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Abstract

This paper considers the problem of learning from multiple sets of inaccurate
labels, which can be easily obtained from low-cost annotators, such as rule-based
annotators. Previous works typically concentrate on aggregating information from
all the annotators, overlooking the significance of data refinement. This paper
presents a collaborative refining approach for learning from inaccurate labels. To
refine the data, we introduce the annotator agreement as an instrument, which
refers to whether multiple annotators agree or disagree on the labels for a given
sample. For samples where some annotators disagree, a comparative strategy
is proposed to filter noise. Through theoretical analysis, the correlations among
multiple sets of labels, the respective models trained on them, and the true labels
are uncovered, so that relatively reliable labels can be identified. For samples
where all annotators agree, an aggregating strategy is designed to mitigate potential
noise. Guided by theoretical bounds on loss values, a sample selection criterion
is introduced and improved to be more robust against potentially problematic
values. Through these two modules, all the samples are refined during training,
and these refined samples are used to train a lightweight model simultaneously.
Extensive experiments are conducted on benchmark and real-world datasets, which
demonstrate the superiority of the proposed framework.

1 Introduction

Deep learning has recently demonstrated remarkable achievements across a wide array of appli-
cations [5, 6, 9, 15, 33]. The cornerstone of its success rests on the availability of high-quality
datasets. However, in industrial environments, obtaining accurate labels can often be costly and
time-consuming. For example, in financial scenarios, it is challenging for human annotators to
accurately assign labels to predict whether a user will default. Currently, many banks and companies
utilize rules as low-cost autonomous annotators, especially in the early stages of some financial
products. In healthcare scenarios, many rule-based algorithms are also employed to identify patients
at risk of developing certain conditions, allowing for early intervention and potentially preventing
more severe complications. Although these annotators can provide labels in a time- and cost-efficient
manner [7, 44, 45], a single low-cost annotator usually produces biased or inaccurate labels in
practice [8, 13, 18, 24, 29, 40].

On the other hand, multiple annotators can provide diverse perspectives with different insights and
knowledge to mitigate errors and biases of individual annotators [30, 45]. Learning from multiple
sets of inaccurate labels provided by multiple annotators has garnered widespread attention and
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relative works can be divided into two main categories. One stream of research focuses on advanced
aggregation algorithms that infer the true labels before or during the training stage. The simplest
aggregation algorithm is Majority Voting [38], which treats the labels equally by voting, while
the approach known as Weighted Majority Voting [20] uses a weight vector to model annotators’
expertise. Enhanced Bayesian Classifier Combination (EBCC) [22] tends to infer truth by modeling
the correlation between annotators.

Others focus on training models under the supervision of all annotations. By viewing the ground-truth
labels as latent variables, some methods that consider the relationships among multiple sets of labels
have been proposed to infer true labels based on the Expectation-Maximization (EM) algorithm [1, 2,
34, 43]. Despite the effectiveness of these EM algorithms, they suffer from computational complexity
during the training phase. In recent studies, an increasing number of studies focus on end-to-end
learning. These end-to-end algorithms [3, 7, 10, 21, 27, 45, 30] can directly learn from multiple sets
of noisy labels and map these noisy labels to part of the model (e.g., transition matrix) , encouraging
the model to learn knowledge from all noisy labels collectively [45].

Previous works typically concentrate on aggregating information from all the annotators through
label aggregation techniques (e.g., voting) or using labels from all annotators in an end-to-end manner
(e.g., mapping multiple sets of noisy labels to part of the model). Most related works often neglect
the significance of data refinement. Although some methods have recognized the need for data
refinement [21, 31, 42], they merely adopt the small-loss criterion [11] to filter noisy samples, and
refinement is not their core contribution or their key point. On the contrary, we contend that refining
a relatively clean dataset during training is the central point, which can alleviate the demands placed
on model design and enhance the model’s performance. To refine the dataset, an essential step is to
assess the reliability of labels from multiple sets. We consider annotator agreement as an instrument,
which refers to whether multiple annotators agree or disagree on the labels for a given sample.
In this paper, we leverage the annotator agreement information and propose a novel framework
named Collaborative Refining for Learning from inaccurate labels (CRL). For samples where some
annotators disagree, labels are ambiguous, and learning from all sets of labels can degrade the model’s
performance, a comparative strategy is proposed to mitigate noise. For samples where all annotators
agree, an aggregating strategy is designed to filter out potential noise. The main contributions of this
work can be described as follows:

• For samples where some annotators disagree, we conduct theoretical analysis to uncover the
correlations among multiple sets of labels, the respective models trained on them, and the
true labels. Guided by theoretical insights, a method called Label Refining for samples with
Disagreements (LRD) is proposed to identify the most reliable label by comparing loss values.

• For samples where all annotators agree, we analyze the theoretical bounds on loss values. Based
on these bounds, a method called Robust Union Selection (RUS) is proposed, in which we
propose a loss-based selection criterion to select trustworthy samples and improve it to be more
robust against potentially problematic values.

• Comprehensive experiments are conducted on benchmark and real-world datasets, which demon-
strate the effectiveness of our framework. Moreover, our framework is designed to be indepen-
dent of any specific model architecture, making it compatible with most existing methods, which
is confirmed by further experiments.

2 Preliminaries

This paper concentrates on binary classification problems with multiple sets of inaccurate labels. Let
D = {xi, ỹi}Ni=1 be a dataset consisting of N instances labeled by R annotators. xi ∈ X ⊆ Rd is
the feature vector of the i-th instance and ỹi = {ỹri }Rr=1 is a R-dimensional vector representing the
labels provided by R annotators, ỹri ∈ {0, 1}. Denote y∗i as the unobserved ground-truth label for the
i-th instance. y∗i is considered as a latent variable decided by a latent function f∗, i.e., f∗(xi) = y∗i .
fΘ denotes a classifier parameterized by Θ, and fΘ(xi) = p̂(xi) denotes the predicted probability
after the activation function, i.e., sigmoid. The binary cross-entropy loss function of the pair (xi, ỹ

r
i )

and model fΘ is
ℓ(fΘ(xi), ỹ

r
i ) = ỹri log(fΘ(xi)) + (1− ỹri ) log(1− fΘ(xi)). (1)

The goal of learning from multiple annotators is to get the optimal classifier fΘ∗ that satisfies
fΘ∗(xi) = f∗(xi).
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For the model architecture, several shared embedding layers are used to jointly extract information,
followed by R + 1 submodels {fΘr

}R+1
r=1 : R submodels {fΘr

}Rr=1 are responsible for making
predictions based on R sets of labels, and the (R + 1)-th submodel fΘR+1

generates the final
prediction. These R+ 1 submodels are simultaneously trained, with {fΘr}Rr=1 learning from R sets
of labels while fΘR+1

concurrently training from the refined data.

