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ABSTRACT

Graph Neural Networks (GNNs) have emerged as a powerful category of learn-
ing architecture for handling graph-structured data. However, the existing GNNs
usually follow the neighborhood aggregation scheme, ignoring the structural char-
acteristics in the node-induced subgraphs, which limits their expressiveness for the
downstream tasks of both the graph- and node-level predictions. In this paper, we
strive to strengthen the general discriminative capabilities of GNNs by devising a
dedicated plug-and-play normalization scheme, termed as Motif-induced Normal-
ization (MotifNorm), that explicitly considers the intra-connection information
within each node-induced subgraph. To this end, we embed the motif-induced
structural weights at the beginning and the end of the standard BatchNorm, as
well as incorporate the graph instance-specific statistics for improved distinguish-
able capabilities. In the meantime, we provide the theoretical analysis to support
that the MotifNorm scheme can help alleviate the over-smoothing issue, which
is conducive to designing deeper GNNs. Experimental results on eight popular
benchmarks across all the tasks of the graph, node, as well as link property pre-
dictions, demonstrate the effectiveness of the proposed method. Our code is made
available in the supplementary material.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) have emerged as the mainstream deep learning
architectures to analyze irregular samples where information is present in the form of graphs, which
usually employs the message-passing aggregation mechanism to encode node features from local
neighborhood representations (Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019; Yang
et al., 2020b; Hao et al., 2021; Dwivedi et al., 2022b). As a powerful class of graph-relevant net-
works, these architectures have shown encouraging performance in various domains such as cell
clustering (Li et al., 2022; Alghamdi et al., 2021), chemical prediction (Tavakoli et al., 2022; Zhong
et al., 2022), social networks (Bouritsas et al., 2022; Dwivedi et al., 2022b), traffic networks (Bui
et al., 2021; Li & Zhu, 2021), combinatorial optimization (Schuetz et al., 2022; Cappart et al., 2021),
and power grids (Boyaci et al., 2021; Chen et al., 2022a).

However, the commonly used message-passing mechanism, i.e., aggregating the representations
from neighborhoods, limits the expressive capability of GNNs to address the subtree-isomorphic
phenomenon prevalent in the real world (Wijesinghe & Wang, 2022). As shown in Figure 1(a),
subgraphs Sv1 , Sv2

induced by v1, v2 are subtree-isomorphic, which decreases the GNNs’ expres-
sivity in graph-level and node-level prediction, i.e., (1) Graph-level: Straightforward neighborhood
aggregations, ignoring the characterises of the node-induced subgraphs, lead to complete indistin-
guishability in the subtree-isomorphic case, which thus limits the GNNs’ expressivity to be bottle-
necked by the Weisfeiler-Leman (WL) (Weisfeiler & Leman, 1968) test. (2) Node-level: Under
the background of over-smoothing (as illustrated in Figure 1(b)), the smoothing problem among the
root representations of subtree-isomorphic substructures will become worser when aggregating the
similar representations from their neighborhoods without structural characterises be considered.

In this paper, we strive to develop a general framework, compensating for the ignored characteristics
among the node-induced structures, to improve the graph expressivity over the prevalent message-
passing GNNs for various graph downstream tasks, e.g., graph, node and link predictions. Driven
by the fact that deep models usually follow the CNA architecture, i.e., a stack of convolution, nor-
malization and activation, where the normalization module generally follows GNNs convolution
operations, we accordingly focus on developing a higher-expressivity generalized normalization
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Figure 1: (a) The illustration of the subtree-isomorphic phenomenon, where two subgraphs Sv1 and
Sv2 are induced by root node v1 and v2 with the same degree k = 4, but the connection information
among neighborhoods is different. (b) The t-SNE illustration of over-smoothing issue on Cora
dataset when GraphSage layer is up to 20. Here, we show the first three categories for visualization.

scheme to enhance the discriminative abilities of various GNNs’ architectures. Thus, the question
is, “how to design such a powerful and general normalization module with the characteristics of
node-induced substructures embedded ?”

To address this challenge, this paper devises an innovative normalization mechanism, termed as
Motif-induced Normalization (MotifNorm), that explicitly considers the intra-connection informa-
tion in each node-induced subgraph (i.e., motif (Leskovec, 2021)) and embeds the achieved struc-
tural factors into the normalization module to improve the expressive power of GNNs. Specifi-
cally, we start by empirically disentangling the standard normalization into two stages, i.e., cen-
tering & scaling (CS) and affine transformation (AT) operations. We then concentrate on mining
the intra-connection information in the node-induced subgraphs, and develop two elaborated strate-
gies, termed as representation calibration and representation enhancement, to embed the achieved
structural information into CS and AT operations. Eventually, we demonstrate that MotifNorm can
generally improve the GNNs’ expressivity for the task of graph, node and link predictions via ex-
tensive experimental analysis.

In sum, the contributions of this work can be summarized as follows:

• Driven by the conjecture that a higher-expressivity normalization with abundant graph structure
power can generally strengthen the GNNs’ performance, we develop a novel normalization
scheme, termed as MotifNorm, to embed structural information into GNNs’ aggregations.

• We develop two elaborated strategies, i.e., representation calibration and representation en-
hancement, tailored to embed the motif-induced structural factor into CS and AT operations for
the establishment of MotifNorm in GNNs.

• We provide extensive experimental analysis on eight popular benchmarks across various do-
mains, including graph, node and link property predictions, demonstrating that the proposed
model is efficient and can consistently yield encouraging results.

It is worth mentioning that MotifNorm maintains the computational simplicity, which is beneficial
to the model training for highly complicated tasks.

2 RELATED WORKS

In this section, we briefly introduce the existing normalization architectures in GNNs, which are
commonly specific to the type of downstream tasks, i.e., graph-level and node-level tasks.

Graph-level Normalization. To address graph-level representation learning, Xu et al. (2019) adopt
the standard BatchNorm (Ioffe & Szegedy, 2015) module to GIN as a plug-in component to stabilize
the model’s training. Based on the BatchNorm, Dwivedi et al. (2022a) normalize the node features
with respect to the graph size to resize the feature space, and propose the ExpreNorm. To address
the expressiveness degradation of GNNs for highly regular graphs, Cai et al. (2021) propose the
GraphNorm with a learnable parameter for each feature dimension based on instance normalization.
To adopt the advances of different normalizations, Chen et al. (2022c) propose UnityNorm by op-
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timizing a weighted combination of four normalization techniques, which automatically selects a
single best or the best combination for a specific task.

Node-level Normalization. This type of mechanism tries to rescale node representations for the
purpose of alleviating over-smoothing issues (as shown in Figure 1(b)). Yang et al. (2020a) de-
sign the MeanNorm trick to improve GCN training by interpreting the effect of mean subtraction as
approximating the Fiedler vector. Zhou et al. (2021) scale each node’s features using its own stan-
dard deviation and proposes a variance-controlling technique, termed as NodeNorm, to address the
variance inflammation caused by GNNs. To constrain the pairwise node distance, Zhao & Akoglu
(2020b) introduce PairNorm to prevent node embeddings from over-smoothing on the node classi-
fication task. Furthermore, Liang et al. (2022) design ResNorm from the perspective of long-tailed
degree distribution and add a shift operation in a low-cost manner to alleviate over-smoothing.

