
Non-Asymptotic Uncertainty Quantification in
High-Dimensional Learning

Frederik Hoppe∗
RWTH Aachen University

hoppe@mathc.rwth-aachen.de

Claudio Mayrink Verdun∗

Harvard University
claudioverdun@seas.harvard.edu

Hannah Laus∗
TU Munich & MCML
hannah.laus@tum.de

Felix Krahmer
TU Munich & MCML

felix.krahmer@tum.de

Holger Rauhut
LMU Munich & MCML
rauhut@math.lmu.de

Abstract

Uncertainty quantification (UQ) is a crucial but challenging task in many high-
dimensional learning problems to increase the confidence of a given predictor.
We develop a new data-driven approach for UQ in regression that applies both to
classical optimization approaches such as the LASSO as well as to neural networks.
One of the most notable UQ techniques is the debiased LASSO, which modifies
the LASSO to allow for the construction of asymptotic confidence intervals by
decomposing the estimation error into a Gaussian and an asymptotically vanishing
bias component. However, in real-world problems with finite-dimensional data, the
bias term is often too significant to disregard, resulting in overly narrow confidence
intervals. Our work rigorously addresses this issue and derives a data-driven
adjustment that corrects the confidence intervals for a large class of predictors by
estimating the means and variances of the bias terms from training data, exploiting
high-dimensional concentration phenomena. This gives rise to non-asymptotic
confidence intervals, which can help avoid overestimating certainty in critical
applications such as MRI diagnosis. Importantly, our analysis extends beyond
sparse regression to data-driven predictors like neural networks, enhancing the
reliability of model-based deep learning. Our findings bridge the gap between
established theory and the practical applicability of such methods.

1 Introduction

The past few years have witnessed remarkable advances in high-dimensional statistical models,
inverse problems, and learning methods for solving them. In particular, we have seen a surge of new
methodologies and algorithms that have revolutionized our ability to extract insights from complex,
high-dimensional data [1–3]. Also, the theoretical underpinnings of the techniques in these fields
have achieved tremendous success. However, the development of rigorous methods for quantifying
the uncertainty associated with their estimates and underlying parameters, such as constructing
confidence intervals for a given solution, has lagged behind, with much of the underlying theory
remaining elusive.

In high-dimensional statistics, for example, even for classical regularized estimators such as the
LASSO [4–6], it was shown that a closed-form characterization of the probability distribution of
the estimator in simple terms is not possible, e.g., [7, Theorem 5.1]. This, in turn, implies that it is
very challenging to establish rigorous confidence intervals that would quantify the uncertainty of
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(a) w/o data adjustment
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(b) w/ Gaussian adjustment
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(d) coverage over all components
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(e) coverage on the support

Figure 1: Illustration of the confidence interval correction. Figs. 1a, 1b, 1c show the construction
of CIs with standard debiased techniques (w/o data adjustment) and with our proposed method (w/
Gaussian adjustment - Thm. 3 - in Fig. 1b and data adjustment - Thm. 2 - in Fig. 1c), respectively.
The red points represent the entries that are not captured by the CIs. Additionally, Fig. 1d shows box
plots of coverage over all components, and Fig. 1e shows them on the support, non-zero pixels. In
the last two plots, the left box refers to the asymptotic and the right to the non-asymptotic CIs based
on Gaussian adjustment of 500 feature vectors. We solve a sparse regression problem y = Ax+ ε
via the LASSO, where A ∈ C4000×10000, x ∈ CN is 200-sparse, and the noise level is ≈ 10%. The
averaged coverage over 250 vectors with significance level α = 0.05 of the asymptotic confidence
intervals is hW (0.05) = 0.9353 and on the support hW

S (0.05) = 0.8941. Confidence intervals built
with our proposed method yield for Gaussian adjustment hG(0.05) = 0.9684 and on the support
hG
S (0.05) = 0.9421, and for data-driven adjustment h(0.05) = hS(0.05) = 1. For more details, cf.

Section 5.1 and Appendix D.

such estimated parameters. To overcome this, a series of papers [8–10] proposed and analyzed the
debiased LASSO, also known as the desparsified LASSO, a procedure to fix the bias introduced by
the ℓ1 penalty in the LASSO; see [9, Corollary 11] and [11] for a discussion on the bias induced by
the ℓ1 regularizer. The debiased estimator derived in the aforementioned works has established a
principled framework for obtaining sharp confidence intervals for the LASSO, initiating a statistical
inference approach with UQ guarantees for high-dimensional regression problems where the number
of predictors significantly exceeds the number of observations. Recently, this estimator was also
extended in several directions beyond ℓ1-minimization which include, for example, deep unrolled
algorithms [12, 13] and it has been applied to many fields like magnetic resonance imaging both with
classical high-dimensional regression techniques as well as recent learning ones [12, 14]; see the
paragraph related works in Section 2 below.

The idea of the debiased LASSO is that its estimation error, i.e., the difference between the debiased
estimator and the ground truth, can be decomposed into a Gaussian and a remainder/bias component.
It has been shown in certain cases that the ℓ∞ norm of the remainder component vanishes with high
probability, assuming an asymptotic setting, i.e., when the dimensions of the underlying model grow
within a specific rate, see [10, 15] for details. In this case, the estimator is proven to be approximately
Gaussian from which the confidence intervals are derived. However, in practice, one needs to be in a
very high-dimensional regime with enough data for these assumptions to kick in. In many applications
with a finite set of observations, the remainder term does not vanish; it can rather be substantially
large, and the confidence intervals constructed solely based on the Gaussian component fail to account
for the entire estimation error. Consequently, the derived confidence intervals are narrower, resulting
in an overestimation of certainty. This issue is particularly problematic in applications where it is
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crucial to estimate the magnitude of a vector coefficient with a high degree of confidence, such as in
medical imaging applications.

Moreover, according to the standard theory of debiased estimators, the estimation of how small the
remainer term is depends on how well one can quantify the ℓ2 and ℓ1 bounds for the corresponding
biased estimator, e.g., the LASSO [10, 15]. Although sharp oracle inequalities exist for such classical
regression estimators, cf. related works, the same cannot be said about when unrolled algorithms are
employed. For the latter, generalization bounds are usually not sharp or do not exist.

In this paper, we tackle the challenge of constructing valid confidence intervals around debiased
estimators for the parameters in high-dimensional learning. The key difficulty lies in accounting
for the remainder term in the estimation error decomposition – see Equation 3 – which hinders the
development of finite-sample confidence intervals. We propose a novel non-asymptotic theory that
explicitly characterizes the remainder term, enabling us to construct reliable confidence intervals
in the finite-sample regime. Furthermore, we extend our framework to quantify uncertainty for the
output of model-based neural networks, which, in turn, are used to solve inverse problems. This
paves the way for a rigorous theory of data-driven UQ for modern deep learning techniques. We state
an informal version of our main result, discussed in detail in Section 3.
Theorem 1 (Informal Version). Let x(1), . . . , x(l) ∈ CN be i.i.d. data. Let b(i) = Ax(i) + ε(i) be a
high-dimensional regression model with noise ε(i) ∼ CN (0, σ2IN×N ). With the data, derive, for a
significance level α, a confidence radius rj(α) for a new sample’s component x(l+1)

j . Let (x̂u)
(l+1)
j

be the debiased estimator based on a (learned) high-dimensional regression estimator x̂(i)
j . Then, it

holds that
P
(∣∣∣(x̂u)

(l+1)
j − x

(l+1)
j

∣∣∣ ≤ rj(α)
)
≥ 1− α.