3 Method

In this paper, we present a novel framework called collaborative refining for learning from inaccurate
labels (CRL). Within the framework, annotator agreement is utilized to partition the samples into two
categories, i.e., samples where annotators disagree or agree. This concept facilitates the development
of targeted strategies for each category.

3.1 Collaborative Refining Framework

Based on the annotator agreement, the whole dataset can be partitioned into two parts: Dd which
contains samples where some annotators disagree, i.e., ∃r0, r1 ⊆ {1, ..., R}, ỹr0i ̸= ỹr1i ; Da which
contains samples where all annotators agree, i.e., ∀r0, r1 ⊆ {1, ..., R}, ỹr0i = ỹr1i . As mentioned in
the introduction, for Dd, the labels are ambiguous, and learning from all sets of labels may degrade
the model’s performance. To this end, we propose Label Refining for samples with Disagreements
(LRD) to select relatively reliable labels. For Da, where labels are more reliable but not immune to
errors. To address this, we present Robust Union Selection (RUS) to select trustworthy samples.

In the framework, through LRD and RUS, R submodels {fΘr
}Rr=1 collaboratively refine unreliable

dataset Dd and Da into relatively reliable dataset D∗
d and D∗

a. D∗
d and D∗

a are utilized to train the
final submodel fΘR+1

with binary cross-entropy loss function as shown in Eq. (1). For prediction,
fΘR+1

is utilized. Note that RUS and LRD operate concurrently and share an identical set of R+ 1
submodels. Our framework improves model performance exclusively by refining information, which
is independent of any particular backbone, allowing for seamless substitution and flexibility in the
model structure. The complete CRL framework is shown in Algorithm 1.

3.2 Label Refining for Samples with Disagreements

When some annotators disagree, learning from all sets of labels may degrade the model’s performance.
A rational idea is to figure out which label is more reliable. Through theoretical analysis, we uncover
the relationships among multiple sets of labels, the ground-truth label, and the submodels’ predictions
for a given sample, which in turn guide the design of the algorithm.

We follow the widely used class-conditional noise assumption [10, 26], i.e., p(ỹr|y∗,x) =
p(ỹr|y∗),∀r ∈ {1, . . . , R}. Under this assumption, the noise transition matrix for the r-th an-
notator can be formulated as T r ∈ R2×2, where T r

ij = p(ỹr = j|y∗ = i) denotes the probability of
an i-th class sample flipped into the j-th class for the r-th annotator.

Inspired by Gui et al. [11], we give the following theorem about the relationships among multiple
sets of labels, the ground-truth label, and the submodels’ predictions, proof can be found in Appendix
A.1. Assume neural networks fΘ0

, fΘ1
are used to minimize the expected loss using labels from two

annotators respectively.

Theorem 1. Let (x, y∗, ỹ0, ỹ1) be any sample with ground-truth label y∗ and two conflicting labels
ỹ0, ỹ1 from two annotators, i.e., ỹ0 ̸= ỹ1. Assume T 0 and T 1 satisfy T 0

ii > 0.5 and T 1
ii > 0.5,

∀i ∈ {0, 1} , ℓ(fΘ∗
0
(x), ỹ0) < ℓ(fΘ∗

1
(x), ỹ1) if and only if y∗ = ỹ0.

Remark. Theorem 1 indicates that when the diagonal elements of two noise transition matrices are
greater than 0.5, if two models are trained with these two sets of labels, for a sample x on which
these two annotators disagree, the more reliable label can be selected by comparing the loss values in
their respective models.

Then, the above theorem from the scenario of two annotators can be expanded into multiple annotators,
proof can be found in Appendix A.2. Assume a series of neural networks {fΘr

}Rr=1 are used to
minimize the expected loss using labels from R annotators respectively.
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Corollary 1. Let (x, y∗, {ỹr}Rr=1) be any sample with ground-truth label y∗ and R conflicting labels
{ỹr}Rr=1 from R annotators, i.e., ∃r0, r1 ⊆ {1, ..., R}, ỹr0 ̸= ỹr1 . Assume T r

ii > 0.5 , ∀i ∈ {0, 1}
and r ∈ {1, ..., R} , if ℓ(fΘ∗

k
(x), ỹk) = min({ℓ(fΘ∗

r
(x), ỹr)}Rr=1), y

∗ = ỹk.

Remark. Corollary 1 indicates that if R models are trained with R sets of labels, when the observed
labels of sample x are not the same, we can get the most reliable label for this sample by choosing
the label which has the smallest loss value.

Corollary 1 encourages us to infer the most reliable labels of the samples where some annotators
disagree. Based on Theorem 1 and Corollary 1, we propose our LRD method to deal with Dd. As
mentioned in the preliminaries, R single-label submodels are trained. The training loss for these R
submodels can be written as:

LBCE =
1

NR

N∑
i=0

R∑
r=1

wrỹri log(fΘr
(xi)) + (1− ỹri ) log(1− fΘr

(xi)), (2)

where wr is a weighting factor introduced to address the predictive bias for positive and negative
samples which may arise due to sample imbalance. Denote the number of positive labels in r-th set
of labels as nr

1 and that of negative labels as nr
0, a common strategy for setting wr is wr =

nr
0

nr
1

.

Through these submodels, we identify the most reliable labels by comparing their respective loss
values over the same sample. Based on Corollary 1, for sample (xi, {ỹri }Rr=1) ∈ Dd, we get the
refined label ỹ∗i by

ỹ∗i = ỹki , (3)
where the most reliable index k for sample xi is acquired through:

k = argmin
r

{ℓ(fΘr
(xi), ỹ

r
i )}Rr=1. (4)

In this way, for any instance (xi, {ỹri }Rr=1), we can refine it into (xi, ỹ
∗
i ). Then we can construct

the refined dataset D∗
d and utilize it to train the submodel fΘR+1

with the binary cross-entropy loss.
This submodel can be deployed and utilized for final prediction. In practice, these refined labels are
held constant after several training epochs to mitigate the over-fitting issue. The procedure of LRD is
included in Algorithm 1. Note that LRD and RUS operate concurrently, with LRD focusing on Dd

and RUS on Da.

