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Abstract— In this paper, we introduce time-correlated model
predictive path integral (TC-MPPI), a novel method designed
to mitigate action noise in sampling-based control algorithms.
Unlike conventional smoothing techniques that rely on post-
processing or additional state variables, TC-MPPI incorporates
temporal correlation of actions into stochastic optimal control,
effectively enforcing quadratic costs on action derivatives. This
reformulation enables us to generate smooth action sequences
without requiring further adjustments, using a time-correlated
and conditional Gaussian sampling distribution. We demon-
strate the effectiveness of our approach through simulations on
various robotic platforms, including a pendulum, cart-pole, 2D
bicopter, 3D quadcopter, and autonomous vehicle. Simulation
videos are available at https://youtu.be/n WfJ2MAV2]JI.

I. INTRODUCTION

Model predictive control (MPC) is a powerful framework
for managing robotic systems. It optimizes a future trajectory
while adhering to state and action feasibility, dynamics, and
safety constraints. Traditionally, gradient-based optimization
techniques [1], [2] have been widely employed due to their
flexibility and robustness. Despite their success, these meth-
ods often rely on differentiable objectives, dynamics, and
constraints, limiting their applicability to non-differentiable
problems. Moreover, their computational complexity often
necessitates simplified or linearized dynamics, potentially
compromising the control performance.

In contrast, sampling-based methods do not require the
control problem to be differentiable and can effectively
accommodate nonlinear dynamics. They also tend to explore
the solution space more broadly, which helps to avoid poor
local optima. Nonetheless, the sampling-based methods face
considerable challenges, such as low sample efficiency and
inherent noise, which can result in jittery actions. In this
work, our primary focus is mitigating such noisy actions
while ensuring optimality and sample efficiency.

The proposed method, time-correlated model predictive
path integral (TC-MPPI), is inspired by stochastic optimal
control with dynamic extension, where action derivatives are
treated as extended state variables to ensure action smooth-
ness. However, dynamic extension also increases the number
of state variables, reducing sample efficiency. To address
this, we reformulate the control problem by incorporating the
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Fig. 1.  Markov chains of the (top) extended and (bottom) time-correlated
system. Blue nodes represent original system states, orange nodes denote
original system actions and their derivatives, and yellow nodes indicate the
mean of action nodes. Gray nodes represent the initial state, previous actions,
and extended states that do not influence the future states.

temporal correlation of actions, as illustrated in Fig. 1. This
reformulation adjusts the sampling mean and covariance by
introducing quadratic costs on extended variables and a con-
ditional distribution to maintain causality in time-correlated
sampling. With this adjustment, the sampling distribution
generates smooth action sequences without requiring post-
processing or additional state variables. Notably, TC-MPPI
integrates action smoothing within the stochastic optimal
control rather than merely penalizing action derivatives.
Model predictive path integral (MPPI) [3], [4] is a leading
approach for sampling-based real-time trajectory generation.
Multiple MPPI variants have been developed to enhance
performance. For example, linearized dynamics and control
laws improve robustness and sample efficiency [5]-[7]. In
safety-critical applications, conditional value-at-risk [8], [9]
and control barrier functions [10] have been incorporated.
To improve sampling distributions, techniques such as con-
ditional variational autoencoders [11], normal log-normal
distributions [12], adaptive importance sampling [13], and
Stein variational gradient descent [14] have been employed.
Yet, these advancements have not fully addressed the action
noise. A notable exception is smooth-MPPI (S-MPPI) [15],
which introduces a lifting strategy to separate the action from
the sampling space, producing smooth action sequences.


https://youtu.be/nWfJ2MAV2JI

While effective, the performance of S-MPPI can degrade
with fewer samples or longer prediction horizons due to the
increased complexity. In contrast, our work achieves action
smoothing without relying on post-processing or additional
state variables, ensuring smooth action sequences while
preserving both optimality and sample efficiency.

The rest of the paper is organized as follows: Section II
introduces key components of the stochastic optimal con-
trol problem and the MPPI algorithm; Section III details
the proposed TC-MPPI algorithm; Section IV demonstrates
the algorithm across various robotic tasks; and Section V
concludes the paper.

II. PRELIMINARY

This section outlines the theoretical background of model
predictive path integral (MPPI) and offers intuitive insights
into the MPPI algorithm to enhance understanding. To ex-
plore the details, let us consider a discrete-time system:

T = fe(ae, vy) (D

where x; € A, is the state, v; € Uy C R™ is the action,
and f; : Xy x Uy — Xy is the transition model at time
step t € Z. The system exhibits stochastic behavior, with the
action being normally distributed as

Ve~ Qus =N(U,X) 2)

where V' := wvg.r_1 is the action sequence, U := wug.7—1
is the mean input sequence, u; € U; is the mean input,
Y = Xo.r-1 is the block diagonal covariance matrix,
Y € S:qu_ is the positive definite covariance matrix, and
T € Z, . is the horizon length. For simplicity, a sequence
of vectors %; is denoted as xq.p := (*ay*at1,---,*p), and
a block diagonal matrix of matrices %; is also denoted as
*q:p i= diag(*q, *q+1, - - -, *). To maintain consistency with
subsequent notations, we denote the distribution of V' as
Qu.x and its probability density function as ¢(V | U, X).
Now, an optimal control problem is formulated as

