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Abstract

Long-horizon tasks, which have a large discount factor, pose a challenge for most
conventional reinforcement learning (RL) algorithms. Algorithms such as Value It-
eration and Temporal Difference (TD) learning have a slow convergence rate and be-
come inefficient in these tasks. When the transition distributions are given, PID VI
was recently introduced to accelerate the convergence of Value Iteration using ideas
from control theory. Inspired by this, we introduce PID TD Learning and PID
Q-Learning algorithms for the RL setting, in which only samples from the environ-
ment are available. We give a theoretical analysis of the convergence of PID TD
Learning and its acceleration compared to the conventional TD Learning. We also
introduce a method for adapting PID gains in the presence of noise and empirically
verify its effectiveness.

1 Introduction

The Value Iteration (VI) algorithm is one of the primary dynamic programming methods for solving
(discounted) Markov Decision Processes (MDP). It is the foundation of many Reinforcement Learn-
ing (RL) algorithms such as the Temporal Difference (TD) Learning (Sutton, 1988; Tsitsiklis and
Van Roy, 1997), Q-Learning (Watkins, 1989), Approximate/Fitted Value Iteration (Gordon, 1995;
Ernst et al., 2005; Munos and Szepesvári, 2008; Tosatto et al., 2017), and DQN (Mnih et al., 2015;
Van Hasselt et al., 2016), which can all be seen as sample-based variants of VI. A weakness of the
VI algorithm and the RL algorithms built on top of it is their slow convergence in problems with
discount factor γ close to 1, which corresponds to the long-horizon problems where the agent aims to
maximize its cumulative rewards far in the future. One can show that the error of the value function
calculated by VI at iteration k goes to zero with the slow rate of O(γk). The slow convergence rate
when γ ≈ 1 also appears in the error analysis of the downstream temporal difference (Szepesvári,
1997; Even-Dar and Mansour, 2003; Wainwright, 2019) and fitted value iteration algorithms (Munos
and Szepesvári, 2008; Farahmand et al., 2010; Chen and Jiang, 2019; Fan et al., 2019). If γ ≈ 1, these
algorithms become very slow and inefficient. This work introduces accelerated temporal difference
learning algorithms that can mitigate this issue.

Farahmand and Ghavamzadeh (2021) recently suggested that one may view the iterates of VI as
a dynamical system. This opens up the possibility of using tools from control theory to modify,
and perhaps accelerate, the VI’s dynamics. They specifically used the simple class of Proportional-
Integral-Derivative (PID) controllers to modify VI, resulting in a new procedure called the PID VI
algorithm. They showed that with a careful choice of the controller gains, PID VI can converge
significantly faster than the conventional VI. They also introduced a gain adaptation mechanism, a
meta-learning procedure, to automatically choose these gains.

PID VI, similar to VI, is a dynamic programming algorithm and requires access to the full tran-
sition dynamics of the environment. In the RL setting, however, the transition dynamics is not
directly accessible to the agent; the agent can only acquire samples from the transition dynamics by
interacting with the environment.

∗These authors contributed equally to this work.
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In this work, we show how the ideas of the PID VI algorithm can be used in the RL setting. Our
contributions are:

• Introduce PID TD Learning and PID Q-Learning algorithms (Section 3) for the RL setting
that show accelerated convergence compared to their conventional counterparts.

• Theoretically show the convergence and acceleration of the PID TD Learning (Section 4).

• A sample-based gain adaptation mechanism to automatically tune the controller gains, re-
ducing the hyperparameter-tuning required for the algorithms (Section 5).

The new algorithms are a step towards RL algorithms that can tackle long-horizon tasks more
efficiently.

2 Background

Given a set Ω, letM(Ω) be the set of probability distributions over Ω, and B(Ω) be the set of bounded
functions over Ω. We consider a discounted MDP (Bertsekas and Tsitsiklis, 1996; Szepesvári, 2010;
Sutton and Barto, 2018) defined as (X ,A,P,R, γ) where X is the finite set of n states, A is the
finite set of m actions, P : X × A → M(X ) is the transition kernel, R : X × A → M([0, 1]) is the
reward function, and γ ∈ [0, 1) is the discount factor.

A policy π is a function π : X →M(A) representing the distribution over the actions an agent would
take from each state. Given a policy π, the functions V π : X → R and Qπ : X × A → R are the
corresponding (state-)value and action-value functions defined as the expected discounted return
when following π starting at a certain state or state-action pair. We also let Pπ : X → M(X ) and
Rπ : X →M([0, 1]) be the associated transition and reward kernels of policy π, and rπ : X → [0, 1]
be the expected reward of following π at any state.

The Policy Evaluation (PE) problem is the problem of finding the value function V π corresponding
to a given policy π and the Control problem is the problem of finding the policy π∗ that maximizes
the corresponding value function Q∗(x, a) ≜ Qπ∗(x, a) = maxπ Qπ(x, a), for each state x and action
a. We shall use V whenever we talk about the PE problem and Q for the Control problem, for the
brevity of the presentation.

The Bellman operator, T π, and the Bellman optimality operator, T ⋆, are defined as follows:

(T πV )(x) ≜ rπ(x) + γ

∫
Pπ(dy | x)V (y), (∀x ∈ X ),

(T ⋆Q)(x, a) ≜ r(x, a) + γ

∫
P(dy | x, a) max

a′∈A
Q(y, a′) (∀x ∈ X , a ∈ A).

The Bellman residual operators are defined as BRπV ≜ T πV − V (for PE) and BR∗Q ≜ T ⋆Q −Q
(for Control). The value function V π is the unique function with BRπV π = 0 and Q∗ is the unique
function with BR∗Q∗ = 0.

The iteration Vk+1 ← T πVk converges to V π, and the iteration Qk+1 ← T ⋆Qk converges to Q∗. This
is known as the VI algorithm. The convergence is due to the γ-contraction of the Bellman operators
with respect to the supremum norm, and can be proven using the Banach fixed-point theorem. The
result also shows that the convergence rate of VI is O(γk). This can be extremely slow for long
horizon tasks with γ very close to 1.

2.1 PID Value Iteration

The PID VI algorithm (Farahmand and Ghavamzadeh, 2021) is designed to address the slow conver-
gence of VI. The key observation is that the VI algorithm can be interpreted as a feedback control
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system with the Bellman residual as the error signal. The conventional VI corresponds to a Propor-
tional controller, perhaps the simplest form of controller. The PID VI algorithm uses a more general
PID controller (Dorf and Bishop, 2008; Ogata, 2010) in the feedback loop instead.

A PID controller consists of three components (terms), which together determine the update of the
value function from Vk to Vk+1, or from Qk to Qk+1. The P component is a rescaling of the Bellman
residual itself, that is, BRπVk or BR∗Qk. The D component is the discrete derivative of the value
updates, that is, Vk − Vk−1 or Qk − Qk−1. The I component is a running average of the Bellman
residuals. The contribution of each of these terms to the value update is determined by controller
gains κp, κI , κd ∈ R.

To find the I component, we maintain a running average (hence, the name integration) of Bellman
residual error by zk : X → R for PE and zk : X ×A → R in the Control case,

zk+1 = βzk + αBRπVk (PE) , zk+1 = βzk + αBR∗Qk (Control), (1)

with α, β ∈ R and z1 initialized to a vector of all zeroes. PID VI updates the value function by

Vk+1 = Vk + κpBRπVk + κI(βzk + αBRπVk) + κd(Vk − Vk−1) (PE), (2)
Qk+1 = Qk + κpBR∗Qk + κI(βzk + αBR∗Qk) + κd(Qk −Qk−1) (Control).

This is a generalization of the conventional VI algorithm: VI corresponds to the choice of
(κp, κI , κd) = (1, 0, 0). PID VI has the same fixed point as the conventional VI, for both PE and
Control. The dynamics of the sequence (Vk), however, depends on the controller gains (κp, κI , κd)
and (α, β) of the integrator. For some choices of the gains, the dynamics converges to the fixed point,
the true value function, at an accelerated rate. We also note that the dynamics is not necessarily
stable, and for some gains, it might diverge.

The choice of the gains that (maximally) accelerates convergence depends on the MDP and the
policy being evaluated. One approach is to place assumptions on the structure of the MDP, and
analytically derive the gains that optimize the convergence rate. Farahmand and Ghavamzadeh
(2021) provide such a result for PE in the class of reversible Markov chains. Assuming structure on
the MDP is not desirable though, so the same work also proposes a gain adaptation algorithm that
automatically tunes the controller gains during the fixed point iteration.