Theorem 1 has far-reaching implications that transcend the classical regularized high-dimensional
regression setting. For example, it enables the establishment of rigorous confidence intervals for
learning algorithms such as unrolled networks [16]. To our knowledge, obtaining rigorous UQ results
for neural networks without relying on non-scalable Monte Carlo methods remains a challenging
problem [17]. To address this and quantify uncertainty, our approach combines model-based prior
knowledge with data-driven statistical techniques. The model-based component harnesses the
Gaussian distribution of the noise to quantify the uncertainty arising from the noisy data itself. We
note that the Gaussian assumption for the noise is not a limitation, and extensions to non-Gaussian
distributions are also possible via, e.g., a Central Limit Theorem-type argument, as clarified by
[10]. We make a Gaussian noise assumption here for the sake of clarity. Complementing this,
the data-driven component is imperative for quantifying the uncertainty inherent in the estimator’s
performance. Moreover, our approach does not require any assumptions regarding the convergence
or quality properties of the estimator. This flexibility enables the debiased method to apply to a wide
range of estimators.

Contributions. The key contributions in this work are threefold 1

1. We solve the problem illustrated in Fig. 1 by developing a non-asymptotic theory for
constructing confidence intervals around the debiased LASSO estimator. Unlike
existing approaches that rely on asymptotic arguments and ignore the remainder term,
our finite-sample analysis explicitly accounts for the remainder, clarifying an important
theoretical gap and providing rigorous guarantees without appealing to asymptotic regimes.

2. We establish a general framework that extends the debiasing techniques to model-based
deep learning approaches for high-dimensional regression. Our results enable the
principled measurement of uncertainty for estimators learned by neural networks, a capability
crucial for reliable decision-making in safety-critical applications. We test our approach
with state-of-the-art unrolled networks such as the It-Net [18].

3. For real-world medical imaging tasks, we demonstrate that the remainder term in the
debiased LASSO estimation error can be accurately modeled as a Gaussian distribution.
Leveraging this finding, we derive Gaussian adjusted CIs that provide sharper un-
certainty estimates than previous methods, enhancing the practical utility of debiased
estimators in high-stakes medical domains.

1The code for our findings is available on GitHub : https://github.com/frederikhoppe/UQ_high_
dim_learning
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2 Background and Problem Formulation

In numerous real-world applications, we encounter high-dimensional regression problems where the
number of features far exceeds the number of observations. This scenario, known as high-dimensional
regression, arises when we aim to estimate N features, described by x0 ∈ CN from only a few m
target measurements b ∈ Cm, where m ≪ N . Mathematically, this can be expressed as a linear
model b = Ax0 + ε, where A ∈ Cm×N is the measurement matrix and ε ∼ CN (0, σ2IN×N ) is
additive Gaussian noise with variance σ2. In the presence of sparsity, where the feature vector x0

has only s non-zero entries (s ≪ N ), a popular approach is to solve the LASSO, which gives an
estimator x̂ obtained by solving the following ℓ1-regularized optimization problem:

min
x∈CN

1

2m
∥Ax− b∥22 + λ∥x∥1. (1)

However, the LASSO estimator is known to exhibit a systematic bias, and its distribution is intractable,
posing challenges for uncertainty quantification [7]. To address this limitation, debiasing techniques
have been developed in recent years [8–10]. The debiased LASSO estimator, x̂u, is defined as:

x̂u = x̂+
1

m
MA∗(Ax̂− b), (2)

where M is a correction matrix that could be chosen such that maxi,j∈{1,...,N} |(M Σ̂− IN×N )ij |
is small. Here, Σ̂ = A∗A

m . We refer to [15] for a more detailed description of how to choose M .
Remarkably, the estimation error

x̂u − x0 = MA∗ε/m︸ ︷︷ ︸
=:W

+(M Σ̂− IN×N )(x0 − x̂)︸ ︷︷ ︸
=:R

, (3)

can be decomposed into a Gaussian component W ∼ CN (0, σ2

m Σ̂) and a remainder term R that
vanishes asymptotically with high probability [15, Theorem 3.8], assuming a Gaussian measurement
matrix A. Such a result was extended to matrices associated to a bounded orthonormal system
like a subsampled Fourier matrix, allowing for extending the debiased LASSO to MRI [19]. The
decomposition (3) and the asymptotic behavior of R enable the construction of asymptotically
valid CIs for the debiased LASSO estimate, providing principled UQ for high-dimensional sparse
regression problems.

However, in real-world applications involving finite data regimes, the remainder term can be signifi-
cant, rendering the asymptotic confidence intervals imprecise or even misleading, as illustrated in
Fig. 1. This issue is particularly pronounced in high-stakes domains like medical imaging, where
reliable UQ is crucial for accurate diagnosis and treatment planning. Second, the debiasing techniques
have thus far been restricted to estimators whose error is well quantifiable, leaving the challenge of
how they would behave for deep learning architectures open. In such cases, the behavior of the
remainder term is largely unknown, precluding the direct application of existing debiasing methods
and hindering the deployment of these methods in risk-sensitive applications.

A prominent example for solving the LASSO problem in (1) with an unrolled algorithm is the ISTA
[20, 21]:

xk+1 = Sλ

(
(IN×N − 1

µ
ATA)xk +

1

µ
AT b

)
, k ≥ 0.

Here, µ > 0 is a step-size parameter, and Sλ(x) is the soft-thresholding operator. The work [22]
interpreted each ISTA iteration as a layer of a recurrent neural network (RNN). The Learned ISTA
(LISTA) approach learns the parameters W k

1 ,W
k
2 , λ

k instead of using the fixed ISTA updates:

xk+1 = Sλk(W k
2 x

k +W k
1 b).

In this formulation, LISTA unrolls K iterations into K layers, with learnable parameters
(W k, λk) per layer. The parameters are learned by minimizing the reconstruction error
minλ,W

1
l

∑l
i=1∥xk

i (λ,W, b(i), x(i))− x(i)∥22 on training data (x(i), b(i)). Unrolled neural networks
like LISTA have shown promise as model-based deep learning solutions for inverse problems, lever-
aging domain knowledge for improved performance. Such iterative end-to-end network schemes
provide state-of-the-art reconstructions for inverse problems [18]. Recently, the work [12] proposes a
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framework based on the debiasing step to derive confidence intervals specifically for the unrolled
LISTA estimator. However, similar to the previously mentioned debiased LASSO literature, it only
handles the asymptotic setting. One of the main goals of this paper is to overcome such limitation of
the current theory.

Related Works.

High-dimensional regression. High-dimensional regression and sparse recovery is now a well-
established theory, see [1, 3, 23] and references therein. In this context, several extensions of the
LASSO have been proposed such as the elastic net [24], the group LASSO [25], the LASSO with a
nuclear norm penalization [26], the Sorted L-One Penalized Estimation (SLOPE) [27] which adapts
the ℓ1-norm to control the false discovery rate. In addition to convex penalty functions, concave
penalties have been explored to address some limitations of the LASSO, e.g., the Smoothly Clipped
Absolute Deviation (SCAD) penalty [28] and the Minimax Concave Penalty (MCP) [29]. Non-convex
variants of the LASSO for ℓp-norm (p < 1) minimization were also studied [30, 31] as well as noise-
blind variants such as the square-root LASSO [32, 33]. Scalable and fast algorithms for solving the
LASSO and its variants include semi-smooth Newton methods [34] and IRLS [35].

LASSO theory.Given how ubiquitous and studied such an estimator is, it is difficult to do justice to all
the papers that have contributed to such a theory. Several works have established oracle inequalities
for the LASSO [36–40]. Another key theoretical result is the consistency of the LASSO in terms of
variable selection. [41] and [42] established the consistency of the LASSO while [43] analyzed the
sparsity behavior of the LASSO when the design matrices satisfy the Restricted Isometry Property.

