specific dataset to improve
performance. However, full fine-tuning of very large models is prohibitively expensive. Parameter-
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efficient fine-tuning (PEFT) techniques address this issue by selectively updating a small subset of
parameters, reducing resource demands while maintaining performance [7]. Low-Rank Adaptation
(LoRA) [11] and Quantization-aware Low-Rank Adaptation (QLoRA) [6] are two of the most popular
PEFT techniques for working under low computational resources. LoRA achieves this by adding
trainable low-rank matrices to the model layers, enabling efficient learning, while QLoRA extends this
by using quantization to reduce memory usage during fine-tuning without compromising accuracy.

In this paper, we investigate the application of the QLoRA SFT technique in a two-stage process
to build a highly cost-effective yet powerful conversational healthcare AI. In the first stage, the
model is fine-tuned to improve its performance in answering medical multiple-choice questions. In
the second stage, the model is further fine-tuned to develop proficiency in general conversations
with patients, including diagnosing and managing patient interactions. In detail, we first apply SFT
using the QLoRA technique to the LLaMA 3.1 8B Instruct model, utilizing a data mixture of 404K
samples from three widely-used medical benchmark datasets: MedQA [13], MedMCQA [20], and
PubMedQA [14]. Here, we follow multi-task learning settings [36], allowing the model to learn
simultaneously from related tasks from different data sources. In the second stage, the model obtained
after stage-1 fine-tuning is further subjected to SFT using the QLoRA technique on 100K samples
from a dataset called NoteChat [30], which consists of synthetic patient-physician conversations
conditioned on clinical notes. This enables the model to generalize beyond medical muitiple-choice
question-answering tasks and adapt to more complex, interactive settings. This is done as a two-stage
process since multi-task learning can lead to conflicts when learning from different tasks [33].

Dong et al. [8] show that in their analysis of SFT strategies, sequentially learning multiple skills risks
catastrophic forgetting. Therefore, we followed the dual-stage mixed fine-tuning (DMT) strategy
proposed by the authors [8] as a promising solution for learning multiple abilities with different
scaling patterns. After following these procedures, we obtained our final conversational model, Med-
Nirvana 8B. We evaluated Med-Nirvana’s performance on three well-known medical multiple-choice
benchmarks and in long-form consumer (i.e., real patient) medical question-answering, assessing its
ability to identify diagnoses and provide medical advice to patients. According to the results, our
model demonstrates strong performance on these medical benchmarks compared to similar-scale
models. Furthermore, it provides answers that are more accurate, concise, and closely resemble those
of a human physician for real consumer queries, compared to the LLaMA 3.1 8B Instruct model.

2 Background and Related Work

Full fine-tuning, LoRA, and QLoRA are three of the most popular SFT techniques. Each is briefly
described below.

Full fine-tuning This method involves updating all parameters of a pre-trained model using an
instruction dataset. While it often yields the highest performance, it demands substantial compu-
tational resources. Full fine-tuning of very large models is prohibitively expensive. For instance,
regular 16-bit fine-tuning of a LLaMA 3.1 70B parameter model requires over 500 GB of GPU
memory [24]. Even for a LLaMA 3.1 8B parameter model, the minimum GPU memory requirement
is approximately 60 GB, and fine-tuning on larger datasets can take several days. Additionally, such
processes still necessitate multiple high-end GPUs. Since it involves adjusting the entire model, full
fine-tuning can be quite disruptive, potentially leading to catastrophic forgetting [5] of previously
acquired skills and knowledge.

LoRA Unlike full fine-tuning, which retrains all model parameters, LoRA freezes the pre-trained
model weights and introduces trainable small adapters (low-rank matrices) into each layer of the
Transformer architecture [29]. This approach drastically reduces the number of trainable parameters,
often to less than 1% of the total, substantially reducing both memory usage and training time. Since
the original parameters are frozen, this method is non-destructive, and the adapters can be switched
or combined.