T-1

U* = arg;nin Ev~oys |cr(er) + Z Ce(ze,u) | (3)
t=0

where 0; : X; x Uy — R is the running cost function, and
cr : X7 — R is the terminal state-dependent cost function.
Assuming that the running cost can be decoupled into a state-
dependent cost ¢; : Xy — R and a quadratic action-dependent
cost, the control objective can be rewritten as

T-1

A
er(er) + Y i) = SOV) + S0 = Uneel2s )
t=0
where Uyer 1= uref,0.:7—1 1 the reference action sequence,

Uref,r € Uy is the reference action, A € R, is the tem-
perature, and S(V) := er(zr) + Zf:_ol ct(xy) is the state-
dependent cost associated with the state trajectory X := xq.1
following the transition model and the action sequence V.

As noted in [4], the optimal distribution Q* that provides
a lower bound for the control objective (4) is observed as

(V) cesp (= 3507)) (1) ®)
where p(V) := q(V | Uyet, X) is the base probability density
function. It implies that the optimal control problem (3)
can be solved by minimizing the Kullback-Leibler (KL)
divergence between the controlled distribution Qp 5, and the
optimal distribution Q* so that

U* = arg;nin Dk1, (97 Qus) (6)

which leads to a sampling-based optimization:
U =Eveo-[V] =Ey gw(V)V] (7)

where Q is the sampling distribution, (V) := ¢(V | U, %)
is the sampling probability density function, and w(V) :=
qg((vv)) is the importance sampling weight. Importance sam-
pling is employed because directly sampling V' from the
optimal distribution Q* is typically intractable.

The optimal distribution Q* derived from MPPI can also
be characterized using Bayesian inference:

R _ plo- [ V)p(V)

@' (V) i=p(V | o) = PO ®)
where o, € {0, 1} is the optimality indicator of the trajectory
7 := (X, V). In the context of the optimal distribution (5),
the base probability serves as the prior probability p(V'),
while the negative exponential of the state-dependent cost
S (V') represents the likelihood p(o, | V).

III. TIME-CORRELATED MPPI

A notable challenge in sampling-based optimal control is
managing noisy actions. While filtering can reduce the noise,
weak filters might be ineffective, and strong filters can com-
promise performance or optimality. Adjusting the sampling
distribution is another option, but incorrect choices can lead
to optimization failures. To address this, we incorporate tem-
poral correlation of actions into stochastic optimal control,
ensuring smooth action sequences and sample efficiency.

We first formulate an optimal control with dynamic exten-
sion to obtain smooth action sequences. In this context, an
extended system is defined as

Tyl = ft(xt, UEO)) and v§21 = 'UgZ) + htvt(i-‘rl) (9)

where vt(i) € R™ js the i-th derivative of the action, and h;
is the step size. For a dynamic extension depth d € Z, the

new action v,gd) follows a normal distribution:

(d) (d) : (d)

Vg ~ N Wiy inv(REG )
where ugd) € R™ is the mean input, and Rgd) € S is
the inverse covariance matrix. It is important to note that the
prediction horizon begins from —d rather than zero, since
v(_dg influences the initial action U(()O), as shown in Fig. 1.

While the extended system enables smooth action se-
quences, it increases the number of state variables, often

(10)
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Fig. 2. Example of the sampling distribution. Top: Columns of the
covariance square root matrix, forming the action sequence basis. Bottom:
Mean (red) and sampled (gray) action sequences. An artificial noise is added
to the estimated optimal sequence (blue) to show the smoothing effect of
the gradient operator.

requiring more samples or iterations in the sampling-based
control. Therefore, we revert the sampling space to the
original action space by designing the cost of extended states
’UEO to be quadratic. From the fact that action derivatives
vt(l) can be represented as finite differences of actions wvy,
the cost of extended states can be expressed in a quadratic
form of v_47_1. Since the states x; also can be obtained
using actions vy, an optimal distribution of vg:Tfl for
the extended system (9), similar to (5), can be written as
a function of the original action sequence v_g4.7—1. In the
context of Bayesian inference (8), this reformulation transfers
the cost associated with extended variables to the prior
distribution, thereby improving sample efficiency.

