
Under review as a conference paper at ICLR 2022

IMPROVING NEURAL NETWORK GENERALIZATION
VIA PROMOTING WITHIN-LAYER DIVERSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are composed of multiple layers arranged in a hierarchical struc-
ture jointly trained with a gradient-based optimization, where the errors are back-
propagated from the last layer back to the first one. At each optimization step,
neurons at a given layer receive feedback from neurons belonging to higher lay-
ers of the hierarchy. In this paper, we propose to complement this traditional
’between-layer’ feedback with additional ’within-layer’ feedback to encourage
the diversity of the activations within the same layer. To this end, we measure
the pairwise similarity between the outputs of the neurons and use it to model
the layer’s overall diversity. By penalizing similarities and promoting diversity,
we encourage each unit within the layer to learn a distinctive representation and,
thus, to enrich the data representation learned and to increase the total capacity of
the model. We derive novel generalization bounds for neural networks depend-
ing on the within-layer activation diversity and prove that increasing the diversity
of hidden activations reduces the estimation error. In addition to the theoretical
guarantees, we present an extensive empirical study confirming that the proposed
approach enhances the performance of state-of-the-art neural network models and
decreases the generalization gap in multiple tasks.

1 INTRODUCTION

Neural networks are a powerful class of non-linear function approximators that have been success-
fully used to tackle a wide range of problems. They have enabled breakthroughs in many tasks,
such as image classification (Krizhevsky et al., 2012), speech recognition (Hinton et al., 2012a), and
anomaly detection (Golan & El-Yaniv, 2018). Formally, the output of a neural network consisting
of P layers can be defined as follows:

f(x;W) = φP (W P (φP−1(· · ·φ2(W 2φ1(W 1x)))), (1)

where φi(.) is the element-wise activation function, e.g., ReLU or Sigmoid, of the ith layer and
W = {W 1, . . . ,W P } are the corresponding weights of the network. The parameters of f(x;W)
are optimized by minimizing the empirical loss:

L̂(f) =
1

N

N∑
i=1

l
(
f(xi;W), yi

)
, (2)

where l(·) is the loss function, and {xi, yi}Ni=1 are the training samples and their associated ground-
truth labels. The loss is minimized using the gradient decent-based optimization coupled with back-
propagation.

However, neural networks are often over-parameterized, i.e., have more parameters than data. As
a result, they tend to overfit to the training samples and not generalize well on unseen examples
(Goodfellow et al., 2016). While research on double descent (Belkin et al., 2019; Advani et al.,
2020; Nakkiran et al., 2020) shows that over-parameterization does not necessarily lead to overfit-
ting, avoiding overfitting has been extensively studied (Neyshabur et al., 2018; Nagarajan & Kolter,
2019; Poggio et al., 2017; Dziugaite & Roy, 2017; Foret et al., 2020) and various approaches and
strategies have been proposed, such as data augmentation (Goodfellow et al., 2016; Zhang et al.,
2018), regularization (Kukačka et al., 2017; Bietti et al., 2019; Arora et al., 2019), and Dropout
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(Hinton et al., 2012b; Wang et al., 2019; Lee et al., 2019; Li et al., 2016), to close the gap between
the empirical loss and the expected loss.

Diversity of learners is widely known to be important in ensemble learning (Li et al., 2012; Yu et al.,
2011) and, particularly in deep learning context, diversity of information extracted by the network
neurons has been recognized as a viable way to improve generalization (Xie et al., 2017a; 2015b).
In most cases, these efforts have focused on making the set of weights more diverse (Yang et al.;
Malkin & Bilmes, 2009). However, diversity of the activations has not received much attention.
Here, we argue that due to the presence of non-linear activations, diverse weights do not guarantee
diverse feature representation. Thus, we propose applying the diversity on top of feature mapping
instead of the weights.

To the best of our knowledge, only Cogswell et al. (2016) have considered diversity of the activations
directly in the neural network context. They proposed an additional loss term using cross-covariance
of hidden activations, which encourages the neurons to learn diverse or non-redundant representa-
tions. Their proposed approach, known as DeCov, was empirically proven to alleviate overfitting and
to improve the generalization ability of neural network, yet a theoretical analysis to prove this has so
far been lacking. Moreover, modeling diversity as the sum of the pairwise cross-covariance, it can
capture only the pairwise diversity between components and is unable to capture the ”higher-order
diversity”.

In this work, we start by theoretically showing that the within-layer activation diversity boosts the
generalization ability of neural networks and reduces overfitting. Moreover, we propose a novel
approach to encourage activation diversity within a layer. We propose complementing the ’between-
layer’ feedback with additional ’within-layer’ feedback to penalize similarities between neurons on
the same layer. Thus, we encourage each neuron to learn a distinctive representation and to enrich
the data representation learned within each layer. We propose three variants for our approach that
are based on different global diversity definitions.

Our contributions in this paper are as follows:

• Theoretically, we derive novel generalization bounds for neural networks depending on the
within-layer activation diversity. As shown in Section 2, we express the upper-bound of the
estimation error as a function of the diversity factor. Thus, we provide theoretical evidence
that the within-layer activation diversity helps reduce the generalization error.

• Methodologically, we propose a new approach to encourage the ’diversification’ of the
layers’ output feature maps in neural networks. The proposed approach has three variants.
The main intuition is that by promoting the within-layer activation diversity, neurons within
a layer learn distinct patterns and, thus, increase the overall capacity of the model.

• Empirically, we show that the proposed within-layer activation diversification boosts the
performance of neural networks. Experimental results on several tasks show that the pro-
posed approach outperforms competing methods.

2 GENERALIZATION ERROR ANALYSIS

In this section, we derive generalization bounds of neural networks depending on the within-layer
activation diversity. Generalization theory (Zhang et al., 2017; Kawaguchi et al., 2017) focuses on
the relation between the empirical loss defined in equation 2 and the expected risk, for any f in the
hypothesis class F , defined as follows:

L(f) = E(x,y)∼Q[l(f(x), y)], (3)

where Q is the underlying distribution of the dataset. Let f∗ = argminf∈F L(f) be the expected
risk minimizer and f̂ = argminf∈F L̂(f) be the empirical risk minimizer. We are interested in the
estimation error, i.e., L(f∗)−L(f̂), defined as the gap in the loss between both minimizers (Barron,
1994). The estimation error represents how well an algorithm can learn. It usually depends on the
complexity of the hypothesis class and the number of training samples (Barron, 1993; Zhai & Wang,
2018).

In this work, we are interested in the effect of the within-layer activation diversity on the estimation
error. In order to study this effect, given a layer with M units, we assume that with a high proba-
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bility τ , the average pairwise distance between the outputs of the units, 1
2M(M−1)

∑M
i 6=j(φn(x) −

φm(x))2, is lower bounded by d2min for any input x. Intuitively, if two neurons n and m have
similar outputs for many samples, the corresponding distance (φn(x) − φm(x))2 will be small. If
the average distance is small, the lower bound dmin is also small and the units within this layer are
considered redundant and “not diverse”. Otherwise, if the average distance between the different
pairs is large, their corresponding dmin is large and they are considered “diverse”. By studying how
the lower bound dmin affects the generalization of the model, we can theoretically understand how
diversity affects the performance of neural networks. To this end, we derive generalization bounds
for neural networks using dmin.