The proposed gain adaptation algorithm performs gradient descent at each iteration in the direction
that minimizes the squared Bellman residual. For added efficiency, it is normalized by the previous
Bellman residual. Formally, we pick a meta-learning rate η ∈ R and for each gain κ· ∈ {κp, κI , κd},
after each iteration of PID VI, we perform

κ· ← κ· − η
2

∥BRπVk∥2
2

∂ 1
2 ∥BRπVk+1∥2

2
∂κ·

= κ· − η
1

∥BRπVk∥2
2
·
〈

BRπVk+1,
∂BRπVk+1

∂κ·

〉
. (3)

The Control case is described similarly by substituting BRπ with BR∗. The PID VI algorithm (1)–
(2) and its gain adaptation procedure (3) depend on the computation of the Bellman residual BRπV
or its gradient ∂BRπV/∂κ·, both of which require accessing the transition dynamics P. PID VI,
like VI, is a dynamic programming/planning algorithm after all. They are not directly applicable to
the RL setting, where the agent has access only to samples from the environment that are obtained
online. The goal of the next few sections is to develop RL variants of these algorithms.

3 PID TD Learning and PID Q-Learning

We introduce the PID TD Learning as well as the PID Q-Learning algorithms. These are stochastic
approximation versions of the PID VI algorithm and use samples in the form of (Xt, At, Rt, X ′

t) with
At ∼ π(·|Xt) (for PE), X ′

t ∼ P(·|Xt, At) and Rt ∼ R(·|Xt, At), instead of directly accessing P and
R. In a typical RL setting, they form a sequence with Xt+1 = X ′

t.
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To generalize the PID VI procedure to the sample-based setting, we first describe each iteration of
PID VI with an operator. This viewpoint allows translation of PID VI to a sample-based algorithm
through stochastic approximation. The same translation applied to the Bellman operator, which is
the update rule for VI, yields the conventional TD Learning and Q-Learning. PID VI for PE updates
three functions V, V ′, z : X → R at each iteration. Here, V stores the value function, V ′ stores the
previous value function, and z stores the running average of the Bellman errors. For the PID Q-
Learning, the domain of these functions would be X ×A, that is, we have Q, Q′, z : X ×A → R. We
shall use Ṽ : X ×{v, v’, z} → R and Q̃ : X ×A×{v, v’, z} → R as a compact representation of
these three functions. Here, {v, v’, z} is set of size 3 that indexes the three functions contained in
Ṽ . Note that since we focus on finite MDPs, these functions can be represented by finite-dimensional
vectors Ṽ ∈ R3n and Q̃ ∈ R3nm:

Ṽ =

V
z

V ′

 , Q̃ =

Q
z

Q′

 .

Also define Ṽ π ≜ [V π 0 V π]⊤ and Q̃∗ ≜ [Q∗ 0 Q∗]⊤. Define the space of all possible choices of gains
(κp, κI , κd, α, β) to be G ≜ R5. For a policy π and the controller gains g ∈ G, we denote the PID VI
operator on the space of B(X × {v, v’, z}) by Lπ

g defined as

Lπ
g Ṽ ≜ Ṽ 7→

V + κp · BRπV + κI(βz + α · BRπV ) + κd(V − V ′)
βz + α · BRπV

V

 .

The operator L∗
g on B(X ×A×{v, v’, z}) is defined analogously, replacing BRπ with BR∗. With

these notations, the PID VI algorithm can be written as

Ṽk+1 ← Lπ
g Ṽk (PE) , Q̃k+1 ← L∗

gQ̃k (Control).

Now we use stochastic approximation and this operator to derive our sample-based algorithms. At
each iteration, the agent receives a sample (Xt, At, Rt, X ′

t) from the environment. Focus on PE
and let Ṽt be the compact form of functions Vt, zt, V ′

t at iteration t. To perform the stochastic
approximation update on the value of Ṽt(Xt, f) for some f ∈ {v, v’, z}, we need an unbiased
estimator L̂t,f of (Lπ

g Ṽt)(Xt, f), which is a scalar random variable. Let Nt(x) and Nt(x, a) be the
number of times state x and state-action x, a are visited by time t. We consider the learning rate
schedule µ : Z→ R+ that maps the state count to the current learning rate. With the estimator L̂t,f,
and state-count dependent learning rate µ(Nt(Xt)), the update given by stochastic approximation
is of the form

Ṽt+1(Xt, f)← Ṽt(Xt, f) + µ(Nt(Xt))(L̂t,f − Ṽt(Xt, f)). (4)

Note that all values of Ṽt+1 that are not assigned an updated value will remain the same.

The only term in (Lπ
g Ṽt)(Xt, f) that requires estimation is (BRπVt)(Xt), which depends on the

transition distributions of the MDP that is not available. We can form an unbiased estimate B̂Rt

of (BRπVt)(Xt) = (T πV )(Xt)− V (Xt) or (BR∗Qt)(Xt, At) = (T ⋆Qt)(Xt, At)−Qt(Xt, At) by

B̂Rt =
{

Rt + γVt(X ′
t)− Vt(Xt) (PE),

Rt + γ maxa′∈A Qt(X ′
t, a′)−Qt(Xt, At) (Control).

(5)

A stochastic approximation procedure can then be used to update the values Vt(Xt), zt(Xt), V ′
t (Xt)

according to (4). The procedure would be

Vt+1(Xt)← Vt(Xt) + µ(Nt(Xt))
[
κpB̂Rt + κI(βzt(Xt) + αB̂Rt) + κd(Vt(Xt)− V ′

t (Xt))
]
,

zt+1(Xt)← zt(Xt) + µ(Nt(Xt))
[
βzt(Xt) + αB̂Rt − zt(Xt)

]
,

V ′
t+1(Xt)← V ′

t (Xt) + µ(Nt(Xt))
[
Vt(Xt)− V ′

t (Xt)
]
. (6)
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We call this procedure the PID TD learning algorithm. For Control, we similarly form estimates
L̂t,f of (L∗

gQt)(Xt, At, f) and obtain

Qt+1(Xt, At)← Qt(Xt, At) + µt

[
κpB̂Rt + κI(βzt(Xt, At) + αB̂Rt) + κd(Qt(Xt, At)−Q′

t(Xt, At))
]
,

zt+1(Xt, At)← zt(Xt, At) + µt

[
βzt(Xt, At) + αB̂Rt − zt(Xt, At)

]
,

Q′
t+1(Xt, At)← Q′

t(Xt, At) + µt

[
Qt(Xt, At)−Q′

t(Xt, At)
]
. (7)

where µt = µ(Nt(Xt, At)). This is the PID Q-Learning algorithm. It is worth mentioning that one
can use other forms of learning rates to achieve better practical results. For example, we can choose
constant or state-count independent learning rates, or use three different learning rates for the three
updates in (6) and (7). The formulation in this section is chosen for simplicity and the theoretical
analysis.

4 Theoretical Guarantees

In this section, we focus on the PE problem and present the theoretical analysis of PID TD Learning.
We show that with proper choices of controller gains that make PID VI convergent, PID TD Learning
is also convergent. Then, under synchronous update setting, we provide insights on the accelerated
convergence of PID TD Learning compared to the conventional TD Learning.

4.1 Convergence Guarantee

Farahmand and Ghavamzadeh (2021) show that PID VI converges under a wide range of gains for
a wide range of environments both analytically and experimentally. We show that this convergence
carries over to our sample-based PID TD Learning. We first need to define some notations to express
our result. Note that Lπ

g is an affine linear operator. Define Aπ
g to be its linear component and bπ

g

to be the constant component, so that Lπ
g Ṽ = Aπ

g Ṽ + bπ
g . In particular,

Aπ
g :=

(1− κp + κd − κIα)I + γ(κp + κIα)Pπ βκII −κdI
(−αI + γαPπ) βI 0

I 0 0

 .

The matrix Aπ
g plays a critical role in the behavior of PID VI as well as PID TD Learning. Farahmand

and Ghavamzadeh (2021) show that PID VI is convergent for PE if ρ(Aπ
g ) < 1 where ρ(M) for a

square matrix M is its spectral radius, the maximum of the magnitude of the eigenvalues. It turns
out the condition on the controller gains needed for the convergence of PID TD Learning is weaker
than the one for PID VI. We provide the following result.
Theorem 1 (Convergence of PID TD). Consider a set of controller gains g. Let {λi} be the
eigenvalues of Aπ

g . If Re{λi} < 1 for all i, under mild assumptions on learning rate schedule µ and
the sequence (Xt) (Assumptions 1, 2), the functions Vt in PID TD Learning (6) converge to the
value function V π of the policy π, almost surely.

