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Abstract

The eXtreme Multi-label Classification (XMC)001
aims at accurately assigning large-scale labels002
to instances, and is challenging for learning,003
managing, and predicting over the large-scale004
and rapidly growing set of labels. Traditional005
XMC methods, like one-vs-all and tree-based006
methods struggle with the growing set of la-007
bels due to their static label assumptions, and008
embedding-based methods struggle with the009
complex mapping relationships due to their010
late-interaction paradigm. In this paper, we011
propose a large language model (LLM) pow-012
ered agent framework for extreme multi-label013
classification – XMC-AGENT, which can ef-014
fectively learn, manage and predict the ex-015
tremely large and dynamically increasing set016
of labels. Specifically, XMC-AGENT models017
the extreme multi-label classification task as018
a dynamic navigation problem, employing a019
scalable hierarchical label index to effectively020
manage the unified label space. Additionally,021
we propose two algorithms to enhance the dy-022
namic navigation capabilities of XMC-AGENT:023
a self-construction algorithm for building the024
scalable hierarchical index, and an iterative025
feedback learning algorithm for adjusting the026
agent to specific tasks. Experiments show that027
XMC-AGENT achieves the state-of-the-art per-028
formance on three standard datasets.029

1 Introduction030

The eXtreme Multi-label Classification (XMC) task031

aims to classify instances to relevant labels from an032

extremely large label candidate space (Bhatia et al.,033

2015; Bengio et al., 2019; Prabhu et al., 2018).034

XMC is a widely used technique in many real-035

world applications, such as assigning appropriate036

tags to products in e-commerce platforms (Medini037

et al., 2019; Chang et al., 2021), recommending of038

interest in recommendation systems (McAuley and039

Leskovec, 2013), and facilitating search queries040

auto-completion in search engines (Agrawal et al.,041

2013; Yadav et al., 2021).042

a) Extreme Multi-label 
Classification

b) Incremental Extreme Multi-
label Classification
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Figure 1: An example of search engine auto-completion
is provided, illustrating the two distinct settings of XMC,
differing in whether the label set is fixed. When a user
types headsets, standard XMC eternally gives pre-
dictions from a fixed label set; whereas incremental
XMC can dynamically adapt newly added labels.

Unfortunately, due to the extensive and dynamic 043

growing set of labels, XMC is a very challenging 044

task. In real-world XMC problems, the number 045

of potential labels often ranges from tens of thou- 046

sands to millions (Song et al., 2020). Such a large 047

output space poses significant challenges for mod- 048

eling, learning, and computing the mapping from 049

instances to large-scale labels, i.e., the scalability 050

problem. For instance, it is difficult to directly learn 051

the mapping from headsets (instance) in Figure 052

1 to xbox and glasses (labels), and computing 053

all instance-label pairs will result in a high compu- 054

tation cost. Furthermore, the label set in real-world 055

XMC scenarios is often dynamically changing and 056

rapidly growing. The evolving labels further raise 057

the challenge of efficient integration of new labels 058

without the necessity for extensive retraining. 059

Current eXtreme Multi-Label Classification 060

methods are mainly tree-based (Khandagale et al., 061
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2019; Majzoubi and Choromanska, 2020; Zhang062