Debiased estimators. After the first papers about the debiased LASSO [8–10], some works have
focused on improving its finite-sample performance and computational efficiency [15, 44]. The
size of the confidence intervals derived for the debiased LASSO has been proven to be sharp
in the minimax sense [45]. Debiased estimators have been extended in several directions, e.g.,
[19, 44, 46, 47]. Recently, [48] established asymptotic normality results for a debiased estimator
of convex regularizers beyond the ℓ1-norm. In the context of MR images, [49] explored a debiased
estimator for inverse problems with a total variation regularizer. Debiased estimators have also been
recently extended to unrolled estimators – see discussion in the next paragraph – in [12, 13].

Algorithm unrolling and model-based deep learning for inverse problems. The idea of unfolding
the iterative steps of classical algorithms into a deep neural network architecture dates back to
[22], which proposed the Learned ISTA (LISTA) to fast approximate the solution of sparse coding
problems. Several works have extended and improved upon the original LISTA framework [50–55].
[56] proposed the Learned Primal-Dual algorithm, unrolling the primal-dual hybrid gradient method
for tomographic reconstruction. [57] proposed the Deep Cascade of Convolutional Neural Networks
(DC-CNN) for dynamic MRI reconstruction. [58] unfolded proximal gradient descent solvers to learn
their parameters for 1D TV regularized problems. [16] introduced a general framework for algorithm
unrolling. [59] developed MoDL, a model-based deep learning approach for MRI reconstruction that
unrolls the ADMM algorithm. [60] proposed a proximal alternating direction network (PADNet) to
unroll nonconvex optimization. See also the surveys for more information about unrolling and also
the connection with physics-inspired methods [61, 62]. [18, 63] developed the It-Net, an unrolled
proximal gradient descent scheme where the proximal operator is replaced by a U-Net. This scheme
won the AAPM Challenge 2021 [64] whose goal was to identify the state-of-the-art in solving the
CT inverse problem with data-driven techniques. A generalization of the previous paradigm is the
learning to optimize framework that develops an optimization method by training, i.e., learning from
its performance on sample problem [65, 66].

Uncertainty Quantification. There have been a few attempts to quantify uncertainty on a pixel level
for unrolled networks used in imaging processing, e.g., [67]. However, such approaches are based
on Bayesian networks and MC dropout [68], which requires significant inference time paired with
a loss of reconstruction performance since the dropout for UQ is a strong regularizer in the neural
network. Unlike prior work, our contribution focuses on a scalable data-driven method that is easily
implementable in the data reconstruction pipeline.

Another method that became popular in the last couple of years is conformal prediction [69, 70],
which addresses the problem of constructing prediction bands Ĉm : X → {subsets of B} for a given
level α with the property that for a new i.i.d. pair (ai, bi), we get P(bm+1 ∈ Ĉn(am+1)) ≥ 1− α,
where the pairs (ai, bi) ∼ P, i = 1, . . . ,m are i.i.d. feature and response pairs from a distribution
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P on A × B and the probability is over all of available data (ai, bi), i = 1, . . . ,m + 1. Such a
method assumes that the regression coefficient x, in the model bi = ⟨ai, x⟩+ ϵ , is fixed. In contrast
to that, the debiased LASSO produces confidence intervals for individual pixels x

(l+1)
j , where

j = 1, . . . , N when a new set of data points b(l+1)
1 , . . . , b

(l+1)
m is given for a fixed set of measurement

vectors a1, . . . , am. Recently, a few papers developed conformal prediction-based uncertainty masks
for imaging tasks [71, 72]. Unlike the former, our method provides computationally inexpensive
confidence intervals for a new given test image. Unlike the latter, which constructs an interval-valued
function for each pixel of a new image that holds in expectation (see Equation 2 in [72]), our method
comes with pixel-wise coverage guarantees for each new test image.

3 Data-Driven Confidence Intervals

We now introduce our data-driven approach to correct the CIs. Instead of deriving asymptotic CIs
from the decomposition x̂u − x0 = W +R, by assuming that R asymptotically vanishes, we utilize
data

(
b(i), x(i)

)l
i=1

along with concentration techniques to estimate the size of the bias component R.
We continue to leverage the prior knowledge of the Gaussian component W while extending the CIs’
applicability to a broad class of estimators, including neural networks. Our method is summarized
in Algorithm 1, where the data is used to estimate the radii of the CIs, and in Algorithm 2, which
constructs the estimator around which the CIs are centered. The following main result proves the
validity of our method.

Theorem 2. Let x(1), . . . , x(l) ∈ CN be i.i.d. complex random variables representing ground
truth data drawn from an unknown distribution Q. Suppose, that ε(i) ∼ CN (0, σ2Im×m) is noise
in the high-dimensional models b(i) = Ax(i) + ε(i), where A ∈ Cm×N , and independent of the
x(i)’s. Let X̂ : Cm → CN be a (learned) estimation function that maps the data b(i) to x̂(i), which
is an estimate for x(i). Set |R(i)

j | = |eTj (M Σ̂ − IN×N )(x̂(i) − x(i))| for fixed A and M . For

j = 1, . . . , N , we denote the true but unknown mean with µj = E[|R(1)
j |] and the unknown variance

with (σ2
R)j := E[(|R(1)

j | − µj)
2], respectively. Let Ŝj =

1
l

l∑
i=1

| R(i)
j | be the unbiased sample mean

estimator and (σ̂2
R)j =

1
l−1

l∑
i=1

(|R(i)
j | − Ŝj)

2 the unbiased variance estimator. Let α ∈ (0, 1) and

γj ∈
(
0, 1− 1

lα

)
. Furthermore, set the confidence regions for the sample x(l+1) ∼ Q in the model

b(l+1) = Ax(l+1) + ε(l+1) as Cj(α) = {z ∈ C : |(x̂u)
(l+1)
j − z| ≤ rj(α)} with radius

rj(α) =
σ(M Σ̂M∗)

1/2
jj√

m

√
log

(
1

γjα

)
+cl (α)·(σ̂R)j+Ŝj , cl(α) :=

√
l2 − 1

l2(1− γj)α− l
. (4)

Then, it holds that

P
(
x
(l+1)
j ∈ Cj(α)

)
≥ 1− α. (5)

Theorem 2 presents a way to achieve conservative confidence intervals that are proven to be valid,
i.e., are proven to contain the true parameter with a probability of 1− α. Its main advantage is that
there are no assumptions on the distribution Q (except that σ2

R exists), making it widely applicable.
Hence, Theorem 2 includes the worst-case distribution showing a way to quantify uncertainty even in
such an ill-posed setting. Especially in medical imaging, such certainty guarantees are crucial for
accurate diagnosis. The proof exploits the Gaussianity of the component W as well as an empirical
version of Chebyshev’s inequality, which is tight when there is no information on the underlying
distribution. The detailed proof can be found in Appendix B. For a thorough discussion on Theorem
2 including practical simplifications and the dependence of γj on the confidence interval length, we
refer to Appendix A.

More certainty comes with the price of larger confidence intervals. If there is additional information
on the distribution of R, like the ability to be approximated by a Gaussian distribution, then the
confidence intervals become tighter. This case, which includes relevant settings such as MRI, is
discussed in Section 4.
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Algorithm 1 Estimation of Confidence Radius

1: Input: Estimation function X̂ , dictionary matrix A, correction matrix M , data points(
b(i), x(i)

)l
i=1

, significance level α
2: for i = 1, . . . , l do
3: Compute x̂(i), R(i) ∈ CN via x̂(i) = X̂(b(i)) and R

(i)
j = eTj (M Σ̂− IN×N )(x̂(i) − x(i)).