3.3 Robust Union Selection

For samples where all annotators agree, the labels are generally presumed to be reliable, however,
they are not immune to errors. For instance, if the annotators have similar defects, although the
annotators agree, the labels may still be inaccurate. To this end, guided by theoretical bounds on
loss values, we introduce a loss-based selection criterion and modify it to be more robust against
potentially problematic values.

Inspired by the small-loss selection criterion mentioned in many works under single noise label
scenario [11, 13, 23], small-loss data tends to be more clean. However, relying solely on the
prediction provided by one of the submodels is unstable. Once the selection is wrong, the inferiority
of accumulated errors will arise [41]. Since we have R predictions for each sample with R sets of
labels from our model, naturally, average loss values can be utilized, which can be denoted as:

µ̃i =
1

R

R∑
r=1

ℓ(fΘr
(xi), ỹ

r
i ), (5)

which is more stable and serves as an estimation of the mean µ. Thanks to the R sets of labels provided
by R annotators, these submodels can be diverse, which can ease the inferiority of accumulated
errors [13].

However, simply taking the average can also lose some correctly labeled samples. This issue
originates from two aspects: annotator defects and hard samples. Firstly, different annotators may
differ in quality or be suitable for different kinds of samples, which leads to the situation where some
submodels may struggle with prediction and incur a larger loss for some correctly labeled samples.
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Secondly, some correctly labeled samples may be difficult to learn, as a result, submodels may give
unstable predictions to them. Note that this issue is avoided in LRD since we use the minimum loss
value of the same sample across submodels there. To address this issue, a robust criterion for sample
selection is defined.

We begin by defining a non-decreasing smooth function ϕ for loss values, which can be written as:

ϕ(z) = log(1 + z +
z2

2
), (6)

where z is a positive variable, this function is inspired by the Taylor expansion of the exponential
function. Loss values can be easily substituted into this equation to serve as an soft estimation of the
underlying mean µ. Eq. (6) can reduce the side effect of extremum, which can mitigate annotator
defects and hard samples issues. Based on Eq. (6), the robust average loss µ̃ϕ

i can be written as:

µ̃ϕ
i =

1

R

R∑
r=1

ϕ(ℓ(fΘr (xi), ỹ
r
i )). (7)

To enhance the robustness of µ̃ϕ
i , the predictions from historical models are introduced. Denote the

submodel’s parameters Θr in the t-th epoch as Θt
r, the chosen set of epochs as T , then Eq. (7) can be

rewritten as follows:

µ̃ϕ
i =

1

R|T |

R∑
r=1

∑
t∈T

ϕ(ℓ(fΘt
r
(xi), ỹ

r
i )), (8)

where |T | represents the total number of the selected epochs, for instance, we can choose the latest
five epochs or some fixed epochs as T during the training process.

Based on the soft estimation µ̃ϕ
i of the underlying mean µ, we further introduce the lower bound of

the underlying mean µ to give correctly labeled samples which are discarded due to annotator defects
or because they are hard samples a chance to be selected. Inspired by Xia et al. [39], we give the
following theorem about the lower bound. The proof is similar to Theorem 1 in [39].
Theorem 2. Let {zj}nj=1 be an observation set with mean µ and variance σ2. By utilize a non-

decreasing function ϕ(z) = log(1 + z + z2

2 ), we have

µ ≥ 1

n

n∑
j=1

ϕ(zj)−
σ2(n+ σ2 log(2n)

n2 )

n− σ2
, (9)

with probability at least 1− 1
n .

Remark. This theorem defines the lower bound of the mean of an observation set. The first term in
the lower bound is a robust average, which can reduce the side effects of extremum. The second term
is related to the number of observed values and the variance.

Based on Theorem 2, our selection criterion ci for xi is defined as:

ci = µ̃ϕ
i −

σ̃2
i (n+

σ̃2
i log(2n)

n2 )

n− σ̃2
i

(10)

where n is the number of observed loss values for xi, i.e., n = R|T | as shown in Eq. (8), σ̃2
i is the

variance of observed loss values for xi. Since we don’t know the distribution of the loss values for
xi in submodels, σ̃2

i serves as an approximation of the latent true variance.

Generally speaking, the second term in Eq. (10) gives samples with relatively large variance a chance
to be selected for training. If we use the normal average loss, as shown in Eq. (5), these samples may
be discarded due to annotator defects or because they are hard samples. Thanks to Eq. (10), they
can be included in the selection; if these samples consistently yield large loss values throughout the
training process and across the majority of submodels, they will be discarded in subsequent epochs.

By using the selection criterion in Eq. (10), we can sort the samples in Da and select the smallest
p proportion to form D∗

a, which can be utilized to train fΘR+1
. In practice, positive and negative

samples are selected separately. The process of RUS is included in Algorithm 1.

Note that RUS and LRD operate concurrently, and they share an identical set of R+ 1 submodels
which are trained simultaneously. In RUS, the R submodels {fΘr

}Rr=1 collaboratively refine Da,
while in LRD, these submodels are used to refine Dd. fΘR+1

learns from the refined samples.
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4 Experiment

4.1 Dataset

Benchmark datasets. All the methods are evaluated on 13 benchmark datasets with two kinds of
noise, including five NLP datasets named Agnews, 20News, IMDb, Yelp and Amazon, four tabular
datasets named Diabetes, Backdoor, Campaign and Waveform, and four image datasets named Celeba,
SVHN, Fashion-MNIST (denote as F-MNIST) and CIFAR-10. Note that these datasets only have
ground-truth labels, we simulate three annotators per dataset with label quality k = 0.3 through the
following two methods:

• Instance-dependent noise. Inspired by Zhao et al. [45], k proportion of each dataset is used to
train three sets of diverse tree-based models to act as rule-based annotators, i.e., Decision Tree,
RandomForest, LightGBM. Their predictions are used as multiple sets of labels.

• Class-dependent noise. The labels of the positive samples are randomly preserved at proportions
of k, k+ 0.1, and k+ 0.2 respectively, while interchanging the labels for the remaining positive
samples with those of negative samples, thus establishing three sets of labels. Note that these
three sets of labels are generated independently.

Real-world datasets. Experiments are also conducted on two real-world datasets: CIFAR-10N and
Sentiment. Both datasets were published on Amazon Mechanical Turk for annotation.

Details of these datasets and labels can be found in Appendix B.