Several techniques have been used to quantify the estimation error, such as PAC learning (Shalev-
Shwartz & Ben-David, 2014; Valiant, 1984), VC dimension (Sontag, 1998), and the Rademacher
complexity (Shalev-Shwartz & Ben-David, 2014). The Rademacher complexity has been widely
used as it usually leads to a tighter generalization error bound (Sokolic et al., 2016; Neyshabur et al.,
2018; Golowich et al., 2018). The formal definition of the empirical Rademacher complexity is
given as follows:

Definition 1. (Shalev-Shwartz & Ben-David, 2014; Bartlett & Mendelson, 2002) For a given dataset
with N samples D = {xi, yi}Ni=1 generated by a distribution Q and for a model space F : X → R
with a single dimensional output, the empirical Rademacher complexity RN (F) of the set F is
defined as follows:

RN (F) = Eσ
[
sup
f∈F

1

N

N∑
i=1

σif(xi)

]
, (4)

where the Rademacher variables σ = {σ1, · · · , σN} are independent uniform random variables in
{−1, 1}.

In this work, we rely on the Rademacher complexity to study diversity. Our analysis starts with the
following lemma:

Lemma 1. (Bartlett & Mendelson, 2002) With a probability of at least 1− δ

L(f̂)− L(f∗) ≤ 4RN (A) +B

√
2 log(2/δ)

N
(5)

where B ≥ supx,y,f |l(f(x), y)| andRN (A) is the Rademacher complexity of the loss set A.

It upper-bounds the estimation error using the Rademacher complexity defined over the loss set
and supx,y,f |l(f(x), y)|. Our analysis continues by seeking a tighter upper bound of this error and
showing how the within-layer diversity, expressed with dmin, affects the bound.

In this paper, we derive such an upper-bound for a simple network with one hidden layer trained for
a regression task. We show how to extend it for classification, general multi-layer network and for
different losses in the Appendix. The proofs are provided as supplementary material.

2.1 SINGLE HIDDEN-LAYER NETWORK

Here, we consider a simple neural network with one hidden-layer with M neurons and one-
dimensional output trained for a regression task. The full characterization of the setup can be sum-
marized in the following assumptions:

Assumptions 1.

• The input vector x ∈ RD satisfies ||x||2 ≤ C1 and the output scalar y ∈ R satisfies
|y| ≤ C2. The activation function of the hidden layer, φ(·), is a positive Lφ-Lipschitz
continuous function.

• The weight matrix W = [w1,w2, · · · ,wM ] ∈ RD×M connecting the input to the hidden
layer satisfies ||wm||2 ≤ C3. The weight vector v ∈ RM connecting the hidden-layer to
the output neuron satisfies ||v||∞ ≤ C4.

• The hypothesis class is F = {f |f(x) =
∑M
m=1 vmφm(x) =

∑M
m=1 vmφ(w

T
mx)}.
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• Loss function set is A = {l|l(f(x), y) = 1
2 |f(x)− y|

2}.

• With a probability τ , 1
2M(M−1)

∑M
n 6=m(φn(x)− φm(x))2 ≥ d2min.

The main idea of our proof is to find a diversity-dependant bound for both terms in Lemma 1. To
this end, we derive a novel bound for loss hypothesis class A depending on dmin and use it for both
terms. The loss depends on the hypothesis class F . Thus, we start by deriving an upper bound for
this class:
Lemma 2. Under Assumptions 1, with a probability at least τ , we have

sup
x,f∈F

|f(x)| ≤
√
J , (6)

where J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min)

)
and C5 = LφC1C3 + φ(0),

Note that in Lemma 2, we have expressed the upper-bound of supx,f |f(x)| in terms of dmin. Using
this bound, we can now find an upper-bound for supx,f,y |l(f(x), y)| in the following lemma:
Lemma 3. Under Assumptions 1, with a probability at least τ , we have

sup
x,y,f

|l(f(x), y)| ≤ 1

2
(
√
J + C2)

2. (7)

Our main goal is to analyze the estimation error bound of the neural network and to see how its
upper-bound is linked to the diversity, expressed by dmin, of the different neurons. The main result
of the paper is presented in Theorem 1.
Theorem 1. Under Assumptions 1, there exist a constant A, such that with probability at least
τ(1− δ), we have

L(f̂)− L(f∗) ≤
(√
J + C2

) A√
N

+
1

2
(
√
J + C2)

2

√
2 log(2/δ)

N
(8)

where J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min)

)
, and C5 = LφC1C3 + φ(0).

Theorem 1 provides an upper-bound for the generalization gap. We note that it is a decreasing
function of dmin. Thus, this suggests that higher dmin, i.e., more diverse activations, yields a
lower estimation error bound. In other words, by promoting the within-layer diversity, we can
reduce the generalization error of neural networks. It should be noted that in the last item of our
assumptions, we considered a relaxed variant of the following assumption ’H*: There exists a lower
bound to the distance, valid for any input x’. H* is impractical especially if the intermediate layer
has ReLu activations. Therefore, we considered a relaxed variant of this assumption by introducing
the probability τ . This makes the theoretical findings useful in practice.

3 WITHIN-LAYER ACTIVATION DIVERSITY

As shown in the previous section, promoting diversity of activations within a layer can lead to tighter
generalization bound and can theoretically decrease the gap between the empirical and the true risks.
In this section, we propose a novel diversification strategy, where we encourage neurons within a
layer to activate in a mutually different manner, i.e., to capture different patterns. To this end, we
propose an additional within-layer loss which penalizes the neurons that activate similarly. The loss
function L̂(f) defined in equation 2 is augmented as follows:

L̂aug(f) = L̂(f) + λJ i, (9)

where J i expresses the overall similarity of the neurons within the ith layer and λ is the penalty
coefficient for the diversity loss. As in (Cogswell et al., 2016), our proposed diversity loss can be
applied to a single layer or multiple layers in a network. For simplicity, let us focus on a single layer.

Let φin(xj) and φim(xj) be the outputs of the nth and mth neurons in the ith layer for the same
input sample xj . The similarity snm between the the nth and mth neurons can be obtained as the
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average similarity measure of their outputs for N input samples. We use the radial basis function to
express the similarity:

snm =
1

N

N∑
j=1

exp
(
− γ||φin(xj)− φim(xj)||2

)
, (10)

where γ is a hyper-parameter. The similarity snm can be computed over the whole dataset or batch-
wise. Intuitively, if two neurons n andm have similar outputs for many samples, their corresponding
similarity snm will be high. Otherwise, their similarity smn is small and they are considered “di-
verse”. Based on these pairwise similarities, we propose three variants for the overall similarity J i
in equation 9:

• Direct: J i =
∑
n 6=m snm. In this variant, we model the global layer similarity directly

as the sum of the pairwise similarities between the neurons. By minimizing their sum, we
encourage the neurons to learn different representations.

