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ABSTRACT

We introduce Wonderful Team, a multi-agent Vision Large Language Model
(VLLM) framework designed to solve robotics problems in a zero-shot regime.
In our context, zero-shot means that for a novel environment, we provide a VLLM
with an image of the robot’s surroundings and a task description, and the VLLM
outputs the sequence of actions necessary for the robot to complete the task. Un-
like prior work that requires fine-tuning parts of the pipeline – such as adjust-
ing an LLM on robot-specific data or training separate vision encoders – our ap-
proach demonstrates that with careful engineering, a single off-the-shelf VLLM
can autonomously handle all aspects of a robotics task, from high-level planning
to low-level location extraction and action execution. Crucially, compared to using
GPT-4o alone, Wonderful Team is self-corrective and capable of iteratively fixing
its own mistakes, enabling it to solve challenging long-horizon tasks. We validate
our framework through extensive experiments, both in simulated environments us-
ing VIMABench and in real-world settings. Our system showcases the ability to
handle diverse tasks such as manipulation, goal-reaching, and visual reasoning—
all in a zero-shot manner. These results underscore a key point: vision-language
models have progressed rapidly in the past year and should be strongly considered
as a backbone for many robotics problems moving forward.

1 INTRODUCTION

Advancements in Large Language Models (LLMs) and Vision-Language Models (VLLMs) have
brought us closer to enabling robots to perform complex tasks based solely on natural language
instructions, without prior training. By integrating vision and language, VLLMs allow robots to
intuitively understand their environments, leveraging real-world priors from large-scale data. How-
ever, developing a general-purpose robotic system capable of executing complex tasks in dynamic
settings remains challenging. Such systems need to perceive surroundings, utilize appropriate skills,
and achieve long-horizon subgoals. This raises a crucial question: Can these models be adapted
to solve robotic tasks in unstructured environments without any training?

Current approaches in language-conditioned robotics often separate the problem into high-level
planning and low-level perception-action execution, utilizing distinct modules for each component.
While this separation can facilitate zero-shot operation, it may hinder seamless integration between
perception and action, especially when modules are disconnected.

High-Level Planning with Predefined Task Modules: Many methods focus on high-level planning
using LLMs or VLLMs, decomposing tasks into subtasks but relying on predefined task modules or
APIs for action execution, which are not directly executable without prior knowledge or training (Hu
et al., 2023; Huang et al., 2022b; Liang et al., 2023).

Low-Level Coordinate Generation with Separate Vision Models: Other approaches generate
low-level coordinates using separate vision models for perception, often relying on predefined or
fine-tuned vision APIs. While leveraging off-the-shelf models like Convolutional Neural Networks
(CNNs)(Ichter et al., 2022; Mees et al., 2023), CLIP(Bucker et al., 2023; Huang et al., 2022c),
Vision Transformer (ViT) variants (Huang et al., 2023b; Stone et al., 2023; Jiang et al., 2023), or
LangSAM (Kwon et al., 2024) has shown promise in zero-shot capabilities, these methods still face
limitations. The reliance on separate perception systems can fail to fully capture the environmental
context required for precise planning and action generation.
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These limitations hinder the seamless integration of perception and action, as vision models like
CLIP, which primarily offer class-level predictions, lack the deep environmental understanding
needed for complex, context-specific tasks. Similarly, while LangSAM can segment objects based
on language prompts, it struggles with precise object identification in complex scenes or when han-
dling abstract instructions that require deeper comprehension. As a result, these models perform well
with easily identifiable objects but face challenges when handling abstract or environment-specific
tasks, which significantly limits their ability to help LLMs accurately ground environmental context
and generate actionable outputs. The separation of planning and perception hinders the seamless
integration of perception and action in decision-making. However, with the multimodal capabilities
of modern VLLMs, this division may no longer be necessary. In this paper, we introduce Wonder-
ful Team: a zero-shot, single-model, multi-agent system that unifies planning and perception
within a VLLM framework using interconnected specialized agents. This integrated approach
enables end-to-end reasoning and execution without relying on external modules or fine-tuning, ef-
fectively addressing the limitations of previous modular methods.

Our key contributions include:

• Zero-Shot Coordinate-Level Control in Complex Robotics Tasks: Our system operates with-
out any prior training, fine-tuning, or environment-specific prompts, successfully handling diverse
tasks in both simulated and real-world environments. It delivers precise, coordinate-level control
for robotic execution, outperforming methods that rely on coarse object-level or sub-task-level
instructions.

• Introducing a Multi-Agent VLLM Framework to Overcome Previous Limitations: We have
developed a novel multi-agent structure within a single VLLM, where specialized agents collab-
oratively handle various aspects of robotic tasks, from high-level planning to low-level execu-
tion. By integrating perception and action, and employing a divide-and-conquer approach with
reflection capabilities, we address the shortcomings of previous models, including issues with
context-aware object identification, precise localization, and handling multiple instances of the
same object.

• Empirical Validation through Extensive Experiments and Ablation Studies: We validate our
framework with comprehensive experiments in both simulation (VIMABench) and real-world set-
tings. Our results show significant performance improvements over existing methods, including
those that require training. We also conduct thorough ablation studies to examine the effects
of different agents and configurations, highlighting the critical role of the multi-agent system in
achieving optimal performance.

Demonstration videos of the robotic policies in action, along with the code, can be accessed on our
project website.

2 MOTIVATING EXAMPLES

Developing robotic systems that can understand and execute complex tasks in unstructured environ-
ments remains a significant challenge. Existing frameworks often employ a Large Language Model
(LLM) as a text planner combined with a separate vision model (e.g., CLIP, OWL-ViT, LangSAM)
to perceive the environment. While this modular approach seems logical, it faces critical limitations
when applied to intricate, context-dependent tasks.

2.1 CAN AN LLM AS A PLANNER WITH A SEPARATE VISION MODEL FIND OBJECTS?

Not Always. There are limitations at both the planning and perception levels:

At the planning level, non-vision LLMs cannot generate meaningful plans for ambiguous prompts
that rely on environmental context. For example, consider the task: “Rank the fruits from most
expensive to cheapest.” Without visual input to identify the fruits and their prices, the LLM cannot
accurately rank them, nor generate useful queries for the vision model.

At the perception level, vision models also have limitations in context-aware perception. A notable
prior work is the Trajectory Generator (Kwon et al., 2024), which uses GPT as a text planner and
LangSAM as the vision model. In this approach, GPT extracts the objects to segment from the task
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prompt and passes them to LangSAM for object identification and segmentation. As illustrated in
Figure 1, LangSAM fails to correctly identify or segment all intended objects based on the prompt.
While this example highlights several challenges inherent in using separate vision models for com-
plex tasks, it does not capture the full scope of limitations, which are discussed in detail below:

1. Difficulty with Less Common and Non-Segmented Objects: LangSAM struggles to identify
uncommon objects (e.g., robot grippers, box lids) and abstract regions that cannot be clearly seg-
mented. When objects are less prominent in the scene or when boundaries are not well-defined,
LangSAM fails to provide accurate identification or spatial understanding.

2. Misinterpretation of Spatial and Positional Instructions: LangSAM often misinterprets vague
spatial instructions like “pick up the rightmost object” due to its lack of precise spatial reasoning.
In multi-instance scenarios, positional references like “the middle can” are challenging because the
model frequently miscounts objects, leading to incorrect identification.

3. Lack of Contextual Awareness and Differentiation: LangSAM lacks the contextual under-
standing necessary to distinguish between relevant objects for manipulation and other elements in
the scene. For instance, it may mistakenly select parts of the robot arm itself, failing to identify the
intended target due to a lack of contextual awareness.

Figure 1: Examples of LangSAM’s detection failures in simulated environments. The bolded text
within the prompts represents the objects extracted by GPT and passed to LangSAM.

Can These Issues Be Fixed?

Not within the current framework. Even with enhanced reasoning and replanning, we are unable
to fully address LangSAM’s limitations because the LLM lacks the capability to detect, notice, or
correct errors originating from the vision model. If the initial perception is flawed, the LLM cannot
adjust or rectify these mistakes, resulting in a disconnect between perception and reasoning within
this setup.

However, recent advancements in VLLMs present a potential solution, as they are designed to handle
both visual reasoning and context understanding. This brings us to the question:

2.2 COULD SIMPLY REPLACING LANGSAM WITH A VLLM RESOLVE THESE ISSUES?

Partially; a VLLM may improve context comprehension, but it fails to match the precision
that LangSAM already provides.

To provide a clearer context for spatial reasoning, we first introduce pixel coordinates as a reference
framework (see Figure 2). Without this grid overlay, even humans might struggle to describe relative
locations accurately in a complex scene.

Figure 2: An example scenario with overlaid pixel coordinates.
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However, there are still notable challenges with this framework:

1. Imprecise Spatial Understanding: Recent VLLMs can generate more accurate approximate
locations, but they still lack the precision required for effective robotic manipulation. In our ablation
experiments, 90% of the coordinates were close to the target (Table 6), yet only 33% (GPT-4o) were
accurate enough to be directly actionable (Table 5).

2. Difficulty with Complex Instructions: Tasks that require understanding spatial relationships or
handling multiple objects can overwhelm the reasoning capabilities. Observation 1: VLLMs Can
Recognize and Diagnose Their Own Errors

VLLMs have the ability to detect mistakes in their outputs and adjust them upon review. For exam-
ple, when asked to locate a cluster of grapes, the model may initially provide an imprecise answer,
but can correct it when prompted to reassess (see Figure 3). Table 7 shows GPT-4o’s 97% success
in classifying bounding boxes, highlighting its self-assessment abilities. This suggests VLLMs can
iteratively refine outputs, even from initially imprecise coordinates.

Figure 3: An example of multiple VLLMs working together to recognize and correct an error in
object positioning upon review.

Observation 2: VLLMs Can Self-Correct Through Reflection

VLLMs can iteratively refine their outputs based on feedback, a process known as reflection. Over
several iterations, they improve their estimation of an object’s position, moving closer to the correct
target (see Figure 4).