et al., 2021; Yu et al., 2022; Kharbanda et al., 2022)063

and embedding-based approaches (Gupta et al.,064

2021; Dahiya et al., 2021; Mittal et al., 2021a;065

Xu et al., 2023; Gupta et al., 2023; Chien et al.,066

2023). Tree-based approaches organize the labels067

as a fixed and static label tree, classify instances068

from root to leaf nodes and gradually narrow down069

the label options. These approaches, while address-070

ing the challenge posed by large-scale label sets,071

struggle with dynamically growing label sets due072

to the utilization of prefixed, static label indices.073

Embedding-based approaches, on the other hand,074

predict labels by mapping labels and instances into075

the same vector space and selecting labels based076

on their vector similarities. However, due to the077

lack of fine-grained interaction between instances078

and labels, issues arise when dealing with complex079

mapping relationships. Moreover, to effectively080

integrate new labels, a process of re-training or con-081

tinual training is necessary. However, the extensive082

label space and large volumes of data make retrain-083

ing resource-intensive, and continuous learning can084

result in severe catastrophic forgetting, degrading085

previously acquired label knowledge.086

In this paper, we propose an agent-based frame-087

work for extreme multi-label classification – XMC-088

AGENT, which can effectively learn, manage and089

predict the extremely large and dynamically in-090

creasing set of labels by leveraging LLMs-powered091

agents. Specifically, XMC-AGENT models the092

extreme multi-label classification task as a dy-093

namic navigation problem (i.e., the model searches094

through the label space to locate the labels corre-095

sponding to the instance), and employs a scalable096

hierarchical label index to effectively manage the097

extensive label space via transforming them into098

a tree-like label index. In this way XMC-AGENT099

can uniformly manage both existing labels and fu-100

ture labels and seamlessly integrate future labels101

by inserting them at suitable positions in the tree102

as they emerge, leveraging their connections and103

associations with existing labels, thereby avoiding104

disruption of existing structures and the need for105

extensive retraining. By leveraging the capabilities106

of LLMs for dynamic navigation within a struc-107

tured label space, XMC-AGENT offers a novel and108

effective solution for addressing the scalability and109

adaptability challenges of XMC.110

Given the XMC-AGENT framework, we pro-111

pose a self-construction algorithm for scalable hi-112

erarchical label building and a self-correction al- 113

gorithm for the general navigational capabilities of 114

LLMs. Specifically, the self-construction algorithm 115

autonomously transforms the large label set into 116

a structured hierarchical index by adopting a self- 117

questioning strategy, i.e., the XMC-AGENT de- 118

termines comparison relations between labels and 119

recursively merges these relations to build the struc- 120

tured label index. In this way, the self-construction 121

algorithm enables the seamless integration of newly 122

emerged labels. Furthermore, we propose a self- 123

correction algorithm, which dynamically obtains 124

feedback signals from previous incorrect naviga- 125

tion trajectories and iteratively adjusts its naviga- 126

tion capability on specific tasks. 127

Generally, our main contributions are: 128

• We propose an LLM-powered agent frame- 129

work named as XMC-AGENT. By model- 130

ing the XMC problem as a navigation task 131

within the label space XMC-AGENT can nat- 132

urally handle the incremental XMC problem 133

and achieve state-of-the-art performance on 134

three standard datasets. 135

• We design a scalable hierarchical label in- 136

dex construction algorithm named as self- 137

construction. By discovering the associative 138

relationships between labels, self-construction 139

enables the seamless integration of newly 140

emerged labels into an existing label index. 141

142

• We design an iterative feedback learning algo- 143

rithm, named as self-correction, which lever- 144

ages the navigation trajectory as feedback to 145

effectively achieve the alignment of general 146

navigation capability with specific classifica- 147

tion scenarios. 148

2 Methodology 149

Let X and Y represent the sets of input instances 150

and labels respectively, and { Y0,Y1, · · · ,Yk} rep- 151

resent the acquired labels at different time. For 152

simplicity, we consider a two-stage incremental 153

setting in this paper, which means Y = Y0 ∪ Y1. 154

We bring XMC-AGENT to confront the chal- 155

lenges encountered in addressing the incremen- 156

tal XMC, which is achieved by: (1) Constructing 157

a scalable hierarchical label index using LLMs. 158

(2) Employing iterative feedback learning to effec- 159

tively adjust LLMs with specific tasks. 160
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Figure 2: Illustrations of our proposed LLM-powered agent framework. a) Modeling the extreme multi-label
classification task as a dynamic navigation problem, and utilizing a two-stage navigation strategy to seek the optimal
results over a semantic hierarchical label index1. b) Employing a self-construction algorithm to build a scalable
hierarchical label index by adopting a self-questioning strategy. c) Employing a self-correction algorithm to enhance
the general navigational capabilities by learning feedback signals from previous navigation trajectories iteratively.