However, these approaches are usually task-specific in GNNs’ architectures, which means that
they are not always significant in general contribution to various downstream tasks. Further-
more, the characteristics of node-induced substructures, which trouble GNNs’ performance
in various downstream tasks, are ignored by these normalizations.

3 MOTIF-INDUCED GRAPH NORMALIZATION

In this section, we begin by give the preliminary with regard to our proposed MotfiNorm, along the
way, introduce notations and a basis definition of motif-induced information.

LetG = (VG, EG) denotes a undirected graph with n vertices andm edges, where VG= {v1, v2, ..vn}
is an set of vertices and EG is a unordered set of edges. N (v) = {u ∈ VG|(v, u) ∈ EG} denotes the
neighbor set of vertex v, and its neighborhood subgraph Sv is induced by Ñ (v) = N (v) ∪ v, which
contains all edges in EG that have both endpoints in Ñ (v). As shown in Figure 1(a), Sv1 and Sv2 are
the induced subgraphs of v1 and v2. Their structural information are defined as:
Definition 1. The motif-induced information ξ(Svi) denotes the structural weight of substructure
Svi , i.e., node-induced subgraph (Leskovec, 2021) with regard to vi, where ξ is formulated as:

ξ(Svi) = ϕ(|ESvi
|)ψ(|VSvi

|), (1)

where | · | denotes cardinality. ϕ(|ESvi
|) = 2|ESvi

|/(|VSvi
| · (|VSvi

| − 1)) and ψ(|VSvi
|) = |VSvi

|2
respectively refers to the density and power of Svi . This definition focuses more on edge information
while two different subgraphs are subtree-isomorphic, on the contrary, focuses more on node power.

3.1 PRELIMINARY

Batch normalization can be empirically divided into two stages, i.e., centering & scaling (CS) and
affine transformation (AT) operations. For the input features H ∈ Rn×d, the CS and AT follow:

CS : HCS =
H− E(H)√
D(H) + ε

,

AT : HAT = HCS � γ + β,

(2)

where� is the dot product with the broadcast mechanism. E(H) and D(H) denote mean and variance
statistics, and γ, β ∈ R1×d are the learned scale and bias factors. In this work, we aim to embed
structural weights into BatchNorm, and thus take a batch of graphs for example to give notations.

Batch Graphs. For a batch of graphs G = {G1, ..., Gm} with node set VG = VG1∪ VG2 , ..., VGm

= {v1, ..., vn} and feature matrix H ∈ Rn×d. Motif-induced weights of this batch nodes is rep-
resented as MG= ξ(SVG ) = [ξ(SVG1

); ξ(SVG2
); ...; ξ(SVGm

)] = [ξ(Sv1), ..., ξ(Svn)]∈ Rn×1. The
segment summation-normalization MSN= [F(ξ(SVG1

));F(ξ(SVG2
)); ...;F(ξ(SVGm

))]∈ Rn×1 where
F(ξ(SVGi

)) = ξ(SVGi
)/

∑
ξ(SVGi

) ∈ R|VGi
|×1, denotes the summation-normalization in each graph.

3.2 MOTIFNORM FOR GNNS

The commonly used message-passing aggregations are node-specific, i.e., ignoring the character-
istics in the node-induced subgraphs, which limits the expressive capability of GNNs in various
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downstream tasks. Therefore, we present a generalized graph normalization framework, termed
as MotifNorm, to compensate for the ignored structural characteristics by GNNs, and develop two
elaborated strategies: representation calibration (RC) and representation enhancement (RE).

Representation Calibration (RC). Before the CS stage, we calibrate the inputs by injecting the
motif-induced weights as well as incorporate the graph instance-specific statistics into representa-
tions, which balances the distribution differences along with embedding structural information. For
the input feature H ∈ Rn×d, the RC is formulated as:

RC : HRC = H + wRC � HSA · (MRC1
T
d ), (3)

where 1d is the d-dimensional all-one cloumn vectors and · denotes the dot product operation.
wRC ∈ R1×d is a learned weight parameter. MRC = MSN · MG ∈ Rn×1 is the calibration factor
for RC, which is explained in details in Appendix A.3. HSA ∈ Rn×d is the segment averaging of H,
obtained by sharing the average node features of each graph with its nodes, where each individual
graph is called a segment in the DGL implementation (Wang et al., 2019).

Representation Enhancement (RE). Right after the CS operation, node features HCS are con-
strained into a fixed variance range and distinctive information is slightly weakened. Thus, we
design the RE operation to embed motif-induced structural information into AT stage for the en-
hancement the final representations. The formulation of RE is written as follows:

RE : HRE = HCS · Pow(MRE, wRE), (4)

where wRE ∈ R1×d is a learned weight parameter, and Pow(·) is the exponential function. To
imitate affine weights in AT for each channel, we perform the segment summation-normlization on
calibration factor MRC and repeats d columns to obtain enhancement factor MRE∈ Rn×d , which
ensures column signatures of Pow(MRE, wRE)− 1 are consistent.

Expressivity Analysis. MotfiNorm with injected RC and RE operation, compensating structural
characteristics of subgraphs for GNNs, can generally improve graph expressivities as follows:

(1) Graph-level: For graph prediction tasks, MotfiNorm compensates for the structural information
to distinguish the subtree-isomorphic case that 1-WL can not recognize, which could extend the
GNNs more expressive than the 1-WL test. Specifically, an arbitrary GNN equipped with Motfi-
Norm is capable of more expressive abilities than the 1-WL test in distinguishing k-regular graphs.

(2) Node-level: The ignored structural information strengthens the node representations, which is
beneficial to the downstream recognition tasks. Furthermore, MotifNorm with structural weights
injected can help alleviate the over-smoothing issue, which is analyzed in the following Theorem 1.

(3) Training stability: The RC operation is beneficial to stabilize model training, which makes nor-
malization operation less reliant on the running means and balances the distribution differences by
considering the graph instance-specific statistics and is analyzed in the following Proposition 1.

Theorem 1. MotifNorm helps alleviate the oversmoothing issue.