4: end for
5: for j = 1, . . . , N do

6: Estimate Ŝj =
1
l

l∑
i=1

|R(i)
j | and (σ̂2

R)j =
1

l−1

l∑
i=1

(|R(i)
j | − Ŝj)

2

7: Solve rj(α) = min
γ∈(0,1− 1

lα )

σ(MΣ̂M∗)
1/2
jj√

m

√
log
(

1
γα

)
+ cl ((1− γ)α) · (σ̂R)j + Ŝj

8: end for
9: Output: Radii of confidence regions (rj(α))

N
j=1

Algorithm 2 Construction of Confidence Regions

1: Input: Estimation function X̂ , dictionary matrix A, correction matrix M , measurement b, radii
(rj(α))

N
j=1 (derived from Algorithm 1 or Theorem 3)

2: Compute estimator x̂ = X̂(b).
3: Construct debiased estimator via x̂u = x̂+ 1

mMA∗(b−Ax̂)
4: for j = 1, . . . , N do
5: Construct confidence region Cj(α) = {z ∈ C | |x̂u

j − z| ≤ rj(α)}
6: end for
7: Output: Debiased estimator xu and confidence regions (Cj(α))

N
j=1

4 Confidence Intervals for Gaussian Remainders

Valid confidence intervals, i.e., those with correct coverage probability, can be derived most straight-
forwardly when the distribution of the remainder term is known and easily characterized. In such
cases, more informative distributional assumptions lead to potentially tighter confidence intervals
compared to Theorem 2, which makes no assumptions about the remainder component. In this section,
we derive non-asymptotic confidence intervals assuming the remainder term to be approximated by a
Gaussian distribution.

Theorem 3. Let x̂u ∈ CN be a debiased estimator for x ∈ CN with a remainder term R ∼
CN (0,ΣR/m). Then, Cj(α) = {z ∈ C | |z − x̂u

j | ≤ rj(α)} with radius

rGj (α) =
(σ2(M Σ̂M∗)jj + (ΣR)jj)

1/2

√
m

√
log

(
1

α

)
. (6)

is valid, i.e. P (xj ∈ Cj(α)) ≥ 1− α.

For the proof, we refer to Appendix B. We note, however, that the theorem can be generalized beyond
the Gaussian case. In particular, we present in Appendix C a proof of this theorem for heavy-tailed
distributions. In Appendix E, we demonstrate empirically that the Gaussian assumption for the
remainder term holds in a wide range of relevant practical settings. This validation enables the
application of the proposed confidence intervals derived under this assumption. These confidence
intervals strike a careful balance between non-asymptotic reliability, ensuring valid coverage even in
finite-sample regimes, and tightness, providing informative and precise uncertainty estimates. By
leveraging the Gaussian approximation, which becomes increasingly accurate in higher dimensions
as illustrated in Figure 7, our framework offers a principled and computationally efficient approach to
quantifying uncertainty in high-dimensional prediction problems. The variance of R can be estimated
with the given data using, e.g., the unbiased estimator for the variance as in Theorem 2.
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5 Numerical Experiments

We evaluate the performance of our non-asymptotic confidence intervals through extensive numerical
experiments across two settings: (i.) the classical debiased LASSO framework to contrast our non-
asymptotic confidence intervals against the asymptotic ones. (ii.) the learned framework where
we employ learned estimators, specifically the U-net [73] as well as the It-Net [18], to reconstruct
real-world MR images and quantify uncertainty. Our experiments demonstrate the importance of
properly accounting for the remainder term in practical, non-asymptotic regimes. Each experiment
follows the same structure:

1. Data Generation and Management: We fix the forward operator A and generate n > 2

feature vectors x(i)n

i=1 and noise vectors ε(i)
n

i=1 with ε(i) ∼ CN (0, σ2Im×m). We obtain
observations b(i)

n

i=1 via b(i) = Ax(i) + ε(i). We split the data (b(i), x(i))
n

i=1 into an
estimation dataset of size l and a test dataset of size k (l + k = n). If we learn an estimator,
we further split the data into training, estimation, and test sets.

2. Reconstruction: Depending on the experiment, we obtain a reconstruction function X̂ in
one of the following ways: for the classical LASSO setting, we use the LASSO; for the
learned estimator experiment, we train a U-Net [73] or It-net [18] on the training data to
serve as the reconstruction function X̂ .

3. Estimation of Confidence Radii: We run Algorithm 1 with A, X̂,M (that is chosen according
to [15]), the estimation data (b(i), x(i))

l

i=1, and a predefined significance level α ∈ (0, 1) to
obtain radii rj(α)

N
j=1. We optimize over γ, therefore the γ we use is the optimal one which

leads to the smallest confidence intervals. To construct the final confidence intervals, the radii
need to be centered according to the debiased estimator. For every new measurement b, we
run Algorithm 2 to obtain tailored confidence intervals for the feature vector x corresponding
to b. In addition, we compute the CI for the Gaussian adjustment based on Theorem 3 using
the estimation set to quantify the variance of R with the unbiased estimator for the variance
as before.

4. Evaluation: We use the test dataset (b(i), x(i))
n

i=l+1 to evaluate our adjustments. For each

b(i), we run Algorithm 2 to obtain confidence intervals C(i)
j (α)

N

j=1
for x(i). We estimate

P(x(i)
j ∈ Cj(α)) by hj(α) = 1

k

∑n
i=l+1 1{x(i)

j ∈Cj(α)}
and average over all components

h(α) = 1
N

∑N
j=1 hj(α). Since performance on the support S, the non-zero pixels, is

crucial, we define the hit rate on S as h(i)
S = 1

|S|
∑N

j=1 1{x(i)
j ∈Cj(α)}

and average hS(α) =

1
k

∑n
i=l+1 h

(i)
S . Note that the support may change with i. Moreover, we do the same for the

CI based on the Gaussian-adjusted radii.

5.1 UQ for Sparse Model-Based Regression

We consider a setting aligned with existing debiased LASSO literature, e.g., [9] to demonstrate
our approach’s extension of current UQ methods. The forward operator is a complex Gaussian
matrix A ∈ Cm×N with dimensions N = 10000, m = 0.6N , and Aij ∼ CN (0, 1). We generate
n = 750 s = 0.1N -sparse features x(i) by randomly selecting m distinct indices from 1, . . . , N

and drawing magnitudes from CN (0, 1). With relative noise ∥ε(i)∥
∥Ax(i)∥ ≈ 0.2, we split the data

(b(i), x(i))
n

i=1 into l = 500 estimation and k = 250 test data. For reconstruction, we solve the
LASSO X̂(b) := argminx∈CN

1
m∥Ax− b∥+ λ∥x∥1 with λ = 10 σ√

m
(2 +

√
12 log(N)) following

[19].

With significance level α = 0.05, we run Algorithm 1 to obtain confidence radii, choosing M =
IN×N [15] and exploiting the relaxation (9). Averaged over the l estimation data points, the ℓ2 and
ℓ∞ norm ratios are: ∥R∥2

∥W∥2
= 0.9993 and ∥R∥∞

∥W∥∞
= 1.1581. In existing literature, the ℓ∞ norm is

typically measured when the remainder term vanishes, as it is relevant for pixel-wise confidence
intervals. Here, the remainder term is of comparable order as the Gaussian term and hence, too
significant to neglect in confidence intervals derivation.
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Figure 2: Confidence intervals of asymptotic type 2a, with Gaussian adjustment 2b and data-driven
adjustment 2c for one evaluation feature vector in the sparse regression setting described in Section
5.1.