The proof of Theorem 1 uses the ordinary differential equations (ODE) method for convergence of
stochastic approximation algorithms (Borkar and Meyn, 2000; Borkar, 2009). The method binds
the behavior of the stochastic approximation to a limiting ODE. In our case, the ODE is

u̇(t) = Lπ
g u(t)− u(t) = (Aπ

g − I)u(t) + bπ
g .

It is shown that if this ODE converges to the stationary point Ṽ π, PID TD Learning will also
converge. The condition for the convergence of this linear ODE is that the eigenvalues {λ′

i} of
Aπ

g − I should have negative real parts. Since λ′
i = λi − 1, we get the condition in Theorem 1. Note

that this condition is weaker than ρ(Aπ
g ) < 1 for PID VI (Farahmand and Ghavamzadeh, 2021),

which is equivalent to |λi| < 1. In other words, PID TD Learning may be convergent even if PID
VI with the same controller gains g is not.
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Obtaining similar results for PID Q-Learning is technically much more challenging. The reason
for this difficulty is the fact that, just like PID VI for Control, as the agent’s policy changes, the
dynamics of PID Q-Learning changes. Similar to Farahmand and Ghavamzadeh (2021), we leave
theoretical analysis of PID Q-Learning to future work and only focus on its empirical study.

4.2 Acceleration Result

In this section, we provide theoretical insights on how PID TD Learning can show a faster conver-
gence compared to the conventional TD Learning. Our analysis relies on the finite-sample analy-
sis of stochastic approximation methods. Since results for the asynchronous updates are limited,
we provide our acceleration results for synchronous updates. Specifically, we provide our analy-
sis for the case that at each iteration t, a dataset Dt = {(x, Ax,t, Rx,t, X ′

x,t)}x∈X is given, where
for each state x ∈ X it contains the random action Ax,t ∼ π(·|x), reward Rx,t ∼ R(x, Ax,t), and
X ′

x,t ∼ Pπ(·|x, Ax,t). Then, all values of V, V ′, and z are updated simultaneously in the same manner
as (6). Similarly, synchronous TD Learning applies the conventional update on all states using the
dataset. Based on the analysis by Chen et al. (2020), the following theorem provides bounds on the
error of both algorithms for the learning rate schedule µ(t) = ϵ/(t + T ). We focus on the choices of
ϵ, T that achieve the optimal asymptotic rate.
Theorem 2. Suppose synchronous TD Learning and synchronous PID TD Learning are run with
initial value function V0 and learning rate µ(t) = ϵ/(t + T ) to evaluate policy π. Let V TD

t and V PID
t

be the value functions obtained by the algorithms at iteration t, and {cTD
i , cPID

i } be constants only
dependent on the MDP and controller gains. Assume Pπ is diagonalizable. If ϵ > 2/(1 − γ) and
T ≥ cTD

1 ϵ/(1− γ), we have

E
[∥∥V TD

t − V π
∥∥2

∞

]
≤ cTD

2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−γ)
+ ϵ(cTD

3 + cTD
4 ∥V π∥2

∞)
ϵ(1− γ)− 1

(
ϵ

t + T

)
.

Moreover, assume we initialize V ′ = V0 and z = 0 in PID TD Learning and Aπ
g is diagonalizable

with spectral radius ρ < 1. If ϵ > 2/(1− ρ) and T ≥ cPID
1 ϵ/(1− ρ), we have

E
[∥∥V PID

t − V π
∥∥2

∞

]
≤ cPID

2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−ρ)
+ ϵ(cPID

3 + cPID
4 ∥V π∥2

∞)
ϵ(1− ρ)− 1

(
ϵ

t + T

)
.

The assumption on diagonalizability of Pπ and Aπ
g in Theorem 2 is for the sake of simplicity. In

Appendix B, we provide a similar but more general result without this assumption. The upper
bounds in Theorem 2 consist of two terms. The first term, which scales with the initial error
∥V0 − V π∥∞ can be interpreted as the optimization error. It is the amount that Vt still has to change
to reach V π. The second term can be considered as the statistical error, which is independent of
the initial error and exists even if we start from V0 = V π. Due to the conditions ϵ > 2/(1 − γ)
and ϵ > 2/(1 − ρ), the statistical error is asymptotically dominant with rate O(t−1) compared to
O(t−ϵ(1−γ)) or O(t−ϵ(1−γ)) of the optimization error. Note that a larger ϵ accelerates the rate of
optimization error, but together with larger T (due to the condition on T ) slows the convergence of
the statistical error to zero. For example, it takes T steps for the statistical error to become half of
its initial value. For simplicity of discussion, we consider ϵ and T fixed.

The difference between the two algorithms is in the rate that the optimization error goes to zero.
This term for TD Learning is O(t−ϵ(1−γ)) and for PID TD Learning is O(t−ϵ(1−ρ)). When κp = 1
and κI = κd = α = 0, we have ρ = γ, and these two rates match. With a better choice of gains, one
can have ρ < γ (Farahmand and Ghavamzadeh, 2021) and achieve a faster rate for the optimization
error. Even though this term is not asymptotically dominant, we show that its speed-up can be
significant in the early stages of training, especially when the policy’s behavior has low stochasticity.
To show this, we first need to introduce the following definition.
Definition 1. We say policy π in MDP (X ,A,P,R, γ) is d-deterministic for some d ∈ [0, 1] if for
all x ∈ X , we have Var[Rπ(x)] ≤ (1− d)/4 and maxx′ Pπ(x′|x) ≥ d.



RLJ | RLC 2024

Due to our assumption that rewards are bounded within [0,1], any policy in any MDP is 0-
deterministic. The value of d depends on the stochasticity of both the MDP and the policy, with a
larger value corresponding to a more deterministic behavior. In the case where the policy and the
MDP are both deterministic, the policy becomes 1-deterministic. The following result shows how
the initial optimization error compares to the statistical error based on this measure.
Proposition 1. Assume the same conditions as in Theorem 2. Suppose policy π is d-deterministic
in the environment. Let ETD

opt (t) and ETD
stat(t) be the first and the second terms in the bound for

error of TD Learning at iteration t, respectively. Define EPID
opt (t) and EPID

stat (t) similarly. Define
c = max((κp + κIα)2, α2). We have

ETD
opt (0)

ETD
stat(0)

≥
∥V0 − V π∥2

∞ (5γ2n(1− d) + 2)
en(1− d)

(
1 + 40γ2 ∥V π∥2

∞

) ,
EPID

opt (0)
EPID

stat (0)
≥
∥V0 − V π∥2

∞ (15cγ2n(1− d) + 2)
3ecn(1− d)

(
1 + 40γ2 ∥V π∥2

∞

) .

Proposition 1 shows that when the initial error ∥V0 − V π∥∞ is large or the policy behaves almost
deterministically (d close to 1), the optimization error can make up the most of the error bound
in Theorem 2. In that case, the acceleration achieved by PID TD Learning in this term becomes
significant in the early stages. It should be noted that our arguments in this section are based on
the upper bounds on the errors of the algorithms as opposed to the errors themselves. This is a
common limitation for theoretical comparisons of algorithms. In Section 6, we further evaluate the
convergence of the algorithms empirically.

5 Gain Adaptation

The proper choice of controller gains is critical to both convergence and acceleration of our proposed
algorithms. While it is possible to treat the gains as hyperparameters and tune them like any other
hyperparameter, we address this by designing an automatic gain adaptation algorithm that tunes
them on the fly during the runtime of the algorithm.

The design of the gain adaptation algorithm for PID TD Learning and PID Q-Learning is based on
the same idea as gain adaptation in PID VI. Translating the update rule (3) to the sample-based
settings faces two main challenges. First, the derivative ∂BRπVk+1/∂κ· and normalization factor
∥BRπVk∥2

2 are not readily available without access to the transition dynamics P. Second, computing
the inner product in (3) requires iterating over all states x,〈

BRπVk+1,
∂BRπVk+1

∂κ·

〉
=
∑

x

(BRπVk+1)(x) · ∂(BRπVk+1)(x)
∂κ·

,

requiring the values of ∂(BRπVk+1)(x)/∂κ· and (BRπVk+1)(x) for every x. We will see that using
a sample (Xt, At, Rt, X ′

t), these values can be estimated for x = Xt but not for other states. A
replay buffer could give us access to samples at more states or function approximation could directly
provide estimates at all states. However, as these techniques suffer from memory and stability issues,
a better solution is needed for this challenge.