4.2 Compared Methods and Implementation Details

We compare our framework with various methods: (1) Single, in which a three-layer MLP is trained
directly with one set of labels; (2) NN-Mjv [38], in which a three-layer MLP is trained using the
labels aggregated through majority voting; (3) HE_A and HE_M [37], which train several individual
models for each set of inaccurate labels and aggregate their outputs for predictions by averaging and
maximizing; (4) CL [26], which trains an end-to-end model with parametric source-specific transition
matrices; (5) DN [10], which exploits information from multiple sets of labels with different softmax
output layers; (6) Label aggregation methods called Enhanced Bayesian Classifier Combination
(EBCC) and Independent Bayesian Classifier Combination (IBCC) [22], three-layer MLPs are trained
using the labels inferred by EBCC or IBCC; (7) Weakly supervised end-to-end learner WeaSEL [27];
(8) CoNAL [3], which assumes that the annotation noise is attributed to two sources (common noise
and individual noise), and combines these two noise by a Bernoulli random variable; (9) SLF [7],
which proposes to make the weight vectors and the confusion matrices data-dependent, and comes
up with two regularization methods for the confusion matrix to guide the training process; (10)
ADMoE [45], which leverages the Mixture of Experts (MoE) architecture to encourage specialized
learning from multiple noisy sources. Note that for a fair comparison, we do not use the noisy-label
aware gating in ADMoE which inputs labels during both training and testing.

Most of the compared methods are adopted from their respective codebases. The hyperparameters
are set according to the recommendations in their papers. The only modification we made to ensure a
fair comparison is to use a three-layer MLP with a hidden dimension of 128 as the backbone.

For our method, as mentioned in the preliminaries, we use a three-layer MLP of hidden dimension
128 to act as shared layers, and R + 1 three-layer MLPs of hidden dimension 128 to serve as
R + 1 submodels. The (R + 1)-th submodel fΘR+1

is utilized for final prediction. There is no
hyperparameter in LRD. For RUS, we set the proportion of selected samples p = 0.8, and take
the 5th epoch and the latest epoch during training as the selected epochs in Eq.( 8). In practice,
LRD-generated labels are held constant after 5 training epochs to mitigate the over-fitting issue.

For all of the methods, experiments are conducted with 0.001 learning rate, 100 training epochs, and
256 batch size on MLP with hidden dimension 128 for a fair comparison. For benchmark datasets,
70% of each dataset is utilized for training, 5% for validation, and 25% for testing. For real-world
datasets, we use the original training and testing datasets. We report the average AUC of the last 10
epochs as results.
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4.3 Main Results

Main results. Comprehensive experiments are conducted on various datasets, including NLP, image,
and tabular data, and we compare our framework against a variety of methods. The main results of our
framework and all the compared methods on class-dependent noise and instance-dependent noise are
summarized in Table 1. As shown, our framework outperforms all the compared methods in most of
the datasets, especially in the class-dependent noise setting. Our framework does not incorporate any
special designs at the architectural level, it primarily acquires higher-quality data through collaborative
refinement, followed by learning via a MLP, which demonstrates the effectiveness of our framework.

Table 1: Main results with AUC as the evaluation metric. The best results are in bold.

Noise Dataset Methods

Single NN-Mjv HE_A HE_M CL DN NN-EBCC NN-IBCC WeaSEL SLF CoNAL ADMoE Ours

Class

AgNews 0.660 0.634 0.723 0.724 0.626 0.757 0.703 0.746 0.833 0.791 0.769 0.762 0.855
20News 0.746 0.684 0.755 0.756 0.749 0.729 0.796 0.779 0.824 0.768 0.778 0.765 0.849
IMDb 0.666 0.602 0.667 0.670 0.614 0.689 0.673 0.699 0.709 0.700 0.702 0.707 0.766
Yelp 0.725 0.713 0.783 0.785 0.779 0.779 0.782 0.786 0.805 0.807 0.769 0.799 0.867
Amazon 0.586 0.567 0.681 0.687 0.631 0.661 0.635 0.657 0.718 0.679 0.672 0.652 0.775
Diabetes 0.648 0.610 0.576 0.592 0.633 0.686 0.657 0.663 0.680 0.577 0.696 0.646 0.728
Backdoor 0.530 0.535 0.681 0.687 0.651 0.765 0.668 0.771 0.640 0.816 0.716 0.814 0.937
Campaign 0.561 0.558 0.628 0.636 0.574 0.663 0.619 0.632 0.629 0.694 0.697 0.680 0.783
Waveform 0.772 0.744 0.660 0.663 0.792 0.770 0.788 0.802 0.840 0.807 0.818 0.823 0.840
Celeba 0.738 0.710 0.723 0.725 0.784 0.849 0.758 0.768 0.782 0.851 0.859 0.824 0.891
SVHN 0.637 0.639 0.671 0.671 0.692 0.701 0.676 0.679 0.671 0.730 0.726 0.718 0.761
F-MNIST 0.607 0.590 0.684 0.691 0.682 0.667 0.664 0.631 0.678 0.723 0.705 0.737 0.776
CIFAR-10 0.541 0.573 0.574 0.576 0.596 0.570 0.590 0.590 0.587 0.587 0.634 0.625 0.655

Instance

AgNews 0.842 0.819 0.830 0.829 0.848 0.867 0.817 0.786 0.836 0.768 0.882 0.842 0.916
20News 0.795 0.855 0.847 0.841 0.823 0.872 0.855 0.846 0.830 0.859 0.828 0.833 0.864
IMDb 0.668 0.729 0.710 0.708 0.722 0.739 0.635 0.621 0.644 0.686 0.717 0.713 0.749
Yelp 0.773 0.782 0.812 0.809 0.790 0.870 0.784 0.778 0.812 0.838 0.832 0.826 0.901
Amazon 0.745 0.690 0.774 0.772 0.777 0.767 0.696 0.673 0.715 0.660 0.790 0.772 0.804
Diabetes 0.747 0.731 0.749 0.748 0.719 0.778 0.728 0.722 0.747 0.772 0.767 0.765 0.818
Backdoor 0.646 0.572 0.610 0.613 0.640 0.593 0.597 0.616 0.606 0.526 0.581 0.758 0.792
Campaign 0.776 0.726 0.892 0.890 0.811 0.887 0.740 0.733 0.737 0.761 0.883 0.707 0.914
Waveform 0.865 0.834 0.923 0.921 0.935 0.949 0.853 0.837 0.873 0.910 0.959 0.937 0.964
Celeba 0.854 0.918 0.885 0.883 0.909 0.825 0.920 0.922 0.936 0.933 0.914 0.916 0.944
SVHN 0.702 0.708 0.774 0.772 0.813 0.806 0.724 0.721 0.779 0.775 0.803 0.800 0.824
F-MNIST 0.814 0.801 0.888 0.887 0.856 0.840 0.792 0.799 0.819 0.801 0.870 0.888 0.912
CIFAR-10 0.730 0.702 0.778 0.777 0.772 0.764 0.696 0.688 0.747 0.632 0.777 0.799 0.790