• Det: J i = −det(S), where S is a similarity matrix defined as Snm = snm. This variant is
inspired by the Determinantal Point Process (DPP) (Kulesza & Taskar, 2010; 2012), as the
determinant of S measures the global diversity of the set. Geometrically, det(S) is the vol-
ume of the parallelepiped formed by vectors in the feature space associated with s. Vectors
that result in a larger volume are considered to be more “diverse”. Thus, maximizing det(·)
(minimizing −det(·)) encourages the diversity of the learned features.

• Logdet: J i = −logdet(S)1. This variant has the same motivation as the second one. We
use logdet instead of det as logdet is a convex function over the positive definite matrix
space.

It should be noted here that the first proposed variant, i.e., direct, similar to Decov (Cogswell et al.,
2016), captures only the pairwise diversity between components and is unable to capture the higher-
order “diversity”, whereas the other two variants consider the global similarity and are able to mea-
sure diversity in a more global manner.

Our newly proposed loss function defined in equation 9 has two terms. The first term is the classic
loss function. It computes the loss with respect to the ground-truth. In the back-propagation, this
feedback is back-propagated from the last layer to the first layer of the network. Thus, it can be
considered as a between-layer feedback, whereas the second term is computed within a layer. From
equation 9, we can see that our proposed approach can be interpreted as a regularization scheme.
However, regularization in deep learning is usually applied directly on the parameters, i.e., weights
(Goodfellow et al., 2016; Kukačka et al., 2017), while in our approach, similar to (Cogswell et al.,
2016), an additional term is defined over the output maps of the layers. For a layer with C neurons
and a batch size of N , the additional computational cost is O(C2(N + 1)) for direct variant and
O(C3 + C2N)) for both the determinant and log of the determinant variants.

In connection to the bounds derived in Section 2 and to how diversity is theoretically defined in the
last item in the Assumptions 1, we note that our regularizer relies on the pairwise RBF distance
instead of the standard L2 distance. We note that minimizing the average RBF distance, i.e., our
direct variant, is equivalent to maximizing the averageL2 distance (exp(-x) is a decreasing function).
Moreover, we note that empirically the RBF-based distance is less sensitive to noise (Savas & Dovis,
2019; Haykin, 2010).

4 RELATED WORK

Diversity promoting strategies have been widely used in ensemble learning (Li et al., 2012; Yu
et al., 2011), sampling (Derezinski et al., 2019; Bıyık et al., 2019; Gartrell et al., 2019), energy-
based models (Zhao et al., 2017; Laakom et al., 2021), ranking (Yang et al.; Gan et al., 2020),
pruning by reducing redundancy (Kondo & Yamauchi, 2014; He et al., 2019; Singh et al., 2020;
Lee et al., 2020), and semi-supervised learning (Zbontar et al., 2021). In the deep learning context,
various approaches have used diversity as a direct regularizer on top of the weight parameters. Here,

1This is defined only if S is positive definite. It can be shown that in our case S is positive semi-definite.
Thus, in practice we use a regularized version (S + εI) to ensure the positive definiteness.
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we present a brief overview of these regularizers. Based on the way diversity is defined, we can
group these approaches into two categories. The first group considers the regularizers that are based
on the pairwise dissimilarity of components, i.e., the overall set of weights are diverse if every
pair of weights are dissimilar. Given the weight vectors {wm}Mm=1, Yu et al. (2011) define the
regularizer as

∑
mn(1 − θmn), where θmn represents the cosine similarity between wm and wn.

Bao et al. (2013) proposed an incoherence score defined as− log
(

1
M(M−1)

∑
mn β|θmn|

1
β

)
, where

β is a positive hyperparameter. Xie et al. (2015a; 2016) used mean(θmn) − var(θmn) to regularize
Boltzmann machines. They theoretically analyzed its effect on the generalization error bounds in
(Xie et al., 2015b) and extended it to kernel space in (Xie et al., 2017a). The second group of
regularizers considers a more globalist view of diversity. For example, in (Malkin & Bilmes, 2009;
2008; Xie et al., 2017b), a weight regularization based on the determinant of the weights’ covariance
is proposed based on determinantal point process in (Kulesza & Taskar, 2012; Kwok & Adams,
2012).

Unlike the aforementioned methods which promote diversity on the weight level and similar to our
method, (Cogswell et al., 2016) proposed to enforce dissimilarity on the feature map outputs, i.e., on
the activations. To this end, they proposed an additional loss based on the pairwise covariance of the
activation outputs. Their additional loss, LDecov is defined as the squared sum of the non-diagonal
elements of the global covariance matrixC of the activations: LDecov = 1

2 (||C||
2
F − ||diag(C)||22),

where ||.||F is the Frobenius norm. Their approach, Decov, yielded superior empirical performance;
however, it lacks theoretical proof. In this paper, we closed this gap and we showed theoretically
how employing a diversity strategy on the network activations can indeed decrease the estimation
error bound and improve the generalization of the model. Besides, we proposed variants of our
approach which consider a global view of diversity.

5 EXPERIMENTAL RESULTS

5.1 IMAGE CLASSIFICATION

We start by evaluating our proposed diversity approach on two image datasets: CIFAR10 and CI-
FAR100 (Krizhevsky et al., 2009). We use our approach on three state-of-the-art CNNs: ResNext-
29-08-16: we consider the standard ResNext Model (Xie et al., 2017c) with a 29-layer architecture, a
cardinality of 8, and a width of 16. DenseNet-12: we use DenseNet (Huang et al., 2017) with the 40-
layer architecture and a growth rate of 12. ResNet50: we consider the standard ResNet model (He
et al., 2016) with 50 layers. We compare against the standard networks2 as well as networks trained
with DeCov diversity strategy (Cogswell et al., 2016). For each approach the hyperparameters are
selected based on the validation set. The full experimental setup is presented in the Appendix. We
report the average performance over three random seeds.

Table 1: Classification errors of the different approaches on CIFAR10 and CIFAR100 with three
different models. Results are averaged over three random seeds.