2.1 Extreme Multi-label Classification as161

Dynamic Navigation162

The essence of multi-label classification lies in163

searching multiple outputs from the label space,164

which leads to increased difficulty in directly solv-165

ing the problem (i.e., one-vs-all approaches), with166

the increase of the set of labels. Considering this,167

we propose XMC-Agent to simplify the problem168

by incorporating the interrelationships between la-169

bels to construct a label index I, which consists170

of a specialized center c along with multiple sub-171

indices, denoted as I ≡ (c, {Ii}), and employing172

an LLM-powered agent to navigate over the index173

for the optimal results. The main idea of dynamic174

navigation is illustrated in Figure 2.a.175

Specifically, we employ a two-stage navigation176

strategy to seek the optimal results over the hierar-177

chical index. In the first stage, a breadth-first search178

is employed to generate a shortlist via the compari-179

son of the instances and centers in the index. The180

breadth-first search stops when traversing the entire181

index or reaching a certain number of terminal in-182

dex (i.e., reaching Dance and Music in Figure 2.183

b). The shortlist is composed of the union of all la-184

bels from the reached terminal index (i.e., [ Latin185

Dance, Samba, Rock, Guitar, Pop ]). In the186

second stage, XMC-AGENT selects labels relevant187

1Tags with superscript ⋄ represent the actual labels, while
the others represent centers generated during the construction.

to the instance from the shortlist and outputs them 188

based on the relevance (i.e., XMC-AGENT assign 189

Latin Dance and Pop to the instance, and re- 190

gard the former as more relevant). 191

2.2 Scalable Hierarchical Index Building via 192

Self-construction 193

To adapt the navigation strategy (comparison 194

among the instance and centers), we adopt a 195

compare-based (Schultz and Joachims, 2003; 196

Haghiri et al., 2017; Emamjomeh-Zadeh and 197

Kempe, 2018; Ghoshdastidar et al., 2019) index 198

building approach, instead of using explicit similar- 199

ity computations to form a hierarchical label index. 200

Specifically, we utilize LLMs to determine compar- 201

ison relations between labels and recursively merge 202

these relations to build the structured label index. 203

2.2.1 Compare-based Hierarchical Indexing 204

Considering the label set Y0 in Figure 2.b, we ini- 205

tially think of it as a partition p⋆ = (root,Y0) and 206

sample a subset Ŷ as represent from p⋆. Then, 207

a collection of sub-index centers (e.g., Sports, 208

Creations, Clothing and Arts ) can be gen- 209

erated based on Ŷ , using the following prompt : 210

Which centers are relevant to the provided
product category?

3



Algorithm 1 Hierarchical Label Indexing of self-
construction
Input: A partition p = (c,Y), Task description T
Output: Hierarchical label index I

1: if should stop then ▷ Pre-defined stop criteria
2: return p
3: end if
4: repeat
5: Ŷ ← Sample(Y)

▷ Sample a subset labels to represent Y
6: C ← GenCenters(T, Ŷ)

▷ Generate sub-index centers according to Ŷ
7: for li ∈ Y do ▷ Assign each label to relevant centers
8: Ci ← AssignCenter(li, C)
9: end for

10: P ← Partition({(li, Ci)}|Y0|
i=1 )

▷ Create partitions according to the assignment
11: P† ← V alidation(P)
12: until P† ̸= ∅
13: for pi ∈ P† do ▷ Recursive execution
14: Ii ← QuickCluster(pi, T ) ▷ Algorithm 1
15: end for
16: I ←Merge(c, {Ii}|P

†|
i=1 ) ▷ Algorithm 2

17: return I

To get the partition of Y0, each label li ∈ Y0 is211

compared with C, assigning li to relevant centers212

Ci, using the following prompt :213

Look through the provided labels of product
categories and give a set of cluster centers.