QLoRA QLoRA, like LoRA, freezes the pre-trained model’s weights and inserts low-rank matrices
as adapters into each layer of the Transformer architecture. However, QLoRA further reduces memory
requirements by quantizing the model to 4-bit precision during fine-tuning. This significantly lowers
the memory footprint while retaining the model’s performance. By freezing the original parameters,
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QLoRA remains non-destructive, allowing for flexible adapter switching or combination, while
further optimizing resource usage.

The integration of AI into healthcare, particularly through LLMs such as GPT-4 and Gemini, has
reshaped the field of medicine [2, 28, 10]. GPT-4 has garnered significant attention for achieving
superior performance in medical QA benchmarks [18]. Building on the core strengths of Gemini 1.0
and Gemini 1.5, Med-Gemini, a family of highly capable multimodal models specialized in medicine,
achieves state-of-the-art (SoTA) performance with 91.1% accuracy on the popular MedQA (USMLE)
benchmark [22]. However, medical practice often requires a deeper contextual understanding of
specialized subfields (e.g., rare diseases, clinical workflows, region-specific medical practices).
Therefore, using a generalized model like GPT-4 in the medical domain carries certain risks, even
though it performs well on medical multiple-choice QA benchmarks. Additionally, models like
Med-Gemini are not publicly or freely available for use by small organizations, such as rural hospitals,
or for individuals.

A more viable and cost-effective approach to developing customized medical language models is
to perform SFT on domain-specific medical data using open-source models such as LLaMA [32].
However, the computational resources required for fine-tuning LLMs with billions of parameters
are still substantial, making it impractical for individual researchers or small organizations to train
these models from scratch. In such scenarios, PEFT techniques like LoRA and QLoRA are highly
effective.

3 Experiments

3.1 Datasets

Our approach replicates the actual process by which humans acquire medical knowledge when
aspiring to become doctors [25, 4]. We fine-tuned the model in two phases. In human learning,
particularly in medical education, students often start with simpler, structured tasks like multiple-
choice questions (MCQs) before progressing to more complex tasks such as real-world conversations
with patients. Therefore, for the first stage of our fine-tuning procedure, we used three well-known
MCQ-type medical datasets. This phase strengthens the model’s factual knowledge, reasoning,
and decision-making skills in a structured, low-pressure environment. As students progress, they
begin applying this knowledge in more complex, real-life situations, such as diagnosing patients and
handling conversations with them. Similarly, in the second stage of fine-tuning, we trained our model
with a dataset containing augmented synthetic patient-physician dialogues based on actual clinical
notes.

3.1.1 First-stage Datasets

In the first stage, we directly mix different SFT data sources and apply SFT. If we consider each
data source as a different task, this approach can be viewed as multi-task learning [31, 23]. Building
on prior research in developing medical LLMs and evaluation techniques [26], we curated our data
mixture from three widely-used medical benchmark datasets: MedQA, MedMCQA, and PubMedQA.

MedQA: The MedQA [13] dataset consists of US Medical License Exam (USMLE)-style questions,
which were obtained with either 4 (MedQA US 4-option) or 5 possible answer choices from the
National Medical Board Examination in the USA. We used the MedQA US 4-option set, which
contains 10,178 samples in the training set and 1,273 questions in the test set. For our training data
mixture, we included all 10,178 samples from the MedQA US 4-option training set.

MedMCQA: The MedMCQA [20] dataset consists of 4-option multiple-choice questions from
Indian medical entrance examinations (AIIMS/NEET). This dataset covers 2,400 healthcare topics and
21 medical subjects. The training set contains 182,822 samples, while the validation set contains 4,183
questions. Both the training and validation sets include explanations for each question, detailing the
correct answer. However, in our training process, we excluded these explanations and only included
the correct answer key. The dataset also provides a test set with 6,150 samples, but the answer keys
for the test set are not available to the general public. Therefore, we used the validation set to report
evaluations. We incorporated all training samples from the MedMCQA training set into our training
data mixture.
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PubMedQA: The PubMedQA [14] contains biomedical research questions with context provided
from PubMed abstracts. The answer for each question is one of three options: yes, no, or maybe. We
formulated these choices as a multiple-choice question, where A is yes, B is no, and C is maybe,
matching the testing method done by Liévin et al. [17]. The PubMedQA dataset has two settings:
reasoning-required and reasoning-free. In the reasoning-free setting, a long-form answer with abstract
explanations is provided. We report results for the reasoning-required setting, where the model
answers questions using only the context from abstracts, without additional explanations. The dataset
consists of 211,269 artificially created multiple-choice QA samples and 1,000 QA samples labeled
by experts. We used all 211,269 artificially created samples in our training data mixture and used all
1,000 expert-labeled samples for evaluations.