Performance on real-world scenarios. Experiments are conducted on these two real-world noisy
datasets, with both our methods and the compared methods. As summarized in Table 2, our method
surpasses the compared methods on the real-world noisy datasets, these additional results further
substantiate the reliability and applicability of our approach in handling real-world noisy labels.
Results under different label quality. Further experiments are conducted under different label
quality (k = 0.1, 0.15, 0.2, 0.25, 0.3) on AgNews, IMDb, Yelp, Diabetes, Celeba and F-MINST with
class-dependent noise where NLP, image and tabular data are all involved. The results are shown in
Figure 1. For clarity, we only include the four competitive compared methods and the Single baseline
in the figure. With the increase in label quality, all methods achieve better performance. Note that our
framework consistently outperforms the compared methods in most of the experiments.

4.4 Discussion

Ablation study. Ablation experiments are conducted on datasets with class-dependent noise where
NLP, image, and tabular data are all involved. The results are shown in Table 3. In the ablation
experiments, NN-Mjv acts as the baseline. Labels are aggregated for Dd / Da by majority voting
instead of LRD / RUS, without changing any other parts of the framework. We also compare the RUS
method with the naive selection method (denoted as N-RUS) by replacing our selection criterion in
Eq. (10) with the naive one in Eq. (5). As shown in Table 3, with the assistance of LRD and RUS, an
overall improvement of 0.171 in AUC is achieved over the baseline. The results indicate that while
the naive selection does work, it’s not as effective as RUS. Since LRD and RUS are designed for
different parts of the dataset respectively, they can be effectively combined to achieve the best results.
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Table 2: Real-world results with AUC as the evaluation metric. The best results are in bold.

Dataset Methods

Single NN-Mjv HE_A HE_M CL DN NN-EBCC NN-IBCC WeaSEL SLF CoNAL ADMoE Ours

Sentiment 0.712 0.727 0.744 0.730 0.724 0.732 0.728 0.736 0.730 0.686 0.741 0.722 0.753
CIFAR-10N 0.791 0.853 0.788 0.786 0.788 0.807 0.850 0.849 0.851 0.821 0.816 0.761 0.866
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Figure 1: AUC comparison under different label quality k.

Through these experiments, we demonstrate the effectiveness of LRD and RUS. These results also
indicate that adding LRD to the baseline improves the performance more noticeably than when
adding RUS. It is reasonable because LRD is designed to correct labels in Dd, while RUS is designed
to select samples in Da. As is illustrated before, the samples in Dd are more ambiguous and the
samples in Da are more likely to be correctly labeled, thus greater improvement can be achieved by
effectively dealing with Dd.

Quality analysis of the refined data. Further experiments are conducted to explore how LRD and
RUS work. Since the LRD method is designed to aggregate multiple sets of labels into a reliable
one, we conduct experiments to show the label quality produced by LRD. We train our model for
5 epochs and collect the labels aggregated by the LRD algorithm on Dd. Then we compare the
quality of these labels with the three sets of original labels and the labels obtained through voting.
The experiments are conducted on thirteen datasets mentioned above with class-dependent noise.
The results are shown in Figure 2, the average AUC of these labels is taken as the metric. LRD can
consistently provide higher-quality labels. Naturally, our model trained with these labels yields better
results than with the original labels.

Since RUS is designed to select samples, experiments are conducted to show the quality of the
selected samples. The model is trained for 5 epochs then the selected samples are fetched. RUS is
compared with the following two methods: (1) selecting the same proportion of samples randomly; (2)
replacing the criterion in RUS with the mean of the loss values in Eq. (5) to select the same proportion
of samples. The proportion of selection p is set as 0.8. Since the total number of ground-truth
positive samples stays the same, we compare the number of true positive samples selected by the
three methods mentioned above. These experiments are repeated for 100 times and the average
improvements over random selection are presented in Figure 3. As shown in Figure 3, on the four
datasets including image, NLP, and tabular data, our proposed method has a better performance in
selecting samples. Naturally, our model trained with these high-quality samples can get better results.

Further verification of LRD-generated labels. The quality of LRD-generated labels is shown in
the foregoing discussion in Figure 2, whereby we demonstrate the effectiveness of LRD after training
models for five epochs. We further examine LRD’s performance in the early training stages. We train
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Table 3: Ablation results with AUC as the evaluation metric.

Methods Datasets Avg.
AgNews IMDb Yelp Diabetes Celeba F-MINST

Baseline 0.634 0.602 0.713 0.610 0.710 0.590 0.643
+RUS 0.786 0.708 0.846 0.613 0.838 0.703 0.749
+LRD 0.832 0.733 0.859 0.668 0.840 0.735 0.778
+LRD and N-RUS 0.838 0.746 0.863 0.692 0.862 0.774 0.796
+LRD and RUS 0.855 0.766 0.867 0.728 0.891 0.776 0.814
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Figure 2: The average AUC on Dd subsets over
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our model on datasets with class-dependent noise for 100 / 500 steps and examine the qualities of
LRD-generated labels on Dd. As shown in Table 4, in the early stages of LRD learning (e.g., 100
steps), the LRD-generated labels already outperform the original labels. With ongoing training, label
quality rises (e.g., 500 steps). When LRD-generated labels are frozen at step 100, the final average
AUC on these four datasets is 0.835, which is quite close to the average AUC of 0.845 obtained by
freezing LRD at step 500. These results indicate that we have considerable flexibility in choosing
when to fix the refined labels. In the main results, the LRD-generated labels are frozen after training
for five epochs.

Cooperating with other algorithms. As mentioned before, our framework tends to collaboratively
refine the dataset into a higher-quality one, which is independent of the model architecture. We
simply utilize a MLP to learn from the refined dataset, which can be replaced by other algorithms.
We train our model for 5 epochs, extract the refined dataset, and complement it with the original
three sets of labels to form a new dataset. Then this new dataset is utilized to train SLF, CoNAL, and
ADMoE in the same manner as in the main experiments. As shown in Table 5, when cooperating
with our framework, ADMoE, SLF, and CoNAL achieve improvement over their original versions,
which demonstrates that our framework can cooperate well with the existing methods.