DenseNet-12 ResNext-29-08-16 ResNet50

method CIFAR10 CIFAR100 CIFAR10 CIFAR100 CIFAR10 CIFAR100

Standard 7.07 29.25 6.93 26.73 8.27 34.06
DeCov 7.18 29.17 6.84 26.70 8.03 32.26
Ours(direct) 6.95 29.16 6.74 26.54 7.86 32.15
Ours(det) 7.04 28.78 6.67 26.67 7.73 32.12
Ours(logdet) 6.96 29.15 6.70 26.67 7.91 32.20

Table 1 reports the average top-1 errors of the different approaches with the three basis networks.
We note that, compared to the standard approach, employing a diversity strategy generally boosts
the results for all the three models and that our approach consistency outperforms both competing

2For the standard approach, the only difference is not using an additional diversity loss. The remaining
regularizers, data augmentation, weight decay etc, are all applied as specified per-experiment.
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Table 2: Performance of different models with different diversity strategies on ImageNet dataset
ResNet50 Wide-ResNet50

Method Top-1 Errors Gap Top-1 Errors Gap

Standard 23.84 2.87 22.42 6.33
DeCov 23.62 2.70 22.68 6.34
Ours(direct) 23.75 2.73 22.39 6.22
Ours(det) 23.62 2.77 22.33 6.13
Ours(logdet) 23.64 1.07 22.27 6.03

methods (standard and DeCov) in all the experiments. For example with ResNet50, the three variants
of our proposed approach significantly reduce the test errors over both datasets: 0.36% − 0.54%
improvement on CIFAR10 and 1.86%− 1.94% on CIFAR100.

ImageNet: To further demonstrate the effectiveness of our approach and its ability to reduce the
generalization gap in neural networks, we conduct additional image classification experiments on
the ImageNet-2012 classification dataset (Russakovsky et al., 2015) using the ResNet50 (He et al.,
2016) and Wide-ResNet50 (Zagoruyko & Komodakis, 2016) models. The diversity term is applied
on the last intermediate layer, i.e., the global average pooling layer for both DeCov and our method.
For the hyperparameters, we use λ = 0.001 and γ = 10. The full experimental setup is presented in
the Appendix. Table 2 reports the test errors of the different diversity strategies. To study the effect
of diversity on the generalization gap, we also report the final training errors and the generalization
gap, i.e., training accuracy - test accuracy. As it can be seen, diversity (our approach and DeCov)
reduces the test error of the model and yields a better performance. We note that, in accordance
with our theoretical findings in Section 2, using diversity indeed reduces overfitting and decreases
the empirical generalisation gap of neural networks. In fact, our logdet variant reduces the empirical
generalization gap of the model by 1.8% compared to the standard approach. We note that our
approach has a small additional time cost. For example for ResNet50, our direct, det and logdet
variants take only 0.29%, 0.39%, and 0.49% extra training time, respectively.

Figure 1: Sensitivity analysis of λ and γ on both the model accuracy and its generalization ability
using ResNet50 trained on ImageNet.

Sensitivity analysis: To further investigate the effect of the proposed diversity strategy, we conduct
a sensitivity analysis using ImageNet on the hyperparameters of our methods: γ, which is the RBF
parameter used to measure the pairwise similarity between two units, and λ, which controls the con-
tribution of the global diversity term to the global loss. We analyse the effect of the two parameters
on both the final performance of the models and its generalization ability. The analysis is presented
in Figure 1 and in supplementary material. As it can be seen, promoting the within-layer diversity
consistently reduces overfitting and decreases the generalization gap for most of the hyperparame-
ters values. Moreover, we note that global modeling of diversity, i.e., det and logdet variants, yield
tighter generalization gaps compared to the non-global direct approach. It is worth noting that Fig-
ure 1 shows that there is a trade-off between the generalization gap and the final error. Emphasizing
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Table 3: The compatibility of the proposed approach with Dropout. Test errors and generalization
gap of different combinations on ImageNet dataset.

ResNet50 Wide-ResNet50

Method Top-1 Errors Gap Top-1 Errors Gap

Dropout 23.73 0.14 22.14 3.68
Dropout + direct 23.72 0.11 22.00 1.46
Dropout + det 23.65 0.26 22.16 3.80
Dropout + logdet 23.65 0.30 21.89 3.41

diversity and using a high weight for the diversity term significantly decreases the generalization
gap, but this damages the performance of the model compared to the standard approach. For lower
values of λ, the model is able to significantly outperform the standard approach on both the test error
and the generalization gap.

Connection to Theory: In Section 2, we provided theoretical bounds for the generalization
errors of neural networks, which are inversely proportional to the diversity term, dmin, the
lower bound of 1

2M(M−1)
∑M
i 6=j(φn(x) − φm(x))2. To show that the proposed regularizer in-

deed improves diversity, we track the empirical average of the aforementioned variable, i.e.,
1

2M(M−1)
∑M
n6=m

∑
i(φn(xi) − φm(xi))

2 during the training. The results for both the standard
approach and the logdet variant of our approach are reported in Figure 2. As it can be seen, our
regularizer yields in higher diversity which reduces overfitting and leads to better generalization.

Figure 2: Tracking diversity in the training phase using ResNet50 trained on ImageNet.

Compatibility with Dropout: Dropout (Srivastava et al., 2014) is a popular regularization technique
that, similarly to our approach, is applied on top of the layer output and has been known to improve
generalization and reduce overfitting. Here, we evaluate the compatibility of our approach with
Dropout. We add a Dropout regularizer with 20% rate on top the last intermediate representation
layer of both ResNet50 and Wide-ResNet50. The results are reported in Table 3. We note that adding
a diversity regularizer alongside the Dropout consistently yields lower error rates compared to only
Dropout except for the det variant on Wide-ResNet50. For Wide-ResNet50, the combination of our
logdet variant and Dropout leads to 0.53%, 0.25%, and 0.38% improvement compared to standard
approach, Dropout only, and our logdet variant only, respectively.

MLP-based models: Beyond CNN models, we also evaluate the performance of our diversity strat-
egy on modern attention-free, multi-layer perceptron (MLP) based models for image classification
(Tolstikhin et al., 2021; Liu et al., 2021; Lee-Thorp et al., 2021). Such models are known to exhibit
high overfitting and require regularization. We evaluate how diversity affects the accuracy of such
models on CIFAR10. In particular, we conduct a simple experiment using two models: MLP-Mixer
(Tolstikhin et al., 2021), gMLP (Liu et al., 2021) with four blocks each. The full description of
the experimental setup is presented in the Appendix. The results in Table 4 show that employing a
diversity strategy can indeed improve the performance of these models thanks to its ability to learn
rich and robust representation of the input.

Transfer learning: Beyond standard classification, the proposed approach can be useful, e.g., in
transfer learning, where the main goal is to ’transfer’ previously learned representation to solve new
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tasks. Thus, learning a rich and diverse representation is beneficial and can lead to better transfer-
ability. To demonstrate this, we conduct another experiment, where we use ImageNet-pretrained
ResNet50 models with the different diversity approaches and we finetune them to CIFAR10 and
CIFAR100. The results are reported in Table 5. As it can be seen, employing a diversity strategy
helps in the transfer learning context and leads consistently to lower error rates. For example, the log
variant of our approach leads to 0.94% and 1.27% gains on CIFAR10 and CIFAR100, respectively.

Table 4: Classification errors of modern MLP-
based approaches on CIFAR10. Results are av-
eraged over ten random seeds.