Figure 4: An VLLM improving its estimation of the grapes’ position over several iterations.

While using a VLLM alone naively is insufficient, these observations reveal the potential to
address its limitations by leveraging its self-correction capabilities in a structured way.

3 WONDERFUL TEAM

Building on these insights, we propose a novel pipeline for robotics that leverages specialized agents,
each responsible for a distinct part of the reasoning process within a structured framework. By
combining the strengths of Vision-Language Models (VLLMs) and breaking down complex tasks
into manageable components, each agent can focus on a specific role, resulting in more precise and
reliable robotic control. As illustrated in Figure 5, our multi-agent framework defines the distinct
roles of each agent, the flow of information from high-level tasks to low-level actions, and their
collaborative efforts in executing tasks effectively.

Each agent in our system is designed to address specific challenges in robotic tasks. For example, in
Figure 5(b), when the robot is instructed to “put the banana into the box,” the initial plan generated
by the Supervisor agent often overlooks obstacles like the box’s lid. This is where the Verification
agent plays a critical role. Its reflection process involves reviewing the subgoal plan, checking for
potential issues such as physical constraints or incomplete steps, and cross-referencing this plan with
the current state of the environment. If an issue, like the lid blocking access to the box, is detected,
the Verification agent raises this concern to the Supervisor. This early feedback allows the system
to refine the plan before executing any action. Unlike the replanning process, which occurs at the
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end of the pipeline if a task fails, the Verification agent catches errors early to prevent failures and
avoid costly adjustments later. This proactive approach enhances the robustness and adaptability of
the robotic control.

(a) This figure illustrates the agent roles and information flow within our pipeline, moving from high-level
tasks to low-level actions. The blue bars indicate each agent’s level of information access. For instance,
the Grounding Manager has a broad overview, encompassing both the task and subgoals, while the Mover and
Checker agents focus only on specific details within their target areas, without managing the entire task context.

(b) A symbolic example illustrating the framework in (a).

Figure 5: Illustration of our multi-agent framework and a symbolic example showcasing agent roles,
information flow, and collaborative task execution.

The Grounding team then takes over to refine the coordinates for each target, ensuring precise and
collision-free movements. The Mover and Checker agents collaborate through an iterative process of
adjusting positional groundings. Figure 4 provides an example of the Grounding team in action. The
separation of tasks into a multi-agent system proves advantageous, as it allows each agent to focus
on its distinct responsibilities with varying levels of access to critical information. For a detailed
discussion on the benefits of this multi-agent approach, refer to Appendix E.4.

Are all parts of the Wonderful Team necessary? Ablation studies reveal that all components of
the Wonderful Team are essential. Removing memory agents leads to failures, such as mistaking
irrelevant objects for targets, while omitting grounding members results in inaccurate coordinates.
A supervisor-only setup works for simple tasks but fails with complex ones, lacking precision and
corrective processes. Appendix C provides detailed analysis, and Table 4 in the appendix shows the
impact on success rates when specific agents are removed.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 RELATED WORK

Recent advancements in robotics and artificial intelligence have integrated Large Language Models
(LLMs) and Vision-Language Models (VLMs) into robotic systems. Our work builds upon and
differs from several key areas in this evolving landscape.

Foundation Models in Robotics: Foundation models, trained on vast internet-scale datasets, have
demonstrated strong zero-shot capabilities across various tasks. LLMs like GPT-3 (Brown et al.,
2020), LLaMA (Touvron et al., 2023), and ChatGPT have excelled in generating human-like text,
understanding natural language instructions, and performing extensive reasoning and planning.
VLMs extend these capabilities by incorporating visual understanding. In robotics, these models
offer the potential to endow robots with real-world priors and advanced reasoning abilities without
extensive task-specific training.

Language Models Empowering Robotics: Prior work has leveraged natural language to enhance
robotic learning and adaptation. Early approaches equipped agents with learned language embed-
dings, requiring large amounts of training data (Bing et al., 2023; Jiang et al., 2023). Others fo-
cused on connecting language instructions with low-level action primitives to solve long-horizon
tasks (Hu et al., 2023; Huang et al., 2022b; Liang et al., 2023). While effective in specific contexts,
these methods often struggle to generalize to new tasks without retraining. Foundation models like
RT-1 (Brohan et al., 2022) and RT-2 (Brohan et al., 2023) have advanced versatile robotic systems,
but they still require significant training to achieve robust performance across diverse tasks.

Zero-Shot and Few-Shot Approaches: Recent studies have explored zero-shot and few-shot solu-
tions for robotic planning and manipulation tasks (Huang et al., 2022a; Liang et al., 2023; Huang
et al., 2022b;c; Zeng et al., 2023; Singh et al., 2023; Vemprala et al., 2023; Gu et al., 2023). These
approaches aim to handle unseen scenarios without prior training, primarily focusing on high-level
planning. However, they often rely on predefined programs or external modules for control, limiting
their adaptability in dynamic or complex environments.

Vision-Language Models for Localization: PIVOT (Nasiriany et al., 2024) addresses enabling
VLMs to localize actionable points without fine-tuning on task-specific data. Their approach cen-
ters on localization through visual question answering, with minimal focus on planning—similar to
the role of our Grounding Team. Unlike our method, which integrates both localization and plan-
ning within a multi-agent framework, PIVOT primarily addresses localization without managing
complex, long-horizon tasks. In PIVOT, a single agent iteratively selects action points, whereas our
approach employs multiple agents with distinct roles for refining and verifying actions. A detailed
comparison is provided in Appendix E.2.

Language Models as Zero-Shot Trajectory Generators: Kwon et al. (2024) propose using lan-
guage models as zero-shot trajectory generators. Their approach uses a predefined object detection
model (LangSAM) to extract object information, which is then used by the LLM to plan. Specif-
ically, the LLM generates Python scripts to create a trajectory for execution. Unlike our method,
which uses a VLLM to integrate perception and action without external modules, their approach re-
lies on separate perception models and code generation for trajectory planning. Further comparison
is available in Appendix E.3.

Natural Language as Policies: Concurrent with our work, Natural Language as Policies
(NLaP) (Mikami et al., 2024) developed a few-shot, end-to-end model for coordinate-level action
prediction. Their approach involves providing a one-shot example, either from the same task or a
closely related one, rather than adopting a zero-shot paradigm. Unlike our method, which integrates
both grounding and planning within a multi-agent framework, NLaP focuses less on grounding and
directly uses system information from the environment, bypassing the need to extract coordinates
from images using VLMs. NLaP serves as one of the baselines in our experiments, and a detailed
comparison is presented in Appendix E.1.

Our Contribution in Context: Our work differs from prior approaches by proposing a zero-shot,
single-model, multi-agent system that integrates high-level planning and low-level action execu-
tion within a unified VLLM framework. By eliminating the need for external vision encoders and
predefined action modules, our method achieves greater adaptability and precision in dynamic envi-
ronments.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of Wonderful Team across a diverse set of tasks that
challenge various aspects of robotic reasoning and manipulation. We address key elements of
robotics, including multimodal reasoning, contextual decision-making, and complex spatial plan-
ning. Our experiments are categorized into three main groups, each designed to tackle specific
challenges while contributing to the broader evaluation of the system’s capabilities.

1) Multimodal Reasoning (17 Tasks in Simulated VIMABench)

2) Implicit Goal Inference (3 Custom Real-world Tasks)

3) Spatial Planning (4 Real-world Tasks Adapted from Trajectory Generator)

5.1 MULTIMODAL REASONING - SIMULATED VIMABENCH

To assess our approach’s ability to understand multimodal prompts, reason through abstract con-
cepts, and follow constraints, we tested it on all 17 tasks from VIMABench (Jiang et al., 2023).
Unlike traditional robotics benchmarks, VIMABench offers a broad range of objects and task types
(see Figure 6), requiring advanced scene understanding, multimodal comprehension, and precise
planning for manipulation.

Figure 6: Key Challenges in VIMABench (Jiang et al., 2023): (a) Manipulating uncommon objects
and textures, (b) Interpreting multimodal prompts with abstract nouns and adjectives, (c) Executing
constraint satisfaction tasks, and (d) Handling Spatial Relations and Sequential Dependencies.
We evaluated all 17 tasks in VIMABench, categorized into four main task suites as defined by Jiang
et al. (2023), each targeting distinct robotic capabilities:

1) Simple Object Manipulation: pick-and-place and rotate tasks using multimodal prompts that
combine images and text.

2) Novel Concept Grounding: Tasks with abstract terms like “kobar” (see Figure 6(b)), testing the
agent’s ability to understand and act on novel concepts.

3) Visual Constraint Satisfaction: Manipulating objects while adhering to specific constraints not
easily segmentable, such as avoiding certain areas (see Figure 6(c)).

4) Visual Reasoning: Higher-level reasoning tasks that involve understanding object properties and
maintaining state, such as “put the object that was previously at its west ...” (see Figure 6(d)).

5.2 IMPLICIT GOAL INFERENCE - REAL ROBOTS

To evaluate our framework’s reasoning abilities and visual context understanding in real-world set-
tings, we designed a set of Implicit Goal Inference Tasks, each with four variations, to assess the
system’s capacity for long-horizon reasoning and context-aware high-level instructions interpreta-
tion (see Figure 7).

We evaluated our method on three real-world tasks:

1) Fruit Placement: The robot is asked to place each fruit in a color-matched area across various
setups using the same general prompt. This task challenges the system to infer the desired placement
and sometimes also to identify and correct any initially misplaced fruits (see Figure 7(a)).
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2) Superhero Companions: The robot is tasked with placing fruits and snacks based on color
similarity, requiring it to identify objects and make suitable matches, even with non-exact color
matches, multi-colored objects, and cases where no clear match is available. (see Figure 7(b)).