Table 1: Data composition of the training data mixture used for first-stage QLoRA fine-tuning.

Dataset # Train Samples # Test Samples

MedQA 10,178 1,273
MedMCQA 182,822 4,183
PubMedQA 211,269 1,000

Data Mixture 404,269

A summary of the data composition in our data mixture is shown in Table 1. To create the final
training data mixture for first-stage fine-tuning, we combined the training sets of each of these three
datasets. Although the size of the training set in the data mixture is 404,269 samples, we used 10% of
that as the validation set.

3.1.2 Second-stage Datasets

In the second stage of fine-tuning, we select a dataset called NoteChat1 [30], which consists of
synthetic patient-physician conversations conditioned on clinical notes, to enable the model to
generalize beyond medical question-answering tasks and adapt to more complex, interactive settings.
While the first stage of training focused on enabling the model to learn medical knowledge and
reasoning from large-scale, multiple-choice datasets such as MedQA, MedMCQA, and PubMedQA,
the second stage aims to enhance the model’s capability to handle dynamic conversational contexts.

NoteChat: The NoteChat [30] dataset consists of 207,001 synthetic patient-physician conversation
samples conditioned on clinical notes. They have released their first large, high-quality synthetic
dialogue data, conditioned on 167k case reports, which can be used to train both dialogue systems and
EHR note-generation systems using dialogues. We randomly selected 100k samples for the training
dataset of the second-stage fine-tuning and another 10k samples for the validation dataset.

Dong et al. [8] show that in their analysis of SFT strategies, sequentially learning multiple skills
risks catastrophic forgetting. They propose that the DMT strategy offers a promising solution for
learning multiple abilities with different scaling patterns. Therefore, we followed their approach
to preserve the abilities learned by the model at both stages. According to this, we needed to use
a proportion k from the stage-1 data mixture along with the NoteChat dataset. However, there is
no specific formula to select k; it must be decided empirically. Since the proportion between the
first-stage training dataset and the second-stage major dataset (i.e., NoteChat) is approximately 3:1,
we followed the inverse of this proportion and selected 33,333 samples from the stage-1 data mixture
as the training dataset contribution for the second stage. For validation, we also maintained the same
ratio. A summary of the data composition in our second stage data mixture is shown in Table 2.

3.2 Modeling Methodology

Model architecture: For all experiments, we used the LLaMA 3.1 8B Instruct model [9], which is
based on a standard dense Transformer architecture [29]. We utilized a pre-quantized 4-bit variation
of the model in 4bit bnb2 form to run it more efficiently on hardware with limited computational
resources.

1https://huggingface.co/datasets/akemiH/NoteChat
2https://github.com/bitsandbytes-foundation/bitsandbytes

4



Table 2: Data composition of the training data mixture used for second-stage QLoRA fine-tuning.

Dataset # Train Samples # Validation Samples

NoteChat 100,000 10,000
Stage-1 Data Mixture 33,333 3,333

Total 133,333

Model training and inference infrastructure: For both fine-tuning and inference, we utilized a
single NVIDIA H100 NVL Tensor Core GPU with 94 GB of available GPU memory. Due to the
efficiency of QLoRA fine-tuning, the first-stage fine-tuning process was completed in approximately
8 hours, while the second stage required roughly 7 hours and 30 minutes.

3.3 Supervised Fine-tuning

We carried out the supervised fine-tuning procedure as a two-stage process. In the first stage, we
utilized the dataset referred to as the Data Mixture, as explained in Section 3.1.1, and performed
instruction fine-tuning as suggested by Singhal et al. [26]. As shown in Figure 1, after stage-1
fine-tuning, we obtained an intermediate model called Med-Mix. This model was then subjected to
further instruction tuning using the NoteChat dataset, along with a subset of the stage-1 data mixture.
The final model we obtained is called Med-Nirvana. For both stages of instruction fine-tuning, we
manually crafted a clear and expressive instruction for the training sets, as depicted in Figure 2.