This process will eventually generate k + 1 par-214

titions, denoted as P = {p1, · · · , pk, pother}. The215

first k partitions correspond to the k centers and216

their assigned labels, while the additional partition,217

denoted as pother, encompasses labels irrelevant to218

all centers in C.219

We additionally apply a post-refinement to ad-220

dress potential issues existing in the obtained par-221

tition (i.e., there is a significant overlap between222

partition Arts and Creations in Figure 2.a, re-223

taining both would result in a waste of resources),224

as C is generated from a subset of Y0.225

We recursively execute the above process for226

each partition until the stopping criteria are satis-227

fied (i.e., the number of labels within the partition228

is less than a pre-defined threshold). One notewor-229

thy benefit of using the recursive strategy is that230

as the recursion depth increases, the label simi-231

larities within an obtained partition also increase.232

This in turn leads to the representations of the cen-233

ters of sub-index becoming more and more spe-234

cific (i.e., Clothing -> Athletic Apparel235

Clothing
Arts

Sports

Dance Music

Compare Polonaise with
Clothing, Arts and Sports

Choosing
Arts

Compare Polonaise with
Dance and Music

Choosing
Both

Assign Polonaise to Dance
and Music
Do not need to partition

Figure 3: An example of adding a new label Polonaise2

to an existing label index. After a few level-wise com-
parisons, the new label is inserted into two terminal
partitions. Since neither of the two partitions requires
further partition, the insertion is complete.

-> Running Apparel). 236

As mentioned before, the partition process also 237

generates non-semantic centers, like pother, which 238

block the information circulation over the index. To 239

address this issue, we establish direct connections 240

between the successors and predecessors of these 241

centers, thereby eliminating their impact on the 242

semantic index. The details of the index-building 243

process are shown in Algorithm 1. 244

2.2.2 Integration of Scalable Indexing 245

To incorporate new labels into an existing index, 246

we propose an InsertSort like algorithm. We use 247

an example to illustrate the main idea in Figure 248

3. For each new label, XMC-AGENT recursively 249

compares it with the centers of the sub-index and 250

assigns it to relevant sub-indices until the termi- 251

nal index is reached. Upon the number of la- 252

bels within the terminal index surpassing the pre- 253

defined threshold, we use Algorithm 1 to directly 254

generate fine-grained sub-indices for the terminal 255

index. 256

2.3 Agent Adaption via Iterative Feedback 257

Learning 258

To adjust the mapping relationship between in- 259

stances and labels within a specific application, one 260

approach is to add summarized mapping rules to 261

the context of LLMs. However, due to the inherent 262

challenge of having extensive labels, the summa- 263

rized rules are incapable of covering all annotated 264

2Polonaise is a dance of Polish origin. Polonaise dance
greatly influenced European ballrooms, folk music and Euro-
pean classical music.
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data, which gives rise to inconsistency between265

classification results and user intent.266

Different from using summarized decision cri-267

teria we propose an approach to utilize feedback268

to inform the navigation process of LLMs. Giving269

an input instance, LLMs would give several pre-270

dictions using the self-constructed index, which271

consists of two distinct label types: Hit which272

are both detected and relevant, like Pop in Fig-273

ure 2, and Error which are detected but irrelevant,274

indicating inconsistency, like Latin Dance in275

Figure 2. Additionally, there exist labels which276

are relevant but remain undetected in the search277

process, denoted as Miss, also indicating inconsis-278

tency, like Rock in Figure 2. Furthermore, based279

on these three types of labels, we also mark the cen-280

ters along their search paths with the corresponding281

type. For example, Arts is on the search path of282

Pop, and Dance is on the search path of Latin283

Dance, thus they are marked as Hit and Error284

respectively.285

Verify whether the product should
be assigned to category Rock

It's a Man's Man's Field…

"reason": "The description contains
elements of rock music, and ... ”

"decision": "Yes"

Select labels from the candidate
list for the product

It's a Man's Man's Field…

Dance Pop Rock

Pop Rock

Inductive ReasoningDeductive Reasoning

Figure 4: An example of the collected feedback data.
The left is the self-feedback of why Rock (undetected
but relevant) is a relevant label, and the right is the
contrastive feedback used to distinguish relevant labels
from a carefully crafted shortlist.