Evaluating it on the remaining k = 250 data points, the data-driven and Gaussian-adjusted averaged
hit rates are h(0.05) = 1, hS(0.05) = 1 and hG(0.05) = 0.9691, hG

S (0.05) = 0.8948, respectively.
Neglecting the remainder term yields hW (0.05) = 0.8692 and hW

S (0.05) = 0.6783, which is
substantially lower and violates the specified 0.05 significance level. Fig. 2 presents confidence
intervals of each type for one data point x(i). A detailed visualization of hj(0.05), h

(i)
S (0.05),

hG
j (0.05), and (hG

S )
(i)(0.05) is illustrated in Fig. 4c and 4i in the appendix. Further experiments

with different sparse regression settings, including subsampled Fourier matrices, are also presented in
Appendix D.

5.2 UQ for MRI Reconstruction with Unrolled Neural Networks

We extend the debiasing approach to model-based deep learning for MRI reconstruction using the
U-Net and It-Net on single-coil knee images from the NYU fastMRI dataset 2 [74, 75]. Here,
the forward operator is the undersampled Fourier operator PF ∈ Cm×N with N = 320 × 320,
m = 0.6N , the Fourier matrix F and a radial mask P , see Figure 5b. The noise level σ is chosen such
that the relative noise is approximately 0.1. The data is split into training (33370 slices), validation
(5346 slices), estimation (1372 slices), and test (100 slices) datasets.

We then train an It-Net [18] with 8 layers, a combination of MS-SSIM [76] and ℓ1-losses and Adam
optimizer with learning rate 5e−5 for 15 epochs to obtain our reconstruction function X̂ .

With significance level α = 0.1, we run Algorithm 1 to construct confidence radii, choosing
M = IN×N [15] and exploiting the relaxation (9). Averaged over the l estimation data points, we
have ∥R∥2

∥W∥2
= 0.38 and ∥R∥∞

∥W∥∞
= 0.49, which indicates that the remainder term is significant and

cannot be neglected. Evaluating the test data, the averages of the data-driven adjustment hit rates
are h(0.1) = 0.9999, hS(0.1) = 0.9998 and the averages of the Gaussian adjusted hit rates are
hG(0.1) = 0.9752, hG

S (0.1) = 0.98. Neglecting the remainder term, the hit rates of the asymptotic
CIs are hW (0.1) = 0.9502 and hW

S (0.1) = 0.87. As in the sparse regression setting, they are
significantly lower. Fig. 3 presents confidence intervals based on the data-driven adjustment and the
asymptotic confidence intervals for a region in one image x(i). In addition, it contains a box plot
showing the distribution of the hit rates based on the Gaussian adjustment and the asymptotic hit rates.
More experiments for UQ for MRI reconstruction can be found in Appendix D and Tables 2 and 3.

6 Final Remarks

In this work, we proposed a data-driven uncertainty quantification method that derives non-asymptotic
confidence intervals based on debiased estimators. Our approach corrects asymptotic confidence
intervals by incorporating an estimate of the remainder component and has solid theoretical foun-

2We obtained the data, which we used for conducting the experiments in this paper from the NYU fastMRI
Initiative database (fastmri.med.nyu.edu) [74, 75]. The data was only obtained from the NYU fastMRI investi-
gators, but they did not contribute any ideas, analysis, or writing to this paper. The list of the NYU fastMRI
investigators, can be found at fastmri.med.nyu.edu, it is subject to updates.
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Figure 3: Reconstruction obtained with the It-Net as described in 5.2. Data-driven adjustment
confidence intervals 3b and asymptotic confidence intervals 3c for the region (50 pixels) in 320x320
knee image 3a; Boxplots of hit rates 3d for 90% confidence level for the Gaussian adjusted and
asymptotic confidence intervals.

dations. While the correction can be based on prior knowledge, e.g., a Gaussian distribution of the
remainder term, we also derive CI based on a data-driven adjustment without further information.
This data-driven nature enhances its applicability to a wide range of estimators, including model-
based deep-learning techniques. We conducted experiments that confirm our theoretical findings,
demonstrating that even in classical sparse regression settings, the remainder term is too significant
to be neglected. Furthermore, we applied the proposed method to MRI, achieving significantly better
rates on the image support.

Limitations and Future Directions. While our method corrects for the remainder term, larger
remainder terms necessitate greater corrections, resulting in wider confidence intervals. The goal is
that those intervals should be narrow enough to be informative but wide enough to be realistic, given
the sample size and variability in the data. Therefore, it is crucial to achieve a small remainder term
to avoid excessively large confidence intervals. Additionally, the accuracy of our method depends
on the quality of the estimates for the mean and variance of the remainder term, which improves
with more available data. Additionally, the length of the intervals can be minimized over a larger
parameter set, provided that more data is available. We leave as a future direction to study the
sharpness of the proposed confidence intervals and radii for a given amount of data. Moreover,
we would like to investigate how the length of the confidence intervals could be improved when
estimating higher moments. We believe that our method is applicable to a wide variety of deep
learning architectures, including vision transformers in MRI, e.g., [77]. Testing the generality of
the method with state-of-the-art architectures for different problems would demonstrate its broad
usefulness.
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Supplementary material to the paper Non-Asymptotic Uncertainty Quantification in High-
Dimensional Learning.

In this supplement to the paper, we present in Section A a detailed discussion about aspects of the
main result that are not mentioned in the main body of the paper. Moreover, Section B presents the
proof Theorem 2 and Theorem 3. The former establishes data-driven confidence intervals, while the
latter assumes the remainder component to be approximated by a Gaussian distribution. Appendix
C constructs confidence intervals similar to Theorem 3 under the assumption of a heavy-tailed
distribution. In Section D, we confirm our theoretical findings with several numerical experiments
for classical high-dimensional regression as well as model-based neural networks. In Section
E, we visualize the approximate Gaussian distribution of the remainder terms, demonstrating the
applicability of Theorem 3 in relevant settings.

A Further Discussion of Main Result

In this appendix, we provide an in-depth discussion of various technical aspects and practical
considerations regarding our main theoretical results, Theorem 2, including analysis of confidence
interval radii, probabilistic interpretations, and implementation-oriented relaxations of the theoretical
assumptions.

Length of radius: To minimize the length of the radius, γj ∈
(
0, 1− 1

lα

)
should be chosen as the

minimizer of the problem

min
γj∈(0,1− 1

lα )

σ(M Σ̂M∗)
1/2
jj√

m

√
log

(
1

γjα

)
+

√
l2 − 1

l2(1− γj)α− l
· (σ̂R)j , (7)

In order to minimize over a large set for a given significance level α, a large number of data l is
needed. For fixed estimates Ŝj and (σ̂2

R)j , more data leads to a potentially smaller confidence interval
length. If we assume Rj = 0, it follows that Ŝj = 0 and (σ̂2

R)j = 0. Then, γ = 1 is a valid choice,

for which the function
σ(MΣ̂M∗)

1/2
jj√

m

√
log
(

1
γjα

)
is well-defined and is minimized. In this case, the

radius coincides with the asymptotic radius derived in [9, 10, 15] (except for that these works handle
the real case) and the ones in [12] with M = IN×N . In this sense, the asymptotic confidence intervals
can be seen as a special case of the proposed method.

The significance level α depends on γj and l to assure cl( · ) to be well-defined. For a large dataset

x(1), . . . , x(l), i.e. if l is large, then it holds that lim
l→∞

cl(α) = lim
l→∞

√
1− 1

l2

(1−γj)α− 1
l

= 1√
(1−γj)α

.

Probabilistic discussion: The probability in (5) is over the randomness of the noise as well as Q.
The confidence circles Cj(α) consist of two random variables, the debiased estimator x̂u

j and the
radius rj(α). The former depends on the random noise and potentially on training data, while the
latter depends on the estimators Ŝj and σ̂R, which in turn depend on both the noise and the data
x(1), . . . , x(l).

