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Background Large Language Models (LLMs)
are often treated as black boxes with mysterious ca-
pabilities that emerge during next-word prediction,
and a good deal of current research is devoted to in-
terpreting and understanding LLM text generation
behavior. One way to assess a black box system is
to consider what possible things it could have done,
but didn’t. In text generation, we can liken the a
text sequence to a path the system took through se-
mantic space, and ask: what other paths could the
system have taken? Are there key forking points
where re-sampling the system at that specific token,
but not others, would lead to very different paths?
We propose a novel methodology for answering
these questions with what we call Forking Paths
Analysis (Borges, 1941).

The most common method for estimating uncer-
tainty in LLMs is to sample a single text output, and
inspect logit probabilities for the final answer token
(e.g. p(“Yes”) or p(“No”) given ‘So, the answer is
_”) (Kadavath et al., 2022; Hu and Levy, 2023). A
less common approach is to sample a batch of out-
put texts using stochastic decoding, and compute
a histogram over final answers (Wang et al., 2023;
Xiong et al., 2023). However, the first method does
not explain how an LLM can generate two distinct
solution attempts for a problem. The uncertainty
will not be reflected in the last token of each out-
put, since that token will be deterministic given the
proof preceding it. The second method explains
uncertainty in the final answer, but ignores the rest
of the text preceding the answer. For many LLM
uses, such as proving a theorem, the steps leading
to the final answer can be as important as the an-
swer itself. By contrast, our Forking Paths Analysis
considers both individual token sequences as well
as final outcome distributions. This method offers
a detailed view into the uncertainty dynamics un-
derlying each step of text generation, and enables
us to test the hypothesis that individual tokens are

pivotal in that re-sampling at specific points can
send text generation in a very different direction.
Our Forking Paths Analysis does not require access
to an LLM’s internal activations, and relies only
on logit probabilities available in some black-box
LLM APIs (also see Morris et al. (2023)).
Our primary contributions: (a) a novel method,
Forking Paths Analysis, for understanding uncer-
tainty in text generation by representing it as mul-
tivariate time series aggregated over many sam-
ples, and by (b) applying change point detection
models to statistically test the hypothesis that there
are sharp change points in text generation; (c) we
use Forking Paths Analysis to demonstrate striking
dynamics in text generation, including significant
change points where a single token dramatically
affects subsequent text.
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Figure 1: Forking Paths Analysis in three parts
(Part 1, Top) Given a single text completion x∗ and top-k
alternate tokens at each step t, we re-sample S comple-
tions x(s)

>t and extract outcome vector representations
R(x) for each sample. (Part 2, Middle) We aggregate
extracted outcomes as weighted distributions, equivalent
to a multivariate time series ot(x∗). (Part 3, Bottom) We
convert the distributions into a univariate series using a
semantic drift transformation, and apply a Change Point
Detection model to identify sudden changes.
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Figure 2: Forking Paths Analysis applied to a math
word problem (Top) Outcome distribution ot for
GSM8k grade school math question 97. Final answer
probabilities are plotted as different colors. Outcomes
outside the top-5 answers are grouped into Other. Cor-
rect answer: 70. (Middle) Semantic drift transformation
yt = d(o0, ot), and (Bottom) change point detection
posterior probability p(τ = t) at each step t.

Methods Conditional re-sampling (Fig. 1, Part
1) proceeds in three stages: (1) sample a base text
sequence x∗ and collect token logit probabilities
p(xt = w|x∗<t) for the top-k tokens w at each in-
dex t, (2) for each index t and each alternate token
w where p(xt = w|x∗<t) > ϵ is greater than some
threshold ϵ, draw S samples of alternative text com-
pletions x(s)>t LLM(x∗<t, xt = w), (3) for all com-
pletions concatenated with their input text, extract
an outcome representation R(x∗<t, xt = w, x

(s)
>t ),

where R may be a one-hot embedding for the final
answer extracted using another LLM, or R may be
a semantic embedding vector.

We define outcome distributions ot for individual
token indexes t as weighted vector representations:
ot(x

∗) = Ew,s

[
R(x∗<t, xt = w, x

(s)
>t )

]
In the tasks shown here, R(x) is a one-hot en-

coding of the answer in x (e.g. ‘A’, ‘B’, ‘C’, ‘D’),
extracted using a secondary LLM with a prompt
template. In future work, we will explore open-
ended text generation tasks where R(x) is instead
a dense vector embedding of x.