Proof. Given two extremely similar embeddings of u and v (i.e., ‖Hu − Hv‖2 ≤ ε). Assume
for simplicity that ‖Hu‖2 = ‖Hv‖2 = 1, ‖wRC‖2 ≥ c, and the motif-induced information scores
between u and v differs a considerable margin ‖(MRC1

T
d )u − (MRC1

T
d )v‖2 ≥ 2ε/c. We can obtain

‖(Hu + (wRC � (MRC1
T
d ))u ·

Hu + Hv

2
)− (Hv + (wRC � (MRC1

T
d ))v ·

Hv + Hu

2
)‖2

≥ −‖Hu − Hv‖2 + ‖((wRC � (MRC1
T
d ))u − (wRC � (MRC1

T
d ))v) ·

Hu + Hv

2
‖2

≥ −ε+ ‖wRC‖2 · ‖(MRC1
T
d )u − (MRC1

T
d )v‖2 · ‖

Hu + Hv

2
‖2

≥ −ε+ 2ε = ε,

where the subscripts u, v denote the u-th and v-th row of matrix ∈ Rn×d. This inequality demon-
strates that our RC operation could differentiate two nodes by a margin ε even when their node
embeddings become extremely similar after L-layer GNNs. Similarly, RE operation can also differ-
entiates the embeddings, and the theoretical analysis is provided in A.1
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Proposition 1. RC operation is beneficial to stabilzing the model training.

Proof. The complete proof is provided in Appendix A.2.

3.3 THE IMPLEMENTATION OF MOTIFNORM

We merge RE operation into AT for a simpler formultation. Given the input feature H ∈ Rn×d, the
formulation of the MotifNorm is written as:

RC : HRC = H + wRC � HSA · (MRC1
T
d ),

CS : HCS =
HRC − E(HRC)√

D(HRC) + ε
,

AT : HAT = HCS · (γ + P)/2 + β,

(5)

where P = Pow(MRE, wRE) and HAT is the output of MotifNorm. To this end, we add RC and RE
operations at the beginning and ending of the original BatchNorm layer to strengthen the expressivity
power after GNNs’ convolution. The additional RC and RE operations are the dot product in Rn×d,
thus their time complexity is O(nd).

4 EXPERIMENTS

To demonstrate the effectiveness of the proposed MotifNorm in different GNNs, we conduct exper-
iments on three types of graph tasks, including graph-, node- and link-level predictions.

Table 1: The statistic information of the benchmark
datasets under different graph-structured tasks.

Dataset name Task #Graphs Avg. Avg.
level #nodes #edges

IMDB-BINARY graph 1,000 19.8 193.1
ogbg-moltoxcast graph 8,576 18.8 19.3
ogbg-molhiv graph 41,127 25.5 27.5
ZINC graph 10,000 23.2 49.8
Cora node 1 2,708 5,429
Pubmed node 1 19,717 44,338
ogbn-proteins node 1 132,534 39,561,252
ogbl-collab link 1 235,868 1,285,465

Benchmark Datasets. Eight datasets are
employed in three types of tasks, includ-
ing (i) Graph predictions: IMDB-BINARY,
ogbg-moltoxcast, ogbg-molhiv, and ZINC.
(ii) Node predictions: Cora, Pubmed and
ogbn-proteins. (iii) Link predictions: ogbl-
collab. Their basic statistics are summa-
rized in Table 1.

Baseline Methods. We compare our Mo-
tifNorm to various types of normaliza-
tion baselines for GNNs, including Batch-
Norm (Ioffe & Szegedy, 2015), Uni-
tyNorm (Chen et al., 2022c), Graph-
Norm (Cai et al., 2021), ExpreNorm (Dwivedi et al., 2022a) for graph predictions, and Group-
Norm (Zhou et al., 2020), PairNorm (Zhao & Akoglu, 2020a), MeanNorm (Yang et al., 2020a),
NodeNorm (Zhou et al., 2021) for all three tasks.

More details about the datasets, baselines and experimental setups are provided in Appendix B.1.

In the following experiments, we aim to answer the questions: (i) Can MotifNorm improve the ex-
pressivity for graph isomorphism test, especially go beyond 1-WL on k-regular graphs? (Section 4.1)
(ii) Can MotifNorm help alleviate the over-smoothing issue? (Section 4.2) (iii) Can MotifNorm gen-
eralize to various graph tasks? (Section 4.3)

4.1 EXPERIMENTAL ANALYSIS ON GRAPH ISOMORPHISM TEST

The IMDB-BINARY is a well-known graph isomorphism test dataset consisting of various k-regular
graphs, which has become a common-used benchmark for evaluating the expressivity of GNNs. To
make the training, valid and test sets follow the same distribution as possible, we adopt a hierarchical
dataset splitting strategy based on the structural statistics of graphs (More detailed description are
provided in Appendix B.1). For graph isomorphism test, Graph Isomorphism Network (GIN) (Xu
et al., 2019) is known to be as powerful as 1-WL. Notably, GIN consists a neighborhood aggregation
operation and a multi-layer perception layer (MLP), and this motivates a comparison experiment:
comparing a one-layer MLP+MotifNorm with one-layer GIN to directly demonstrate MotifNorm’s
expressivities in distinguishing k-regular graphs.
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Figure 2: Learning curves of one-layer MLP, GIN, MLP + MotifNorm and GIN + MotifNorm on
IMDB-BINARY dataset with various k-regular graphs.

Table 2: Experimental results on IMDB-BINARY dataset with various k-regular graphs. The best
results under different backbones are highlighted with boldface.

Normalization Layers ROC-AUC LOSS
Batchnorm MotifNorm Test Split Valid Split Test Split Valid Split

MLP
− − 1 56.66 ± 1.09 57.05 ± 0.81 0.6961 0.6961
X − 1 56.86 ± 0.72 57.83 ± 0.84 0.6954 0.6954
− X 1 78.16 ± 0.52 78.69 ± 0.44 0.5631 0.5581

GIN
− − 1 77.40 ± 0.20 77.69 ± 0.13 0.5684 0.5658
X − 1 77.71 ± 0.19 78.11 ± 0.10 0.5655 0.5593
− X 1 78.42 ± 0.15 78.89 ± 0.15 0.5584 0.5565

GSN X − 1 77.50 ± 0.18 77.54 ± 0.16 0.5696 0.5688
− X 1 78.18 ± 0.23 78.13 ± 0.11 0.5637 0.5633

GraphSNN X − 1 77.52 ± 0.16 77.61 ± 0.18 0.5691 0.5671
− X 1 78.24 ± 0.30 78.06 ± 0.15 0.5631 0.5636

GIN X − 4 78.41 ± 0.21 78.76 ± 0.17 0.5625 0.5590
− X 4 79.55 ± 0.35 79.62 ± 0.38 0.5539 0.5510

GCN X − 4 76.75 ± 1.31 76.96 ± 0.69 0.5755 0.5640
− X 4 78.78 ± 1.01 79.03 ± 0.61 0.5597 0.5504

GAT X − 4 75.10 ± 1.51 75.95 ± 1.27 0.5866 0.5852
− X 4 78.87 ± 0.80 79.20 ± 0.56 0.5559 0.5448

GSN X − 4 78.90 ± 0.63 79.28 ± 0.70 0.5555 0.5543
− X 4 79.22 ± 0.71 79.70 ± 0.59 0.5536 0.5527

GraphSNN X − 4 79.16 ± 0.67 79.35 ± 0.82 0.5541 0.5530
− X 4 79.89 ± 0.74 79.93 ± 0.77 0.5517 0.5506

As illustrated in Figure 2, the vanilla MLP cannot capture any structural information and perform
poorly, while the proposed MotifNorm method successfully improve the performance of MLP and
even exceeds the vanilla GIN. Furthermore, Table 2 provides the quantitative comparison results,
where GSN (Bouritsas et al., 2022) and GraphSNN (Wijesinghe & Wang, 2022) are two recent
popular methods realizing the higher expressivity than the 1-WL. From these comparison results,
the performance of one-layer MLP with MotifNorm is better than that of one-layer GIN, GSN, and
GraphSNN. Moreover, the commonly used GNNs equipped with MotifNorm, e.g., GCN and GAT,
achieve higher ROC-AUC than GIN when the layer is set as 4. GIN with MotifNorm achieves
better performance and even goes beyond the GSN and GraphSNN. Furthermore, MotifNorm can
further enhance the expressivity of GSN and GraphSNN. More detailed results on IMDB-BINARY
are provided in Appendix B.2.