MLP-Mixer gMLP

Standard 23.96 24.69
DeCov 23.68 24.17
Ours(direct) 23.84 23.82
Ours(det) 23.62 24.08
Ours(logdet) 23.85 24.15

Table 5: Transfer learning performance on CI-
FAR10 and CIFAR100 of ResNet50 models
pre-trained on ImageNet.

↪→ CIFAR10 ↪→ CIFAR100

Standard 6.14 22.99
DeCov 5.92 21.91
Ours(direct) 5.89 21.48
Ours(det) 5.51 22.01
Ours(logdet) 5.20 21.72

5.2 LEARNING IN THE PRESENCE OF LABEL NOISE

To further demonstrate the usefulness of promoting diversity, we test the robustness of our approach
in the presence of label noise. In such situations, standard neural network tend to overfit to the
noisy sample and not generalize well to the test set. Enforcing diversity can lead to better and richer
representation attenuating the effect of noise. To show this, we performed additional experiments
with label noise (20% and 40%) on CIFAR10 and CIFAR100 using ResNet50. The results are
reported in Table 6. As it can be seen, in the presence of noise, the gap between the standard
approach and diversity (Decov and ours) increases. For example, our logdet variant boosts the
results by 1.71% and 3.59% on CIFAR10 and CIFAR100 with 40% noise, respectively.

Table 6: Classification errors of ResNet50 using different diversity strategies on CIFAR10 and CI-
FAR100 datasets with different label noise ratios. Results are averaged over three random seeds.

20% label noise 40% label noise

Method CIFAR10 CIFAR100 CIFAR10 CIFAR100

Standard 14.38 45.11 19.40 51.88
DeCov 13.64 43.02 18.11 50.66
Ours(direct) 13.48 41.78 17.57 48.91
Ours(det) 13.77 41.49 17.87 48.50
Ours(logdet) 13.59 41.11 17.69 48.29

6 CONCLUSIONS

In this paper, we proposed a new approach to encourage ‘diversification’ of the layer-wise feature
map outputs in neural networks. The main motivation is that by promoting within-layer activation
diversity, units within the same layer learn to capture mutually distinct patterns. We proposed an ad-
ditional loss term that can be added on top of any fully-connected layer. This term complements the
traditional ‘between-layer’ feedback with an additional ‘within-layer’ feedback encouraging diver-
sity of the activations. We theoretically proved that the proposed approach decreases the estimation
error bound and, thus, improves the generalization ability of neural networks. This analysis was
further supported by extensive experimental results showing that such a strategy can indeed improve
the performance of different state-of-the-art networks across different datasets and different tasks,
i.e., image classification, transfer learning, and label noise. We are confident that these results will
spark further research in diversity-based approaches to improve the generalization ability of neural
networks.
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A APPENDIX

The full characterization of the setup can be summarized in the following assumptions:
Assumptions 2.

• The activation function of the hidden layer, φ(.), is a positive Lφ-Lipschitz continuous
function.

• The input vector x ∈ RD satisfies ||x||2 ≤ C1.

• The output scalar y ∈ R satisfies |y| ≤ C2.

• The weight matrix W = [w1,w2, · · · ,wM ] ∈ RD×M connecting the input to the hidden
layer satisfies ||wm||2 ≤ C3.

• The weight vector v ∈ RM connecting the hidden-layer to the output neuron satisfies
||v||∞ ≤ C4.

• The hypothesis class is F = {f |f(x) =
∑M
m=1 vmφm(x) =

∑M
m=1 vmφ(w

T
mx)}.

• Loss function set is A = {l|l(f(x), y) = 1
2 |f(x)− y|

2}.

• With a probability τ , 1
2M(M−1)

∑M
n 6=m(φn(x)− φm(x))2 ≥ d2min.

We recall the following two lemmas related to the estimation error and the Rademacher complexity:
Lemma 4. (Bartlett & Mendelson, 2002) For F ∈ RX , assume that g : R −→ R is a Lg-Lipschitz
continuous function and A = {g ◦ f : f ∈ F}. Then we have

RN (A) ≤ LgRN (F). (11)

Lemma 5. (Xie et al., 2015b) Under Assumptions 1, the Rademacher complexity RN (F) of the
hypothesis class F = {f |f(x) =

∑M
m=1 vmφm(x) =

∑M
m=1 vmφ(w

T
mx)} can be upper-bounded

as follows:

RN (F) ≤ 2LφC134M√
N

+
C4|φ(0)|M√

N
, (12)

where C134 = C1C3C4 and φ(0) is the output of the activation function at the origin.

A.1 PROOF OF LEMMA 2

Lemma 2 Under Assumptions 1, with a probability at least τ , we have

sup
x,f
|f(x)| ≤

√
J , (13)

where J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min)

)
and C5 = LφC1C3 + φ(0).

Proof.

f2(x) =

(
M∑
m=1

vmφm(x)

)2

≤

(
M∑
m=1

||v||∞φm(x)

)2

= ||v||2∞

(
M∑
m=1

φm(x)

)2

≤ C2
4

(
M∑
m=1

φm(x)

)2

= C2
4

(∑
m,n

φm(x)φn(x)

)
= C2

4

∑
m

φm(x)2 +
∑
m 6=n

φn(x)φm(x)

 . (14)

We have supw,x φm(x) ≤ sup(Lφ|wTx| + φ(0)) because φ is Lφ-Lipschitz. Thus, ||φ||∞ ≤
LφC1C3 + φ(0) = C5. For the first term in equation 14, we have

∑
m φm(x)2 <

M(LφC1C3 + φ(0))2 = MC2
5 . The second term, using the identity φm(x)φn(x) =

1
2

(
φm(x)2 + φn(x)

2 − (φm(x)− φn(x))2
)
, can be rewritten as

∑
m 6=n

φm(x)φn(x) =
1

2

∑
m 6=n

φm(x)2 + φn(x)
2 −

(
φm(x)− φn(x)

)2 . (15)
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In addition, we have with a probability τ , 1
2

∑
m 6=n(φm(x)− φn(x))2 ≥M(M − 1)d2min for m 6= n. Thus,

we have with a probability at least τ :∑
m 6=n

φm(x)φn(x) ≤
1

2

∑
m 6=n

(2C2
5 )−M(M − 1)d2min =M(M − 1)(C2

5 − d2min). (16)

By putting everything back to equation 14, we have with a probability τ ,

f2(x) ≤ C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min)

)
= J . (17)

Thus, with a probability τ ,

sup
x,f
|f(x)| ≤

√
sup
x,f

f(x)2 ≤
√
J . (18)

A.2 PROOF OF LEMMA 3

Lemma 3 Under Assumptions 1, with a probability at least τ , we have

sup
x,y,f

|l(f(x), y)| ≤ 1

2
(
√
J + C2)

2 (19)

Proof. We have supx,y,f |f(x) − y| ≤ supx,y,f (|f(x)| + |y|) =
√
J + C2. Thus

supx,y,f |l(f(x), y)| ≤ 1
2 (
√
J + C2)

2.