We use ot to test the hypothesis that there are spe-
cific change points t where text generation shifts
suddenly. First, we convert ot into a univariate
time series for tractable multiple Change Point De-
tection (CPD) (Fearnhead, 2006) using a semantic
drift metric (Kulkarni et al., 2015). Each point in
the shift series yt = d(o0, ot) is the distance be-
tween the initial outcome distribution o0 and subse-
quent time steps ot, given a distance metric d. We
then run Bayesian CPD (Zhao et al., 2019) to iden-
tify change points τ by fitting separate regression
models to each segment yτi,...,τi+1 .

Domain Task 1+ Changes
Symb. Reasoning CoinFlip 0%

LastLetter 71%
Math Reasoning AQuA 14%

GSM8k 20%
Complex Q.A. MMLU 0%

HotpotQA 40%
Story Generation StoryCloze 14%

Table 1: Change Point Detection results for each task
We use 7 tasks commonly used for LLM evaluation.
The right-most column lists % of question time series
for which our Change Point Detection model assigns at
least 90% probability to there being ≥ 1 change points.

Experiments We present preliminary results for
experiments on gpt-3.5-turbo-instruct-0914
using 7 datasets used for evaluating LLMs across a
wide range of domains: Symbolic Reasoning (Wei
et al., 2022), Math. Reasoning (Ling et al., 2017;
Cobbe et al., 2021), Complex Question Answer-
ing (Hendrycks et al., 2020; Yang et al., 2018), and
Story Generation (Mostafazadeh et al., 2017) 1. For
the first 6 tasks, we add a zero-shot CoT prompt
(Kojima et al., 2022). x∗ is greedily decoded. We
show results for 5− 15 prompts for each of 7 tasks
(S=30, ϵ=.05), and soon will have results for 100
prompts each. Note each question in our dataset
aggregates over millions of sampled tokens.

In many ot, we observe dramatic non-linear un-
certainty dynamics over the course of text genera-
tion. In time series such as AQuA-60927, we see a
pattern where the LLM is equally uncertain across
answers until one token is generated. In others such
as HotpotQA-79442 and LastLetter-342, we see
patterns where one stable regime of certainty main-
tains for dozens or hundreds of tokens, before shift-
ing to another stable regime, and then a third or
fourth regime (see App. B). These dynamics may
suggest in-context model selection (Bigelow et al.,
2024). In many time series, particularly in CoinFlip
and StoryCloze, we see minimal uncertainty with
no obvious change points. We find more change
points in some tasks than others (Table 1).

The rich token-level uncertainty dynamics we
see in our Forking Paths Analysis show us how
black-box LLMs can ‘fork’ during text generation
and transition suddenly from one pattern to some-
thing quite different. At the edge of this transition,
even a single token can make all the difference.

1We alter StoryCloze to instead request short stories begin-
ning with 1 specified sentence and ending with 1 of 2 equally
plausible final sentences.
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Appendices
A Estimating Outcome Distributions
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Figure 3: Outcome distributions ot, ot,w are computed
as a weighted average of vector representation R

across sampled completions and, in the case of ot,
across alternate tokens w.

To compute outcome representations, we aggre-
gate samples into distributions – weighted vector
representations – over token indexes (ot) and alter-
nate tokens (ot,w):

ot,w(x
∗) = Es

[
R(x∗<t, xt = w, x

(s)
>t )

]
ot(x

∗) = Ew

[
ot,w(x

∗)
]

=
∑
w

p(xt = w | x∗<t)
∑
s

p(x
(s)
>t | x∗<t, xt = w) R(x∗<t, xt = w, x

(s)
>t )

Outcome Distr. Next-Word Prediction Sample Probability Outcome Representation

After de-duplicating samples, we weight by (a)
the average next-token probability for sampled
completions, normalized by number of tokens T in
sample x

(s)
>t :

p(x
(s)
>t |x∗<t, xt = w) =

( T∏
t′=t

p(x
(s)
t′ |x∗<t, xt = w, x

(s)
t+1:t′)

)1/T

as well as (b) single next-token probability for al-
ternate tokens p(xt = w|x∗<t) (Fig. 3).