4.2 EXPERIMENTAL ANALYSIS ON THE OVER-SMOOTHING ISSUE

To show the effectiveness of MotifNorm for alleviating the over-smoothing issue in GNNs, we
visualize the first three categories of Cora dataset in 2D space for a better illustration. We se-
lect PairNorm, NodeNorm, MeanNorm, GroupNorm and BatchNorm for comparison and set the
number of layer as 32. Figure 3(a)∼3(f) show the t-SNE visualization of different normalization
techniques, and we can find that none of them suffer from the over-smoothing issue like Graph-
Sage with BatchNorm (shown in Figure 1(b)). However, MotifNorm can better distinguish different
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Figure 3: The t-SNE visualization of node representations using GCN with different normalization
methods on Cora dataset.
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Figure 4: Experimental results of GCN with different normalization methods on Cora dataset.

categories into different clusters, i.e., the other normalization methods may lead to the loss of dis-
criminant information and make the representations entangled.

Furthermore, we provide the quantitative results by considering three metrics including accuracy,
intra-class distance and inter-class distance. In details, we set layers from 2 to 32 with the step size
as 2, and visualize the line chart in Figure 4(a)∼4(c). Figure 4(a) shows the accuracy with regard to
layers, which directly demonstrates the superiority of MotifNorm when GNNs go deeper. In order
to characterize the disentangling capability of different normalizations, we calculate the intra-class
distance and inter-class distance with layers increasing in Figure 4(b) and 4(c). As shown in these
two figures, MotifNorm obtains lower intra-class distance and higher inter-class distance, which
means that the proposed MotifNorm enjoys better disentangling ability. We provide more t-SNE
visualizations of different layer number and different GNNs’ backbones in Appendix B.3.

4.3 MORE COMPARISONS ON THE OTHER SIX DATASETS

For graph prediction task, we compare normalizations on ogbg-moltoxcast, ogbg-molhiv and ZINC
by using GCN and GAT as backbones, where ZINC is a graph regression dataset. For node and
link property predictions we conduct experiments on one social network dataset (Pubmed), one
protein-protein association network dataset (ogbn-proteins) and a collaboration network between
authors (ogbl-collab) by using GCN as backbone. The details are as follow:
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Table 3: Experimental results of different normalization methods on the graph prediction task. We
use GCN, GAT as the backbones. The best results on each dataset are highlighted with boldface.

Methods ogbg-moltoxcast ogbg-molhiv ZINC
l = 4 l = 16 l = 32 l = 4 l = 16 l = 32 l = 4 l = 16 l = 32

G
C
N

NoNorm 61.13 59.34 56.08 76.01 71.90 60.59 0.643 0.690 0.748
GraphNorm 60.78 53.75 53.36 75.59 65.55 66.49 0.592 0.655 1.547
BatchNorm 63.39 59.73 53.47 76.11 76.62 74.21 0.573 0.611 0.655
UnityNorm 63.86 61.94 59.18 75.94 72.14 69.44 0.552 0.576 0.650
ExpreNorm 64.97 57.91 57.82 76.05 76.75 72.36 0.564 0.570 0.646
MotifNorm 66.92 65.19 63.40 77.29 77.71 75.99 0.489 0.524 0.523

G
A
T

NoNorm 62.61 50.84 50.12 76.71 57.38 50.64 0.714 1.541 1.547
GraphNorm 60.53 52.79 53.22 75.30 73.86 64.03 0.576 1.254 1.537
BatchNorm 63.31 53.39 53.24 76.07 76.87 73.74 0.585 0.624 0.643
UnityNorm 63.47 58.76 57.13 75.91 76.19 75.46 0.563 0.621 0.777
ExpreNorm 65.56 57.65 57.60 76.99 72.24 72.56 0.555 0.562 1.451
MotifNorm 66.57 64.04 58.26 77.36 77.08 76.70 0.495 0.517 0.522

Table 4: The comparison results of different normalization methods on the node prediction and link
prediction task by using GCN as the backbone. The best results are highlighted with boldface.

Settings Pubmed ogbn-proteins ogbl-collab
l = 4 l = 16 l = 32 l = 4 l = 16 l = 32 l = 4 l = 16 l = 32

G
C
N

NoNorm 76.16 54.67 45.58 69.16 63.24 63.15 35.38 22.11 15.24
PairNorm 74.25 56.24 55.13 69.28 63.15 63.00 31.26 23.22 14.69
NodeNorm 76.02 40.87 41.18 70.17 63.50 63.23 27.48 08.48 08.28
MeanNorm 76.05 73.40 65.34 69.14 63.05 62.40 33.28 22.56 16.16
GroupNorm 76.19 63.55 54.84 70.25 62.74 63.63 35.28 27.41 20.27
BatchNorm 75.62 48.88 43.28 69.96 67.36 63.86 47.57 26.14 21.68
MotifNorm 77.08 76.66 67.81 71.69 68.66 68.05 51.65 50.01 47.65

Table 5: Comparisons with empirical tricks on
ogbg-molhiv and ZINC datasets.

Methods ogbg-molhiv ZINC

G
C
N

NoNorm 77.21 ± 0.430 0.473 ± 0.006
UnityNorm 77.56 ± 1.060 0.458 ± 0.009
ExpreNorm 77.99 ± 0.545 0.436 ± 0.008
GraphNorm 78.10 ± 1.115 0.396 ± 0.008
BatchNorm 78.07 ± 0.782 0.398 ± 0.003
MotifNorm 78.76 ± 0.371 0.358 ± 0.009

Table 6: Comparisons with empirical tricks on
ogbn-proteins and ogbl-collab datasets.