A crucial requirement of applying the empirical version of Chebyshev’s inequality [78] is the
independence and identical distribution of the variables |R(1)

j |, . . . , |R(l)
j |. Therefore, it is essential

that the estimator function X̂ is independent of the data x(1), . . . , x(l). To achieve this, we train the
estimator function X̂ using a dataset that is independent of the data x(1), . . . , x(l), used for estimating
R(1), . . . , R(1). However, the mean and variance of |R(1)| and hence of |R(i)| depend on the variance
of the noise ε(1), i.e. σ2. Thus, different noise levels σ require a new estimation of the mean and
variance of |R(1)|. Throughout this paper, we assume the noise level to be fixed and known. The
latter assumption is motivated by two factors. First, the size of the confidence intervals relies on σ.
Given that the primary focus of this paper is to determine the size of the confidence intervals based on
the remainder term R(1), we seek to mitigate other influencing factors such as noise level estimation.
Second, in domains like medical imaging, there is substantial knowledge about the noise level. For
instance, the noise level in MRI can be directly measured from the scanner [79]. If the noise level is
unknown, there are methods to estimate it. In the debiased LASSO literature, the most used method
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is the scaled LASSO [80]. Other methods for sparse regression, either in the LASSO context or more
general for high-dimensional models, are [81–86].

Relaxation of assumptions in practice: In practice, it is often the case, that |R(i)
1 |, . . . , |R(i)

N | are
identical distributed resulting in µ1 = . . . = µN and (σ2

R)1 = . . . = (σ2
R)N . Although the proof

requires independence of the |R(i)
j |, there are cases when it might suffice to relax this assumption by

estimating the mean and variance pixel-wise uniformly, i.e.,

Ŝ =
1

l ·N

l∑
i=1

N∑
j=1

R
(i)
j and σ̂2

R =
1

l ·N − 1

l∑
i=1

N∑
j=1

(R
(i)
j − Ŝ)2. (8)

In addition to saving computational resources, accuracy improves due to the higher number of
samples. Furthermore, instead of solving the optimization problem (7) for every j ∈ {1, . . . , N}, it
might be a good idea to choose γ1 = . . . = γN as the minimizer of

min
γj∈(0,1− 1

lα )

σ
N∑
j=1

(M Σ̂M∗)
1/2
jj

√
mN

√
log

(
1

γjα

)
+ cl ((1− γj)α) ·

1

N

N∑
j=1

(σ̂R)j . (9)

Then, one γ can be used for computing the potentially different radii rj(α).

Type of uncertainty: The decomposition of the estimation error into a Gaussian term and a remainder
term allows for handling both types of uncertainty, aleatoric and epistemic, almost separately. With
the Gaussian term W , we quantify the aleatoric uncertainty from the inherent measurement noise. The
remainder term R handles the epistemic uncertainty, which we quantify using a purely data-driven
approach since for two different backward models (e.g., two different neural networks), it can be used
to compare the estimation error of both models with respect to the ground truth. In this sense, our
technique is rather a more general inferential uncertainty method.

B Proofs

Proof of Theorem 2. The statement x(l+1)
j ∈ Cj(α) is equivalent to |(x̂u)

(l+1)
j − x

(l+1)
j | ≤ rj(α).

To prove (5), we show that

P
(
|(x̂u)

(l+1)
j − x

(l+1)
j | ≥ rj(α)

)
≤ α

In the next step, we write the radius r(α) as the sum r(α) = rW (α) + rR(α). According to the
decomposition (x̂u)

(l+1)
j − x

(l+1)
j = Wj +Rj we obtain for fixed j ∈ {1, . . . , N}

P
(
|(x̂u

j )
(l+1) − x

(l+1)
j | ≥ rWj (α) + rRj (α)

)
= P

(
|Wj +Rj | ≥ rWj (α) + rRj (α)

)
≤P
(
|Wj |+ |Rj | ≥ rWj (α) + rRj (α)

)
≤ P

(
|Wj | ≥ rWj (α)

)
+ P

(
|Rj | ≥ rRj (α)

)
where the last step follows from the pigeonhole principle. To estimate the first summand, we set

rWj (α) :=
σ(MΣ̂M∗)

1/2
jj√

m

√
log
(

1
γjα

)
. Since |Wj | ∼ Rice

(
0,

σ(MΣ̂M∗)
1/2
jj√

2m

)
we obtain

P
(
|Wj | ≥ rWj (α)

)
=

2m

σ2Σ̂jj

∞∫
rWj (α)

x exp

(
− x2m

σ2(M Σ̂M∗)jj

)
dx =

∫
(rW

j
(α))2m

σ2(MΣ̂M∗)jj

exp(−u)du

= exp

(
−

(rWj (α))2m

σ2(M Σ̂M∗)jj

)
= exp (− log(1/γjα)) = γjα.

For estimating the term P
(
|Rj | ≥ rRj (α)

)
, we set rRj (α) = cl(α) · (σ̂R)j + Ŝj . This choice leads to

P
(
|Rj | ≥ rRj (α)

)
= P

(
|Rj | − Ŝj ≥ rRj (α)− Ŝj

)
≤ P

(∣∣∣|Rj | − Ŝj

∣∣∣ ≥ rRj (α)− Ŝj

)
= P


∣∣∣|Rj | − Ŝj

∣∣∣
(σ̂R)j

≥
rRj (α)− Ŝj

(σ̂R)j

 = P


∣∣∣|Rj | − Ŝj

∣∣∣
(σ̂R)j

≥ cl(α)

 .
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Now, we apply an empirical version of Chebyshev’s inequality [78, 87]. This leads to

P


∣∣∣|Rj | − Ŝj

∣∣∣
(σ̂R)j

≥ cl(α)

 ≤ min

{
1,

1

l + 1

⌊
(l + 1)(l2 − 1 + lcl(α)

2)

l2cl(α)2

⌋}

≤ min

{
1,

l2 − 1 + lcl(α)
2

l2cl(α)2

}
= min

1,
l2 − 1 + l2−1

l(1−γj)α−1

l(l2−1)
l(1−γj)α−1


= min

{
1,

1 + 1
l(1−γj)α−1

l
l(1−γj)α−1

}
= min {1, (1− γj)α} = (1− γj)α,

where we used in the last step, that (1− γj)α < α < 1. To summarize,

P
(
|(x̂u)

(l+1)
j − x

(l+1)
j | ≥ rj(α)

)
≤ P

(
|Wj | ≥ rWj (α)

)
+ P

(
|Rj | ≥ rRj (α)

)
≤ γjα+ (1− γj)α = α.

Proof of Theorem 3. Since W ∼ CN (0, σ2

mM Σ̂M∗) and R ∼ CN (0, 1
mΣR) the estimation error

x̂u − x0 = W +R follows again a multivariate normal distribution with zero mean and covariance
matrix 1

m (σ2M Σ̂M∗ +ΣR). By exploiting the Gaussian distribution, we obtain

P
(
|Wj +Rj | > rGj (α)

)
=

2m

σ2(M Σ̂M∗)jj + (ΣR)jj

∞∫
rGj (α)

x exp

(
− x2m

σ2(M Σ̂M∗)jj + (ΣR)jj

)
dx

=

∫
rG
j

(α)2m

σ2(MΣ̂M∗)jj+(ΣR)jj

exp(−u)du = exp

(
−

rGj (α)
2m

σ2(M Σ̂M∗)jj + (ΣR)jj

)

Thus, we have

P(|x̂u
j − x∗

j | > rGj (α)) ≤ exp

(
−

rGj (α)
2m

σ2(M Σ̂M∗)jj + (ΣR)jj

)
,

which needs to be equal to α > 0. Therefore,

rGj (α) =
(σ(M Σ̂Mjj + (ΣR)jj)

1/2

√
m

√
log

(
1

α

)
.