Note that ot is the main subject of this work, but
we also use ot,w for an alternate Forking Tokens
Analysis approach in App. C.
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B Additional Examples

Below, we show a Forking Paths Analysis (FPA)
for one example each of all 7 of our datasets. The
first 5 examples are hand picked to show change
points. However, these 5 examples are taken from
a relatively small sample (5-15 questions per task)
which includes other change point FPA results not
shown here.

Examples for the first 5 datasets – GSM8k
(Fig. 4), AQuA (Fig. 5), LastLetter (Fig. 6), MMLU
(Fig. 7), and HotpotQA (Fig. 8) – show dramatic
uncertainty dynamics in ot with change points in yt.
Note that for text examples in this section, quotes
are shown from the model responses (highlighted
text in each Figure), and we underline the a single
words with high change point probability (dark red
in subfigure (b) of each figure) according to our
Change Point Detection model.

For the AQuA and LastLetter examples, we see
a pattern of stable uncertainty for a long period,
followed by a sudden collapse into high certainty.
Note that for LastLetter, the high probability on
Other is the amount of probability mass unassigned
across tokens with less than ϵ next-word probabil-
ity. In the case of AQuA-60927, this collapse to
B (green; also the correct answer) occurs when
a key token in the final answer is sampled – the
first digit of $4,500. In the case of LastLetter-342,
the second mode collapse occurs when sampling
tokens in the final answer nlyhth. However, the
first change in LastLetter-342 follows a different
pattern, instead moving from a moderately high
certainty regime to very low certainty. This change
occurs when two seemingly innocuous return sym-
bols . . . Elisabeth".split() \n ` ` \n \n Next, we need
. . . are generated. The distribution suddenly shifts
from ∼ 50% confidence in olah (the correct an-
swer) to low certainty across answers (blue area in
Fig. 6).

We see additional change points and sudden tran-
sitions between stable regimes in the examples for
GSM8k, MMLU, and HotpotQA. In GSM8k-97
(Fig. 4) we see the correct answer 70 (brown) hold
20 − 30% of the overall probability mass for a
few dozen tokens, before suddenly disappearing
after 2x = 40 is sampled, being replaced by the
answer 54 (purple). Eventually \n \n Now, we can
is sampled and this answer disappears as the LLM
collapses into full certainty of 46 (red). The change
point at 2x = 40 might be expected since this token
is key in articulating a certain chain of reasoning.

However, the token at \n \n Now, we can is more
surprising.

In MMLU and HotpotQA examples, we see
regimes of stable outcome distributions that sud-
denly collapse to high certainty in a single answer.
For MMLU-32, this occurs at a perhaps surpris-
ing time, after the word scenario is generated in
as of 2020. In scenario 2, the main character. In
HotpotQA-79442 we see a striking pattern where
the correct answer Peter Noone is at first the domi-
nant response (red area). First it seems to gradually
drift towards the alternate response, Eddie Vedder
(orange), but then at two points it sharply jumps.
The first of these tokens is surprising, in a relatively
inert seeming down, whereas the second change
point is a token in the final answer: Both musicians
have had successful careers in the music indus-
try, but which one also became an actor?\n \n The
answer is Eddie Vedder.

Finally CoinFlip-61 and StoryCloze-274 show
example time series with no significant forking
points. Time series such as these help us bench-
mark our Change Points Detection model, since we
expect there to be no change points in these series

One common theme of our observed change
points is that some are at times we might expect,
key meaningful words which distinguish between
chains of reasoning or themes in text generation.
Other change points are at times we might not
expect, seemingly innocuous words such as Now
or minor tokens such as punctuation and escape
characters \n \n. Tokens such as this may relate
to distinctions between surface and content forms
(Holtzman et al., 2021), vaguely analogous to syn-
tax (surface form) and semantics (content) in nat-
ural language. Following this intuition, $4,500 or
2x = 40 may be examples of ‘content’ token that
clearly distinguishes between multiple underlying
content forms, whereas . . . Elisabeth".split() \n ` `
\n \n Next, we need . . . and \n \n Now, we can are
examples where a ‘surface’ token is distinguishing
between latent content forms.
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(a) GSM8k question 97 ot outcome distribution, drift yt, and change point probability p(τ = t)

Question:
Janet is collecting the results of Herbert Hoover Elementary School's annual
standardized test. 340 out of 500 third-graders passed, along with 40 out of
100 fourth graders. The 400 fifth graders had a pass rate that was twice the
fourth grades' pass rate. What is the school's overall pass rate?