However, the transcription causes a causality issue because
the action sequence includes previous actions v_g4._1, which
are beyond our control at the current time step ¢ = 0. To
address this, we introduce a conditional distribution given
the previous action sequence u_gq.—1. Then, we obtain a
conditional optimal probability density:

1 1 _
V) o exp (< 150) ) exp (=4 1V = U, ) D

where U € R™7T and Hy € R™T*7T are the mean and
inverse covariance of the conditional prior distribution, and
Qy. is the distribution of the optimal probability ¢;. (V).
The optimal U, which aligns N'(U, H;;*) with the optimal
distribution Q;_, can be obtained by

Ur = EVNQ& [V] = EVNQW [wtC(V)V] (12)

where Q. := N(U,H;') is the sampling distribution,
(V) is the corresponding probability density function, and

we(V) = V) o (—1S(V) (- U)THttV>

Ge(V) A

TABLE I
SUCCESS RATE AND TERMINAL ERROR OF SWING-UP TASKS

Method Pendulum swing-up Cart-pole swing-up
Success  Error (deg) Success Error (deg)
MPPI 50/50 0.46 £0.32  50/50 0.36 +0.28
MPPI w/ SGF  50/50 0.33 £0.25 50/50 0.27+0.21
S-MPPI 30/50 5.62+£3.96 50/50 0.22 +0.18
MPPI w/ DE  20/50 6.33 +4.47 0/50 73.88 +52.62
TC-MPPI 50/50 0.31£0.22 50/50 0.18 +0.13
I MPPI B MPPI w/ SGF S-MPPI
I MPPI w/ DE [l TC-MPPI
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Fig. 3. State errors and action change rates for stabilizing tasks. High

action rates indicate high action noise. To account for varying scales across
tasks, the values are normalized so that MPPI values are set to 1. Scaled
errors exceeding 30 are not shown.

is the importance sampling weight. Since V ~ N (U, H;; )
is equivalent to V = U + H;"/?€ with & ~ N(0,1), the
columns of the covariance square root matrix serves as a
basis for the random action sequence, capturing the tem-
poral correlation. Fig. 2 illustrates an example of the time-
correlated and conditional Gaussian sampling distribution.

The proposed method is called time-correlated model
predictive path integral (TC-MPPI). It is important to note
that advanced techniques commonly used in MPPI-like al-
gorithms (e.g., incorporating exploration samples or decou-
pling the action cost from the temperature [4]), though not
addressed in this paper, can also be seamlessly integrated
into our framework.

IV. RESULT

We evaluate the proposed method across various control
tasks to demonstrate its ability to generate smooth actions
while maintaining high performance. TC-MPPI is compared
with MPPI variants: the original MPPI [3], MPPI with
a Savitzky-Golay filter (SGF) [4], and smooth-MPPI (S-
MPPI) [15]. MPPI with dynamic extension (DE) is also
tested to validate the influence of extended dynamics (9).
All algorithms are implemented in MATLAB and tested on
a Windows 11 machine with AMD Ryzen 5 3600X CPU
and 16 GB RAM. Refer to [16] for the details of control
and system parameters. Simulation videos are available at
https://youtu.be/nWfJ2MAV2JI.
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Fig. 4.  State and action for the pendulum swing-up task using TC-MPPIL.
The resulting actions are smooth and effectively accomplish the task.
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Fig. 5. Average state cost c¢(z¢) for the pendulum swing-up task.

TC-MPPI achieves action smoothing without compromising performance.
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Snapshots of the cart-pole swing-up task using TC-MPPI. The cart force (magenta) and the pole tip trajectory (blue) are shown. As the cart

force is constrained, it adjusts the force direction to swing-up the pole, ultimately balancing at the origin.
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Fig. 7. Trajectory of autonomous vehicle circuit tracking using TC-MPPI.
Vehicle speed is shown with a color map. The vehicle starts at the origin
with zero velocity, accelerates to the desired velocity, and slows down at
corners to prevent slip and collision.

Table I summarizes success rates and errors for the pen-
dulum and cart-pole swing-up tasks. Fig. 3 shows RMS state
errors and action change rates for stabilizing tasks. With
small sample sizes, MPPI with SGF often outperforms MPPI
without filters, as the filter can mitigate action variance.
However, SGF can also degrade performance by violating the
solution optimality. S-MPPI effectively reduces action noise
and improves performance, but it may result in higher errors
if the sample size is insufficient relative to problem complex-
ity. MPPI with DE produces smooth actions yet sacrifices
control performance, often leading to failures. In contrast,
TC-MPPI remarkably reduces action noise and achieves

lower errors, demonstrating its ability to smooth actions
without compromising performance. While performance is
not our primary objective, TC-MPPI yields better results by
improving action variance and sample efficiency. In practice,
action smoothness would also be beneficial with unmodeled
high-frequency dynamics, though it is not considered in
simulations.

V. CONCLUSION

In conclusion, we propose a sampling-based control al-
gorithm that generates smooth action sequences. Our ap-
proach incorporates the temporal correlation of actions in
stochastic optimal control, which is equivalent to applying a
quadratic cost on action derivatives. The sampling distribu-
tion is then derived as a conditional Gaussian distribution,
enabling smooth action generation without requiring post-
processing or additional state variables. We validate the
proposed method through simulations on various platforms,
including a pendulum, cart-pole, 2D bicopter, 3D quad-
copter, and autonomous vehicle. The results demonstrate a
significant reduction in action noise while improving overall
performance. Future research directions include conducting
hardware experiments, analyzing the effect of correlation
parameters, quantifying robustness against unexpected distur-
bances and communication delays, integrating fast simulators
[17], and extending our time correlation approach to other
sampling-based methods [18], [19].
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