5 Conclusion and Future Work

In this paper, we present a framework called Collaborative Refining for Learning from inaccurate
labels (CRL), which focuses on learning a model from multiple sets of inaccurate labels. In our
framework, we utilize the annotator agreement to assess the reliability of labels from multiple sets
with disparities and split the dataset into two parts: where some annotators disagree and where all
annotators agree. For samples where some annotators disagree, Label Refining for samples with
Disagreements (LRD) is proposed to select relatively reliable labels. Based on a theoretical analysis
of the relationships among multiple label sets, ground-truth labels, and model predictions, LRD
identifies the most reliable label by comparing the loss values. For samples where all annotators
agree, Robust Union Selection (RUS) is proposed to select trustworthy samples to form a higher-
quality dataset. Guided by theoretical bounds on loss values, RUS introduces a loss-based selection
criterion and improves it to be more robust against potentially problematic values. Meanwhile, the
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Table 4: Label qualities on Dd and the training results. AUC is the evaluation metric.

Label sources AgNews IMDb Yelp Celeba Avrage

Best Annotator 0.647 0.630 0.671 0.656 0.651
Voting 0.340 0.348 0.418 0.366 0.368
LRD-100steps 0.775 0.665 0.870 0.736 0.762
LRD-500steps 0.858 0.706 0.880 0.831 0.819

Table 5: Cooperation results with AUC as the evaluation metric.

Methods Dataset Average
AgNews IMDb Yelp Diabetes Celeba F-MINST

ADMoE 0.762 0.707 0.799 0.646 0.824 0.737 0.746
+Ours 0.803 0.732 0.804 0.692 0.840 0.762 0.772
Improve(%). +5.47 +3.48 +0.70 +7.10 +1.99 +3.28 +3.54

SLF 0.791 0.700 0.807 0.577 0.851 0.723 0.741
+Ours 0.806 0.711 0.834 0.710 0.900 0.769 0.788
Improve(%). +1.91 +1.55 +3.37 +23.11 +5.85 +6.41 +6.35

CoNAL 0.769 0.702 0.769 0.696 0.859 0.705 0.750
+Ours 0.776 0.719 0.782 0.723 0.884 0.737 0.770
Improve(%). +0.92 +2.40 +1.74 +3.86 +2.82 +4.64 +2.69

refined datasets are used to train a lightweight model that can be deployed and utilized for final
prediction. Extensive experiments are conducted to demonstrate the effectiveness of the framework.
The framework is designed to be independent of any specific model architecture, making it compatible
with most existing methods, which is confirmed by further experiments.

This work currently focuses on the binary classification task with the existence of inaccurate labels,
which is fundamental and commonly encountered in practice. This work also lays the foundation
for subsequent research of multi-class classification tasks with inaccurate labels. However, in the
multi-class scenario, the proposed method needs to be further adapted. For instance, an issue arises
with samples where annotators disagree, particularly when all the given labels for a particular sample
are incorrect in the multi-class setting. LRD tends to select one of these incorrect labels as the inferred
label, negatively impacting the model’s performance. In binary classification problems, this situation
is naturally avoided because when annotators disagree, one of the labels must be correct. A possible
solution could be to develop a more refined measure based on annotator agreement, which could be
utilized to decide whether to discard these samples, using LRD or RUS.

In the current approach, the samples are segmented based on the presence or absence of label
disagreement, and further processes are performed on the correlated segments. We believe that the
sample segmentation strategy can be further improved. To achieve this, we can introduce a new
metric: the consistency rate, defined as the proportion of agreement among annotators for the same
sample. By establishing a threshold for this consistency rate, we can effectively partition the dataset.
Specifically, for samples with a consistency rate exceeding the threshold, RUS is applied, whereas
for samples with a consistency rate below the threshold, LRD is utilized. The determination of this
threshold is related to the label qualities of the dataset and the number of label sets available, which
is suitable for practical applications. Since these ideas are not yet mature enough, we did not include
these parts in the current manuscript. We leave these issues for future research.
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Appendix
In the Appendix, we first give the proofs of Theorem 1, Theorem 2, and Corollary 1 in Sections A.
The details of datasets and labels are provided in Section B, and the implementation details of the
algorithm are provided in Section C. The related works are summarized in Section D.

A Proof

A.1 Theorem 1

Proof. Let d̃ = [d̃0, d̃1] denote the one-hot version of ỹ, i.e., d̃ỹ = 1 and d̃i = 0,∀i ̸= ỹ. For binary
cross-entropy loss function ℓ(fΘ(x), ỹ) = −

∑1
i=0 d̃i log(p̂i(x)), we consider the expected loss on

noisy data:

E(x,ỹ)[ℓ(fΘ(x), ỹ)] = −E(x,ỹ)

[ 1∑
i=0

d̃i log(p̂i(x))
]

= −
∫
x∈X

1∑
j=0

[ 1∑
i=0

d̃i log(p̂i(x))
]
p(x, ỹ = j)dx

= −
∫
x∈X

[ 1∑
i=0

[ 1∑
j=0

d̃ip(ỹ = j|x)
]
log(p̂i(x))

]
p(x)dx

= −
∫
x∈X

[ 1∑
i=0

E[d̃i|x] log(p̂i(x))
]
p(x)dx.

(11)

Therefore, minimizing the expected loss equals to minimizing −
∑1

i=0 E[d̃i|x] log(p̂i(x)) for each
x ∈ X . For cross-entropy loss, there are constraints

∑1
i=0 p̂i(x) = 1 and 0 ≤ p̂i(x) ≤ 1,∀i ∈

{0, 1}. So it can be formalized as the following optimization problem:

minimize −
1∑

i=0

E[d̃i|x] log(p̂i(x))

s.t.