Answer:
Let's think step by step.

(b) Prompt: GSM8k question 97

First, we need to find the total number of students who passed the test. We
know that 340 third graders and 40 fourth graders passed, so that's a total of
340 + 40 = 380 students.\n\nNext, we need to find the pass rate for the fifth
graders. We are told that their pass rate was twice the fourth graders' pass
rate, so we can set up the equation 2x = 40, where x represents the fourth
graders' pass rate. Solving for x, we get x = 20. This means that the fifth
graders' pass rate was 20%.\n\nNow, we can find the total number of fifth
graders who passed by multiplying the total number of fifth graders (400) by
the pass rate (20%). This gives us 400 x 0.20 = 80 fifth graders who passed.
\n\nFinally, we can find the overall pass rate by adding the number of
students who passed from each grade (380 + 80 = 460) and dividing by the
total number of students (500 + 100 + 400 = 1000). This gives us an overall
pass rate of 460/1000 = 46%.\n\nTherefore, the overall pass rate for Herbert
Hoover Elementary School's annual standardized test is 46%.

(c) Change point detection probabili-
ties p(τ = t). Red is high probability,
yellow is low.

First, we need to find the total number of students who passed the test. We
know that 340 third graders and 40 fourth graders passed, so that's a total of
340 + 40 = 380 students.\n\nNext, we need to find the pass rate for the fifth
graders. We are told that their pass rate was twice the fourth graders' pass
rate, so we can set up the equation 2x = 40, where x represents the fourth
graders' pass rate. Solving for x, we get x = 20. This means that the fifth
graders' pass rate was 20%.\n\nNow, we can find the total number of fifth
graders who passed by multiplying the total number of fifth graders (400) by
the pass rate (20%). This gives us 400 x 0.20 = 80 fifth graders who passed.
\n\nFinally, we can find the overall pass rate by adding the number of
students who passed from each grade (380 + 80 = 460) and dividing by the
total number of students (500 + 100 + 400 = 1000). This gives us an overall
pass rate of 460/1000 = 46%.\n\nTherefore, the overall pass rate for Herbert
Hoover Elementary School's annual standardized test is 46%.

(d) Token logit probabilities. Red is
low probability, yellow is high.

Figure 4:
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(a) AQuA question 60927 ot outcome distribution, drift yt, and change point probability p(τ = t)

Question:
With both inlets open, a water tank will be filled with water in 36 minutes.
The first inlet alone would fill the tank in 2 hours. If in every minutes the
second inlet admits 50 cubic meters of water than the first, what is the
capacity of the tank ?

Choices:
A) 9,000
B) 4,500
C) 1,750
D) 1,000
E) 2,000

Answer:
Let's think step by step.

(b) Prompt: AQuA question 60927

\nFirst, we need to find the rate of filling for each inlet. \nWith both inlets
open, the tank is filled in 36 minutes. This means that in 1 minute, both inlets
together fill 1/36 of the tank. \nOn the other hand, the first inlet alone fills the
tank in 2 hours, which is 120 minutes. This means that in 1 minute, the first
inlet fills 1/120 of the tank. \nNow, we know that the second inlet admits 50
cubic meters of water more than the first inlet in every minute. This means
that in 1 minute, the second inlet fills 1/120 + 50 = 1/120 + 1/2 = 61/120 of
the tank. \nSince we know that both inlets together fill 1/36 of the tank in 1
minute, and the second inlet fills 61/120 of the tank in 1 minute, we can set
up the following equation: \n1/36 + 61/120 = 1/x \nWhere x is the capacity of
the tank. \nSolving for x, we get x = 4,500. \nTherefore, the capacity of the
tank is 4,500 cubic meters. \nThe correct answer is B) 4,500.

(c) Change point detection probabili-
ties p(τ = t). Red is high probability,
yellow is low.