Methods ogbn-proteins ogbl-collab

G
C
N

PairNorm 69.84 ± 0.533 47.75 ± 0.190
NodeNorm 72.53 ± 1.514 48.28 ± 1.100
MeanNorm 71.09 ± 1.236 47.27 ± 0.849
GroupNorm 73.17 ± 0.503 45.25 ± 1.206
BatchNorm 72.39 ± 0.611 49.44 ± 0.750
MotifNorm 73.55 ± 1.271 52.15 ± 0.647

Firstly, we adopt the vanilla GNN model without any tricks (e.g., residual connection, etc.), and pro-
vide the settings of the hyperparameter in Appendix B.1. Accordingly to the mean results (w.r.t., 10
different seeds) shown in Table 3 and Table 4, we can conclude that MotifNorm generally improves
the graph expressivity of GNNs for graph prediction task and help alleviate the over-smoothing issue
with the increase of layers. Furthermore, we provide more comparison experiments by using GIN
and GraphSage as backbones in Appendix B.4.

Secondly, we perform empirical tricks in GNNs for a further comparison when generally obtaining
better performances. The details of tricks on different datasets: (1) ogbg-molhiv: convolution with
edge features, without input dropout, hidden dimension as 300, weight decay in {5e-5, 1e-5}, resid-
ual connection, GNN layers as 4. (2) ZINC: without input and hidden dropout, hidden dim as 145,
residual connection, GNN layers as 4. (3) ogbn-proteins: without input and hidden dropout, hidden
dim as 256, GNN layers as 2. (4) ogbl-collab: initial connection (Chen et al., 2020), GNN layers
as 4. The results in Table 5 and Table 6 demonstrate that MotifNorm preserves the superiority in
graph, node and link prediction tasks compared with other existent normalizations.

4.4 ABLATION STUDY AND DISCUSSION

To explain the superior performance of MotifNorm, we perform extensive ablation studies to eval-
uate the contributions of its two key components, i.e., representation calibration (RC) and represen-
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Figure 5: Abalation study of the Representation Calibration (RC) and Representation Enhance-
ment (RE) operations in MotifNorm on the ogbg-moltoxcast dataset. Here we use GCN as the basic
backbone to conduct the abalation study.

tation enhancement (RE) operations. Firstly, we show in Figure 5 the ablation performance of GCN
on ogbg-moltoxcast. Figure 5(a) and 5(b) show the ROC-AUC results with regard to training epochs
when the layer number is set to 4, which show that both RC and RE can improve the classification
performance. Furthermore, by comparing these two figures, RC performs better than RE in terms
of recognition results, which plugs at the beginning of BatchNorm with the graph instance-specific
statistics embedded.

To further explore the significance of RC and RE at different layers, we compute the mean values
of wRC and wRE, which are visualized in Figure 5(c). As can be seen from the mean statistis of wRC,
wRE among 32 layers’ GCN, the absolute values of wRC and wRE become larger when the network
goes deeper (especially in the last few layers), indicating that the structural information becomes
more and more critical with the increase numbers of layers.

Table 7: The cost comparisons between
BatchNorm and MotifNorm.

runtime parameter memory

BatchNorm 15.2s/epoch 291.6K 2305M
MotifNorm 22.6s/epoch 293.2K 2347M

To evaluate the additional cost of RC and RE opera-
tions, we provide the runtime, parameter and memory
comparison by using GCN (l = 4) with BatchNorm and
MotfiNorm on the ogbg-molhiv dataset. Here, we pro-
vide the cost of runtime and memory by performing the
code on NVIDIA A40. The cost information is provided
in Table 7.

Discussion. The main contribution of this work is to propose a more expressive normalization mod-
ule, which can be plugged into any GNN architecture. Unlike existing normalization methods that
are usually task-specific and also without substructure information, the proposed method explicitly
considers the subgraph information to strengthen the graph expressivity across various graph tasks.
In particular, for the task of graph classification, MotifNorm extends GNNs beyond the 1-WL test
in distinguishing k-regular graphs. On the other hand, when the number of GNNs’ layers becomes
larger, MotifNorm can help alleviate the over-smoothing problem and meanwhile maintain better
discriminative power for the node-relevant predictions.

5 CONCLUSION

In this paper, we introduce a higher-expressivity normalization architecture with an abundance of
graph structure-specific information embedded to generally improve GNNs’ expressivities and rep-
resentatives for various graph tasks. We first empirically disentangle the standard normalization
into two stages, i.e., centering & scaling (CS) and affine transformation (AT) operations, and then
develop two skillful strategies to embed the subgraph structural information into CS and AT op-
erations. Finally, we provide a theoretical analysis to support that MotifNorm can extend GNNs
beyond the 1-WL test in distinguishing k-regular graphs and exemplify why it can help alleviate the
over-smoothing issue when GNNs go deeper. Experimental results on 10 popular benchmarks show
that our method is highly efficient and can generally improve the performance of GNNs for various
graph tasks.
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A THEOREM ANALYSIS

This section provides the corresponding proofs to support theorems in the main context.

A.1 PROOF FOR THEOREM 1

Theorem 1. MotifNorm helps alleviate the oversmoothing issue.

Proof. Given two extremely similar embeddings of u and v (i.e., ‖Hu − Hv‖2 ≤ ε). Assume for
simplicity that ‖Hu‖2 = ‖Hv‖2 = 1, ‖wRC‖2 ≥ c1, and the motif-induced information scores
between u and v differs a considerable margin ‖(MRC1

T
d )u − (MRC1

T
d )v‖2 ≥ 2ε/c1. We can obtain

‖(Hu + (wRC � (MRC1
T
d ))u ·

Hu + Hv

2
)− (Hv + (wRC � (MRC1

T
d ))v ·

Hv + Hu

2
)‖2

≥ −‖Hu − Hv‖2 + ‖((wRC � (MRC1
T
d ))u − (wRC � (MRC1

T
d ))v) ·

Hu + Hv

2
‖2

≥ −ε+ ‖wRC‖2 · ‖(MRC1
T
d )u − (MRC1

T
d )v‖2 · ‖

Hu + Hv

2
‖2

≥ −ε+ 2ε = ε,

where the subscripts u, v denote the u-th and v-th row of matrix ∈ Rn×d. This inequal-
ity demonstrates that our RC operation could differentiate two nodes by a margin ε even when
their node embeddings become extremely similar after L-layer GNNs. Similarly, by assuming
‖Pow(MRE, wRE)u‖2 ≤ c2 and ‖Pow(MRE, wRE)u − Pow(MRE, wRE)v‖2 ≥ (1 + c2) · ε, one can
prove that the RE operation differentiates the embedding with motif-induced information:

‖Pow(MRE, wRE)u · Hu − Pow(MRE, wRE)v · Hv‖2
= ‖Pow(MRE, wRE)u · (Hu − Hv) + (Pow(MRE, wRE)u − Pow(MRE, wRE)v) · Hv‖2
≥ −‖Pow(MRE, wRE)u · (Hu − Hv)‖2 + ‖(Pow(MRE, wRE)u − Pow(MRE, wRE)v) · Hv‖2
≥ −c2 · ε+ (1 + c2) · ε = ε.

The proof is complete.

A.2 PROOF FOR PROPOSITION 1

Proposition 1. RC operation is beneficial to stabilzing the model training.