3) Fruit Price Ranking: The robot is tasked with ranking fruits by price. This challenges the system
to interpret visual discount information, apply comparative reasoning, and execute precise ranking
to correctly order the fruits (see Figure 7(c)).

All tasks require the system to interpret high-level prompts, perform contextual reasoning, and exe-
cute multi-step actions to achieve the implicit goal state based on the provided instructions.

Figure 7: Examples of Ambiguous Instruction & Contextual Reasoning Tasks: (a) Fruit Placement,
(b) Superhero Companions, and (c) Fruit Price Ranking.

5.3 SPATIAL PLANNING - REAL ROBOTS

To further challenge our system, we introduced tasks that require precise planning and subgoal
management. These tasks test the agent’s ability to produce accurate action sequences and handle
dependencies carefully. (see Figure 8).

Figure 8: Examples of Complex Planning Tasks.

We evaluated our method on four real-world tasks:

1) Shaking the Bottle: The agent grasps a bottle, shakes it in the air, and places it back on the table.
(see Figure 8(a)).

2) Drawing a Five-Pointed Star: The agent holds a marker and draws a five-pointed star on a
notebook. This task demands very precise path planning for both lowering the marker to the paper
and accurately tracing the star’s points (see Figure 8(b)).

3) Wiping the Plate with Sponge: The agent cleans a plate using a sponge. This task involves
coordinating the sponge’s movement to cover the entire surface of the plate (see Figure 8(c)).

4) Opening a Bottle Cap: The agent grasps a bottle and unscrews its cap (see Figure 8(d)).

All four tasks require the robot to generate accurate intermediate subgoals, carefully plan and exe-
cute actions within spatial contexts.

5.4 RESULTS AND DISCUSSION

In VIMABench (Jiang et al., 2023), we compared Wonderful Team against the following methods:
(1) Trajectory Generator(Kwon et al., 2024), which uses an LLM for planning and LangSAM
for perception; (2) Natural Language as Policies (NLaP)(Mikami et al., 2024), which employs

8
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one-shot prompting and directly accesses ground-truth coordinates, bypassing perception; and (3)
Ablations Replacing the Grounding Team, where we replace the multi-agent Grounding Team
with a single VLLM for inferring object coordinates directly and a separate vision-language model,
OWL-ViT.

Table 9(a) outlines each method’s characteristics, including zero-shot versus one-shot settings,
prompt types, and the modules used for planning and perception. Methods without vision rely
on text prompts rather than the more complex multimodal prompts (Figure 9(b)). Notably, NLaP
employs one-shot examples in its prompting and directly uses the ground truth state coordinates
from the environment, entirely bypassing the perception challenge and, therefore, any comparisons
must be made carefully. Due to this lack of perception capability, we can only compare with NLaP
in the simulated tasks.

(a) Comparison with baseline methods. Grey boxes indicate reduced complexity due to the frame-
work’s nature, which should be considered when interpreting results.

(b) Examples of prompts: text vs. multimodal. Multimodal prompts require visual understanding,
making them more challenging than text prompts that rely on ground-truth data.

(c) Performance on VIMABench tasks. Wonderful Team achieves strong results across all task
domains. Performance declines when the Grounding Team is removed or replaced.

Figure 9: Overall comparison and results on VIMABench tasks.

As shown in Figure 9(c), Wonderful Team outperforms baselines across all VIMABench tasks. The
Grounding Team and multi-agent structure are crucial; removing or replacing them significantly
reduces performance. Methods like Trajectory Generator and our ablation with a separate VLM
struggle to detect uncommon objects and lack nuanced reasoning for detection and manipulation.
Even with perfect localization (as in NLaP), complex long-horizon planning remains challenging
without the multi-agent structure, leading to misinterpretations and errors (Appendix E.1). Ablation
studies (Appendix C) confirm the importance of each component in Wonderful Team.

Figure 10: Success rates of Wonderful Team and Trajectory Generator on real-world tasks involving
ambiguous instruction tasks and spatial planning tasks.

9
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Implicit Goal Inference Tasks In real robot tasks with more general instructions (e.g., placing
fruits based on color), as shown in Figure 10, Wonderful Team achieved a 100% success rate, while
Trajectory Generator significantly struggled due to its separation of reasoning and vision. Trajectory
Generator relies on an LLM to extract information from the text prompt, which requires explicit in-
structions. When multiple objects from the same category (e.g., various fruits) were present without
specific identifiers, it failed to distinguish between them. Using only “fruit” as the identifier for
LangSAM, it could extract the coordinates of all fruits but could not proceed without knowing each
fruit’s identity and color. Since the LLM lacks grounding knowledge and only has access to these
coordinates, it fails to perform meaningful reasoning, resulting in ineffective planning and ultimately
causing the low success rate.

Spatial Planning Tasks In real robot spatial planning tasks (e.g., drawing a star), as illustrated
in Figure 10, Wonderful Team performed comparably or slightly better, benefiting from the Verifi-
cation Agent ensuring trajectories were within correct spatial boundaries. The Verification Agent
checked the planned paths against workspace constraints (e.g., notebook to draw the star on). Both
methods exhibited similar failure modes, often due to depth camera sensor inaccuracies affecting
tasks requiring height precision (e.g., particularly problematic for opening a bottle cap). These in-
accuracies led to errors in estimating the z-axis position, highlighting areas for future improvement
in sensor integration and error correction.

6 FURTHER DISCUSSIONS

6.1 COMPARISON WITH METHODS THAT TRAIN

In recent years, the machine learning community has often seen new LLMs exceed the performance
of previous generation fine-tuned models in zero-shot settings, despite the latter’s advantage of task-
specific tuning. To explore this trend in the context of visual LLMs and robotics, we compare
Wonderful Team with several methods that were at least partially fine-tuned on robotics tasks.

In particular, we compare against: 1) VIMA Jiang et al. (2023) and 2) Instruct2Act Huang et al.
(2023a). In Table 1, we consistently see that the advantage of fine-tuning loses out to having a more
powerful VLLM.

Ours VIMA-200M (L3) Instruct2Act

Visual Reasoning Zero-Shot Domain Fine-Tuned Mask R-CNN Pre- and Post-Processing

Task Execution Zero-Shot BC Offline Learning Pre-defined API + One-Shot Ex

Success Rate (%) 91.25 88.71 79.67

Table 1: Comparison with non-zero-shot Methods on VIMABench Tasks. Success rates are averaged
across the same tasks considered in figure 9(c)

6.2 LIMITATIONS: WHERE DOES WONDERFUL TEAM STRUGGLE?

Limited 3D Reasoning and Partial Observability: While the integration of depth cameras allows
Wonderful Team to capture 3D data, its reasoning and planning are still largely confined to 2D
space. This limitation hinders tasks that require precise manipulation along the height axis or a full
understanding of 3D spatial relationships. Additionally, it struggles with partial observability, often
leading to incorrect interpretations of spatial relationships.

Real-Time Adaptation and Error Recovery: Although the Replanning Agent is designed to ad-
dress failures post-execution, the framework could be improved with real-time dynamic error de-
tection to catch issues immediately. However, reprocessing parts of or the entire task can be com-
putationally expensive and sometimes impractical, requiring careful system design. This limita-
tion is particularly important in navigation tasks or rapidly changing dynmaic environments, where
constant replanning can be costly and reduce applicability. Improving the system’s robustness to
environmental variations and enhancing real-time error recovery remain key areas for future work.
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A THINGS ARE MOVING EXTREMELY FAST

While it is readily apparent to everyone that LLM progress has been rapid since 2021, it is perhaps
less apparent how rapidly these capabilities are influencing robotics. The initial version of this
project, which was started in 2022, was largely dead in the water, because VLLMs at the time
struggled greatly to understand their environment. In the past year, VLLMs have improved rapidly,
which has allowed them to make substantial progress on robotics environments. To better understand
this progress, we took and changed the language model to earlier VLLMs. The results roughly track
the average performance our system has been able to obtain over time.

(a) Improvement of VLLMs on robotics tasks over time.

(b) Ability of VLLMs to generate at least one valid subgoal.

Figure 11: Progress of VLLMs in robotics, presenting the success rates evaluated on VIMABench
tasks, the same benchmarks used in Figure 9(c), highlighting the impact of each modification.

As we can see, the capabilities of these underlying vision-language models are improving at a blis-
tering pace. Suppose we instead consider a slightly easier problem: the ability of with VLLMs to
generate at least one valid subgoal, which shows the system is working to some extent but perhaps
lacks more refined planning ability. In Figure 11(b), we see that here too the improvements have
been rapid.

In the Appendix D, we examine the impact of this rapid progress on the grounding team in particular,
and show that older VLLMs often struggled to draw bounding boxes with any regularity, suggesting
they lacked the fidelity needed for fine-grained robotic control.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 EVALUATION PROTOCOL

All experiments were conducted with consistency and rigor to accurately assess our framework’s
performance.

• Multimodal Reasoning & Constraint Manipulation: Each task was executed in 10 runs,
allowing only a single attempt per run. An open-loop, single-attempt evaluation protocol
was employed to ensure fair comparisons with existing methods and to effectively evaluate
the capabilities of the multi-agent framework.

• Ambiguous Instruction Contextual Reasoning: Each task was performed in 2 runs for
each of the 4 variations with varying difficulty. For instance, increasing the number of
price tags for fruit ranking. An open-loop, single-attempt evaluation protocol was used to
consistently measure the system’s ability to interpret and execute ambiguous instructions.

• Spatial Planning & Execution: Each task was carried out in 5 runs under a closed-loop
evaluation protocol, permitting up to three replanning attempts. This method assesses the
system’s ability to manage complex planning, handle unforeseen challenges, and execute
multi-step procedures with precision and coordination.