A.3 PROOF OF THEOREM 1

Theorem 1 Under Assumptions 1, there exist a constant A, such that with probability at least
τ(1− δ), we have

L(f̂)− L(f∗) ≤
(√
J + C2

) A√
N

+
1

2
(
√
J + C2)

2

√
2 log(2/δ)

N
(20)

where J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min)

)
, and C5 = LφC1C3 + φ(0).

Proof. Given that l(·) is K-Lipschitz with a constant K = supx,y,f |f(x) − y| ≤
√
J + C2, and

using Lemma 4, we can show that RN (A) ≤ KRN (F) ≤ (
√
J + C2)RN (F). For RN (F), we

use the bound found in Lemma 5. Using Lemmas 1 and 3, we have

L(f̂) − L(f∗) ≤ 4
(√
J + C2

)(
2LφC134 + C4|φ(0)|

) M√
N

+
1

2
(
√
J + C2)

2

√
2 log(2/δ)

N
(21)

where C134 = C1C3C4, J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min)

)
, and C5 = LφC1C3 + φ(0).

Thus, setting A = 4
(
2LφC134 + C4|φ(0)|

)
M completes the proof.

B BINARY CLASSIFICATION

We now extend our analysis of the effect of the within-layer diversity on the generalization error in
the case of a binary classification task, i.e., y ∈ {−1, 1}. The extensions of Theorem 1 in the case
of a hinge loss and a logistic loss are presented in Theorems 2 and 3, respectively.
Theorem 2. Using the hinge loss, there exist a constant A, such that with probability at least τ(1−
δ), we have

L(f̂)− L(f∗) ≤ A/
√
N + (1 +

√
J )
√

2 log(2/δ)

N
(22)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
and C5 = LφC1C3 + φ(0).
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Theorem 3. Using the logistic loss l(f(x), y) = log(1 + e−yf(x)), there exist a constant A such
that, with probability at least τ(1− δ), we have

L(f̂)− L(f∗) ≤ A

(1 + e
√
−J )
√
N

+ log(1 + e
√
J )

√
2 log(2/δ)

N
(23)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
and C5 = LφC1C3 + φ(0).

As we can see, also for the binary classification task, the error bounds of the estimation error for the
hinge and logistic losses are decreasing with respect to dmin. Thus, employing a diversity strategy
can improve the generalization also for the binary classification task.

B.1 PROOFS OF THEOREMS 2 AND 3

Similar to the proofs of Lemmas 7 and 8 in Xie et al. (2015b), we can show the following two
lemmas:
Lemma 6. Using the hinge loss, we have with probability at least τ(1− δ)

L(f̂) − L(f∗) ≤ 4
(
2LφC134 + C4|φ(0)|

) M√
N

+ (1 +
√
J )
√

2 log(2/δ)

N
(24)

where C134 = C1C3C4, J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
, and C5 = LφC1C3 + φ(0).

Lemma 7. Using the logistic loss l(f(x), y) = log(1 + e−yf(x)), we have with probability at least
τ(1− δ)

L(f̂) − L(f∗) ≤ 4

1 + e
√
−J

(
2LφC134 + C4|φ(0)|

) M√
N

+ log(1 + e
√
J )

√
2 log(2/δ)

N
(25)

where C134 = C1C3C4, J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
, and C5 = LφC1C3 + φ(0).

Taking A = 4
(
2LφC134 + C4|φ(0)|

)
M in Lemma 6 and Lemma 7 completes the proofs.

C MULTI-LAYER NETWORKS

Here, we extend our result for networks with P (> 1) hidden layers. We assume that the pairwise
distances between the activations within layer p are lower-bounded by d(p)min with a probability τ (p).
In this case, the hypothesis class can be defined recursively. In addition, we replace the fourth
assumption in Assumptions 1 with: ||W (p)||∞ ≤ C

(p)
3 for every W (p), i.e., the weight matrix of

the p-th layer. In this case, the main theorem is extended as follows:

Theorem 4. There exist a constant A such that, with probability of at least
∏P−1
p=0 (τ

(p))(1− δ), we
have

L(f̂)− L(f∗) ≤ (
√
J P + C2)

A√
N

+
1

2

(√
J P + C2

)2√2 log(2/δ)

N
(26)

where J P is defined recursively using the following identities: J 0 = C0
3C1 and J (p) =

M (p)Cp2
(
Mp2(LφJ p−1 + φ(0))2 −M(M − 1)d

(p)
min

2
)
)
, for p = 1, . . . , P .

In Theorem 4, we see that J P is decreasing with respect to d(p)min. Thus, we see that maximizing the
within-layer diversity, we can reduce the estimation error of a multi-layer neural network.

C.1 PROOF OF THEOREM 4

Theorem 4 There exist a constant A such that, with probability of at least
∏P−1
p=0 (τ

(p))(1− δ), we
have

L(f̂)− L(f∗) ≤ (
√
J P + C2)

A√
N

+
1

2

(√
J P + C2

)2√2 log(2/δ)

N
, (27)
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where J P is defined recursively using the following identities: J 0 = C0
3C1 and J (p) =

M (p)Cp2
(
Mp2(LφJ p−1 + φ(0))2 −M(M − 1)d

(p)
min

2
)
)
, for p = 1, . . . , P .

Proof. Lemma 5 in Xie et al. (2015b) provides an upper-bound for the hypothesis class. We denote
by v(p) the outputs of the pth hidden layer before applying the activation function:

v0 = [w0T

1 x, ....,w
0T

M0x] (28)

v(p) = [

Mp−1∑
j=1

w
(p)
j,1φ(v

p−1
j ), ....,

Mp−1∑
j=1

w
(p)

j,M(p)φ(v
p−1
j )] (29)

v(p) = [w
(p)
1

T
φ(p), ...,w

(p)

M(p)

T
φ(p)], (30)

where φ(p) = [φ(vp−11 ), · · · , φ(vp−1Mp−1)]. We have

||v(p)||22 =

M(p)∑
m=1

(w(p)
m

T
φ(p))2 (31)

and w(p)
m

T
φ(p) ≤ C(p)

3

∑
n φ

(p)
n . Thus,

||v(p)||22 ≤
M(p)∑
m=1

(C
(p)
3

∑
n

φ(p)n )2 =M (p)Cp3
2
(
∑
n

φ(p)n )2 =M (p)Cp3
2
∑
mn

φ(p)m φ(p)n . (32)

We use the same decomposition trick of φ(p)m φ
(p)
n as in the proof of Lemma 2. We need to bound

supx φ
(p):

sup
x
φ(p) < sup(Lφ|vp−1|+ φ(0)) < Lφ||vp−1||22 + φ(0). (33)

Thus, we have

||v(p)||22 ≤M (p)Cp2
(
M2(Lφ||vp−1||22 + φ(0))2 −M(M − 1)d2min)