To avoid the difficulty of the inner product term, we modify the update rule of the gains at iteration
t to minimize (BRπVt+1)(Xt)2 instead of ∥BRπVt+1∥2

2. This modification is similar to performing
stochastic gradient descent instead of gradient descent. Instead of defining the loss over the whole
state space, we consider the loss on a single sampled state. Consequently, the new term only depends
on the values at Xt. We get the following update:

κ· ← κ· − η
2

∥BRπVt∥2
2
·

∂ 1
2 (BRπVt+1)(Xt)2

∂κ·

= κ· − η
1

∥BRπVt∥2
2
· (BRπVt+1)(Xt) ·

∂(BRπVt+1)(Xt)
∂κ·

.
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The term (BRπVt+1)(Xt) above can be estimated in a similar manner to (5). Estimating the deriva-
tive ∂(BRπVt+1)(Xt)/∂κ· as well as (BRπVt+1)(Xt) in an unbiased way is another challenging prob-
lem. It is known that forming an unbiased estimate for both of these quantities with only one sample
at state Xt leads to double-sampling issues (Baird, 1995). As in prior work (Kearney et al., 2018),
we use the semi-gradient trick for this problem. Specifically, we treat the T πV term in BRπV as
constant and ignore its derivative. This yields the estimate

∂(BRπVt+1)(Xt)
∂κ·

= ∂

∂κ·

[
rπ(Xt) + γ

∑
x′

Pπ(x′|Xt)Vt+1(x′)− Vt+1(Xt)
]
≈ −∂Vt+1(Xt)

∂κ·
.

When calculating ∂Vt+1(Xt)
∂κ·

, we further ignore the effect of gains on Vt, setting ∂Vt

∂κ·
≈ 0, and also drop

the learning rate µ(Nt(Xt)) to absorb it into η. These derivatives can be calculated based on (6) and
are given in Appendix C. Finally, the normalization term is estimated by keeping an exponential
moving average with smoothing factor λ of the square of estimates of the Bellman Residual in the
past iterations. The detailed version of PID TD Learning and PID Q-Learning with gain adaptaion
is shown in Algorithms 1 and 2 in Appendix C.

6 Empirical Results
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Figure 1: Comparison of PID TD Learning with Conventional TD Learning in Chain Walk (left)
and Cliff Walk (right) with γ = 0.99. Each curve is averaged over 80 runs. Shaded areas show the
standard error.

We empirically compare PID TD Learning and PID Q-Learning with their conventional counterparts.
We conduct experiments in the 50-state Chain Walk environment with 2 actions (Farahmand and
Ghavamzadeh, 2021), the Cliff Walk environment with 6 × 6 states and 4 actions (Rakhsha et al.,
2022), and randomly generated Garnet MDPs with 50 states and 3 actions (Bhatnagar et al., 2009).
Detailed descriptions of these environments and the policies evaluated can be found in Appendix D.
For each sample (Xt, At, Rt, X ′

t), we choose Xt uniformly at random and At is chosen according to π
(for PE) or at random (for Control). We measure the error of value functions Vt and Qt for PE and
Control problems by their normalized error defined as ∥Vt − V π∥1 / ∥V π∥1 and ∥Qt −Q∗∥F / ∥Q∗∥F ,
respectively, where ∥Q∥F ≜ (

∑
x,a Q(x, a)2) 1

2 .

For all learning rates, we use state-count dependent schedules of the form µ(Nt(Xt)) =
min(ϵ, Nt(Xt)/M) for some choice of ϵ and M for all algorithms (including PID Q-Learning and
Q-Learning). To achieve the best results for all algorithms, we use separate learning rates for
V, V ′, z components of PID TD Learning and Q, Q′, z components of PID Q-Learning. The hyper-
parameters ϵ, M of all learning rate schedules are tuned by gridsearch over a range of values. The
details of hyperparameter tuning are provided in Appendix F.
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In Figure 1, we compare PID TD Learning with TD Learning when the gains are fixed and γ = 0.99.
In this case the acceleration depends on the choice of gains and the environment. We observe that
we can achieve a drastic acceleration in Cliff Walk, and a minor acceleration in Chain Walk. We
further investigate the speed-up achieved by PID TD Learning in Cliff Walk. In Figure 2, we observe
that with Gain Adaptation and γ = 0.999, we achieve a significant acceleration without the need
to tune the controller gains. Figure 2 also shows how Gain Adaptation has modified the gains from
their initial values.

To evaluate the acceleration in the Control problem, we compare PID Q-Learning with Gain Adap-
tation with Q-Learning. Figure 3 shows this comparison in Chain Walk with γ = 0.999, where PID
Q-Learning shows acceleration. Finally, to draw a more conclusive comparison, we compare our
algorithms with the conventional ones on 80 randomly generated Garnet MDPs with γ = 0.99 in
Figure 4. We see that our algorithms outperform TD Learning and Q-Learning in both PE and
Control problems.
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Figure 2: PID TD Learning with Gain Adaptation in Cliff Walk with γ = 0.999. (Left) Comparison
of value errors of PID TD Learning with TD Learning. Each curve is averaged over 80 runs. Shaded
area shows standard error. (Right) The change of gains done by Gain Adaptation through training.
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Figure 3: PID Q-Learning with Gain Adaptation in Chain Walk with γ = 0.999. (Left) Comparison
of value errors of PID Q-Learning with Q-Learning. Each curve is averaged over 80 runs. Shaded
area shows standard error. (Right) The change of gains done by Gain Adaptation through training.
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Figure 4: Comparison of PID Accelerated algorithms with the conventional ones for PE (Left) and
Control (Right) problems in randomly generated Garnet environments with γ = 0.99. Each curve
is an average of 80 MDPs, run for 80 times each. Shaded area shows standard error.

7 Related Work

There is a growing literature of applying acceleration techniques to RL. Similar to PID VI, which as
we showed leads to PID TD Learning and PID Q-Learning, many accelerated dynamic programming
methods have closely related RL algorithms. The idea of momentum has been used for faster
dynamic programming algorithms by Vieillard et al. (2020); Goyal and Grand-Clément (2023) and
in RL setting has led to Speedy Q-Learning (Ghavamzadeh et al., 2011) and Momentum Q-Learning
(Bowen et al., 2021). Zap Q-Learning (Devraj and Meyn, 2017) is another accelerated variant of Q-
Learning based on second-order optimization methods. Anderson acceleration (Anderson, 1965) has
been used for Anderson VI (Geist and Scherrer, 2018) and Anchoring acceleration (Halpern, 1967)
is used in Anchord VI (Lee and Ryu, 2023). Matrix splitting is used to derive Operator Splitting VI
(OSVI) (Rakhsha et al., 2022) and Deflated Dynamics VI (DDVI) (Lee et al., 2024), which are both
extended to the RL setting through stochastic approximation. Recently, Rakhsha et al. (2024) has
introduced the Model Correcting VI (MoCoVI) and Model Correcting Dyna (MoCoDyna) algorithms
that achieve acceleration through model correction.

Gain adaptation in general has a long history in RL and closely-related literature. Kesten (1958)
used an adaptive mechanism in the context of stochastic approximation in the 1950s. They describe
a method for choosing the learning rate of SA that is very similar to the P component of the
gain adaptation procedure we naturally derive. However, the algorithm is ad hoc in nature, and is
not compatible with function approximation in any natural way. First order methods of adapting
hyperparameters have been proposed, including IDBD (Sutton, 1992), the recent RL focused variant
TIDBD (Kearney et al., 2018), and SMD (Schraudolph, 1999) which all tune learning rates by finding
the gradient with respect to the history of errors. We refer to Sutton (2022) for a more in-depth
history and overview of such techniques. These approaches are limited to controlling only the learning
rate of the procedure and thus only attacking the error from sampling, not the bootstrapping error.

8 Conclusion

We showed how recent advances in accelerated planning and dynamic programming, specifically the
PID Value Iteration algorithm, can be used to design algorithms for the RL setting. The proposed
PID TD Learning and PID Q-Learning algorithms are accompanied by a gain adaptation mechanism,
which tunes their hyperparameters on the fly. We provided theoretical analysis as well as empirical
studies of these algorithms.
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One limitation of the current work is that the proposed algorithms are only developed for finite MDPs
where the value function, and all relevant quantities, can be represented exactly. For large MDPs,
for example with continuous state spaces, we need to use function approximation. Developing PID
TD Learning and PID Q-Learning with function approximation is therefore one important future
direction. Another limitation of this work is that the gain adaptation procedure, even though
empirically reliable, does not come with a convergence guarantee. Moreover, small changes in its
hyperparameters, such as its meta-learning rate η, can cause large changes in the trajectory the
value function takes during training. Another interesting research direction is then to develop a gain
adaptation procedure that is less sensitive to the choice of hyperparameters and has a convergence
guarantee. Finally, this work shows that the dynamics of RL can be significantly influenced by
the PID controller, one of the simplest controllers in the arsenal of control engineering. Developing
Planning and RL algorithms based on more sophisticated controllers is another promising research
direction.
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A Proofs for Convergence Results (Section 4.1)

In this section, we present the proof of Theorem 1. We first present some notation, and then the
assumptions on the learning rate schedule µ and sequence of visited samples (Xt)t≥0. Let rπ ∈ Rn

be the vector of the expected immediate rewards of following the policy at each state.