B.2 MULTIMODAL REASONING - SIMULATED VIMABENCH

VIMABench features 17 tabletop manipulation tasks, including pick-and-place and push, with vari-
ous combinations of objects, textures, and initial configurations. It includes 29 objects with 17 RGB
colors and 65 image textures, many of which are uncommon in other robotics tasks, making them
ideal for testing our approach. We selected VIMABench because it presents a significant variety of
objects and textures compared to traditional environments with easily detectable items. This requires
advanced scene understanding and careful planning for successful manipulation. VIMABench also
includes multimodal prompts with images and textual instructions, creating a complex and realistic
testing environment that necessitates reasoning and long-horizon planning.

B.2.1 TASK DETAILS

Simple Object Manipulation: Tasks such as “put ⟨object⟩ into ⟨container⟩,” where each prompt
image corresponds to a single object. These tasks test the basic pick-and-place capabilities of the
system.

Novel Concept Grounding: Tasks with abstract terms like “fax” and “blicket” paired with images,
testing the agent’s ability to internalize and act upon newly introduced concepts quickly.

Visual Constraint Satisfaction: Tasks that require the robot to perform actions like pushing ob-
jects while adhering to specific constraints, such as not exceeding certain boundaries or avoiding
designated areas. These tasks test the system’s safety and precision in manipulation.

Visual Reasoning: Tasks involving higher-level reasoning skills, such as “move all objects with the
same textures into ⟨location⟩,” and visual memory tasks like “put ⟨object⟩ in ⟨location⟩ and then
restore them to their original position.” These tasks assess the framework’s ability to reason about
object properties and maintain state over multiple actions.

Figure 12: Examples of tasks in VIMAbench Tasks(Jiang et al., 2023).
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B.2.2 FULL EXPERIMENTAL RESULTS

In the main paper, we presented results from a selective number of tasks within four categories out
of the 17 VIMABench tasks. This was due to the nature of some tasks not being optimal for visual
testing. For instance, the twist task requires the robot to determine the precise degree of rotation
from before and after images, a challenge without prior training on such tasks.

In Table 2, we present the full experimental results across all 17 tasks of VIMABench. VIMABench
defines six main categories of tasks, which are separated in the table by alternating grey and white
blocks. From top to bottom, these categories are: Simple Object Manipulation, Visual Goal Reach-
ing, Novel Concept Grounding, One-shot Video Imitation, Visual Constraint Satisfaction, and Visual
Reasoning.

Table 2: Success Rates Across All VIMABench Tasks

Task Num VIMA 200M Instruct2Act NLaP (w/o CoT) NLaP TG Ours

1: Visual Manipulation 99 91 93 100 60 100

2: Scene Understanding 100 81 60 67 40 100

3: Rotate 100 98 93 93 80 100

*4: Rearrange 97 79 52 73 - 80

*5: Rearrange then Restore 54.5 72 25 73 - 70

6: Novel Adjective 100 82 13 43 10 70

7: Novel Noun 99 88 8 80 0 100

*8: Novel Adjective and
Noun

- - - - - 60

*9: Twist 17.5 - - - - 50

*10: Follow Motion - 35 0 12 - 10

*11: Follow Order 90.5 72 0 0 - 0

12: Without Exceeding 93 68 17 47 10 90

*13: Without Touching - 0 0 3 - 40

*14: Same Texture - 80 3 71 - 100

15: Same Shape 97.5 78 10 80 0 100

16: Manipulate Old Neighbor 46 64 8 20 0 90

17: Pick in Order then Restore 43.5 85 10 30 0 90

Tasks marked with a star were excluded from the main paper’s results for the following reasons:
1. Nature of Tasks: Categories Visual Goal Reaching (Task 4 and 5) and One-shot Video Imi-
tation (Task 10 and 11) were excluded because these tasks are not the best indicators of VLLM’s
capabilities without additional prompting.

Figure 13: Comparison between images without and with ticks for positional reference.
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For example, as shown in Figure 13, Task 11 in the One-shot Video Imitation category requires
examining several consecutive frames as ’goal scenes’. Without further task-specific prompting
or training, it is very challenging to infer the required actions between frames since there isn’t a
single correct answer. For instance, transitioning from Frame 1 to Frame 2 in this example could be
achieved by moving the yellow O onto the red O, or by first removing the red O and then moving the
yellow O to the same position. By nature, these tasks require additional tools or workflows, which
complicate zero-shot evaluation. Additional prompting on tasks like this to help the VLLMs better
understand the relationship between frames will probably be helpful. However, this is not the focus
of our research, so we used the same prompt for these evaluations in Table 2.

2. Missing Baseline Results: Tasks 8, 9, 13, and 14 were excluded due to the lack of available
baseline results for comparison.

A complete list of tasks with video illustrations can be found here.

B.3 IMPLICIT GOAL INFERENCE - REAL ROBOTS

B.3.1 TASK DETAILS

As discussed in Section 5, we evaluated our method on three real-world tasks. This section provides
more examples of the diverse scenes used for each task.

Fruit Placement: The robot is given a random set of fruits and areas of different colors. The prompt
is:

“Place each fruit in the area that matches its color, if such an area exists.”

Some scenarios included fruits with no matching color or mismatched colors.

Superhero Companions: The robot is provided with fruits and snacks of different colors and three
bins designated for different superheroes. The prompt is:

“Fruits and snacks of similar color make perfect companions. Distribute the unmatched
items from the top left corner to the superheroes to help each of them have companion
pairs.”

Fruit Price Ranking: Various fruits with price tags are presented to the robot. The prompt is:

“Based on the price tags and any discounts on the fruits, rank them from the most expen-
sive to the cheapest and place them in the corresponding bowl.”

To further challenge its visual and reasoning skills, we added promotional discounts on top of the
original price tags.

(a) Fruit Placement (b) Superhero Companions (c) Fruit Price Ranking

Figure 14: Examples of task environments: (a) Fruit Placement, (b) Superhero Companions, (c)
Fruit Price Ranking.

B.3.2 ROBOT SETUP

For our real-world experiments, we used the UFactory xArm 7, a versatile robotic arm with 7 degrees
of freedom, a maximum payload of 3.5 kg, and a reach of 700 mm. It was controlled via the
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xArm Controller using Python and ROS, allowing seamless integration with our multi-agent system.
The robot was equipped with a 2-finger gripper for manipulating various objects. The experiments
were conducted on a standard laboratory workbench with predefined task areas, and the robot was
calibrated before each experiment to ensure accurate positioning and movement. Our framework
mapped the relative displacement of the target position to the robot arm and the pixel coordinates
used by the framework, enabling precise picking and placing actions.

For the visual input, we set up a camera directly above the predefined task area, as the robot itself
does not come equipped with one. This setup provided a clear and consistent view of the workspace,
allowing the VLLM to interpret the environment accurately and plan actions effectively.

B.3.3 RESULTS

Our real robot experiments demonstrated that our framework successfully completed all three tasks
100% of the time. Note that we did not modify any of the prompt or pipeline moving from
simulated VIMABench environment to the tasks on the real robot. It was surprising to us how
robust the reasoning and planning capabilities of are. This section provides qualitative results from
these experiments, illustrated in Figures 15, 16, and 17. These figures highlight specific aspects of
the tasks, illustrating the effectiveness of our framework. It is important to note that these results
only reflect the work of the planning team. The role of the grounding team, locating objects and
determining their positions, is crucial for the successful execution of these plans.

Figure 15: Example Execution on Fruit Placement Task

Figure 16: Example Execution on Superhero Companions Task

Figure 17: Example Execution on Fruit Price Ranking Task
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In the fruit placement task (Figure 15), we present the final execution plan to illustrate the structure
of a complete plan. Due to the straightforward nature of the task, this figure does not include the
reasoning process. For the superhero companions and fruit price ranking tasks (Figures 16 and 17),
we emphasize the reasoning process and omit the block for the complete final plan for the sake
of conciseness. The final plans for these tasks are similar in structure to the fruit placement task,
essentially combining the substeps in the execution sequence at the bottom of the figures.

Videos of the experiments and actual execution can be viewed here.

B.4 SPATIAL PLANNING - REAL ROBOTS

B.4.1 ROBOT SETUP

For our real-world experiments, we used the Franka Emika Panda robot, a 7-degree-of-freedom
robotic arm controlled using ROS. We used an Intel RealSense D435 camera positioned above the
workspace to extract visual and depth information.

For top-view D-RGB images, the camera was mounted directly above the predefined task area, as
the robot itself does not come equipped with an onboard camera. This setup provided a clear and
consistent view of the workspace, allowing the VLLM to accurately interpret spatial relationships
and plan actions. The depth information was especially valuable for tasks that required accurate
height estimation and object manipulation.

18

https://wonderful-team-robotics.github.io/


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C ABLATION STUDIES: ARE ALL PARTS OF NECESSARY?

In this section, we present an ablation study to isolate and evaluate the contributions of our proposed
hierarchical prompting mechanism relative to the capabilities of gpt-4o itself. The objective is to
determine the extent to which the hierarchical prompting enhances system performance beyond
what gpt-4o alone can achieve.

We systematically remove or modify various components of our system, such as the Verification
Agent and the Box Checking Agent, to observe their individual impacts on performance. This
process helps to identify the specific contributions of each component within the hierarchical frame-
work.

The study addresses the following key questions:

• How significant is the hierarchical prompting mechanism in improving system performance
compared to gpt-4o alone?

• What are the individual contributions of the agents to the system’s accuracy and efficiency?
• How does the removal or modification of these components affect performance metrics?

Figure 18: Workflow: Complete

Figure 18 shows the workflow of the complete framework of . We also provide the full prompt and
example input and output corresponding to this workflow chart in Appendix C for more concrete
details.

We systematically removed or modified various components of our system, such as the Verifica-
tion Agent and the Box Checking Agent, to observe their individual impacts on performance. This
approach helps identify the specific contributions of each component within the hierarchical frame-
work.

The study addresses the following key questions:

• How significant is the hierarchical prompting mechanism in improving system performance
compared to GPT-4o alone?

• What are the individual contributions of the agents to the system’s accuracy and efficiency?
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• How does the removal or modification of these components affect performance metrics?

Figure 18 shows the workflow of the complete framework of . Detailed prompts, input examples,
and output corresponding to this workflow can be found in Appendix C.