Proof. The RC operation is formulated as

RC : HRC = H + wRC � HSA · (MRC1
T
d ), (6)

where and 1d is d-dimensional all-one column vector. Here HSA introduces the current graph’s
instance-specific information, i.e., mean representations in each graph. wRC is a learnable weight
balancing mini-batch and instance-specific statistics. Assume the number of nodes in each graph is
consistent. The expectation of input features after RC, i.e., E(HRC), can be represented as

E(HRC) = (1 + wRC � (MRC1
T
d )) · E(H). (7)

Let us respectively consider the following centering operation of normalization for the original input
H and the feature matrix HRC after RC operation,

HCenter-In = H− E(H),

HCenter-RC = HRC − E(HRC),
(8)

where HCenter-In and HCenter-RC denote the centering operation on H and HRC. To compare the
difference between these two centralized features, we perform

HCenter-RC − HCenter-In

= (HRC − E(HRC))− (H− E(H))

= H + wRC � (MRC1
T
d ) · HSA − (1 + wRC � (MRC1

T
d )) · E(H)− (H− E(H))

= wRC � (MRC1
T
d ) · (HSA − E(H)),

(9)
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Figure 6: The illustration of four k-regular graphs with the same nodes but different structures.
When directly performing the summation-normalization operation on motif-induced information,
all weights will be equal to 1/8.

where the values in MRC are always positive numbers. When values in wRC are close to zero, the
centering operation still relies on running statistics over the training set. On the other hand, the im-
portance of graph instance-specific statistics grows when the absolute value of wRC becomes larger.
Here, we ignore the affine transformation operation and assume values larger than the running mean,
kept after the following activation layer, are important information for representations, and vice
versa. In case of wRC > 0, while HSA > E(H), more important information tends to be preserved,
and vice versa. In case of wRC < 0, while HSA > E(H), the noisy features tend to be weakened, and
vice versa. A similar analysis in BatchNorm2D has been provided in (Gao et al., 2021), interested
readers please refer to that for details. The main difference is that MotifNorm aims to embed struc-
tural information to compensate for ignored characteristics in node-include subgraphs, while RBN
is proposed to address the distribution differences.

The proof is complete.

A.3 DESIGN OF THE REPRESENTATION CALIBRATION FACTOR

Here, we talk about the design of representation calibration factor MRC = MSN · MG , which is a
normalization for motif-induced weights MG . If we directly adopt the original weights, existing
many unequal large values, it will make training oscillating. Thus, the normalization is essential for
MG . However, if we just perform summation-normalization in an arbitrary graph (i.e., MSN), it will
not distinguish two graphs with the same nodes but different degrees, e.g., four graphs in Figure 6
where each weight will become 1/8. To this end, we design the above normalization technique to
strengthen the motif power for the representation calibration operation.
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B EXPERIMENTAL DETAILS

B.1 MORE DETAILS OF BENCHMARK DATASETS AND BASELINE METHODS

Benchmark Datasets. For the task of graph property prediction, we select IMDB-BINARY, ogbg-
moltoxcast, ogbg-molhiv and ZINC datasets. The IMDB-BINARY is a k-regular dataset for binary
classification task, which means that each node has a degree k. The ogbg-moltoxcast is collected for
multi-task classification task, where the number of the tasks is 617. The ogbg-molhiv is a molecule
dataset that used for binary classification task, but the ouput dimension of the end-to-end GNNs is
1 because its metric is ROC-AUC. The ZINC is the real-world molecule dataset for the example
reconstruction. In this paper, we follow the work in (Dwivedi et al., 2022a) to use ZINC for the
task of graph regression. These graph prediction datasets are from (Morris et al., 2020; Hu et al.,
2020; Irwin et al., 2012) respectively. For the node level prediction, we select four benchmark
datasets including Cora, Pubmed and ogbn-proteins. The first three datasets are the social network
and the last one is a protein-protein association network dataset. For the evalutation of link property
prediction, we select ogbl-collab dataset in this paper. These node and link prediction datasets are
from (Kipf & Welling, 2017; Hu et al., 2020) respectively. More detailed dataset information is
provided in Table 8.

Baseline Methods. To evalute our proposed MotifNorm module, we need to compare other normal-
ization methods adopted in GNNs for various graph tasks, including BatchNorm (Ioffe & Szegedy,
2015), GraphNorm (Cai et al., 2021), ExpreNorm (Dwivedi et al., 2022a) for graph property pre-
diction, and PairNorm (Zhao & Akoglu, 2020a), NodeNorm (Zhou et al., 2021), MeanNorm (Yang
et al., 2020a), GroupNorm (Zhou et al., 2020) for node and link property prediction. A part of these
normalization methods are provided in (Chen et al., 2022b), and other source codes are provided by
authors. For the backbone GNNs, we consider the most popuare message-passing architectures such
as GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019), SGC (Wu
et al., 2019) and GraphSage (Hamilton et al., 2017). Specially, we will compare our MotifNorm
with all above normlization modules. For the network architectures, we follow CNA architecture,
i.e., convolution, normalization and activation. In this paper, we do not adopt any skills like drope-
dge (Huang et al., 2020; Rong et al., 2020), residual connection (Xu et al., 2018; Li et al., 2019; Liu
et al., 2020), etc.

Experiment Setting. For different datasets, we provide more detailed statistics information in Ta-
ble 8. The embedding dimension in each hidden layer on all datasets is set as 128. We optim the
GNNs’ architectures using torch.optim.lr scheduler.ReduceLROnPlateau by setting patience step as
10 or 15 to reduce learning rate. The learning rate is 1e − 3 for graph classification, and 1e − 2
for node, link predictions. When the learning rate reduces to 1e − 5, the training will be termi-
nated. More detailed statistics of experimental settings are provided in Table 9. Specially, we
split the IMDB-BINARY dataset into train-vallid-test format using a hierarchical architecture. In
details, we first segment this dataset according to the edge density information into 10 set (i.e.,
the edge density ∈ {0.0 − 0.1},∪, {0.1 − 0.2}..., {0.9 − 1.0}, and then sort the graphs using the
average degree information. Finally, we select the samples in each segment using a fix step size
as valid and test samples. The statistic information for splitting the valid and test set of Label-0
and Label-1 on IMDB-BINARY is provide in Table 10. By adopting this splitting scheme, dis-
tribution differences among train, valid and test sets are weakened (Experiment results show this
contribution fact but without a theoretical basis now). The splitting details are implemented in the
datasets/dgl imdb dataset.py. To reproduce the comparison results using a single layer of MLP and
GIN, the dropout is set to 0.0 and warming up the learning rate from 0.0 to 1e − 3 at the first 50
epoches. When layer is equal to 4, the doupout at the input layer is selected in {0.3, 0.4, 0.5} (i.e.,
-init dp in the code), and hidden layer is set to 0.5. To draw the Figure 2, we remove the warmup
operation for learning rate (i.e., remove –lr warmup in the shell files).