Now we move on the assumptions for Theorem 1.
Assumption 1 (Properly Tapering Learning Rate Schedule). The learning rate schedule µ : Z→ R+

satisfies the following:

(i) We have 0 < µ(t) ≤ 1 for any t ≥ 0, and
∞∑

t=0
µ(t) =∞ ,

∞∑
t=0

µ(t)2 <∞.

(ii) For some T , we have µ(t + 1) < µ(t) for all t ≥ T .

(iii) For z ∈ (0, 1), supt µ([zt])/µ(t) <∞, where [·] is the integer part of a number.

(iv) For z ∈ (0, 1),

lim
t→∞

 [zt]∑
i=0

µ(i)

/(
t∑

i=0
µ(i)

)
= 1.

Examples of learning rate schedules that satisfy Assumption 1 includes µ(t) = 1
t+1 . The next

assumption is on the balanced updates of states.
Assumption 2 (Balanced Updates of States). The sequence of visited states (Xt)t and learning
rate schedule µ is such that we have

(i) There exists deterministic ∆ > 0, such that for all x ∈ X

lim inf
t→∞

Nt(x)
t
≥ ∆ a.s.

(ii) If Tt(z) ≜ min{t′ > t :
∑t′

i=t+1 µ(i) > z}, for any z > 0 and states x1, x2 ∈ X , the following
limit exists

lim
t→∞

∑NTt(z)(x1)
i=Nt(x1) µ(i)∑NTt(z)(x2)
i=Nt(x2) µ(i)

.

Intuitively, Assumption 2 asserts that all states are visited often enough and get balanced sum of
learning rates. Before presenting the proof for Theorem 1, we first prove the following auxiliary
lemma.
Lemma 1. Assume policy π in the environment is d-deterministic and x ∈ X is arbitrary. Let R and
X ′ be the random obtained reward and next state after following policy π from x in the environment.
Let W = R + γV (X ′)− (T πV )(x) for an arbitrary V : X → R. We have

E
[
W 2] ≤ 1− d

4 + 5γ2(1− d) ∥V ∥2
∞ .

Moreover, for some Ṽ , f, let L̂ be the estimator of (Lπ
g Ṽ )(x, f) derived in PID TD Learning’s update

(4) according to the sample (x, R, X ′). Assume W̃ = L̂− (Lπ
g Ṽ )(x, f) is its noise. We have

E
[
W̃ 2] ≤ max((κp + κIα)2, α2)

(
1− d

4 + 5γ2(1− d)
∥∥Ṽ
∥∥2

∞

)
.
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Proof. For the first part, we write

E[W 2] = E
[
( R + γV (X ′)− rπ(x)− γE[V (X ′)] )2]

= E
[
(R− rπ(X))2]+ γ2E

[
( V (X ′)− E[V (X ′)] )2]+ 2E[(R− rπ(x))(V (X ′)− E[V (X ′)])]

= Var[R] + γ2Var[V (X ′)]

≤ 1− d

4 + γ2Var[V (X ′)],

where the last inequality is by the definition of d-deterministic MDP. Now let p∗ = maxx′ Pπ(x′|x)
and x∗ = arg maxx′ Pπ(x′|x). Due to the law of total variance (Blitzstein and Hwang, 2014, Example
9.5.5), we have

Var[V (X ′)] = p∗Var[V (X ′)|X ′ = x∗] + (1− p∗)Var[V (X ′)|X ′ ̸= x∗]

+ p∗(1− p∗)
(
E[V (X ′)|X ′ = x∗]− E[V (X ′)|X ′ ̸= x∗]

)2

≤ (1− p∗) ∥V ∥2
∞ + 4p∗(1− p∗) ∥V ∥2

∞

≤ 5(1− d) ∥V ∥2
∞ .

Together, we obtain

E[W 2] ≤ 1− d

4 + 5(1− d) ∥V ∥2
∞ .

For the second part, we consider three cases. If f = v, we have

W̃ = (κp + κIα)W.

If f = z, we have
W̃ = αW.

If f = v′, we have
W̃ = 0.

Combining all cases, we get

W̃ 2 ≤ max((κp + κIα)2, α2)W 2,

which means

E
[
W̃ 2] ≤ max((κp + κIα)2, α2)

(
1− d

4 + 5γ2(1− d)
∥∥Ṽ
∥∥2

∞

)
.

Proof of Theorem 1

Proof. We show the claim by applying the result by Borkar and Meyn (2000, Theorem 2.5) to our
algorithm. We describe how PID TD Learning (6) is a special case of a convergent asynchronous
stochastic approximation in (Borkar and Meyn, 2000). PID TD Learning updates three entries of
Ṽt at each iteration. Therefore, our set of indices that are updated (noted by Y (n) in the original
paper) is Yt ≜ {(Xt, v), (Xt, z), (Xt, v’)}. The number of times the value for (x, f) ∈ X × {v, z, v’}
is updated (noted by ν(i, n) in the original paper) is Nt(x) and the communication delays are zero
in our case. With these choices, the asynchronous stochastic approximation of (Borkar and Meyn,
2000, Equation 2.8) becomes

Ṽt+1(Xt, f)← Ṽt(Xt, f) + µ(Nt(Xt))f [Ṽt, Dt](Xt, f) (∀f ∈ {v, z, v’}),
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and the other entries in Ṽt+1 remain the same as Ṽt. Here, Dt ∈ D for all t are independently
and identically distributed (i.i.d.), and f : R3n ×D → R3n can be an arbitrary function. To obtain
PID TD Learning in this form, we define D ≜ (X × [0, 1])n. For any t, we choose Dt to be a
dataset {(Rx,t, X ′

x,t)}x∈X where for each state x contains the random reward Rx,t ∼ Rπ(x) and
X ′

x,t ∼ Pπ(·|x). Then we define f such that for all x ∈ X ,

f [Ṽt, Dt](x, v) ≜ κpbx,t + κI(βzt(x) + αbx,t) + κd(Vt(x)− V ′
t (x)),

f [Ṽt, Dt](x, z) ≜ βzt(x) + αbx,t − zt(x),
f [Ṽt, Dt](x, v’) ≜ Vt(x)− V ′

t (x).

where bx,t = Rx,t + γVt(X ′
x,t)− Vt(x). This yields the exact same PID TD Learning updates.

The function h(Ṽ ) = E[f(Ṽ , D1)] in (Borkar and Meyn, 2000) is equal to Lπ
g Ṽ − Ṽ in our setting.

Note that h is Lipschitz since it is an affine linear operator. The function h∞(Ṽ ) exists and is equal
to (Aπ

g − I)Ṽ . Therefore, we require the origin point to be an asymptotically stable equilibrium of
the ODE

u̇(t) = h∞(u(t)) = (Aπ
g − I)u(t),

which is satisfied due to the assumption on the eigenvalues of Aπ
g and the fact that the solution of

the above ODE is exp [(Aπ
g − I)t]u0 (Teschl, 2012) for any starting point u0.

Furthermore, we note that the unique globally asymptotically stable equilibrium of ODE

u̇(t) = h(u(t)) = Lπ
g u(t)− u(t) = (Aπ

g − I)u(t) + bπ
g .

is −(Aπ
g − I)−1bπ

g which is equal to Ṽ π due to Ṽ π = Lπ
g Ṽ π = Aπ

g Ṽ π + bπ
g .

Finally, note that Lemma 1 established the required property of the noise. The remaining assump-
tions of Borkar and Meyn (2000) are satisfied due to Assumption 1 and 2.

B Proofs for Acceleration Results (Section 4.2)

Before presenting the proof of the Theorems, we introduce these definitions.
Definition 2. Let f : Rd be a convex, differentiable function. Then f is said to be L-smooth with
respect to (w.r.t.) norm ∥·∥ if and only if

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2 ∀x, y ∈ Rd.

Definition 3. For any non-singular matrix S ∈ Rd×d, we define the vector norm ∥v∥2,S ≜ ∥Sv∥2.
For any matrix A, we let ∥A∥2,S be the matrix norm of A induced by the vector norm ∥·∥2,S.

We also need the following lemmas.
Lemma 2. Let A ∈ Rd×d and δ ≥ 0. If A is not diagonalizable, further assume δ > 0. There exists
an invertible matrix S such that ∥A∥2,S ≤ ρ(A) + δ and for any v ∈ Rd, ∥v∥2,S ≤ ∥v∥∞.