)
= J P . (34)

We found a recursive bound for ||v(p)||22, we note that for p = 0, we have ||v0||22 ≤ ||W 0||∞C1 ≤
C0

3C1 = J 0. Thus,
sup

x,fP∈FP
|f(x)| = sup

x,fP∈FP
|vP | ≤

√
J P . (35)

By replacing the variables in Lemma 1, we have

L(f̂)−L(f∗) ≤ 4(
√
J P+C2)

(
(2Lφ)

PC1C
0
3√

N

P−1∏
p=0

√
M (p)C

(p)
3 +

|φ(0)|√
N

P−1∑
p=0

(2Lφ)
P−1−p

P−1∏
j=p

√
M jCj3

)

+
1

2

(√
J P + C2

)2√2 log(2/δ)

N

Taking A = 4 ∗ ((2Lφ)PC1C
0
3

∏P−1
p=0

√
M (p)C

(p)
3 + |φ(0)|

∑P−1
p=0 (2Lφ)

P−1−p∏P−1
j=p

√
M jCj3)

completes the proof.

D MULTIPLE OUTPUTS

Finally, we consider the case of a neural network with a multi-dimensional output, i.e., y ∈ RD. In
this case, we can extend Theorem 1 with the following two theorems:
Theorem 5. For a multivariate regression trained with the squared error, there exist a constant A
such that, with probability at least τ(1− δ), we have

L(f̂)− L(f∗) ≤ (
√
J + C2)

A√
N

+
D

2
(
√
J + C2)

2

√
2 log(2/δ)

N
(36)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
and C5 = LφC1C3 + φ(0).
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Theorem 6. For a multi-class classification task using the cross-entropy loss, there exist a constant
A such that, with probability at least τ(1− δ), we have

L(f̂)− L(f∗) ≤ A

(D − 1 + e−2
√
J )
√
N

+ log
(
1 + (D − 1)e2

√
J
)√2 log(2/δ)

N
(37)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
and C5 = LφC1C3 + φ(0).

Theorems 5 and 6 extend our result for the multi-dimensional regression and classification tasks,
respectively. Both bounds are inversely proportional to the diversity factor dmin. We note that for
the classification task, the upper-bound is exponentially decreasing with respect to dmin. This shows
that increasing diversity within the layer yields a tighter generalization gap and, thus, theoretically
guarantees a stronger generalization performance.

D.1 PROOF OF THEOREM 5

Proof. The squared loss 1
2 ||f(x) − y||

2
2 can be decomposed into D terms 1

2 (f(x)k − yk)
2. Using

Theorem 1, we can derive the bound for each term and thus, we have:

L(f̂)−L(f∗) ≤ 4D(
√
J +C2)

(
2LφC134+C4|φ(0)|

) M√
N

+
D

2
(
√
J +C2)

2

√
2 log(2/δ)

N
, (38)

where C134 = C1C3C4, J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min)

)
, and C5 = LφC1C3 + φ(0).

Taking A = 4D
(
2LφC134 + C4|φ(0)|

)
M completes the proof.

D.2 PROOF OF THEOREM 6

Proof. Using Lemma 9 in Xie et al. (2015b), we have supf,x,y l = log
(
1+ (D− 1)e2

√
J ) and l is

D−1
D−1+e−2

√
J -Lipschitz. Thus, using the decomposition property of the Rademacher complexity, we

have
Rn(A) ≤

4D(D − 1)

D − 1 + e−2
√
J

(2LφC134 + C4|φ(0)|)
M√
N
. (39)

Taking A = 4D(D − 1) (2LφC134 + C4|φ(0)|)M completes the proof.

E EXPERIMENTAL RESULTS

Here, we report the experimental setup of the different experiments done in the paper along with a
more detailed analysis of the results.

E.1 CIFAR10 & CIFAR100

We start by evaluating our proposed diversity approach on two image datasets: CIFAR10 and CI-
FAR100 (Krizhevsky et al., 2009). They contain 60,000 (50,000 train/10,000 test) 32 × 32 images
grouped into 10 and 100 distinct categories, respectively. We split the original training set (50,000)
into two sets: we use the first 40,000 images as the main training set and the last 10,000 as a vali-
dation set for hyperparameters optimization. We use our approach on three state-of-the-art CNNs:
ResNext-29-08-16: we consider the standard ResNext Model (Xie et al., 2017c) with a 29-layer
architecture, a cardinality of 8, and a width of 16. DenseNet-12: we use DenseNet (Huang et al.,
2017) with the 40-layer architecture and a growth rate of 12. ResNet50: we consider the standard
ResNet model (He et al., 2016) with 50 layers. We compare against the standard networks as well
networks trained with DeCov diversity strategy (Cogswell et al., 2016).

All the models are trained using stochastic gradient descent (SGD) with a momentum of 0.9,
weight decay of 0.0001, and a batch size of 128 for 200 epochs. The initial learning rate is
set to 0.1 and is then decreased by a factor of 5 after 60, 120, and 160 epochs, respectively.
We also adopt a standard data augmentation scheme that is widely used for these two datasets
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(He et al., 2016; Huang et al., 2017). For all models, the additional diversity term is applied
on top the last intermediate layer. For the hyperparameters: The loss weight is chosen from
{0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} for both our approach and Decov and γ in
the radial basis function is chosen from {0.01, 0.1.1, 10, 50, 100}. For each approach, the model
with the best validation performance is used in the test phase. We report the average performance
over three random seeds.

E.2 IMAGENET AND SENSITIVITY ANALYSIS

To further demonstrate the effectiveness of our approach and its ability to reduce the generalization
gap in neural networks, we conduct additional image classification experiments on the ImageNet-
2012 classification dataset (Russakovsky et al., 2015) using the ResNet50 model (He et al., 2016).
The diversity term is applied on the last intermediate layer, i.e., the global average pooling layer for
both DeCov and our method. For the hyperparameters, we use γ = 10 and λ = 0.0001 for all the
different approaches. We use the standard augmentation practice for this dataset as in (Zhang et al.,
2018; Huang et al., 2017; Cogswell et al., 2016). All the models are trained with a batch size of 256
for 100 epoch using SGD with Nesterov Momentum of 0.9. The learning rate is initially set to 0.1
and decreases at epochs 30, 60, 90 by a factor of 10.

To further investigate the effect of the proposed diversity strategy, we conduct a sensitivity analysis
using ImageNet on the hyperparameters of our methods: γ, which is the RBF parameter used to
measure the pairwise similarity between two units, and λ, which controls the contribution of the
global diversity term to the global loss. We analyse the effect of the two parameters on both the final
performance of the models and its generalization ability. The analysis is presented in Figure 1.