To isolate the effects, we tested the following configurations:

• 1: Removing the Verification Agent: Without the Verification Agent, the system directly
used the supervisor’s initial set of subgoals as the final output. This led to errors, as there
was no reflection to refine subgoals based on real-time feedback.

• 2: Removing the Box Checking Agent: The Box Checking Agent evaluates proposed
revisions by the Box Mover for improvements and final output quality. When removed, the
Box Mover had to perform self-checks, resulting in less accurate outcomes due to the lack
of a secondary verification layer.

• 3: Removing Both the Verification and Box Moving Agents: The system relied solely
on the initial bounding box identified by the Grounding Manager, skipping the iterative
refinement process and leading to suboptimal action points.

• 4: Removing the Box Checking Agent and Box Moving Agent: The initial grounding
position was used directly without any further verification or adjustments, significantly
affecting the robot’s ability to select precise action points.

• 5: Removing the Verification Agent, Box Checking Agent, and Box Moving Agent:
The supervisor operated independently, approximating coordinates directly from the image
without hierarchical feedback or bounding box identification, resulting in reduced accuracy
and adaptability in task execution.

• 6: Removing the Grounding Team: The supervisor generated plans and extracted targets
without identifying bounding boxes, leading to a decline in precision for coordinate-level
actions.

• 7: Removing the Verification Agent and Grounding Team: The supervisor handled all
steps, from planning to coordinate generation. Without the Grounding Team, the system
relied on rough estimations for actionable points, reducing overall accuracy.

• 8: Removing the Memory Agent: The Memory Agent selectively stores important infor-
mation to reduce hallucinations and aid in complex, long-horizon tasks. Its removal had a
lesser impact on simpler tasks but proved crucial for maintaining key information in more
complex scenarios involving multiple subgoals.

In summary, our settings considered can be summarized in Table 3.

Table 3: Settings Summary

Setting Number Supervisor Verification (G) Manager (G) Checker (G) Mover Memory

1 ✓ ✗ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✗ ✓ ✓

3 ✓ ✗ ✓ ✗ ✓ ✓

4 ✓ ✓ ✓ ✗ ✗ ✓

5 ✓ ✗ ✓ ✗ ✗ ✓

6 ✓ ✓ ✗ ✗ ✗ ✓

7 ✓ ✗ ✗ ✗ ✗ ✓

8 ✓ ✓ ✓ ✓ ✓ ✗

Table 4 shows the results of the main tasks from the four primary task suites used in our comparison
in Figure 9(c).
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Table 4: Success Rates Across Different Settings

Task Num Complete 1 2 3 4 5 6 7 8

1: Visual Manipulation 100 100 80 80 60 50 50 70 100

2: Scene Understanding 100 70 60 60 60 70 60 20 100

3: Rotate 100 60 80 60 70 30 40 80 100

6: Novel Adjective 70 30 20 0 30 0 10 0 50

7: Novel Noun 100 60 80 60 40 20 20 20 70

12: Without Exceeding 90 10 20 10 0 0 10 10 40

15: Same Shape 100 10 10 10 0 0 0 20 60

16: Manipulate Old Neighbor 90 30 40 20 10 0 10 0 50

17: Pick in Order then Restore 90 0 0 0 0 0 0 0 40

Generally speaking, tasks with higher task numbers are typically more complex, involving longer
horizons and requiring more sophisticated reasoning. The verification and memory agents are par-
ticularly beneficial in complex environments with multiple subgoals. Removing them from the
framework often results in failure modes such as treating irrelevant distractor objects as task objects
or misidentifying arbitrary empty spaces as target locations.

Omitting grounding members tends to lead to less accurate coordinates, which can impact perfor-
mance. Even for simple tasks without long-horizon planning, the lack of precise grounding can
hinder task execution and result in suboptimal outcomes.

Interestingly, the simplest version, where only a supervisor is used, achieved decent success rates
on simpler tasks. This could be due to the framework’s reduced complexity with fewer components.
Simpler tasks usually involve only two or three task objects and locations, making them manageable
by the supervisor. There is also a higher probability of guessing an actionable location for larger
objects. However, failure modes in this setting include the lack of precise location identification
and partially incorrect or infeasible plan. When tasks become more complicated, the absence of
corrective processes often leads to failure, especially when hallucination is common.

C.1 UNDERSTANDING WHAT EACH PART OF WONDERFUL TEAM DOES

Below, we give a summary of this section, summarizing the responsibilities of each team member
and how the overall system suffers if we remove them. This shows the relative strength of the
multi-agent approach, and how when working together the team members can compliment each
other’s strengths.
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Supervisor

Responsibility Receive the initial task, develop a
plan for carrying out the task
including subgoals. Verify the plan is
followed and send the final actions to
the robot.

Prompt You have received a multimodal robotic
task description in the form of a
combination of text and images, followed
by a top-view and a front-view image of
the environment. Your task is to
interpret this combination of text and
images and output a plan with key
subgoals.….[more details about
environment and specific goals]

Input A textual description of the task and
an image of the environment.

Output A subplan of steps that should be
followed to achieve a goal. After the
subplan is executed, this agent
returns the final actions the agent
should take.

What Happens without it? If we replace the multi-agent framework
with a flat single agent structure,
success on all tasks in VimaBench fall
dramatically. For simple tasks like
Visual manipulation, this fall is from
100% to 70%. For complex tasks like “Pick
in Order and Restore” success goes from
90% to 0%. Similar results are seen on
the real robot.

The key advantage of the multi-agent
framework is that it can self-correct in
sub-loops, protecting against
hallucination or bad initial estimation.
Single agent methods such as NLaP and
PIVOT often struggle with precise object
manipulation and visual reasoning.

Under review as a conference paper at ICLR 2025
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Grounding Team

Responsibility Identify the location of objects
in the environment. Tell the
robot the correct action points
(points where it should center
its gripper when interacting with
objects)

Prompt You are an agent that plays a crucial
role in a multi-agent robotic system,
responsible for accurately identify
coordinates of target locations and
objects in a robotic environment….[more
details about environment and specific
goals]

Input A high-level plan, a top-view
images with x and y axis ticks,
and a specific object of interest
to identify

Output Thought process. Final (x, y, z)
location of object center points.

What Happens without it? The agent can not corre
ctly identify the location of objects
in the scene, leading to imprecise
actions.

Consequently, on simple visual
manipulation, success falls from 100%
to 50%.

The grounding team is important
because it can iteratively improve
upon its estimate of the location of
key objects in the environment. Normal
VLLM estimates of key points are
noisy. But the model is capable of
self-correcting initial estimates by
looping with the grounding team. This
is not possible with a single agent
structure.
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Memory Agent

Responsibility Managing a memory dictionary,
which has locations of key
objects in the environment, and
past plan for object
manipulations provided by the
supervisor.

Prompt You will receive a system memory
dictionary, an agent's name, a response
from that agent, and a context of this
response generated by the agent itself.
Your task is to determine if this
information is relevant to successful
task execution. If so, summarize and
update system memory of this information.

Input Memory dictionary, output from
other agents, context of
generated outputs.

Output Thought process, Updated memory
dictionary with locations of key
objects from the prompt.

What Happens without it? Tasks such as “pick in order then
restore,” rely on memories of previous
actions. Without memorizing the order
of previous actions, success rates on
these tasks fall from 90% to 40%.

In general, the performance on most
tasks suffer because the agent
struggles to remember where it is in
task execution. The supervisor becomes
burdened trying to remember this
information and suffers from
hallucinations.
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Verification Agent

Responsibility Analyze the high-level plan
provided by the supervisor,
paying attention to potential
environmental hazards. Especially
consider feasability. Ask
informative or clarifying
questions.

Prompt You are an agent that plays a crucial
role in a multi-agent robotic system,
responsible for verifying a given
high-level plans with each subgoal for
the successful execution of robotic tasks
in a specific environment.
[more details about environment]

Input High level plan from the supervisor.
Image of the environment.

Output Either a clarification question or
concern related to the feasibility of
the generated plan, or approval to
execute the plan.

What Happens without it? In “Without Exceeding,” if there is no
Verification Agent then the supervisor
often fails to consider where it must
stop the sweeping action. The
supervisors instructions are also
overly ambiguous about how many
objects need to be moved, even though
this is explicitly in the task
command!

If we give the LLM the ability to
self-verify with the Verification
agent, then success on Without
Exceeding increases from 10% to 90%
because the agent double checks its
ambiguities and corrects them. Similar
effects are observed in Scene
Understanding and Rotate, where
success rises from 70% to 100% and 60%
to 100% respectively upon the
inclusion of the Verification Agent.
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D ABLATION STUDIES: VLLMS’ SPATIAL REASONING LIMITATIONS AND
POTENTIALS

D.1 EVALUATING VLLM’S SPATIAL UNDERSTANDING

We aim to answer the question: How capable are VLLMs at finding accurate actionable position
coordinates?

We set up a toy tabletop environment with various colored and shaped objects placed on a grey table
mat, with a single target object (a circle) used to calculate deviation. An example of the environment
is shown in Figure 19.

Figure 19: Toy Environment Illustration

We prompt different VLLMs to provide actionable coordinates for the target object, using the over-
laid pixel coordinates as a reference. Our goal is to determine whether the coordinates generated by
VLLMs are directly usable for action generation and execution.

D.1.1 EXPERIMENTAL SETUP

We tested three state-of-the-art VLLMs:

• GPT-4o
• GPT-4-turbo-vision
• Claude-3-opus

Each model was asked to provide the coordinates of the target object based on the given image with
pixel coordinates.

D.1.2 RESULTS

Are the coordinates directly usable? Using this simple environment, we want to answer this
question we asked earlier concretely. Although actual robotics environments can look much more
complicated visually, we can get an idea of the performance of these models. Any point with devia-
tions from the circle center smaller than the circle radius is considered actionable (lies on the circle
for picking).