1∑
i=0

p̂i(x) = 1, 0 ≤ p̂i(x) ≤ 1,∀i ∈ {0, 1}

(12)

Using Lagrange multiplier method, we can derive that −
∑1

i=0 E[d̃i|x] log(p̂i(x)) is minimized
when p̂i(x) = E[d̃i|x], ∀i ∈ {0, 1}. Because E[d̃i|x] =

∑1
j=0 I[i = j]p(ỹ = j|x) = p(ỹk = i|x),

we have p̂i(x) = p(ỹ = i|x). Then we can obtain

p̂i(x) = p(ỹ = i|x) =
1∑

j=0

p(ỹ = i, y = j|x)

=

1∑
j=0

p(y = j|x)p(ỹ = i|y = j,x)

=

1∑
j=0

p(y = j|x)p(ỹ = i|y = j)

= p(ỹ = i|y = y∗)

= Ty∗i,

(13)

where the fourth equation is due to the class-conditional noise assumption and the fifth equation is
due to that each x has only one true label f∗(x). Therefore, the loss value of sample (x, ỹ) is

ℓ(fΘ∗(x), ỹ) = − log(p̂ỹ(x)) = − log(Ty∗ỹ). (14)
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When facing with two conflicting observed labels ỹ0, ỹ1 and two neural network fΘ∗
0
,fΘ∗

1
, the losses

can be written as

ℓ(fΘ∗
0
(x), ỹ0) = − log(T 0

y∗ỹ0),

ℓ(fΘ∗
1
(x), ỹ1) = − log(T 1

y∗ỹ1).
(15)

Then from the relationship between these two losses ℓ(fΘ∗
0
(x), ỹ0) < ℓ(fΘ∗

1
(x), ỹ1), we can get

− log(T 0
y∗ỹ0) < − log(T 1

y∗ỹ1), (16)

which means
T 0
y∗ỹ0 > T 1

y∗ỹ1 . (17)

Because T 0, T 1 satisfy T 0
ii > 0.5, T 1

ii > 0.5, ∀i ∈ {0, 1}, we can get T 0
ij < 0.5 and T 0

ij < 0.5,
∀i ∈ {0, 1}, i ̸= j. Since ỹ0 ̸= ỹ1, T 0

y∗ỹ0 > T 1
y∗ỹ1 equals to T 0

y∗ỹ0 > T 1
y∗(1−ỹ0) , only when

y∗ = ỹ0,
T 0
y∗ỹ0 = T 0

y∗y∗ > 0.5 > T 1
y∗(1−ỹ0) = T 1

y∗ỹ1 ,

which satisfy Eq. (17). if y∗ = ỹ1,

T 0
y∗ỹ0 = T 0

y∗(1−y∗) < 0.5 < T 1
y∗y∗ = T 1

y∗ỹ1 ,

which is in conflict with Eq. (17). Theorem 1 is proved.

A.2 Corollary 1

Proof. Let r0, r1 ∈ {1, ..., R}, define ℓr0 , ℓr1 as

ℓr0 = min(ℓ(fΘ∗
i
(x), ỹi)), ỹi = ỹr0 ,

ℓr1 = min(ℓ(fΘ∗
i
(x), ỹi)), ỹi = ỹr1 .

Then ℓ(fΘ∗
k
(x), ỹk) = min({ℓ(fΘ∗

r
(x), ỹr)}Rr=1) can be written as

ℓ(fΘ∗
k
(x), ỹk) = min(ℓr0 , ℓr1). (18)

If y∗ = ỹr0 , from Theorem 1 and Eq. (14), we can get

ℓr0 < −log(0.5) < ℓr1 ,

then ℓ(fΘ∗
k
(x), ỹk) = ℓr0 which means ỹk = ỹr0 = y∗.

Similarly, if y∗ = ỹr1 , we can get ỹk = ỹr1 = y∗. Corollary 1 is proved.

B Details of Datasets

As mentioned in Section 4.1, we use thirteen benchmark datasets including NLP, image and tabular
datasets, and two real-world datasets.

Benchmark datasets. The information of benchmark datasets are summarized in Table 6. Most of
them come from [14].

For image datasets, following [14], we use ResNet18[16] which is pretrained on the ImageNet[5]
to extract embedding after the last average pooling layer. We utilize the extracted 512-dimensional
embeddings as features. We define one of the multi-classes as negative and downsample the remaining
classes to 5% of the total instances as positive.

For NLP datasets, we use BERT[6] pretrained on the BookCorpus and English Wikipedia to extract
768-dimensional embeddings as features. As for labels, we define them in the following way: (1)
Amazon and Imdb: we regard the original negative class as the anomaly class. (2) 20News and
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Table 6: Data description of the thirteen benchmark datasets used in this paper.

Dataset Description

# Samples # Features # Positives # Type
AgNews 10000 768 500 NLP
20News 3090 768 154 NLP
IMDb 10000 768 500 NLP
Yelp 10000 768 500 NLP
Amazon 10000 768 500 NLP
Diabetes 10927 21 676 Tabular
Backdoor 9555 196 224 Tabular
Campaign 9785 62 586 Tabular
Waveform 3443 21 100 Tabular
Celeba 25906 39 1118 Image
SVHN 5208 512 260 Image
F-MNIST 6315 512 315 Image
CIFAR-10 5263 512 263 Image

AgNews, we set one of the classes as normal and downsample the remaining classes to 5% of the
total instances as anomalies. (3) Yelp: we regard the reviews of 0 and 1 stars as the positive class,
and the reviews of 3 and 4 stars as the negative class.

For tabular datasets, most of them comes from [14], we directly adopt these datasets. Diabetes dataset
is sampled from a dataset on Kaggle1, we increased the difficulty of learning a model by randomly
sampling positive and negative examples at different ratios.

Real-world datasets. The details of real-world datasets are as follows:

• CIFAR-10N: It is an image classification dataset, which consists of 50000 samples for training
and 10000 for testing. We regard the ‘Airplane’ as positive class and others as negative class.
Following [14], we use ResNet18[16] which is pretrained on the ImageNet[5] to extract embed-
ding after the last average pooling layer. We utilize the extracted 512-dimensional embeddings
as features.

• Sentiment: It contains 5000 sentences from movie reviews extracted from the website Rotten-
Tomatoes.com and whose sentiment was classified as positive or negative. This dataset is the
original one in the website2.

Table 7: AUC for different annotators with class-dependent noise and instance-dependent noise.
Type Class-dependent Noise Instance-dependent Noise

Annotator1 Annotator2 Annotator3 Annotator1 Annotator2 Annotator3

AgNews 0.632 0.684 0.738 0.692 0.679 0.642
20News 0.634 0.686 0.740 0.667 0.692 0.648
IMDb 0.632 0.684 0.738 0.624 0.607 0.605
Yelp 0.632 0.684 0.738 0.658 0.625 0.617
Amazon 0.632 0.684 0.738 0.623 0.597 0.566
Diabetes 0.627 0.681 0.735 0.672 0.641 0.639
Backdoor 0.643 0.694 0.746 0.683 0.761 0.746
Campaign 0.628 0.681 0.735 0.587 0.576 0.663
Waveform 0.640 0.691 0.748 0.672 0.593 0.635
Celeba 0.634 0.687 0.749 0.667 0.642 0.594
SVHN 0.632 0.684 0.739 0.693 0.679 0.642
F-MNIST 0.632 0.684 0.738 0.795 0.780 0.774
CIFAR-10 0.632 0.686 0.738 0.629 0.666 0.540

1https://www.kaggle.com/datasets/julnazz/diabetes-health-indicators-dataset
2http://fprodrigues.com//mturk-datasets.tar.gz
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Details of labels. As mentioned in Section 4.1, we use two methods to simulate three annotators.
The AUC of these three set of labels is shown in Table 7.