Figure 1: The dual-stage mixed fine-tuning (DMT) strategy followed with QLoRA fine-tuning to
obtain the final Med-Nirvana medical conversational model.

3.3.1 First-stage QLoRA

Training Details To efficiently fine-tune the LLaMA 3.1 8B Instruct model, we utilized the
Unsloth3 library by Daniel and Michael Han. Unsloth offers custom kernels that enable training at
twice the speed and with 60% less memory usage compared to standard methods, making it ideal
for resource-constrained environments. The library allowed us to load the 4-bit quantized version of
the LLaMA model and apply the QLoRA fine-tuning technique. Using this QLoRA configuration,
we train only 42 million parameters out of a total of 8 billion, which represents just 0.52% of the
model’s parameters. As shown in Figure 1, we conducted SFT using a data mixture composed of three
datasets: MedQA, MedMCQA, and PubMedQA. The Hugging Face Transformers Reinforcement
Learning (TRL) library, specifically the SFTTrainer4 class, was used to facilitate the fine-tuning

3https://unsloth.ai/
4https://huggingface.com/docs/trl/en/sft_trainer
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Figure 2: The instruction used for supervised fine-tuning in both stages.

process, which was performed for a full epoch. For optimization, we employed the AdamW 8-bit
optimizer with a linear learning rate scheduler.

Hyperparameters We load the LLaMA model in 4-bit precision and prepare it for parameter-
efficient fine-tuning [7] using LoRA adapters [11]. The three key parameters to consider when
configuring LoRA are the rank (r), the scaling factor (α), and the target modules. To balance accuracy
with computational cost, we set r = 16 in this case. The scaling factor directly impacts the adapters’
contribution and is often set to 1x or 2x the rank value. Therefore, we set it to α = 16. LoRA can be
applied to different components of a transformer model, such as attention mechanisms (including the
Q, K, and V matrices), output projections, feed-forward blocks, and linear output layers. Therefore,
we targeted every linear module to maximize quality. To accelerate training, we exclude the use
of dropout and biases. Additionally, we use rank-stabilized LoRA (rsLoRA) [15]. This technique
adjusts the scaling factor of LoRA adapters to be proportional to 1√

r
rather than 1

r . By doing so, it
helps stabilize the learning process, particularly when using higher adapter ranks, and enhances the
model’s fine-tuning performance as the rank increases.

We use a learning rate of 3× 10−4, a weight decay of 0.01, and a batch size of 4. We set the warmup
steps to 10 and the maximum sequence length to 2048. Figure 11 depicts the training and validation
loss during the first-stage QLoRA fine-tuning for the complete epoch.

3.3.2 Second-stage QLoRA

Training Details In the second stage, we again applied QLoRA fine-tuning to the Med-Mix model,
which we obtained after stage-1 fine-tuning, as depicted in Figure 1. The most critical aspect of this
stage was the selection of datasets. Our objective was to enhance the model’s conversational and
diagnostic capabilities. Therefore, the primary dataset used was NoteChat, as described in Section
3.1.2. Since catastrophic forgetting can occur due to the sequential nature of training, we selected a
data mix consisting of NoteChat and a subset of stage-1 data mixture, as described in Section 3.1.2.
All other tools utilized and procedures followed are the same as in stage-1, as described in the training
details of Section 3.3.1.

Hyperparameters In this stage, all our hyperparameters were the same as those in stage-1, as
described in Section 3.3.1. Figure 12 depicts the training and validation loss during the fine-tuning
procedure for this stage, over the complete epoch.

4 Evaluation and Results

4.1 Multiple-choice evaluation

We evaluate the performance of our model on medical multiple-choice question-answering (QA)
tasks. Although the MCQ evaluation is not our primary focus, it confirms that stage-2 fine-tuning
does not lead to significant catastrophic forgetting of specialized medical knowledge. To this end, we
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Table 3: Accuracy comparison on medical benchmarks. Benchmark results of other models are taken
from Chaoyi et al. [32]. The top two results across different models with fewer than 10B parameters
and conversational capabilities are marked in bold.