Table 5: Success Rates of Directly Usable Coordinates

Model Success Rate (%)

GPT-4o 33

GPT-4-turbo-vision 5

Claude-3-opus 4
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We can see from Table 5 that earlier models have a very low success rate. Even with the very strong
GPT-4o model, directly using the generated coordinates, even with a perfect plan, can only achieve
a 33% success rate, which is far from optimal, not to mention the simple nature of this task.

D.1.3 DEVIATION ANALYSIS

Are the coordinates at least somewhat close to the target objects?

Although the generated coordinates might not be directly usable for action generation, we wondered
if the coordinates are at least informative and close to the target objects for further refinements. In
the toy environment, we illustrate the circle of 3 times the radius of the original target circle (the
radius of the target circle is always 50 here). This seems to be a good definition of being close in the
environment. However, we tried different thresholds to see a fuller picture, as shown in Table 6.

Figure 20: Illustration of the definition of “close to” (3× radius) target objects.

Table 6: Deviation Analysis of Generated Coordinates

Model ≤ 3× radius (%) ≤ 4× radius (%)

GPT-4o 89 97

GPT-4-turbo-vision 46 68

Claude-3-opus 19 58

From the table, we can see that although not directly actionable, the proposed coordinates of GPT-4o
are of pretty good quality and can be refined with improvements. They are mostly around the target
objects, indicating great potential for further refinement and effective use in real-world tasks.

D.2 EVALUATING VLLMS’ ERROR RECOGNITION AND CORRECTION

Given that VLLMs have the power to estimate positions, can we build a framework that can self-
improve? A major component needed here is an agent to check or modify the proposed coordinates.
In many robotics tasks, the goal of position finding starts with identifying a bounding box around
objects. Suppose we have some proposed bounding box for the object of interest. To further improve
upon the initial version, VLLMs need to know if a bounding box is good enough, or if it is com-
pletely wrong and should restart from generating a new one instead of modifying the current one.
The question we ask is: Are the VLLMs capable of visually examining and evaluating proposed
coordinates?

D.2.1 EXPERIMENTAL SETUP

To test this ability, we randomly generated 4 types of bounding boxes around the circle of interest.
Examples are shown in 21. The types are:
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Figure 21: Bounding Box Types: 1) Perfect Bounding Box, 2) Slightly Off, 3) Completely Off -
Wrong Target, 4) Completely Off

1. Perfect Bounding Box: The bounding box is correctly placed around the target.

2. Slightly Off: The bounding box is close but not perfectly aligned with the target.

3. Completely Off - Wrong Target: The bounding box is around a different object.

4. Completely Off - Around: The bounding box is sampled around the target (within 4× radius)
but is far enough and significantly misplaced, not touching or including the target at all.

Specifically, we give the model a randomly generated bounding box and use the following prompt

“In the given plot, You are tasked with checking if a bounding box should be accepted,
accepted with revision, or rejected.
Follow these guidelines to determine whether to accept, advise, or reject the new bounding
box:
Criteria:
- **Accept**: If the bounding box covers the target object well without much extra space,
pretty much a perfect bounding box
- **Revision Needed**: If the bounding box covers at least a small part of the desired
object, but more precision is needed
- **Reject**: If the bounding box is completely irrelevant and does not even touch the
desired object
The target object is: [color] circular object.
Your output should be in the following text format. Do not include anything else in your
output. This means no reasoning process, no json-like format, no explanation, no other
types of texts.
**Output Format:**
Accept Or
Revision Needed
Or
Reject”

D.2.2 RESULTS

Table 7: Success Rates of Classifying Bounding Boxes

Model Success Rate (%)
GPT-4o 97

GPT-4-turbo-vision 72
Claude-3-opus 33
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From Table 7 and 8, we can see that GPT-4o demonstrated a very strong ability to examine and
decide whether a bounding box is good enough just by visual inspection. This capability opens up
new possibilities for self-refinements using current VLLMs. Even in cases where initial coordinate
generation is not perfect, incorporating a checker as an additional layer of safety along the pipeline
can iteratively improve coordinate accuracy until a satisfactory result is achieved.

gpt-4o gpt-4-turbo claude-3-opus
Ground Truth Accept Revision Reject Accept Revision Reject Accept Revision Reject
Perfect 25 0 0 18 6 1 22 2 1
Slightly Off 1 24 0 0 24 1 19 4 2
Completely Off - Around 0 2 23 0 11 14 23 0 2
Completely Off - Wrong Object 0 0 25 0 9 16 19 1 5
Total 100 100 100

Table 8: Evaluation of Grounding Box Decisions by GPT-4o, GPT-4-turbo, and Claude-3-Opus
Against Ground Truth Across 100 Examples (4 Ground Truth Classes, 25 Examples Each).

In previous tests with Claude-3-opus, the checker often hallucinated during tasks, making it unreli-
able. For instance, when a bad bounding box is accepted, it not only leads to unsuccessful execution
but also confuses the agent itself or other agents in a multi-agent system. This level of complete
hallucination is very detrimental. However, in cases where a slightly off bounding box is accepted
or a completely off box is sent for revision, it can still be corrected by later parts of the workflow.
As shown in Table 8, this level of complete hallucination is predominantly seen in Claude-3-opus
outputs. In contrast, the strong performance of GPT-4o suggests that a more reliable approach is
now feasible.
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E COMPARISON WITH OTHER METHODS

E.1 REPLICATING NATURAL LANGUAGE AS POLICIES USING GPT-4O

In Section 5, we presented experimental results of the Natural Language as Policies (NLaP) sys-
tem as reported in the original paper (Mikami et al., 2024). Their implementation utilized gpt-3.5,
whereas our method leverages the more advanced gpt-4o. To ensure a fair comparison, this section
presents the results of replicating the NLaP system using gpt-4o.

However, since NLaP does not provide their codebase or the full prompt, including images and
object information for the one-shot examples used, we attempted to recreate their framework by
writing one-shot examples for each task with human-labeled coordinates and object names according
to the framework shown in Figure 1 of their paper. For the one-shot prompt, we closely followed
and mimicked their provided prompt examples in Table V.

Figure 22: Workflow of Natural Language as Policies by Mikami et al. (2024)

While implementing their framework, we realized that NLaP does not use the framework to ex-
tract coordinate information. Instead, the extracted coordinates are provided and given to the
LLM. The authors did not mention how the coordinates were extracted; the only job of the LLM
is to incorporate the coordinates into a detailed final plan. This approach is not a fair comparison
to our framework because using the VLLM to extract accurate, actionable coordinates is the more
challenging part of this task.

Since the authors did not mention how the coordinates were extracted, and from our previous explo-
ration, using off-the-shelf trained object extraction models such as OWL-ViT did not perform well
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on VIMABench (Figure ?? shows this fact), we assume that NLaP used information as accurate as
human-extracted data. We tried two versions of implementation for this: 1) using gpt-4o to extract
this information in the same format, and 2) using ground truth information. For the second approach,
we used the ground truth object names from the environment and the ground truth coordinates by
mapping the environment state to the pixel coordinate scale. Note that although this approach does
not offer a fair comparison to our method, we implemented it to understand how well the planning
component performs and to replicate their original results. However, it is important to keep this
major difference in mind when interpreting the results.

Figure 23: Example - Original Framework of NLaP

Another significant difference between their framework and ours is that the planning component of
NLaP does not use any visual information, as shown in Figure 23. In the extraction part, information
on objects and their coordinates is derived from visual data, either by human labeling, VLLM, or
another model. During the planning phase, the LLM only has access to the textual information. This
explains why there wouldn’t be a significant difference between using gpt-4o and gpt-3.5-turbo, as
gpt-3.5-turbo is already very proficient at planning, and the planning part of the framework would
not benefit substantially from switching to gpt-4o.
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In our implementation of NLaP using gpt-4o for both coordinate extraction and action sequence gen-
eration, however, we added the corresponding visual information of both the extracted information
and the one-shot example to facilitate the understanding of VLLM of the environment. The idea of
our implementation of this added vision version is shown in Figure 24.

Figure 24: Example - Framework of NLaP with Visual Information Added

Another difference in our experimental evaluation between our method and Natural Language as
Policies is that NLaP directly takes the system information of objects for multi-modal prompts. For
instance, see an example in Figure 25. In some VIMABench tasks, the prompts can be made multi-
modal, and parts of the prompts, usually objects, are not described by words but by images. We used
this version of the prompt without any text information for these parts in our evaluation to test the
robustness on multi-modal tasks. However, in NLaP, they used the system text information on the
shape and texture instead of visual data.
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Figure 25: Illustration of the Difference in Multi-modal Prompts: This figure shows the variation in
how prompts are constructed between our method and the NLaP system. Our method uses visual
information (images) for object description, while NLaP uses system-generated shape and texture
information.

One last difference between our methods is that in their prompt, a one-shot example is given. Ex-
amples can be viewed in Table V of their paper. The example simply illustrates a typical thought
process of a successful execution. They used different examples for different tasks, and during our
experiments, we found that sometimes the tasks can be overly similar to the actual task in terms of
reasoning, object shape, even object number. For instance, in simpler scenes with two objects, the
final desired output is always putting object 3 into object 4 or vice versa. Examples like this may
sometimes provide unintended hints that could over-simplify the task.

Table 9: Success Rates Across Different Settings

Task Num gpt-4o + gpt-4o gpt-4o + ground truth gpt-3.5 + ground truth NLaP Reported Ours

1: Visual Manipulation 20 100 100 100 100

3: Rotate 30 100 90 93 100

6: Novel Adjective 10 80 60 43 70

7: Novel Noun 40 100 80 80 100

15: Same Shape 0 10 70 80 100

16: Manipulate Old Neighbor 0 60 20 20 90

In Table 9, we present the results of our ablation studies. We used a ‘+’ sign to denote the combina-
tion of settings for planning and coordinate extraction, respectively. For example, ‘gpt-4o + gpt-4o’
represents the setting where we used gpt-4o to extract scene information (as shown by the red box
in Figure 22), while ‘gpt-4o + ground truth’ means that we directly fed the language model with the
actual coordinates and system object names.