Implementation. MotifNorm needs to process the motif-induced weight into datasets and then load
this processing information to embed structural information into node representations. Especially
for the node-relevant classification, node representations need to contain the same power before
MotifNorm. Thus, we perform the l-2 normalization to ensure their power are consistent. The two
scripts are at: datasets/preprocess.py and modules/norm/motifnorm.py.
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Table 8: The statistic information of 8 benchmark datasets.

Dataset Name Dataset Type Task Type #Graphs
Avg. Avg.

#Nodes #Edges

IMDB-BINARY molecular Graph classification 1,000 19.8 193.1
ogbg-toxcast molecular Graph classification 8,576 18.8 19.3
ogbg-molhiv molecular Graph classification 41,127 25.5 27.5
ZINC molecular Graph regression 10,000 23.2 49.8
Cora social Node classification 1 2,708 5,429
Pubmed social Node classification 1 19,717 44,338
ogbn-proteins proteins Node classification 1 132,534 39,561,252
ogbl-collab social Link classification 1 235,868 1,285,465

Table 9: The detailed experimental settings of GNNs on various graph-structured tasks.

Name Metrics Edge Conv. Layers LR Batch Size InitDim. HiDim. Weight decay Dropout

IMDB-BINARY ROC-AUC False 1, 4 1e− 3 32 128 128 0.0 0.0, 0.5

ogbg-toxcast ROC-AUC False 4, 16, 32 1e− 3 128 9 128 0.0 0.5

ogbg-molhiv ROC-AUC False 4, 16, 32 1e− 3 256 9 128 0.0 0.5

ZINC MAE False 4, 16, 32 1e− 3 128 1 128 0.0 0.5

Cora Accuracy False [0; 2; 32] 1e− 2 −− 1433 128 0.0 0.5

Pubmed Accuracy False 4, 16, 32 1e− 2 −− 500 128 0.0 0.5

ogbn-proteins ROC-AUC False 4, 16, 32 1e− 2 −− 8 128 0.0 0.5

ogbl-collab Hits@50 False 4, 16, 32 1e− 2 64× 1024 128 128 0.0 0.0

Table 10: The statistic information for splitting IMDB-BINARY.

0.0−0.1 0.1−0.2 0.2−0.3 0.3−0.4 0.4−0.5 0.5−0.6 0.6−0.7 0.7−0.8 0.8−0.9 0.9−1.0 1.0 Total Num.

Label-0 1 17 60 89 49 117 52 12 15 7 81 500

Label-1 0 22 81 145 58 97 30 8 1 0 58 500

Total Label 1 39 141 234 107 214 82 20 16 7 139 1000

Steps - 9 8 7 6 5 4 3 2 2 6

Label-0 Sel. 0 2 14 28 16 46 30 8 14 6 26 190

Label-1 Sel. 0 4 20 40 18 38 14 4 0 0 18 156

Total Sel. 0 6 34 68 34 84 44 12 14 6 44 346
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B.2 MORE COMPARISONS ON GRAPH ISOMORPHISM TEST

Table 11: Experimental results on IMDB-BINARY dataset with various k-regular graphs. The best
results under different backbones are highlighted with boldface.

Normalization
L

ROC-AUC LOSS

NoNorm BatchNorm MotifNorm Test Split Valid Split Train Split Test Split Valid Split Train Split

MLP

X 1 56.66 ± 1.09 57.05 ± 0.81 50.40 ± 0.04 0.6961 0.6961 0.6927

X 1 56.86 ± 0.72 57.83 ± 0.84 51.38 ± 2.69 0.6954 0.6954 0.6923

X 1 78.16 ± 0.52 78.69 ± 0.44 79.05 ± 0.34 0.5631 0.5581 0.5519

GIN

X 1 77.40 ± 0.20 77.69 ± 0.13 78.95 ± 0.16 0.5684 0.5658 0.5525

X 1 77.71 ± 0.19 78.11 ± 0.10 79.65 ± 0.23 0.5655 0.5593 0.5391

X 1 78.42 ± 0.15 78.89 ± 0.15 80.24 ± 0.18 0.5584 0.5565 0.5281

GSN X 1 77.50 ± 0.18 77.54 ± 0.16 78.67 ± 0.17 0.5696 0.5688 0.5570

GraphSNN X 1 77.52 ± 0.16 77.61 ± 0.18 78.90 ± 0.15 0.5691 0.5671 0.5520

GIN

X 4 78.22 ± 0.41 78.27 ± 0.45 80.03 ± 0.30 0.5602 0.5553 0.5304

X 4 78.41 ± 0.21 78.76 ± 0.17 80.10 ± 0.14 0.5625 0.5590 0.5325

X 4 79.55 ± 0.35 79.62 ± 0.38 81.50 ± 0.48 0.5539 0.5510 0.5133

GCN

X 4 68.99 ± 1.38 69.08 ± 1.81 68.09 ± 1.81 0.6920 0.6921 0.6850

X 4 76.75 ± 1.31 76.96 ± 0.69 75.70 ± 1.05 0.5755 0.5640 0.5838

X 4 78.78 ± 1.01 79.03 ± 0.61 78.69 ± 0.84 0.5597 0.5504 0.5493

GAT

X 4 69.07 ± 1.59 69.78 ± 1.65 66.78 ± 1.68 0.6904 0.6891 0.6887

X 4 75.10 ± 1.51 75.95 ± 1.27 75.26 ± 0.87 0.5866 0.5852 0.5978

X 4 78.87 ± 0.80 79.20 ± 0.56 79.19 ± 0.78 0.5559 0.5448 0.5504

GraphSage

X 4 64.35 ± 4.36 65.97 ± 4.85 63.49 ± 2.93 0.6923 0.6921 0.6918

X 4 75.06 ± 1.77 76.12 ± 1.31 75.95 ± 1.05 0.5819 0.5748 0.5805

X 4 78.93 ± 0.99 79.02 ± 0.64 79.23 ± 0.49 0.5534 0.5481 0.5447

SGC

X 4 62.83 ± 2.66 66.19 ± 2.86 62.30 ± 2.37 0.6951 0.6941 0.6876

X 4 70.94 ± 1.33 73.51 ± 1.02 71.20 ± 0.65 0.6231 0.6044 0.6109

X 4 78.85 ± 0.70 78.53 ± 0.83 78.61 ± 0.63 0.5577 0.5556 0.5466

GSN X 4 78.90 ± 0.63 79.28 ± 0.70 80.70 ± 0.37 0.5555 0.5543 0.5377

GraphSNN X 4 79.16 ± 0.67 79.35 ± 0.82 80.74 ± 0.44 0.5541 0.5530 0.5356
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Figure 7: Learning curves of one-layer MLP, GIN, MLP + MotifNorm and GIN + MotifNorm on
IMDB-BINARY dataset (without learning rate warmup).
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Figure 8: Learning curves of one-layer GIN, GIN+BatchNorm and GIN+MotifNorm on IMDB-
BINARY dataset with learning rate warmup (i.e., the curves of the reported scores in Table 2).
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B.3 MORE COMPARISONS ON THE OVER-SMOOTHING ISSUE

This section provide the illustration of GCN (Kipf & Welling, 2017) and GraphSage (Hamilton
et al., 2017) with different six existent normalizations on Cora dataset.