C Heavy-Tailed Version of Theorem 3

The following version of Theorem 3 gives an example of how to derive the radii of the confidence
intervals in the case of a known, heavy-tailed distribution of the remainder term.

Theorem 4. Let x̂u ∈ CN be a debiased estimator for x ∈ CN with a remainder term following a
complex t-distribution with a degree of freedom ν > 2, i.e. R ∼ Ctν(0,ΣR). Then, Cj(α) = {z ∈
C | |z − x̂u

j | ≤ rj(α)} with radius

rj(α) =
σ(M Σ̂M∗)

1/2
jj√

m

√
log

(
1

γjα

)
+

√
(ΣR)jjν

2

√
(1− γj)−2/να−2ν − 1.

is valid, i.e. P (xj ∈ Cj(α)) ≥ 1− α.
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Proof. We can bound the estimation error |x̂u
j − xj | analogously to the proof of Theorem 2 by

P(|x̂u
j − xj | ≥ rj(α)) = P(|Wj +Rj | > rj(α)) ≤ P(|Wj | > rWj (α)) + P(|Rj | > rRj (α))

The distribution of P(|Wj | > rWj (α)) is determined by the Gaussian noise and can be computed as

rWj (α) =
σ(M Σ̂M∗)

1/2
jj√

m

√
log

(
1

γjα

)
similarly to Theorem 2. If R ∼ Ctν(0,ΣR), then the marginal distribution Rj is also complex
t-distributed, i.e. Rj ∼ (0, (ΣR)jj) (see [88]). Moreover, the probability density function of |Rj | is

f(r) =
2r

(ΣR)jj

(
1 +

2r2

ν(ΣR)jj

)−(ν/2+1)

.

Hence,

P(|Rj | > rRj (α)) =

∞∫
rj(α)

f(r)dr =

− 1(
2r2

(ΣR)jjν
+ 1
)ν/2


∞

rj(α)

=
1(

2r2

(ΣR)jjν
+ 1
)ν/2 .

Setting this probability equal to (1− γj)α requires

rRj (α) =

√
(ΣR)jjν

2

√
(1− γj)−2/να−2ν − 1.

Since we assumed ν > 2 the inequality (1 − γj)
−2/να−2ν > 1 holds. Combining rj(α) =

rWj (α) + rRj (α) concludes the proof.

D Further Numerical Evaluation

To confirm our theoretical findings claiming that the incorporation of the bias component renders the
confidence intervals more robust, we present additional numerical experiments here.

UQ for Classical Model-Based Regression For the experiments described here, we use Tfocs [89].
Analogous to the experiment described in Section 5.1, we run further experiments in the classical
sparse regression setting when the measurement matrix is a Gaussian and subsampled Fourier matrix.
The different settings including the results can be found in Table 1. The results show that the Gaussian
adjustment of our proposed method significantly increases the hit rates, especially on the support,
while moderately increasing the confidence interval length. Our data-driven adjustment achieves
even better hit rates, but the confidence intervals are larger. Although in well-posed settings, like
the second column of Table 1, the hit rates hW (0.05) based on asymptotic confidence intervals lead
overall to almost 95%, however on the support, which are the crucial features, the asymptotic hit rates
fail. In particular, our corrections are essential in ill-posed regression problems as the third Gaussian
column. The hit rates for the asymptotic CIs and the corrected ones with Gaussian adjustment are
visualized in more detail in Figure 4.

UQ for MRI Reconstruction with Neural Networks In this section, we present more experiments
for UQ for MRI reconstruction with neural networks. Our experimental settings, as well as our code
for this experiment, are based on the paper and code 3 by [18]. The dataset used for conducting the
experiments is the fastMRI single-coil knee dataset. For documentation see [74, 75].
Table 2 represents the results obtained by learning the reconstruction function X̂ using the It-net
with 8 layers, with 60%, 40% and 30% radial undersampling and for noise levels obtained by adding
complex gaussian noise with standard deviation σ = 60 and σ = 84, respectively. Similarly, Table
3 shows the results obtained by the U-Net. In Figure 6, the asymptotic hit rates and the Gaussian
adjusted ones for the 95% confidence level are compared in a box plot for each experiment.

3https://github.com/jmaces/robust-nets
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Figure 4: Box plots for hit rates of sparse regression experiments. The settings are those described
in Table 1. The first row presents the hit rates over all components and the second the hit rates of
the support, e.g., 4a and 4g correspond to the first column of the table, 4b and 4h to the second one
and so forth. In each plot the left box represents the asymptotic hit rates, the right one the Gaussian
adjusted hit rates. The horizontal line marks the desired 95%.

All It-Net and U-Nets are trained with a combination of the MS-SSIM-loss [76], the ℓ1-loss and the
Adam optimizer with a learning rate of 5e−5, epsilon of 1e−4 and weight decay parameter 1e−5.
The It-Nets were trained for 15 epochs, and the U-Nets were trained for 20 epochs, both with batch
size 40. Every U-Net has 2 input and output channels, 24 base channels, and encodes the image to a
size of 20× 20 and at most 384 channels. The It-Net employs the U-Net in each layer as a residual
network and has a data consistency part around each U-Net in every layer.
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type Gaussian Fourier
feature dimension 1000 10000 1000 10000 100000

undersampling 50% 40% 60% 40% 60% 50%
sparsity 7.5% 2% 10% 5% 10% 5%

relative noise 15% 10% 20% 15% 5% 10%
R/W ℓ2-ratio 0.7062 0.5117 0.9993 0.5446 0.5924 0.4701
R/W ℓ∞-ratio 0.8191 0.5161 1.1581 0.5752 0.6088 0.4794

average asympt. radius rW (0.05) 0.0116 0.0027 0.0049 0.0130 0.0011 0.0008
av. radius rG(0.05) (Thm.3) 0.0142 0.0031 0.0069 0.0148 0.0013 0.0009
av. radius r(0.05) (Thm.2) 0.0304 0.0060 0.0155 0.0295 0.0026 0.0016

hW (0.05) 0.9437 0.9353 0.8692 0.9582 0.9246 0.9444
hG(0.05) 0.9787 0.9684 0.9691 0.9799 0.9665 0.9687
h(0.05) 1 1 1 1 1 0.9999
hW
S (0.05) 0.7661 0.8941 0.6783 0.8629 0.8745 0.9041
hG
S (0.05) 0.8852 0.9421 0.8948 0.9226 0.9396 0.9425

hS(0.05) 0.9999 1 1 0.9999 1 0.9998
Table 1: Experiments for sparse regression for Gaussian and Fourier matrix. Every experiment uses
500 estimation and 250 evaluation data.

(a) (b) (c)

Figure 5: Knee MRI groundtruth image from the fastMRI dataset 5a [74, 75], radial sampling mask
5b and undersampled k-space data 5c.

Comparing the tables, the It-Net has, in general, better hit rates as well as a better R/W ratio than
the U-Net due to its more accurate reconstruction. Further, the hit rates for all the pixels are higher
than those obtained only for the support. For achieving reliable results for safety-critical applications,
obtaining hit rates higher than the confidence level is crucial, especially on the support, i.e., on the
non-zero pixels. Otherwise, one might achieve a certain confidence level overall but cannot trust the
pixels of interest.

The experiments were conducted using Pytorch 1.9 on a desktop with AMD EPYC 7F52 16-Core
CPUs and NVIDIA A100 PCIe030 030 40GB GPUs. The code for the experiments can be found
in the supplementary material. The execution time of the code is around 5 hours for each It-Net, 2
hours for each U-Net, and around 30 minutes for the rest of each experiment. So, in total, this gives
us a time of 48 hours for the MRI reconstruction experiments. The execution time for the classical
model-based regression experiments takes 5 to 30 minutes each; therefore, in total it is less than 3
hours.