Model Model Size MedQA (4-Option) MedMCQA PubMedQA Average
Human (pass) – 50 – 60 –
Human (expert) – 87 90 78 85
GPT-4 – 81.38 72.36 74.4 76.04
Med-Palm 2 540B 86.5 72.3 81.8 80.2
GPT-3.5 175B 57 44 63.9 54.97
MEDITRON 7B 37.4 36.3 69.3 47.67
MEDITRON 70B 59.8 53.3 79.8 64.3
LLaMA-2 70B 43.68 35.02 74.3 51
Med-Alpaca 13B 30.85 31.13 53.2 38.39
Chat-Doctor 7B 33.93 31.1 54.3 39.78
PMC− LLaMAk 7B 48.15 54.15 77.1 59.8
PMC-LLaMA 13B 56.36 56.04 77.9 63.43
LLaMA-3.1-Instruct (4-bit quantized) 8B 56.87 54.82 75 62.23
Med-Mix (4-bit quantized) 8B 57.5 56.35 79.1 64.32
Med-Nirvana (4-bit quantized) 8B 53.55 52.77 71.67 59.33

- Close-source models
- These models are specialized for multiple-choice QA tasks and may not respond

correctly to other instructions. They lack conversational abilities.

assess both our primary model, Med-Nirvana, and the intermediate model, Med-Mix, using the test
sets of the MedQA, MedMCQA, and PubMedQA datasets individually (Table 1).

We compare our results with various medical and general models on the same medical benchmarks,
as shown in Table 3. It is important to note that this comparison is not entirely fair, as certain training
details, such as data and architecture, remain undisclosed for some commercial models. Therefore,
we consider these baseline models as reference points rather than direct comparisons. Our primary
focus is on demonstrating the development of a cost-effective, efficient, yet powerful language model
for medical applications. We highlight how different data sources, model scales, and fine-tuning
techniques influence LLM performance in the medical domain.

Table 3 shows that the LLaMA 3.1 Instruct model and Med-Nirvana models outperform other models
with fewer than 10B parameters and conversational capabilities. These models are even comparable
to, or outperform, larger models such as LLaMA-2 70B and Meditron-70B. Notably, they also surpass
the closed-source model GPT-3.5. However, it is important to highlight that, while our intermediate
model Med-Mix performs well on medical multiple-choice QA benchmarks, it lacks conversational
capabilities and struggles with other instruction-based tasks. This emphasizes the importance of our
second-stage fine-tuning process.

4.2 Real consumer queries evaluation

To assess the effectiveness of the Med-Nirvana model in long-form consumer medical question-
answering, we sampled 50 cases from the iCliniq and HealthCareMagic (now Ask A Doctor - 24x7)
platforms [12, 1], both of which are online medical consultation services. The samples were obtained
from publicly available datasets5 provided by Yunxiang et al. [16]. These datasets consist of real
conversations between patients and doctors. We compared both Med-Nirvana and LLaMA Instruct
responses to those given by real doctors in response to consumer (i.e., patient) questions. Figure 3
depicts such a sample, and we can clearly see that Med-Nirvana provides an answer that is safer and
more aligned with the human physician, but the LLaMA Instruct model fails to generate a useful
response. What we have specifically observed is that, even though the LLaMA model provides correct
answers for some queries, they are often very long and descriptive.

To evaluate this comparison scientifically, we employed BERTScore [35] to compute Precision,
Recall, and F1 scores for the responses generated by both Med-Nirvana and LLaMA Instruct with
respect to the corresponding responses from human physicians. BERTScore was selected for its

5https://github.com/Kent0n-Li/ChatDoctor
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Figure 3: (Sample 1) Comparison of responses to a real consumer query (i.e., patient), where Med-
Nirvana proposes a safer and closer answer to that of a human physician.

ability to assess the semantic similarity between our model’s responses and the reference sentences,
which we consider crucial in the medical domain. As shown in Table 4, the Med-Nirvana model
outperforms the LLaMA Instruct model across all three metrics.