Proof. The existence of S′ such that ∥A∥2,S′ ≤ ρ(A)+δ is a consequence of the proof of Theorem 4.4
in Householder (1958). Due to equivalence of norms in finite dimensions, there exists u > 0 such that
for any v ∈ Rd, ∥v∥2,S′ ≤ u ∥v∥∞. Define S = 1

u S′. Consequently, ∥v∥2,S ≤ ∥v∥∞ for any v. Now
from Theorem 2.10 in Householder (1958), we have ∥A∥2,S′ =

∥∥S′AS′−1
∥∥

2 and ∥A∥2,S =
∥∥SAS−1

∥∥
2

which means

∥A∥2,S =
∥∥SAS−1∥∥

2 =
∥∥S′AS′−1∥∥

2 = ∥A∥2,S′ ≤ ρ(A) + δ.
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Lemma 3. For any invertible matrix S, the function f : Rd → R defined as f(x) = 1
2 ∥x∥

2
2,S is

1-smooth w.r.t. ∥·∥2,S.

Proof. Let g(x) = 1
2 ∥x∥

2
2. By definition, f(x) = g(Sx). We write

f(x) + ⟨∇f(x), y − x⟩+ 1
2 ∥y − x∥2

2,S = g(Sx) +
〈
S⊤∇g(Sx), y − x

〉
+ 1

2 ∥Sy − Sx∥2
2

= g(Sx) + ⟨∇g(Sx), Sy − Sx⟩+ 1
2 ∥Sy − Sx∥2

2 .

By Beck (2017, Example 5.11), g is 1-smooth, that is for any u, v,

g(u) + ⟨∇g(u), v − u⟩+ 1
2 ∥v − u∥2

2 ≥ g(v).

Together, we conclude

f(x) + ⟨∇f(x), y − x⟩+ 1
2 ∥y − x∥2

2,S ≥ g(Sy) = f(y).

Lemma 4. Assume a dataset {(x, Rx, X ′
x)}x is given, where for each state x contains the random

reward Rx ∼ Rπ(x) and X ′
x ∼ Pπ(·|x), and π is d-deterministic in the environment. For an

arbitrary value function V , define W : X → R as

W (x) ≜ Rx + γV (X ′
x)− rπ(x)− γ(PπV )(x).

Moreover, for some Ṽ and x, f, let L̂(x, f) be the estimator of (Lπ
g Ṽ )(x, f) derived in PID TD

Learning’s update (4) according to the sample (x, Rx, X ′
x). Define

W̃ (x, f) = L̂(x, f)− (Lπ
g Ṽ )(x, f).

We have

E
[
∥W∥2

∞

]
≤ n

(
1− d

4 + 5γ2(1− d) ∥V ∥2
∞

)
,

E
[∥∥W̃

∥∥2
∞

]
≤ 3n max((κp + κIα)2, α2)

(
1− d

4 + 5γ2(1− d)
∥∥Ṽ
∥∥2

∞

)
.

Proof. According to Lemma 1, for any x, f,

E
[
W (x)2] ≤ 1− d

4 + 5γ2(1− d) ∥V ∥2
∞ ,

E
[
W̃ (x, f)2] ≤ max((κp + κIα)2, α2)

(
1− d

4 + 5γ2(1− d)
∥∥Ṽ
∥∥2

∞

)
.

The result follows from the fact that for any random vector Z = [Z1, . . . , Zk]⊤,

E
[
∥Z∥2

∞

]
≤ E

[∑
i

Z2
i

]
=
∑

i

E
[
Z2

i

]
.
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B.1 Proof of Theorem 2

We prove the more general result than Theorem 2 without any diagonalizablity assumptions. The-
orem 2 is the special case of the following when δTD = δPID = 0.
Theorem 3. Suppose synchronous TD Learning and PID TD Learning are run with initial value
function V0 and learning rate µ(t) = ϵ/(t + T ) to evaluate policy π. Let V TD

t , V PID
t be the value

functions obtained with each algorithm at iteration t. Assume δTD, δPID ≥ 0. If Pπ is not diag-
onalizable, we further assume δTD > 0, and if Aπ

g is not diagonalizable, we assume δPID > 0. If
ϵ > 2/(1− γ − δTD) and T ≥ cPID

1 ϵ/(1− γ − δTD), we have

E
[∥∥V TD

t − V π
∥∥2

∞

]
≤ cPID

2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−γ−δTD)
+ ϵ(cPID

3 + cPID
4 ∥V π∥2

∞)
ϵ(1− γ − δTD)− 1 ·

(
ϵ

t + T

)
.

Here, {cPID
i } are constants dependent on the MDP and δTD. Moreover, assume we initialize V ′ =

V0, z ≡ 0 in PID TD Learning and Aπ
g has spectral radius ρ < 1. If ϵ > 2/(1 − ρ − δPID) and

T ≥ cPID
1 ϵ/(1− ρ− δPID), we have

E
[∥∥V PID

t − V π
∥∥2

∞

]
≤ cPID

2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−ρ−δPID)
+ ϵ(cPID

3 + cPID
4 ∥V π∥2

∞)
ϵ(1− ρ− δPID)− 1 ·

(
ϵ

t + T

)
.

Here, {cPID
i } are constants dependent on the MDP, controller gains, and δPID.

Proof of Theorem 3 for TD Learning

Proof. Since Pπ is a stochastic matrix, we have ρ(Pπ) = 1. Based on Lemma 2, let S be the
non-singular matrix such that ∥γPπ∥2,S ≤ γ + δTD. For any two V1 and V2 we have

∥T πV1 − T πV2∥2,S = ∥γPπ(V1 − V2)∥2,S ≤ ∥γP
π∥2,S ∥V1 − V2∥2,S ≤ (γ + δTD) ∥V1 − V2∥2,S ,

which means T π is a (γ + δTD)-contraction w.r.t. ∥·∥2,S . Moreover, 1
2 ∥x∥

2
2,S is 1-smooth according

to Lemma 3. Consequently, we use ∥·∥2,S as the norms ∥·∥c and ∥·∥s in Chen et al. (2020).

Assume the policy is d-deterministic. Define the noise Wt : X → R at iteration t as

Wt(x) ≜ Rx,t + γVt(X ′
x,t)− rπ(x)− γ(PπVt)(x).

By Lemma 4, we can bound the conditional noise at each iteration as

E
[
∥Wt∥2

∞

∣∣∣V0, W0, . . . , Wt−1, Vt

]
≤ CTD + BTD ∥Vt∥2

∞ ,

where

CTD ≜
n(1− d)

4 , BTD ≜ 5γ2n(1− d).

There exists a constant lTD > 0 by the equivalence of norms and Lemma 2 such that for all x ∈ Rn:

lTD ∥x∥∞ ≤ ∥x∥2,S ≤ ∥x∥∞ . (8)

Based on these, define the constant

cTD
1 ≜

8(BTD + 2)
lTD2 .

By Corollary 2.1.2 of Chen et al. (2020), choosing the norm ∥·∥e to be ∥·∥∞, µ = L = 1, the error
at iteration t is bounded as

E
[
∥Vt − V π∥2

2,S

]
≤ ∥V0 − V π∥2

2,S

(
T

t + T

)ϵ(1−γ−δTD)
+

16eϵ2
(

CTD + 2BTD ∥V π∥2
2,S

)
lTD2(ϵ(1− γ − δTD)− 1)

·
(

1
t + T

)
.
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By Equation (8), this immediately gives us a bound on the infinity norm.

E
[
∥Vt − V π∥2

∞

]
≤ 1

lTD2E
[
∥Vt − V π∥2

2,S

]
≤ 1

lTD2 ∥V0 − V π∥2
2,S

(
T

t + T

)ϵ(1−γ−δTD)
+

16eϵ2
(

CTD + 2BTD ∥V π∥2
2,S

)
lTD4(ϵ(1− γ − δTD)− 1)

·
(

1
t + T

)

≤ 1
lTD2 ∥V0 − V π∥2

∞

(
T

t + T

)ϵ(1−γ−δTD)
+

16eϵ2
(

CTD + 2BTD ∥V π∥2
∞

)
lTD4(ϵ(1− γ − δTD)− 1)

·
(

1
t + T

)
.

This gives the statement of theorem by defining

cTD
2 ≜

1
lTD2 , cTD

3 ≜
16eCTD

lTD4 , cTD
4 ≜

32eBTD

lTD4 .