C Implementation Details of the Algorithm

The implementation procedure of the proposed method CRL is shown in Algorithm 1.

Algorithm 1 Collaborative Refining for Learning from inaccurate labels (CRL).
Input: Dataset D = {xi, {ỹri }Rr=1}Ni=1. The chosen set of epochs T . The proportion of selected

samples p.
Output: Submodels {fΘr

}Rr=1. Final submodel fΘR+1
.

1: // Step 1: Gather dataset Dd and Da.
2: Obtain Dd where annotators disagree, i.e. ∃r0, r1 ⊆ {1, ..., R}, ỹr0i ̸= ỹr1i .
3: Obtain Da where annotators agree, i.e., ∀r0, r1 ⊆ {1, ..., R}, ỹr0i = ỹr1i .
4: Initialize R queues {Θt

r}
|T |
t=1, r ∈ {1, ..., R}, each with length |T |.

5: for e = 1 to max_epoch do
6: // Label Refining for samples with Disagreements (LRD)
7: // Step 2: Generate the refined dataset D∗

d.
8: Obtain instance-wise loss values from {fΘr}Rr=1 by Eq. (1).
9: Obtain instance-wise refined label ỹ∗ by Eq. (3) and Eq. (4).

10: Construct the refined dataset D∗
d with refined label ỹ∗.

11: // Robust Union Selection (RUS)
12: // Step 3: Generate the refined dataset D∗

a.
13: Obtain instance-wise loss values from submodels with every Θ in {Θt

r}
R,|T |
r=1,t=1 by Eq. (1).

14: Calculate the instance-wise selection criteria by Eq. (10).
15: Sort the samples in Da by the criteria and select the smallest p as the refined dataset D∗

a.
16: // Step 4: Utilize D∗

d and D∗
a to train ΘR+1.

17: Compute loss LD∗
d∪D∗

a
on D∗

d and D∗
a with fΘR+1

by Eq. (1).
18: Update parameters ΘR+1 with loss LD∗

d∪D∗
a
.

19: // Step 5: Utilize D to train {Θ}Rr=1.
20: Compute loss LD on D with submodels {fΘr}Rr=1 by Eq. (2).
21: Update parameters {Θr}Rr=1 with loss LD.
22: // Step 6: Update the queues with the latest parameters.
23: if The queues have reached their capacity then
24: Remove the first element of each queue, e.g., {Θ1

r}Rr=1.
25: end if
26: Save submodels’ latest parameters into their respective queues.
27: end for

D Related Work

Learning from a single inaccurate label is a well-established topic, and numerous approaches
have been proposed [11–13, 17, 19, 23–25, 28, 35]. These works can be divided into two main
categories. Some works aim to estimate the noise transition matrix [12, 17, 24, 28], which contains
the probabilities of clean labels flipping into inaccurate labels. However, the noise transition matrix is
hard to estimate accurately. The second approach is sample selection, employing sample selection
methods to select possibly clean examples from a mini-batch and train the model with these examples
[11, 13, 19, 23, 25, 35]. Many sample selection methods leverage observed patterns, such as the
small-loss filtering criterion that considers samples with small losses as clean. The central challenge
in these methods is to construct selection criteria.

Learning from multiple sets of inaccurate labels. The works can be divided into two main
categories. One stream of research focuses on advanced aggregation algorithms that infer the true
labels before or during the training stage, others focus on end-to-end learning, simultaneously learning
from multiple sets of inaccurate labels.
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In aggregation algorithms, the simplest method is Majority Voting [38], where all the annotations
are treated equally and labels are aggregated by voting. Some advanced methods go beyond ma-
jority voting. Weighted Majority Voting [20] uses a weight vector to model annotators’ expertise,
Max-margin Majority Voting [32] combines the concept of majority voting with the principles of
margin maximization. Enhanced Bayesian Classifier Combination (EBCC) [22] utilizes the Bayesian
classifier to infer truth by modeling the correlation between annotators. By viewing the true labels as
a latent variable, some methods considering relations among annotators are proposed to infer true
labels based on the Expectation-Maximization (EM) algorithm. The seminal works [4] (known as the
DS model) assume that every annotator has class-dependent confusion when providing annotations,
which is modeled by an annotator-specific noise confusion matrix. The DS model is the basis of many
works for aggregating labels from different annotators with the help of EM algorithm [1, 2, 34, 43].

In recent studies, an increasing number of studies focus on end-to-end learning. CrowdLayer[26]
trains an end-to-end Deep Neural Network (DNN) with parametric source-specific transition matrices.
DoctorNet[10] aims to train DNNs that exploit multiple annotators’ information with different
softmax output layers. HyperEnsemble [37] trains several individual models for each set of inaccurate
labels (i.e., k models for k sets of labels) and combines their outputs by averaging and maximizing,
referred to as HE_A and HE_M, respectively. UnionNet[36] learns a transition matrix for all multiple
sets of labels together. CoNAL[3] assumes that the annotation noise is attributed to two sources
(common noise and individual noise), and combines these two noises by a Bernoulli random variable.
SLF[7] proposes to make the weight vectors and the confusion matrices data-dependent and comes up
with two regularization methods for the confusion matrix to guide the training process. ADMoE[45]
leverages the Mixture of Experts (MoE) architecture to encourage specialized and scalable learning
from multiple inaccurate sources. SDM[30] employs a self-cognition module to identify both instance-
wise noise and annotator-wise quality and adopts a mutual-denoising module to aggregate these
identifications and accordingly refine the model.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As declared in the preliminaries, we focus on binary classification problems.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: For Theorem 1 and Corollary 1, we provide the full set of assumptions and a
complete (and correct) proof. For Theorem 2, we provide the full set of assumptions and the
proof is similar in the reference cited in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details are all provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The data are processed from open-source benchmark datasets, which are
readily accessible. We will consider open-sourcing the code after the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The full details are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the space limitation and the extensive experiments, the averaged results
are reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: It is not a critical factor for this work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: : The research conducted in the paper conform with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: As a framework for learning from multiple sets of labels, this work does not
suffer from particular ethical concerns or negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
The datasets are processed from open-source datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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