Table 4: BERTScore values for generated responses from the Med-Nirvana 8B and LLaMA 3.1 8B
Instruct models, compared to responses from human physicians

Model Precision Recall F1 Score
LLaMA 3.1 8B Instruct (4-bit quantized) 0.843382 0.840448 0.841783
Med-Nirvana 8B (4-bit quantized) 0.881045 0.848437 0.864375

To further illustrate this, additional examples are provided in Appendix A. For each consumer query,
we tested the same prompt multiple times for each model and selected the best answer generated for
comparison.

5 Conclusion

A major challenge in fine-tuning LLMs with billions of parameters is the associated computational
cost, which can be prohibitive for small organizations and individuals. This is particularly critical in
fields like medicine, where the integration of AI, especially through LLMs, holds great potential. To
address this, we propose an efficient, low-resource SFT procedure based on QLoRA. Additionally,
the composition of SFT data significantly impacts an LLM’s ability to acquire multiple skills. Hence,
we implemented a novel SFT strategy known as dual-stage mixed fine-tuning. By employing this
approach, we successfully developed a promising and cost-effective conversational healthcare LLM.
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Ethical Considerations and Limitations

This research underscores the potential of LLMs in healthcare, but transitioning to a practical tool for
providers, administrators, and consumers requires significant research. Ensuring safety, reliability,
efficacy, and privacy is paramount. Ethical deployment necessitates rigorous quality assessment,
guardrails against overreliance, and addressing potential harms, especially in diagnosis or treatment.
LLMs must be evaluated for biases and security vulnerabilities inherited from base models. Given the
evolving nature of clinical knowledge, developing methods for up-to-date information is essential.

In terms of dataset usage, the research draws on well-established, publicly available benchmark
datasets, including MedQA, MedMCQA, and PubMedQA. These datasets are widely recognized and
frequently used in the research community, and it is assumed that the original authors obtained ethical
clearance for their distribution and use. The synthetic dataset NoteChat, which is generated by LLMs,
can present privacy concerns when using clinical notes to generate patient-physician conversations.
However, the experiments in the original study sourced data exclusively from publicly available
real patient data collected from research articles with at least CC BY-NC-SA license, which permits
non-commercial use with appropriate attribution.
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Appendix A: Long-form Question Prompts

We provided seven additional examples of consumer queries and corresponding responses from a
human physician, the LLaMA 3.1 8B Instruct model (4-bit quantized), and the Med-Nirvana 8B
model (4-bit quantized) in Figures 6, 7, 8, 9, 10, 11, and 12.

Figure 4: (Sample 2) Comparison of responses to a real consumer query (i.e., patient), where Med-
Nirvana proposes a safer and closer answer to that of a human physician.
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Figure 5: (Sample 3) Comparison of responses to a real consumer query (i.e., patient), where Med-
Nirvana proposes a safer and closer answer to that of a human physician.
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Figure 6: (Sample 4) Comparison of responses to a real consumer query (i.e., patient), where Med-
Nirvana proposes a safer and closer answer to that of a human physician.

Figure 7: (Sample 5) Comparison of responses to a real consumer query (i.e., patient), where Med-
Nirvana proposes a safer and closer answer to that of a human physician.
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Figure 8: (Sample 6) Comparison of responses to a real consumer query (i.e., patient), where Med-
Nirvana proposes a safer and closer answer to that of a human physician.

Figure 9: (Sample 7) Comparison of responses to a real consumer query (i.e., patient), where Med-
Nirvana proposes a safer and closer answer to that of a human physician.
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Figure 10: (Sample 8) Comparison of responses to a real consumer query (i.e., patient), where
Med-Nirvana proposes a safer and closer answer to that of a human physician.
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Appendix B: Training and Validation Loss Curves

Figure 11: Training and validation loss during the first-stage QLoRA fine-tuning of the LLaMA 3.1
8B Instruct model for a complete epoch.

Figure 12: Training and validation loss during the second-stage QLoRA fine-tuning of the Med-Mix
model for a complete epoch.
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