\nFirst, we need to find the rate of filling for each inlet. \nWith both inlets
open, the tank is filled in 36 minutes. This means that in 1 minute, both inlets
together fill 1/36 of the tank. \nOn the other hand, the first inlet alone fills the
tank in 2 hours, which is 120 minutes. This means that in 1 minute, the first
inlet fills 1/120 of the tank. \nNow, we know that the second inlet admits 50
cubic meters of water more than the first inlet in every minute. This means
that in 1 minute, the second inlet fills 1/120 + 50 = 1/120 + 1/2 = 61/120 of
the tank. \nSince we know that both inlets together fill 1/36 of the tank in 1
minute, and the second inlet fills 61/120 of the tank in 1 minute, we can set
up the following equation: \n1/36 + 61/120 = 1/x \nWhere x is the capacity of
the tank. \nSolving for x, we get x = 4,500. \nTherefore, the capacity of the
tank is 4,500 cubic meters. \nThe correct answer is B) 4,500.

(d) Token logit probabilities. Red is
low probability, yellow is high.

Figure 5:
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(a) LastLetter question 342 ot outcome distribution, drift yt, and change point probability p(τ = t)

Question:
Take the last letter of each word in "Lino Mariel Aditya Elisabeth" and
concatenate them.

Answer:
Let's think step by step.

(b) Prompt: LastLetter question 342

First, we need to separate the words in the given string. We can do this by
using the split() method, which will create a list of words.\n\n```\nwords =
"Lino Mariel Aditya Elisabeth".split()\n```\n\nNext, we need to access the last
letter of each word. We can do this by using the index -1, which will give us
the last element of the list.\n\n```\nlast_letters = [word[-1] for word in words]
\n```\n\nNow, we have a list of the last letters of each word. We can use the
join() method to concatenate them into a single string.\n\n```\nconcatenated =
"".join(last_letters)\n```\n\nFinally, we can print the result.
\n\n```\nprint(concatenated)\n```\n\nThe output will be:
\n\n```\nnlyhth\n```\n\nSo, the final code will be:\n\n```\nwords = "Lino
Mariel Aditya Elisabeth".split()\nlast_letters = [word[-1] for word in words]
\nconcatenated = "".join(last_letters)\nprint(concatenated)\n```

(c) Change point detection probabili-
ties p(τ = t). Red is high probability,
yellow is low.

First, we need to separate the words in the given string. We can do this by
using the split() method, which will create a list of words.\n\n```\nwords =
"Lino Mariel Aditya Elisabeth".split()\n```\n\nNext, we need to access the last
letter of each word. We can do this by using the index -1, which will give us
the last element of the list.\n\n```\nlast_letters = [word[-1] for word in words]
\n```\n\nNow, we have a list of the last letters of each word. We can use the
join() method to concatenate them into a single string.\n\n```\nconcatenated =
"".join(last_letters)\n```\n\nFinally, we can print the result.
\n\n```\nprint(concatenated)\n```\n\nThe output will be:
\n\n```\nnlyhth\n```\n\nSo, the final code will be:\n\n```\nwords = "Lino
Mariel Aditya Elisabeth".split()\nlast_letters = [word[-1] for word in words]
\nconcatenated = "".join(last_letters)\nprint(concatenated)\n```

(d) Token logit probabilities. Red is
low probability, yellow is high.

Figure 6:
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(a) MMLU question 32 ot outcome distribution, drift yt, and change point probability p(τ = t)

Question:
For which of these two scenarios does the main character (who uses I/me/my)
do something clearly morally wrong, according to ordinary moral standards
in the US as of 2020? Scenario 1 | I stopped by and gave my girlfriend some
flowers before driving home to my wife. Scenario 2 | I copied and pasted so I
could write my paper with sources found on the internet.

Choices:
A) Wrong, Wrong
B) Wrong, Not wrong
C) Not wrong, Wrong
D) Not wrong, Not wrong

Answer:
Let's think step by step.

(b) Prompt: MMLU question 32

In scenario 1, the main character is cheating on their wife by giving flowers
to their girlfriend. This is considered morally wrong according to ordinary
moral standards in the US as of 2020. In scenario 2, the main character is
plagiarizing by copying and pasting sources from the internet without proper
citation. This is also considered morally wrong according to ordinary moral
standards in the US as of 2020. Therefore, the correct answer is A) Wrong,
Wrong.