Proof of Theorem 3 for PID TD Learning

Proof. The proof follows the exact steps in the proof for TD Learning. Based on Lemma 2, let S be
the non-singular matrix such that

∥∥Aπ
g

∥∥
2,S
≤ ρ + δPID. For any two Ṽ1 and Ṽ2 we have∥∥Lπ

g Ṽ1 − Lπ
g Ṽ2
∥∥

2,S
=
∥∥Aπ

g (Ṽ1 − Ṽ2)
∥∥

2,S
≤
∥∥Aπ

g

∥∥
2,S

∥∥Ṽ1 − Ṽ2
∥∥

2,S
≤ (ρ + δPID)

∥∥Ṽ1 − Ṽ2
∥∥

2,S
,

which means Lπ
g is a (ρ + δPID)-contraction w.r.t. ∥·∥2,S . Moreover, 1

2 ∥x∥
2
2,S is 1-smooth according

to Lemma 3. Consequently, we use ∥·∥2,S as the norms ∥·∥c and ∥·∥s in Chen et al. (2020).

Assume the policy is d-deterministic. Define the noise W̃t : X × {v, z, v’} → R at iteration t as

W̃t(x, v) ≜ (κp + κIα)(Rx,t + γVt(X ′
x,t)− rπ(x)− γ(PπVt)(x)),

W̃t(x, z) ≜ α(Rx,t + γVt(X ′
x,t)− rπ(x)− γ(PπVt)(x)),

W̃t(x, v’) ≜ 0.

By Lemma 4, we can bound the noise at each iteration as

E
[∥∥W̃t

∥∥2
∞

∣∣∣Ṽ0, W̃0, . . . , W̃t−1, Ṽt

]
≤ CPID + BPID ∥∥Ṽt

∥∥2
∞ ,

where

CPID ≜
3n

4 max((κp + κIα)2, α2)(1− d), BPID ≜ 15γ2n ·max((κp + κIα)2, α2)(1− d).

There exists a constant l > 0 by the equivalence of norms and Lemma 2 such that for all x ∈ R3n:

lPID ∥x∥∞ ≤ ∥x∥2,S ≤ ∥x∥∞ . (9)

Based on these, define the constants

cPID
1 ≜

8(BPID + 2)
lPID2 .

By Corollary 2.1.2 of Chen et al. (2020), choosing the norm ∥·∥e to be ∥·∥∞, the error at iteration t
is bounded as

E
[∥∥Ṽt − Ṽ π

∥∥2
2,S

]
≤
∥∥Ṽ0 − Ṽ π

∥∥2
2,S

(
T

t + T

)ϵ(1−ρ−δPID)
+

16eϵ2
(

CPID + 2BPID
∥∥Ṽ π

∥∥2
2,S

)
lPID2(ϵ(1− ρ− δPID)− 1)

·
(

1
t + T

)
.
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By Equation (9), this immediately gives us a bound on the infinity norm.

E
[∥∥Ṽt − Ṽ π

∥∥2
∞

]
≤ 1

lPID2E
[∥∥Ṽt − Ṽ π

∥∥2
2,S

]
≤ 1

lPID2
∥∥Ṽ0 − Ṽ π

∥∥2
2,S

(
T

t + T

)ϵ(1−ρ−δPID)
+

16eϵ2
(

CPID + 2BPID
∥∥Ṽ π

∥∥2
2,S

)
lPID4(ϵ(1− ρ− δPID)− 1)

·
(

1
t + T

)

≤ 1
lPID2

∥∥Ṽ0 − Ṽ π
∥∥2

∞

(
T

t + T

)ϵ(1−ρ−δPID)
+

16eϵ2
(

CPID + 2BPID
∥∥Ṽ π

∥∥2
∞

)
lPID4(ϵ(1− ρ− δPID)− 1)

·
(

1
t + T

)
.

Since
∥∥V PID

t − V π
∥∥

∞ ≤
∥∥Ṽt − Ṽ π

∥∥
∞,

∥∥Ṽ π
∥∥

∞ = ∥V π∥∞, and
∥∥Ṽ0 − Ṽ π

∥∥
∞ = ∥V0 − V π∥∞ we

finally get

E
[∥∥V PID

t − V π
∥∥2

∞

]
≤ 1

lPID2 ∥V0 − V π∥2
∞

(
T

t + T

)ϵ(1−ρ−δPID)
+

16eϵ2
(

CPID + 2BPID ∥V π∥2
∞

)
lPID4(ϵ(1− ρ− δPID)− 1)

·
(

1
t + T

)
.

This gives the statement of theorem by defining

cPID
2 ≜

1
lPID2 , cPID

3 ≜
16eCPID

lPID4 , cPID
4 ≜

32eBPID

lPID4 .

B.2 Proof of Proposition 1

Proof.

ETD
opt (0)

ETD
stat(0)

= ∥V0 − V π∥2
∞

lTD2 · lTD4(ϵ(1− γ)− 1)T
16eϵ2

(
CTD + 2BTD ∥V π∥2

∞

)
Due to the theorem conditions T ≥ ϵcTD

1 /(1 − γ) and ϵ ≥ 2/(1 − γ), which means ϵ(1 − γ) − 1 ≥
ϵ(1− γ)/2. We continue

ETD
opt (0)

ETD
stat(0)

≥
∥V0 − V π∥2

∞

lTD2 · lTD4
ϵ(1− γ) · ϵcTD

1

32eϵ2
(

CTD + 2BTD ∥V π∥2
∞

)
(1− γ)

= ∥V0 − V π∥2
∞ lTD2

cTD
1

32e
(

CTD + 2BTD ∥V π∥2
∞

)
= ∥V0 − V π∥2

∞ · 8(5γ2n(1− d) + 2)
32e

(
n(1− d)/4 + 10γ2n(1− d) ∥V π∥2

∞

)
= ∥V0 − V π∥2

∞ (5γ2n(1− d) + 2)
en(1− d)

(
1 + 40γ2 ∥V π∥2

∞

) .
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Similarly for PID TD Learning, define c = max((κp + κIα)2, α2):

EPID
opt (0)

EPID
stat (0)

= ∥V0 − V π∥2
∞

lPID2 · lPID4(ϵ(1− ρ)− 1)T
16eϵ2

(
CPID + 2BPID ∥V π∥2

∞

)
≥
∥V0 − V π∥2

∞

lPID2 · lPID4
ϵ(1− ρ) · ϵcPID

1

32eϵ2
(

CPID + 2BPID ∥V π∥2
∞

)
(1− ρ)

= ∥V0 − V π∥2
∞ lPID2

cPID
1

32e
(

CPID + 2BPID ∥V π∥2
∞

)
= ∥V0 − V π∥2

∞ · 8(15γ2nc(1− d) + 2)
32e

(
3nc(1− d)/4 + 30γ2nc(1− d) ∥V π∥2

∞

)
= ∥V0 − V π∥2

∞ (15γ2nc(1− d) + 2)
3enc(1− d)

(
1 + 40γ2 ∥V π∥2

∞

) .

C Details of Gain Adaptation

Tables 1 and 2 show the semi-gradients used for gain adaptation for Policy Evaluation and Control
respectively. Algorithms 1 and 2 show the detailed description of the algorithm for Policy Evaluation
and Control respectively.

Table 1: Semi-gradients of the Bellman residual used in the gain adaptation updates for Policy
Evaluation. The learning rates are dropped to absorb them into η.

Estimated semi-gradient of (BRπVt+1)(Xt)2

κp (Rt + γVt+1(X ′
t)− Vt+1(Xt)) · (Rt + γVt(X ′

t)− Vt(Xt))
κI (Rt + γVt+1(X ′

t)− Vt+1(Xt)) · [βzt(Xt) + α(Rt + γVt(X ′
t)− Vt(Xt))]

κd (Rt + γVt+1(X ′
t)− Vt+1(Xt)) · (Vt(Xt)− V ′

t (Xt))

Table 2: Semi-gradients of the Bellman residual used in the gain adaptation updates for Control.
The learning rates are dropped to absorb them into η.