From the results, we can see that the comparable version of NLaP, where both planning and ground-
ing are done by the VLLM, barely succeeds on VIMABench tasks, even on simple, one-step tasks.
It performs significantly worse compared to our method. The failure modes are often caused by
both shortcomings in planning and inaccuracies in the position-finding step. In their original im-
plementation, where coordinate-level information is directly gathered from the environment system
instead of by a zero-shot VLLM model, switching from gpt-3.5-turbo to gpt-4o achieves slightly
better results. This improvement is likely due to gpt-4o’s enhanced reasoning capabilities, which are
beneficial for more complex tasks, such as identifying multiple old neighbors that require reasoning
about relationships.
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However, since their implementation primarily relies on textual information extracted from the pre-
vious steps rather than vision information during the reasoning phase, the gain from switching to
gpt-4o, which excels in vision understanding, is limited. As a result, gpt-4o under the NLaP frame-
work still struggles with tasks involving identifying objects of similar shape. A common failure
mode is its insistence that no object has a similar shape.

These results further show that the multi-agent structure is crucial for our system’s overall per-
formance. Even with perfect system output for localization used by Natural Language as Poli-
cies, long-horizon planning with complex reasoning remains challenging without the self-corrective
multi-agent structure.
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E.2 COMPARISON WITH PIVOT

PIVOT (Iterative Visual Prompting Elicits Actionable Knowledge for VLMs) focuses on localization
through visual question answering, with minimal emphasis on planning—similar to the role of our
grounding team within our hierarchical framework. PIVOT (Nasiriany et al., 2024) introduces an
innovative approach to enabling VLMs to localize actionable points or actions by progressively
shrinking the action distribution and resampling. The process begins by sampling a set of actions
from the action space, which are then mapped onto a 2D image. A VLM is used to select the most
promising actions from this set. Based on these selections, a new action distribution is created, and
the process is repeated over a fixed number of iterations to refine the actions further.

In their robotic environment implementation, PIVOT handles two versions of localization: one in-
volves finding a multi-dimensional relative Cartesian (x, y, z) coordinate in the action space, and
the other involves finding a pixel coordinate in the pixel action space—similar to our approach in
VIMABench, where control is based on pixel coordinates rather than relative Cartesian coordinates.
For action mapping, PIVOT maps actions to a final endpoint, effectively aligning with the pixel
coordinate localization method.

In our comparison, we use VIMABench, where control is based on coordinate-level actions. There-
fore, PIVOT’s coordinate mapping implementation and the prompts they used on the RAVENS sim-
ulator are applied throughout our analysis. There are several similarities and differences between
our work and PIVOT that are worth highlighting.

Similarities:

• Both frameworks extract coordinate-level information.

• Both operate in a zero-shot manner without any fine-tuning.

• Both annotate 2D images and provide these annotations to the VLLM to guide its decision-
making.

Differences:

• Our framework focuses on both planning and localization, with localization being one com-
ponent within a hierarchical structure designed to handle long-horizon tasks with complex
planning. In contrast, PIVOT only focuses on localization, where their prompts typically
describe an object or subgoal rather than addressing a broader task.

• PIVOT uses a single agent responsible for iteratively selecting a point from a sample
of points or action-mapped points. In contrast, our grounding team consists of multiple
agents, each playing a distinct role in a self-corrective process.

• PIVOT’s method can be viewed as a process of shrinking or guiding the sampling distri-
bution closer to the target object, with each iteration’s samples based on the previous one
(Fig 26). While our method is also iterative, we begin with a point chosen by the ground-
ing manager and refine it iteratively from there (Fig 27), rather than starting with the entire
distribution of possible locations.

• PIVOT identifies a single action point for the target object, maintaining this as the goal
throughout their iterative process. In contrast, our method offers two distinct workflows that
the grounding manager can choose from before localization. When selecting an area point,
such as a position between a box and a frame, we also employ point selection. However,
for object selection, our method first identifies a center point, then determines a bounding
box of appropriate size, and iteratively refines this bounding box until it is accurate. The
grounding manager then selects an actionable point within the bounded area. We found
that this bounding box process greatly enhances robustness and precision, especially for
smaller objects or manipulation tasks that require more precise control. We further ablate
and discuss this in Appendix E.2.
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Figure 26: PIVOT Workflow, Blue Letter V

Figure 27: Wonderful Team Workflow, Blue Letter V

Next, we present some quantitative evaluation on object identification results in selected
VIMABench environments followed by further discussions on the failure modes.

In Table 10, we compare the experimental results of our method with those from PIVOT. While
PIVOT originally utilizes GPT-4V in its framework, we implemented their approach using the more
advanced GPT-4O to ensure a fair comparison. Our replication of their framework was carried out to
the best of our knowledge to highlight the differences and performance improvements. Additionally,
we include results obtained from their official HuggingFace demo to demonstrate the performance
of their original implementation. For example output of different grounding approaches, please see
29.

Table 10: Location Grounding Success Rates

Task PIVOT (gpt-4v) (HF) (%) PIVOT (gpt-4o) (%) gpt-4o Direct Output (w/ labeled axes) (%) Ours (grounding team) (%)

1. Visual Manipulation 10 30 40 90

6. Novel Adj 0 0 20 80

17. Pick in Order then Restore 0 0 10 90

Implementation Details

Uniform Sampling: PIVOT begins by sampling a set of actions from the action space (in
VIMABench or RAVENS, as reported in their paper, this involves sampling 2D coordinates), which
are then mapped onto a 2D image. A VLM is used to select the most promising actions. Based on
these selections, a new action distribution is fitted, and the process is repeated over a fixed number of
iterations to refine the actions. Due to the absence of specific details regarding the distribution used
in their original implementation, we opted for a uniform sampling strategy. The sampling radius
was determined as twice the maximum distance from the average action point to any other point in
the set. To ensure alignment with the original method, we also utilized their Hugging Face demo
(gpt-4v) to replicate their reported performance.

Parallel Runs: The original study also employs a parallel call strategy. To combine results from
different runs, they explored two approaches: (1) fitting a new action distribution from the output
actions and returning it, and (2) selecting a single best action using a VLM query. In our implementa-
tion, we used the second approach with “3 Iterations 3 Parallel“ combinations to enhance robustness
in our comparison. Additionally, while the original implementation uses the same sampling radius
for both width and height, we addressed this by defining separate radii for the shorter and longer
edges of the input image.

Grounding Team Only: Since PIVOT’s framework is primarily comparable to our grounding team,
which focuses on processing object descriptions rather than broader tasks, we isolated the grounding
component for a direct comparison with their method.

Success Evaluation: For evaluation, we conducted 10 runs on different objects from a set of varied
initial frames. A task was considered successful if the center point label of each target object had at
least half of its area within the object’s boundary or if the center point fell within a specific range
around the target area center, ensuring successful picking.
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Figure 28: Screenshot of HuggingFace PIVOT Demo

Failure Mode Discussions

It’s notable that PIVOT’s output on tabletop tasks does not over-perform the direct output from GPT-
4o. However, this is with the help of the labeled coordinate system, which significantly enhances
precision in quantification, as discussed in our motivation section. We further discuss the possible
explanations of PIVOT failures:
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Incomplete Sampling Coverage: In 28, when attempting to select the left object, the initial sampling
failed to provide sufficient coverage, with the majority of points being sampled from the center of
the image and scattering on the purple paisley letter “V” instead of the target object with blue and
purple stripes. As a result, subsequent iterations were confined to a suboptimal region, ultimately
leading to poor final results.

Difficulty in Recovery: During our implementation, we identified a critical limitation in the sampling
strategy: if the sampling radius is too small, it becomes difficult to recover from an inadequate initial
selection. Conversely, if the sampling radius is too large, the framework struggles to converge, as
the sampled actions may scatter too broadly, reducing the effectiveness of the refinement process.

Lack of Iterative Continuity: Another factor that may explain PIVOT’s low performance in precise
location finding is the lack of continuity between iterations. Although the new set of actions is
sampled from a distribution fitted using previously selected promising actions, there is a notable
discontinuity in the process. For instance, if a good point is identified during one iteration, it is not
guaranteed to be preserved in subsequent iterations. The framework’s fixed number of resampling
processes means it cannot exit the process once a good point is found, potentially resulting in the
loss of successful actions. This resampling process can lead to promising actions being either diluted
or completely discarded in the next round due to inherent randomness, causing inefficiencies and
inconsistencies as the framework may fail to build on previous successes.

Messy Annotations: Additionally, the framework’s annotations can become cluttered, leading to a
loss of crucial information from the original image. Unlike our approach, which maintains a clear
connection to the original image to preserve full context, PIVOT’s method can lose track of the
overall scene, making it difficult to refine action points effectively. This loss of context can be
particularly detrimental in scenarios where precision and consistency are critical.

Figure 29: Example Outputs - Wonderful Team vs PIVOT

Point Selection vs. Bounding Box: Since the PIVOT method is inherently more similar to our
area/point approach discussed earlier—where points are selected throughout the process without the
aid of bounding boxes—we further compare PIVOT’s outputs with both our bounding box approach
and our point approach. Figure 29 provides insight into how these methods perform relative to
each other. While both PIVOT and our area/point approach can get reasonably close to the desired

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

objects, they often lack the precision required for tasks involving small objects or when execution
demands more accuracy than just proximity to the object.

In Figure 30, we present example executions using the results from these methods. The task involves
stacking the purple and blue striped letter “V” on top of the blue letter “V,“ followed by stacking
the purple paisley letter “V” on top. For this execution, we used the PIVOT results from our imple-
mentation using gpt-4o, as the HuggingFace outputs were less reliable, with all points concentrated
on the same object. The execution screenshots reveal that points not accurately placed on the object
lead to failures in picking it up. On the bottom row of Figure 30, even though both points for the first
pick-and-place action are technically correct, the misalignment causes the stacking task to partially
fail, as the letters “V“ are not properly aligned, resulting in an unsuccessful stack.