E Distribution Visualization of Remainder Term

In Figure 7, we present a series of histograms illustrating the empirical distribution of the
remainder term’s real part across all experimental settings in sparse regression, conducted in this
paper. These histograms provide evidence that the remainder term can be approximated by a
Gaussian distribution, with the approximation becoming increasingly precise as the dimensionality
increases. Across low-dimensional scenarios, the empirical distributions exhibit some deviations
from the Gaussian form, but these discrepancies diminish as the dimensionality grows larger.
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Figure 6: Box plots for hit rates of neural network experiments. The settings are those described in
Table 2 and Table 3. The first row presents the hit rates for the different It-nets for 95% confident
intervals and the second the hit rates for the U-Nets for 95% confident intervals, e.g., 6a and 6g
correspond to the first columns of the tables. In each plot the left box represents the asymptotic hit
rates, the right the Gaussian adjusted ones.

In high-dimensional regimes, the empirical distributions demonstrate an exceptional degree of
convergence to the Gaussian approximation. This close alignment lends strong support to the va-
lidity of the key assumption of Theorem 3, allowing a Gaussian adjustment to the confidence intervals.

In Figure 8 we present a series of histograms representing the empirical distribution of the remainder
term’s real part for the six different experimental settings, for the U-Net, conducted in this paper.
Figure 9 represents the histograms for the It-Net experiments. In most scenarios, the real part of
the remainder term is Gaussian distributed with mean 0. The only exceptions are Figures 8e and 8f,
which correspond to the U-Net experiments with 30% undersampling.
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undersampling 60% 40% 30%
noise level 15% 10% 12% 8% 10% 7%

R/W ℓ2-ratio 0.3558 0.3800 0.6332 0.6922 0.8759 0.5759
R/W ℓ∞-ratio 0.3842 0.4929 0.6268 0.6924 1.0614 0.6282

h(0.05) 1.0 1.0 1.0 1.0 1.0 1.0
hG(0.05) 0.9904 0.9899 0.9925 0.9919 0.9926 0.9893
hW (0.05) 0.9737 0.9787 0.9632 0.9744 0.8825 0.9806
h(0.1) 0.9999 0.9999 1.0 1.0 1.0 1.0
hG(0.1) 0.9754 0.9752 0.9800 0.9793 0.98 0.9741
hW (0.1) 0.9403 0.9502 0.9196 0.9409 0.8094 0.9581
hS(0.05) 1.0 1.0 1.0 1.0 1.0 1.0
hG
S (0.05) 0.965 0.99 0.995 0.9995 0.985 0.985

hW
S (0.05) 0.94 0.91 0.955 0.915 0.975 0.965
hS(0.1) 1.0 1.0 1.0 1.0 1.0 1.0
hG
S (0.1) 0.955 0.98 0.985 0.995 0.98 0.975

hW
S (0.1) 0.89 0.87 0.92 0.845 0.955 0.94

Table 2: Experiments for It-Net with 8 iterations. Results of hit rates averaged over k = 100 samples.

undersampling 60% 40% 30%
noise level 15% 10% 12% 8% 10% 7%

R/W ℓ2-ratio 0.2747 0.3976 0.6182 0.6671 1.2641 1.3399
R/W ℓ∞-ratio 0.3923 0.4292 0.5681 0.7082 1.1668 1.2501

h(0.05) 1.0 1.0 1.0 1.0 1.0 1.0
hG(0.05) 0.9831 0.9857 0.9885 0.9903 0.9952 0.9943
hW (0.05) 0.9642 0.9687 0.9439 0.9562 0.7277 0.7002
h(0.1) 0.9994 0.9999 1.0 1.0 1.0 1.0
hG(0.1) 0.9623 0.9674 0.9723 0.9763 0.9867 0.9853
hW (0.1) 0.9230 0.9310 0.8869 0.9091 0.6088 0.5585
hS(0.05) 1.0 1.0 1.0 1.0 1.0 1.0
hG
S (0.05) 0.99 0.995 0.995 0.99 0.99 0.995

hW
S (0.05) 0.945 0.93 0.935 0.955 0.925 0.695
hS(0.1) 1.0 1.0 1.0 1.0 1.0 1.0
hG
S (0.1) 0.985 0.965 0.985 0.975 0.98 0.995

hW
S (0.1) 0.895 0.895 0.91 0.895 0.875 0.605

Table 3: Experiments for U-Nets. Results of hit rates averaged over k = 100 samples.
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Figure 7: Histograms showing the empirical distribution of the remainder component. The real part
of R is plotted as a histogram and the red line corresponds to a Gaussian fit. One realization of the
remainder term is visualized for each of the experiments described in Table 1. (7a corresponds to the
first column, 7b to the second column and so on. The plots for the imaginary part look similar.)
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Figure 8: Histograms showing the empirical distribution of the remainder component. The real part
of R is plotted as a histogram and the red line corresponds to a Gaussian fit. One realization of the
remainder term is visualized for each of the experiments described in Table 3. (8a corresponds to the
first column, 8b to the second column and so on.)
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Figure 9: Histograms showing the empirical distribution of the remainder component. The real part
of R is plotted as a histogram and the red line corresponds to a Gaussian fit. One realization of the
remainder term is visualized for each of the experiments described in Table 2. (9a corresponds to the
first column, 9b to the second column and so on. )
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper will develop a theory for non-asymptotic uncertainty quantification
in high-dimensional learning and, as described in the abstract, we also apply such theory to
neural networks and learning algorithms, bridging theory and practice.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this paper are discussed in Section 6. In particular, we
discussed that larger remainder terms necessitate greater corrections, resulting in wider
confidence intervals. Also, the accuracy of our method depends on the quality of the
estimates for the mean and variance of the remainder term, which improves with more
available data. Lastly, we left the sharpness of the provided results as a future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results contain proofs, in detail Theorem 2 and Theorem 3 are
proven in Section B and Theorem 1 is an informal version of Theorem 2. All assumptions
are made in the statements of the theorems, and all results the proofs rely on are referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main information about the experimental results and how they were
obtained can be found in Section 5, further information can be found in the Appendix in
Section D. We will also provide a github containing the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release Github containing all code and explanation how to reproduce
our results once the paper is published, for now we attached the code as supplemetary
material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The main experimental settings can be found in Section 5, more details about
the experimental settings can be found in Appendix D and in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, the corresponding boxplots and confidence intervals can be found in
Figures 2, 1, 3, 4 and 6.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All this information is provided in the Appendix D. Further, the paper did not
require more computation and experiments than what is presented in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we checked the code of ethics and our paper conforms with every point in
the code, also we made sure to preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: This paper is developing a rigorous framework for confidence intervals for
high-dimensional inverse problems. We believe that this will improve the diagnostics with
medical images, as discussed in Section 6. We do not believe that such techniques could
have a negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Since the paper develops confidence intervals for machine learning problems
with solid theoretical foundations, there is no risk of misuse and no safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used the NYU fastMRI dataset [74, 75], which we cited according to their
homepage. We used publicly available code belonging to the papers [63] and [89] which we
also cited at the according places (Section 5 or Section D).
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Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The only new asset is our code which is provided with this paper as supple-
mentary material and is well documented on its own and also explained in Section 5 and in
the Appendix in Section D.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The experiments in the paper are based on the NYU fastMRI dataset [74, 75]
which is a publicily available dataset.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is a theoretical paper (but with a potentially huge impact in the field
of medical images) but all the images used for conducting our experiments are publicly
available (and anonymized) and there is no need to get Institutional Review Board (IRB)
Approvals or Equivalent for Research with Human Subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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