Estimated semi-gradient of (BR∗Qt+1)(Xt, At)2

κp (Rt + γ maxa∈A Qt+1(X ′
t, a)−Qt+1(Xt, At)) · (Rt + γQt(X ′

t, A′
t)−Qt(Xt, At))

κI (Rt + γ maxa∈A Qt+1(X ′
t, a)−Qt+1(Xt, At)) · [βzt(Xt, At) + α(Rt + γ maxa∈A Qt(X ′

t, a)−Qt(Xt, At))]
κd (Rt + γ maxa∈A Qt+1(X ′

t, a)−Qt+1(Xt, At)) · (Qt(Xt, At)−Q′
t(Xt, At))

D Description of the Environments

D.1 Chain Walk

The environment consists of 50 states that are connected in a circular chain. The agent has two
actions available, moving left or right. Upon taking an action, the agent succeeds with probability
0.7, stays in place with probability 0.1, and moves in the opposite direction with probability 0.2.
The agent receives a reward of 1 when entering state 10, a reward of -1 when entering state 40, and
a reward of 0 otherwise. The policy evaluated in the PE experiments is to always move left.
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Algorithm 1 PID TD Learning with Gain Adaptation
1: Initialize V1, V ′

1 , z1, previous_V1, running_BR1, and N1 to zero on all states.
2: Initialize the gains to κp = 1, κI = 0, κd = 0.
3: for t = 1, . . . , K do
4: Observe state Xt, take action At ∼ π(· | Xt), receive reward Rt, and observe next state X ′

t.
5: Set δ′ ← Rt + γ · previous_Vt(X ′

t)− previous_Vt(Xt).
6: Set δ ← Rt + γVt(X ′

t)− Vt(Xt).
7: Update the gains:

κp ← κp + η
δδ′

running_BRt(Xt) + ϵ

κI ← κI + η
δ(βzt(Xt) + αδ′)

running_BRt(Xt) + ϵ

κd ← κd + η
δ(Vt(Xt)− V ′

t (Xt))
running_BRt(Xt) + ϵ

.

8: Set update← Vt(Xt) + κpδ + κd(Vt(Xt)− V ′
t (Xt)) + κI(βzt(Xt) + αδ).

9: Set Nt+1(Xt)← Nt(Xt) + 1.
10: Update the running values on the new states asynchronously:

running_BRt+1(Xt)← (1− λ) · running_BRt(Xt) + λδ2

previous_Vt+1(Xt)← Vt(Xt)
Vt+1(Xt)← (1− µ(Nt(Xt)))Vt(Xt) + µ(Nt(Xt)) · update

V ′
t+1(Xt)← (1− µ(Nt(Xt)))V ′

t (Xt) + µ(Nt(Xt))Vt(Xt)
zt+1(Xt)← (1− µ(Nt(Xt)))zt(Xt) + µ(Nt(Xt))(βzt(Xt) + αδ).

11: end for

D.2 Cliff Walk

Figure 5: A visualization of Cliff Walk, taken from Rakhsha et al. (2022). The arrows depict the
optimal policy.

A 6 by 6 grid world is used, visualized in Figure 5. The agent starts on the top left. Its goal is to end
up on the top right. There are 12 cliff tiles, and the agent is stuck in them if it falls in. Moreover, the
agent is stuck in the goal state once entering it. Upon making a move in the goal state, it receives a
reward of 20. Making a move in a cliff receives a reward of -32, -16, or -8 depending on whether the
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Algorithm 2 PID Q-Learning with Gain Adaptation
1: Initialize Q1, Q′

1, z1, previous_Q1, running_BR1 to zero on all state-action pairs, and N1 to
zero on all states.

2: Initialize the gains to κp = 1, κI = 0, κd = 0.
3: for t = 1, . . . , K do
4: Let π be the policy derived from Qt.
5: Observe state Xt, take action At ∼ π(· | Xt, At), receive reward Rt, and observe next state

X ′
t. Let A′

t ← maxa Qt(X ′
t, a).

6: Set δ′ ← Rt + γ · previous_Qt(X ′
t, A′

t)− previous_Qt(Xt, At).
7: Set δ ← Rt + γQt(X ′

t, A′
t)−Qt(Xt, At).

8: Update the gains:

κp ← κp + η
δδ′

running_BRt(Xt, At) + ϵ

κI ← κI + η
δ(βzt(Xt, At) + αδ′)

running_BRt(Xt, At) + ϵ

κd ← κd + η
δ(Qt(Xt, At)−Q′

t(Xt, At))
running_BRt(Xt, At) + ϵ

.

9: Set update← Qt(Xt, At) + κpδ + κd(Qt(Xt, At)−Q′
t(Xt, At)) + κI(βzt(Xt, At) + αδ).

10: Set Nt(Xt)← Nt−1(Xt) + 1.
11: Update the running values on the new state-action pair asynchronously:

running_BRt+1(Xt, At)← (1− λ) · running_BRt(Xt, At) + λδ2

previous_Qt+1(Xt, At)← Qt(Xt, At)
Qt+1(Xt, At)← (1− µ(Nt(Xt)))Qt(Xt, At) + µ(Nt(Xt)) · update

Q′
t+1(Xt, At)← (1− µ(Nt(Xt)))Q′

t(Xt, At) + µ(Nt(Xt))Qt(Xt, At)
zt+1(Xt, At)← (1− µ(Nt(Xt)))zt(Xt, At) + µ(Nt(Xt))(βzt(Xt, At) + αδ).

12: end for

cliff is on the top, middle, or bottom respectively. Otherwise, it receives a reward of -1. The agent
has four possible actions corresponding to moving up, down, left, and right. If the agent attempts to
move off the grid, it simply stays in place. Otherwise, its action succeeds with probability 0.9, and
moves in one of the other three directions at random with uniform probability The policy evaluated
in the TD experiments is a random walk.

D.3 Garnet

The environment is randomly generated. They consist of 50 states, and 3 actions per state. To
build the environment, for each action and state, (x, a), we pick 5 other random states Xx,a. For 10
randomly chosen states x, we set r(x) from a uniform distribution between 0 and 1. We set r(x) is
zero on all other states. Then, when taking action a and from state x, we receive reward r(x) and
move to any state in Xx,a with equal probability. The policy evaluated in the TD experiments is a
random walk.

E Additional Experiments

Figure 6 shows the performance of gain adaptation on Chain Walk when γ = 0.99, and the corre-
sponding movement of the controller gains. Figure 7 shows the performance of gain adaptation on
Cliff Walk when γ = 0.99, and the corresponding movement of the controller gains.
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Figure 6: PID TD Learning with Gain Adaptation in Chain Walk with γ = 0.99. (Left) Comparison
of value errors of PID TD Learning with TD Learning. Each curve is averaged over 80 runs. Shaded
area shows standard error. (Right) The change of gains done by Gain Adaptation through training.
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Figure 7: Q-Learning with Gain Adaptation in Cliff Walk with γ = 0.99. (Left) Comparison of value
errors of PID Q-Learning with Q-Learning. Each curve is averaged over 80 runs. Shaded area shows
standard error. (Right) The change of gains done by Gain Adaptation through training.

F Details of Experimental Setup

We pick the hyperparameters such that a normalized error of 0.2 is achieved the fastest, and if this
error is not achieved, the final error is minimized. We fix α = 0.05, β = 0.95, and λ = 0.5 throughout
all the experiments.

For the Garnet (PE) experiments in Figure 4, we perform a grid search on η ∈
{0.1, 0.01, 0.001, 0.0001}, ϵ ∈ {0.1, 0.01}. Similarly, for the Garnet (Control) experiments, we use
ϵ = 0.1 and perform a grid search over η ∈ {10−5, 5× 10−5, 10−6}. The learning rates we perform a
grid search over in these tests is listed in Table 3. The grid search is separately performed for each
instance of the sampled Garnet. For TD Learning and Q-learning, the rates searched over are the
same as that of the P component in Table 3. On each randomly generated Garnet environment,
80 runs are performed and the average trajectory is found. The variation of this average trajectory
among all the 80 Garnet environments is shaded in Figure 4.

For the Cliff Walk policy evaluation experiments in Figure 2, we set η = 10−5 and ϵ = 0.1. For
the Chain Walk (Control) experiments in Figure 3, we set η = 4 × 10−8 and ϵ = 10−4. For the
Chain Walk (PE) experiments in Figure 6, we set η = 5 × 10−7 and ϵ = 10−1. For the Cliff Walk
(Control) experiments in Figure 7, we set η = 10−8 and ϵ = 10−1. For picking the learning rate
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for the I and D component, we also consider learning rates of the form min(0.25, Nt(Xt)/M) with
M ∈ {∞, 10, 100, 500, 1000, 10000}.

Learning Rates min(ϵ, Nt(Xt)/M) searched through
(formatted ϵ : corresponding set of M)

P Component

1: {10, 50, 100, 500, 1000, 10000}
0.75: {10, 50, 100, 500, 1000}
0.5: {10, 50, 100, 500, 1000}

0.25: {10, 50, 100}
0.1: {10, 50, 100}

0.01: {10000}
0.001: {10000}
0.0001: {10000}

I Component

1: {∞, 100}
0.5: {∞}
0.1: {∞}
0: {∞}

D Component

1: {∞, 100}
0.5: {∞}
0.25: {∞}
0.1: {∞}
0.01: {∞}

0: {∞}

Table 3: All the learning rates searched through in the Garnet experiments.