In Table 7, we report the same results of the main figure of the paper in a tabular form along with
extra results. As it can be seen, promoting the within-layer diversity consistently reduces overfitting
and decreases the generalization gap for most of the hyperparameters values. Moreover, we note that
global modeling of diversity, i.e., det and logdet variants, yield tighter generalization gaps between
the train and test errors compared to the non-global direct approach. In fact, while direct variant
decreases the generalization gap compared to the standard approach, it decreases it only by 0.5%
for most hyperparameter values, whereas, for the more global approaches, i.e., det and logdet, the
generalization gap is less than 1.1% in multiple cases compared to the gaps 2.87% and 2.50%
achieved by the standard approach and the direct variant, respectively.

For the direct variant (the curves in blue), we note that the performance of the method is not sensi-
tive to the hyperparameters, and the method achieves its best performance for low values of λ and γ.
For the det variant (the curves in orange), we note that it significantly improves the generalization
ability of the model. However, there is a trade-off between the generalization gap and the final error.
Emphasizing diversity and using a high weight for the diversity term significantly decreases the gen-
eralization gap, but this damages the performance of the model compared to the standard approach.
For example, with λ = 0.01 and γ = 10, the generalization gap of the model is 0.9% compared
to 2.87% of the standard. However, the test error for this model gets up to 24.42% compared to
23.87% for the standard. For lower values of λ, the model is able to significantly outperform the
standard approach on both the test error and the generalization gap. For the logdet variant (green
curves), we note that, in terms of generalization gap, the approach consistently outperforms the
standard approach. Using a small value for λ, the model yields lower error rates than the standard
approach. For high values of λ, the error rates become similar to the standard approach but with a
lower generalization gap. This variant is not sensitive to the hyperparameter γ.

E.3 ALL-MLP MODELS

Here, we evaluated the performance of our diversity strategy on modern attention-free, multi-layer
perceptron (MLP) based models for image classification on CIFAR10. We conduct a simple exper-
iment using two models: MLP-Mixer (Tolstikhin et al., 2021), gMLP (Liu et al., 2021) with four
blocks each. For diversity strategies, i.e., ours and Decov, similar to our other experiments, the
additional loss has been added on top of the last intermediate layer. The input image are resized to
72 × 72. We used a patch size of 8 × 8 and an embedding dimension of 256. all models has been
trained for 100 epochs using Adam with learning rate of 0.002, weight decay with rate 0.0001, batch
size 256. Standard data augmentation, i.e., Random horizontal Flip and random zoom with factor
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Table 7: Performance of ResNet50 with different diversity strategies on ImageNet dataset with
different hyper-paramters

Method Top-1 Test Errors Generalization Gap
Standard 23.84 2.87
Ours direct(γ = 10, λ = 0.0001) 23.63 2.55
Ours direct(γ = 10, λ = 0.001) 23.75 2.73
Ours direct(γ = 10, λ = 0.005) 23.83 2.88
Ours direct(γ = 10, λ = 0.01) 23.58 2.70
Ours det(γ = 10, λ = 0.0001) 23.48 2.78
Ours det(γ = 10, λ = 0.001) 23.58 2.77
Ours det(γ = 10, λ = 0.005) 23.67 2.70
Ours det(γ = 10, λ = 0.01) 24.47 0.92
Ours logdet(γ = 10, λ = 0.0001) 23.52 2.58
Ours logdet(γ = 10, λ = 0.001) 23.64 1.07
Ours logdet(γ = 10, λ = 0.005) 23.88 2.70
Ours logdet(γ = 10, λ = 0.01) 23.79 2.64
Ours direct(γ = 1, λ = 0.001) 23.66 2.86
Ours direct(γ = 50, λ = 0.001) 23.85 2.67
Ours det(γ = 1, λ = 0.01) 23.77 2.88
Ours det(γ = 50, λ = 0.01) 23.97 2.97
Ours logdet(γ = 1, λ = 0.001) 23.65 2.70
Ours logdet(γ = 50, λ = 0.001) 23.70 2.65
Ours logdet(γ = 50, λ = 0.005) 23.57 2.78

20% has been used. We use 10% of the training data for validation. We also reduce the learning rate
by a factor of 2 if the validation loss does not improve for 5 epochs and use early stopping when the
validation loss does not improve for 10 epochs. All experiments has been repeated over 10 random
seeds and the average results are reported.

E.4 TRANSFER LEARNING

For the transfer learning experiment, we use ResNet50 models pre-trained on ImageNet and we
finetune them on CIFAR10 and CIFAR100. Diversity strategy has been applied in both phases.
The models are trained for 20 epoch using Adam optimizer with learning rate equal 0.0001 and
standard data augmentation is applied. The original images of CIFAR are preprocessed and resized
to (96,96,3) in order to be adequate for ResNet50 trained on ImageNet. As it can be seen, employing
a diversity strategy helps in the transfer learning context and leads consistently to lower error rates
on both datasets. For example, the log variant of our approach leads to 0.94% and 1.27% gains on
CIFAR10 and CIFAR100, respectively.

E.5 LEARNING IN THE PRESENCE OF LABEL NOISE

To further demonstrate the usefulness of promoting diversity, we test the robustness of our approach
in the presence of label noise. In such situations, standard neural network tend to overfit to the noisy
sample and not generalize well to the test set. Enforcing diversity can lead to better and richer rep-
resentation attenuating the effect of noise. To show this, we performed additional experiments with
label noise (20% and 40%) on CIFAR10 and CIFAR100 using ResNet50. We use the same training
protocol used for the original CIFAR10 and CIFAR100: all models are trained using stochastic gra-
dient descent (SGD) with a momentum of 0.9, weight decay of 0.0001, and a batch size of 128 for
200 epochs. The initial learning rate is set to 0.1 and is then decreased by a factor of 5 after 60, 120,
and 160 epochs, respectively. We also adopt a standard data augmentation scheme that is widely
used for these two datasets (He et al., 2016; Huang et al., 2017). For all models, the additional diver-
sity term is applied on top the last intermediate layer. For the hyperparameters: The loss weight is
chosen from {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} for both our approach and De-

20



Under review as a conference paper at ICLR 2022

cov and γ in the radial basis function is chosen from {0.01, 0.1.1, 10, 50, 100}. For each approach,
the model with the best validation performance is used in the test phase. The average errors over
three random seed are reported.

E.6 WEIGHT VS FEATURE DIVERSITY

Weight diversity is an active field of research which applies a diversity regularizer on top of the
weights instead of the representation. Here, we compare the performance of two weight diversity
approaches, i.e., (Yu et al., 2011; Xie et al., 2015b), against activation diversity approaches. Results
are reported in 8. As it can be seen, activation-based diversity leads to superior results compared the
weight-based.

Table 8: Performance of ResNet50 with different diversity strategies on ImageNet dataset
Method Top-1 Errors

Weight diversity (Yu et al., 2011) 25.08
(Xie et al., 2015b) 25.24
DeCov 23.62

Activation diversity Ours(direct) 23.75
Ours(det) 23.62
Ours(logdet) 23.64
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