(c) Change point detection probabili-
ties p(τ = t). Red is high probability,
yellow is low.

In scenario 1, the main character is cheating on their wife by giving flowers
to their girlfriend. This is considered morally wrong according to ordinary
moral standards in the US as of 2020. In scenario 2, the main character is
plagiarizing by copying and pasting sources from the internet without proper
citation. This is also considered morally wrong according to ordinary moral
standards in the US as of 2020. Therefore, the correct answer is A) Wrong,
Wrong.

(d) Token logit probabilities. Red is
low probability, yellow is high.

Figure 7:
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(a) HotpotQA question 79442 ot outcome distribution, drift yt, and change point probability p(τ = t)

Question:
Which famous musician also became an actor, Eddie Vedder or Peter Noone?

Answer:
Let's think step by step.

(b) Prompt: HotpotQA question 79442

First, let's look at the two options: Eddie Vedder and Peter Noone. Eddie
Vedder is best known as the lead vocalist and guitarist of the rock band Pearl
Jam. Peter Noone is best known as the lead singer of the 1960s pop group
Herman's Hermits. Both musicians have had successful careers in the music
industry, but which one also became an actor?\n\nThe answer is Eddie
Vedder. While Peter Noone has made occasional appearances in TV shows
and films, Eddie Vedder has had a more prominent acting career. He has
appeared in several films, including "Singles" and "Into the Wild," and has
also provided voice work for animated films such as "Coraline" and "The
Simpsons Movie." He has also made guest appearances on TV shows like
"Twin Peaks" and "Portlandia."\n\nIn addition to his acting career, Eddie
Vedder has also composed music for films and has won a Golden Globe for
his song "Guaranteed" from the film "Into the Wild." So while both musicians
have dabbled in acting, Eddie Vedder is the one who has had a more
successful and prominent career in the field.

(c) Change point detection probabili-
ties p(τ = t). Red is high probability,
yellow is low.

First, let's look at the two options: Eddie Vedder and Peter Noone. Eddie
Vedder is best known as the lead vocalist and guitarist of the rock band Pearl
Jam. Peter Noone is best known as the lead singer of the 1960s pop group
Herman's Hermits. Both musicians have had successful careers in the music
industry, but which one also became an actor?\n\nThe answer is Eddie
Vedder. While Peter Noone has made occasional appearances in TV shows
and films, Eddie Vedder has had a more prominent acting career. He has
appeared in several films, including "Singles" and "Into the Wild," and has
also provided voice work for animated films such as "Coraline" and "The
Simpsons Movie." He has also made guest appearances on TV shows like
"Twin Peaks" and "Portlandia."\n\nIn addition to his acting career, Eddie
Vedder has also composed music for films and has won a Golden Globe for
his song "Guaranteed" from the film "Into the Wild." So while both musicians
have dabbled in acting, Eddie Vedder is the one who has had a more
successful and prominent career in the field.

(d) Token logit probabilities. Red is
low probability, yellow is high.

Figure 8:

Ou
tc

om
e 

Di
st

rib
ut

io
n 

 o
t

Final Answer
*Other
No
Yes

Dr
ift

  y
t

0 10 20 30 40 50
Token Index

p(
=

t
|x

)

(a) CoinFlip question 61 ot outcome distribution, drift yt, and change point probability p(τ = t)

Question:
Q: A coin is heads up. Mateah flips the coin over. Hallsten flips the coin over.
Is the coin still heads up?

Answer:
Let's think step by step.

(b) Prompt: CoinFlip question 61

Initially, the coin is heads up. When Mateah flips the coin over, it will now be
tails up. Then, when Hallsten flips the coin over, it will be heads up again.
So, the coin is still heads up after both Mateah and Hallsten have flipped it
over.

(c) Change point detection probabili-
ties p(τ = t). Red is high probability,
yellow is low.

Initially, the coin is heads up. When Mateah flips the coin over, it will now be
tails up. Then, when Hallsten flips the coin over, it will be heads up again.
So, the coin is still heads up after both Mateah and Hallsten have flipped it
over.