Given the node embedding X = [x1, x2, ..., xn]
T ∈ Rn×d, where xi ∈ Rd denotes the node embed-

ding at layer i. The existing normalization methods for GNNs include PairNorm (Zhao & Akoglu,
2020a), NodeNorm (Zhou et al., 2021), MeanNorm (Yang et al., 2020a), GroupNorm (Zhou et al.,
2020) and BatchNorm (Ioffe & Szegedy, 2015) are depicted as follows:

PairNorm (Zhao & Akoglu, 2020a).

x̃i = xi −
1

n

n∑
i=1

xi,

PairNorm(xi, s) =
s · x̃i√

1
n

∑n
i=1 ||x̃i||

2
2

.
(10)

NodeNorm (Zhou et al., 2021).

NodeNorm(xi, p) =
xi

std(xi)
1
p

. (11)

MeanNorm (Yang et al., 2020a).

MeanNorm(x(k)) = x(k) − E[x(k)]. (12)

BatchNorm (Ioffe & Szegedy, 2015).

BatchNorm(X) =
X− E(X)√
D(X) + ε

� γ + β. (13)

GroupNorm (Zhou et al., 2020).

GroupNorm(X;G,λ) = X + λ ·
G∑

g=1

BatchNorm(X̃g),

where X̃g = softmax(X · U)[:, g] ◦ X.

(14)

MotifNorm please refer to Eq. (5) for details.

Here x(i) ∈ Rn denotes the i-th column of X, s in PairNorm is a hyperparameter controlling the av-
erage pair-wise variance and we choose s = 1 in our case. p in NodeNorm denotes the normalization
order and our paper uses p = 2.

The t-SNE illustrations of different normalizations embedded in GCN and GraphSage are provided
in Figure 9 and 10 respectively, where the number of layers are 4, 16, 32. Figure 11 shows the over-
smoothing phenomenon with the layers increasing using GraphSage, where the number of layers is
from 16 to 32 with the step size as 2.
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Figure 9: The t-SNE visualization using GCN with different normalization methods on Cora dataset.
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Figure 10: The t-SNE visualization using GraphSage with different normalization methods on Cora
dataset.
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Figure 11: The t-SNE visualization using GraphSage with BatchNorm and GroupNorm on Cora
dataset.
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B.4 MORE STATISTICS ON THE OTHER SIX DATASETS

Table 12: Experimental results of different normalization methods on the graph prediction task. We
use GCN, GAT and GIN as the basic backbones and set the number of layers as 4, 16 and 32. The
best results on each dataset are highlighted with boldface.

Methods ogbg-moltoxcast ogbg-molhiv ZINC

4 16 32 4 16 32 4 16 32

G
C
N

NoNorm 61.13 59.34 56.08 76.01 71.90 60.59 0.643 0.690 0.748
PairNorm 60.69 59.45 55.07 74.06 72.13 62.25 0.573 0.569 0.597
NodeNorm 61.94 55.58 49.90 74.80 57.75 57.64 0.625 1.332 1.547
MeanNorm 63.21 60.42 54.76 74.42 72.39 60.59 0.602 0.637 0.695
GroupNorm 61.58 59.48 56.73 76.66 71.84 66.38 0.641 0.673 0.737
GraphNorm 60.78 53.75 53.36 75.59 65.55 66.49 0.592 0.655 1.547
BatchNorm 63.39 59.73 53.47 76.11 76.62 74.21 0.573 0.611 0.655
ExpreNorm 64.97 57.91 57.82 76.05 76.75 72.36 0.564 0.570 0.646
MotifNorm 66.92 65.19 63.40 77.29 77.71 75.99 0.489 0.524 0.523

G
A
T

NoNorm 62.61 50.84 50.12 76.71 57.38 50.64 0.714 1.541 1.547
GraphNorm 60.53 52.79 53.22 75.30 73.86 64.03 0.576 1.254 1.537
BatchNorm 63.31 53.39 53.24 76.07 76.87 73.74 0.585 0.624 0.643
ExpreNorm 65.56 57.65 57.60 76.99 72.24 72.56 0.555 0.562 1.451
MotifNorm 66.57 64.04 58.26 77.36 77.08 76.70 0.495 0.517 0.522

G
I
N

NoNorm 62.19 56.38 54.83 76.33 69.70 58.87 0.496 0.520 1.069
GraphNorm 62.44 54.95 55.72 76.55 66.00 67.01 0.462 1.203 1.446
BatchNorm 63.72 58.67 55.56 76.62 70.28 66.82 0.477 0.516 1.153
ExpreNorm 65.98 57.80 56.56 76.23 69.97 70.96 0.438 0.482 1.157
MotifNorm 66.65 63.01 57.46 77.38 73.03 72.89 0.410 0.458 0.902

Table 13: Experimental results of different normalization methods on the node prediction task and
link prediction task. We use GCN, and GraphSage as the basic backbones and set the number of
layers as 4, 16 and 32. The best results on each dataset are highlighted with boldface.

Settings Pubmed ogbn-proteins ogbl-collab

4 16 32 4 16 32 4 16 32

G
C
N

NoNorm 76.16 54.67 45.58 69.16 63.24 63.15 35.38 22.11 15.24
PairNorm 74.25 56.24 55.13 69.28 63.15 63.00 31.26 23.22 14.69
NodeNorm 76.02 40.87 41.18 70.17 63.50 63.23 27.48 08.48 08.28
MeanNorm 76.05 73.40 65.34 69.14 63.05 62.40 33.28 22.56 16.16
GroupNorm 76.19 63.55 54.84 70.25 62.74 63.63 35.28 27.41 20.27
BatchNorm 75.62 48.88 43.28 69.96 67.36 63.86 47.57 26.14 21.68
MotifNorm 77.08 76.66 67.81 71.69 68.66 68.05 51.65 50.01 47.65

G
r
a
p
h
S
a
g
e

NoNorm 76.94 40.65 41.67 66.05 60.56 60.47 25.27 02.08 00.00
PairNorm 72.78 53.02 45.90 62.29 60.53 60.32 41.72 16.88 12.44
NodeNorm 77.22 40.64 40.64 64.48 62.63 61.89 19.74 02.57 02.62
MeanNorm 76.68 58.70 47.48 63.69 61.03 52.06 46.17 21.54 13.16
GroupNorm 76.83 40.42 43.49 68.09 61.58 60.60 45.43 23.98 15.43
BatchNorm 75.49 45.11 42.74 63.75 62.96 61.54 47.05 23.01 14.89
MotifNorm 77.48 76.54 73.68 67.81 67.02 66.07 52.31 48.94 48.39
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