These results highlight the importance of considering whether a bounding box is needed in the itera-
tive process. With the current level of visual reasoning skills in models, we found that incorporating
a bounding box significantly enhances precision, reduces hallucinations, and adds robustness to the
execution.

Figure 30: Example Executions - Wonderful Team vs PIVOT

These limitations underscore the shortcomings of the PIVOT framework and highlight the necessity
of a more guided and context-aware approach, as implemented in our method.
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E.3 COMPARISON WITH LANGUAGE MODELS AS ZERO-SHOT TRAJECTORY GENERATORS

E.3.1 KEY DIFFERENCES

In Language Models as Zero-Shot Trajectory Generators (Kwon et al., 2024), the task is given to
a LLM (gpt-4) in text form. After this, the LLM identifies task-related objects and call an object
detection API to retrieve the information about these objects (xyz, height, orientation etc). Using
this retrieved information, the LLM starts to plan. In particular, it achieves planning by writing
python scripts to generate a trajectory to be executed.

When compared to Wonderful Team, there are a few key differences.

First, the authors employed gpt-4, which does not have vision capability. This means when LLM is
making decisions on what objects to detect and generating plans, it does not have any context of the
environment except for the one-line command from the user. To improve on the lack of context when
making plans, the authors could swap gpt-4 with gpt-4o and provide an image of the environment.
This way, the VLLM could identify any task-related objects that are NOT in the command for object
detection.

However, even in this case, there are still some issues with the detection process. We experimented
with swapping our grounding team with detection models, such as OWL-ViT or langSAM, in the
early stage of our research. These methods fail to detect almost all objects that cannot be directly
described within a few words. As a concrete example of the problems we encountered with this
approach, imagine a user issuing the command: “Pick up the thing to the left of the bottle.” Upon
reading this command, the detection module will try to find “the thing” and fail, because obviously
such an abstract concept can not be encoded into a detection module.

Language Models as Zero-Shot Trajectory Generators uses a single-agent system, where one agent is
responsible for generating plans based on user commands. While this method can work under certain
conditions, it has inherent limitations, particularly in handling complex, ambiguous instructions and
managing long-horizon tasks, especially those that require detailed contextual understanding. In
contrast, our system employs a multi-agent architecture, where different agents specialize in specific
tasks such as localization, planning, and validation.

E.3.2 SINGLE AGENT VS MULTI-AGENT

When comparing the single-agent approach, as exemplified by models like Language Models as
Zero-Shot Trajectory Generators, to our multi-agent system, it’s important to recognize the distinct
challenges each method addresses. Single-agent systems typically solve a more straightforward
problem that focuses solely on planning. These systems rely on a separate detection module to iden-
tify objects, followed by planning over these detections. While this approach can work in controlled
settings, it often leads to instability and misinterpretation of language instructions, particularly when
the model encounters more complex or ambiguous commands.

In contrast, our multi-agent system integrates both planning and localization directly within the
framework, using Vision-Language Models (VLLMs) to extract object location information. This
direct extraction requires a multi-agent setup, where each agent is responsible for a specific aspect
of the task, incorporating additional confirmation steps and sub-loops to ensure accuracy. This
multi-agent architecture not only addresses the grounding problem but also significantly enhances
the system’s capability to solve complex, long-horizon tasks, as demonstrated in our evaluations.
For instance, in the “manipulate old neighbor“ task from VIMABench, even when given ground
truth coordinates, a single-agent system using GPT-4o within the NLaP framework often failed to
generate successful plans (see Table 9).

E.4 BENEFITS OF USING A MULTI-AGENT SYSTEM

The multi-agent system we propose offers several key advantages over single-agent systems:

1. Suitability for Robotics Tasks. A multi-agent system is particularly well-suited for robotics tasks
because these tasks typically involve distinct and varied challenges that require different approaches.
Unlike language-only tasks, which may be more uniform, robotics tasks often demand specialized
strategies for different components, such as object detection, manipulation, and planning. By em-
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ploying a multi-agent system, each aspect of the task can be handled by an agent specialized in that
area, improving both the efficiency and accuracy of the system. Moreover, the ability of agents to
communicate and validate each other’s work leads to more reliable decision-making and reduces the
likelihood of errors, especially in complex, dynamic environments.

2. Simplified System Complexity. At first glance, a multi-agent system might seem more complex
than a single-agent approach. However, by dividing the task into smaller, more manageable com-
ponents, each agent can focus on a specific, well-defined role, which actually simplifies the overall
system. This division of labor is especially beneficial in robotics, where different aspects of a task
require different strategies. By tailoring each agent’s prompts and tasks to their specific role, we
avoid the pitfalls of trying to handle everything within a single, monolithic prompt. For instance,
when a single agent is responsible for object detection, manipulation, and planning, it often struggles
with precise location identification and may produce partially incorrect or infeasible plans.

3. Effective Communication and Validation. Communication between agents is another signif-
icant advantage of our multi-agent approach. Instead of an agent re-evaluating its own output —
potentially leading to unnecessary adjustments or confusion — different agents can validate the out-
puts independently. This reduces the risk of hallucinations, which can occur when an agent is overly
influenced by its previous decisions. For example, when a verification agent (or box checker) eval-
uates the outputs from the supervisor (or box mover), it treats these outputs as a new query, asking
questions like “Is A better than B?” or “Is this action feasible?“ This approach contrasts with single-
agent systems, where the agent might simply consider whether to fix an existing plan, a situation
that often leads to further errors.

4. Enhanced Self-Correction. One of the primary strengths of a multi-agent system is its ability to
self-correct through agent interaction. In a single-agent system, the same agent must generate a plan
and then evaluate it, which can lead to confusion and unnecessary revisions due to hallucinations or
biases from previous outputs. In contrast, our multi-agent system allows agents to communicate and
validate each other’s outputs, significantly reducing the likelihood of such errors. For example, if a
VLLM proposes an incorrect object location, this often results in a failed trajectory in 78% of cases.
However, when a team of agents iteratively improves the target locations, the success rate increases
to 93% (see page 35, Table 4).

5. Improved Memory Management. In a multi-agent system, no single agent is burdened with
managing the entire context or retaining all information, which can lead to hallucinations or errors.
For example, in the ”pick in order then restore“ task, the success rate was only 40% without a mem-
ory module, but it increased to 90% when a dedicated memory agent was included. This demon-
strates how distributing responsibilities among agents enhances both performance and reliability by
reducing the cognitive load on any single agent.
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E.4.1 EXPERIMENTAL COMPARISON IN FETCH

Figure 31: Default View of Fetch Environment with a Box with a Lid

We further compared our methods in a Gymnasium environment involving a box covered by a lid.

Environment: The robot used is a 7-DoF Fetch Mobile Manipulator equipped with a two-fingered
parallel gripper. The setup includes a closed box with a lid and four other objects placed on the
table. See Figure 31 for an example setup.

Task: The task is to place one or two of the objects into the box.

Example Prompt: “Place the wooden toy train and the rightmost object inside the small blue box
with a lid and a black handle.” (The exact prompt depends on the target objects.)

Why This Task is Challenging:

• It requires accurate 3D estimation. Although this can be partially addressed by using a 2D
image with a depth array, there can be challenges when converting 3D information to 2D.
Even small deviations in this process can lead to significant errors in execution.

• Items are positioned at different height levels, so collision avoidance must be carefully con-
sidered. This is particularly important because the box is quite deep, requiring a thoughtful
approach to placing objects inside.

• Correctly identifying the components of the environment, including the box lid, is difficult.
The black handle on the lid is very small and requires precise detection for successful exe-
cution. Additionally, the handle’s common shape and color may cause it to be misidentified
or overlooked.

• The plan needs to include the step of removing the lid, which is often omitted. Moreover,
the plan should identify an empty area on the table to place the lid without displacing other
objects.

Planning Results:

In the example task, where the goal is to place the wooden toy train and the rightmost object inside
the box, the plan generated by Wonderful Team using the prompt, after validation with the verifica-
tion agent, is shown in Figure 32(b). For comparison, the plan generated with the exact same task
prompt by our system is shown in Figure 32(a). We will further discuss the results in the last section.
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(a) Plan Generated by Trajectory Generator (b) Plan Generated by Wonderful Team

Figure 32: Comparison of Plans Generated by Trajectory Generator and Wonderful Team

Detection Results:

Figure 33: Examples of Object Detection. Check Google Colab notebooks for more example results
for Wonderful Team and Trajectory Generator.

Success Rate Results:
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Table 11: Success Rates on Fetch Box

Method Success Rate (%)

Wonderful Team (single attempt) 50

Wonderful Team (re-planning allowed) 80

Trajectory Generator (single attempt) 0

Trajectory Generator (re-planning allowed) 5

Summary of Findings:

• Trajectory Generator (Planner): The planner often fails to understand the implied re-
quirements in the task instruction and is only capable of considering the explicit commands.
See Figure 32(a) for an example. Without the command to remove the lid, the planner starts
by picking up a target object instead of opening the box to prepare for later steps. In addi-
tion to this, the planner also assumes that the gripper can hold two objects at a time before
placing them down in the specified container, which is a result of not having access to the
environment in context.

• Trajectory Generator (LangSAM): This model struggles to correctly identify many ob-
jects. See Figure 33 for instance, when asked to find the wooden toy train, it points to the
Fetch robot; when asked to locate the lid, it points to the entire table. Similarly, when asked
to identify the rightmost object, it again points to the Fetch robot, and when asked to locate
the tomato soup can, it points to the mustard bottle.

• Wonderful Team’s Performance: Wonderful Team achieves a 50% success rate on this
task. The main failure mode arises from the difficulty in integrating the depth camera for
accurate position estimation, which sometimes results in missed targets.

• Impact of Replanning Module: When we introduced a replanning module, Wonderful
Team’s success rate improved to 80%.
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