(d) Token logit probabilities. Red is
low probability, yellow is high.

Figure 9:
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(a) StoryCloze (2 Choice) question 274 ot outcome distribution, drift yt, and change point probability p(τ = t)

Question:
Write a story with the following constraints:
1. The story must be exactly five sentences long.
2. The story must start with the sentence: "Kelsi always wanted a new pool."
3. The story must end with one of the following two sentences:
- "Kelsi had no interest in the pool her parents bought." 
- "Kelsi loved her new pool."
4. The last sentence must be exactly one of these sentences, not a rephrasing.

Answer:
Kelsi always wanted a new pool.

(b) Prompt: StoryCloze (2 Choice)
question 274

She would often daydream about swimming in the crystal clear water and
hosting pool parties with her friends. However, her parents always said they
couldn't afford it. One day, Kelsi's parents surprised her with a brand new
pool in their backyard. Kelsi was overjoyed and spent every day swimming
and playing in her new pool. She even invited her friends over for a pool
party, and they all had a blast. Kelsi loved her new pool.

(c) Change point detection probabili-
ties p(τ = t). Red is high probability,
yellow is low.

She would often daydream about swimming in the crystal clear water and
hosting pool parties with her friends. However, her parents always said they
couldn't afford it. One day, Kelsi's parents surprised her with a brand new
pool in their backyard. Kelsi was overjoyed and spent every day swimming
and playing in her new pool. She even invited her friends over for a pool
party, and they all had a blast. Kelsi loved her new pool.

(d) Token logit probabilities. Red is
low probability, yellow is high.

Figure 10:
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C Forking Tokens Analysis

Our Forking Tokens Analysis (FTA) considers ot,w
rather than ot, as in our Forking Paths Analysis
(FPA). Fig. 11 offers a visual intuition for ot,w and
how individual tokens w can fork, in addition to
token indexes t as in FPA.

For this, we consider whether, for a given token
index t, alternate tokens w being sampled cause
the outcome distribution ot,w to deviate from the
greedy outcome distribution ot,w∗ by at least some
threshold ε. Following this, we define the forking
survival function S(t) as the probability that, across
t, text generation ‘survives’ forking from ot,w∗ to a
very different outcome distribution ot,w:

S(t) = 1−
t∏

t′=1

Ew

[
ot′,w ̸≈ ot′,w∗

]
= 1−

t∏
t′=1

∑
w

p(xt′ = w|x∗<t′) 1
[
d(ot′,w, ot′,w∗) > ε

]
This is loosely analogous to our semantic drift

transformation yt = d(o0, ot) in FPA, where o0
was the base distribution and ot was the alternative
when computing yt. In FTA, instead we have ot,w∗

as the base and ot,w as the alternative.
In Fig. 12 we see that survival rate for this se-

quence goes to 0 over even very high thresholds
– Note that a distance of ε = .7 for L1 distance
d is very high since vectors ot,w∗ and ot+1,w) are
normalized to sum to 1.
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Figure 11: Forking Token outcome distributions ot,w These sankey plots (or parallel sets plots) show ot,w
across w, for 4 different values of t. Each outcome, in this case a final answer (e.g. OLAH or NLYHTH), is colored
differently, and the colored bars on the left and right side of each sankey show how one token’s outcome distribution
ot+1,w can change significantly from the previous time’s outcome distribution ot+1,w∗ . Here, we see ot,w for 4
values of t in LastLetter-342, around the second transition in this examples analysis (see Fig. 6 in App. B). At
this transition, the tokens explicitly state the final answer, and so it’s not surprising that we see a transition here. At
the third time step t, we see that different tokens lead to completely different outcome distributions.

Figure 12: Forking Token Survival Analysis Here we show the forking token survival rate S(t) (Bottom) for dif-
ferent distance thresholds of ε, where (Middle) shows the forking probability

∑
w p(xt′ = w|x∗

<t′) 1
[
d(ot′,w, ot′,w∗

at each t, and (Top) shows baselines of the token-by-token logit probabilities (pink dotted; re-normalized from range
[0, 1] to [0, 5]) and the number |tokenst| of alternate tokens w at step t (brown). Results shown for LastLetter-342
(also see Fig. 6 in App. B).
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