Self-Feedback by Deductive Reasoning To pro-286

vide feedback using deductive reasoning, we utilize287

the decision criteria provided by the LLMs them-288

selves for both the two types of inconsistent labels289

(Error and Miss). For example, in Figure 2, XMC-290

AGENT leverage the self-generated decision criteria291

for the inconsistent label Rock (Miss) as feedback292

signal to adjust its navigational capability.293

Contrastive-Feedback by Inductive Reasoning294

To provide feedback using inductive reasoning, we295

create a shortlist by randomly sampling the three296

types of labels along with irrelevant labels without297

detection, akin to the navigation process, and the298

expected response are all relevant labels in the list.299

Dataset
Instances Labels

Ntrain Ntest |Y0| |Y1| Avg.

AmazonCat-13K† 1.1M 307K 6658 6672 2.6/5.1
LF-Amazon-131K† 295K 135K 51378 77067 1.62/2.11

LF-WikiSeeAlso-320K† 693K 118K 124924 187387 2.26/3.05

Table 1: Dataset statistics information. |Y0| indicates
the label size in the first stage and |Y1| indicates the
number of newly-adding labels in the second stage. Avg.
means the average label per instance of the two stage.

When a sufficient amount of feedback, i.e., Fig- 300

ure 4, is collected, we engage in the refinement of 301

LLMs iteratively to align the navigation capability 302

using the feedback data. 303

3 Experimental Setting 304

3.1 Datasets and Evaluation 305

We evaluate our method on the following datasets: 306

AmazonCat-13K (McAuley and Leskovec, 2013) 307

in product tagging domain, LF-Amazon-131K 308

(McAuley and Leskovec, 2013) in the recommen- 309

dation domain and LF-WikiSeeAlso-320K in the 310

wiki-page tagging domain, where 13K, 131K and 311

320K indicate the total label size. All datasets are 312

available in the extreme classification repository 313

(Bhatia et al., 2016). To evaluate the ability of 314

various methods in an incremental setting, we ran- 315

domly split the labels into two parts. The statistics 316

of the processed datasets (notated with superscript) 317

are listed in Table 1. 318

We consider two evaluation setups: Incremental 319

Performance (Inc) and Overall Performance (Over- 320

all). The former focus on classification results 321

only on Y1 and the latter focus on both Y0 and 322

Y1. We evaluate the models’ performance with Pre- 323

cision@k and Recall@k, where k ∈ {1, 3, 5, 10}, 324

which are two commonly-used evaluation metrics 325

in XMC (Xiong et al., 2022; Aggarwal et al., 2023). 326

3.2 Baselines 327

We compare our method with the following base- 328

lines. 1) BM25 conducts a nearest neighbor re- 329

trieval using TF-IDF features. 2) TAS-B (Hofstät- 330

ter et al., 2021) ranks labels based on the simi- 331

larity with the instance by Faiss (Johnson et al., 332

2019). 3) MACLR (Xiong et al., 2022) leverages 333

the raw text and self-training with pseudo positive 334

pairs to improve the extreme zero-shot capacity. 335

4) SemSup-XC (Aggarwal et al., 2023) use web- 336

collected semantic descriptions to represent labels 337

and facilitate generalization by using a combination 338
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Method

Inc Overall

Precision Recall Precision Recall

P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10

AmazonCat-13K†

BM25 8.7 5.6 4.3 2.9 3.5 6.8 8.6 11.7 16.8 11.2 8.7 6.0 3.2 6.5 8.3 11.4

TAS-B (Hofstätter et al., 2021) 10.1 6.5 5.0 3.3 4.1 7.9 10.1 13.6 19.3 12.9 10.1 7.0 3.8 7.5 9.7 13.3

MACLR (Xiong et al., 2022) 7.4 5.0 4.0 2.8 2.7 5.5 7.4 10.6 15.2 10.3 8.2 5.8 2.7 5.6 7.4 10.4

SemSup-XC (Aggarwal et al., 2023) 25.6 17.2 13.3 9.0 11.0 23.6 30.7 41.3 86.5 62.5 47.3 29.4 19.4 37.3 45.1 54.4

ICXML (Zhu and Zamani, 2023) 14.8 10.6 8.4 5.3 5.4 12.4 15.8 20.6 32.0 20.9 16.5 10.7 6.0 11.8 15.4 19.4

Linear Search (Zero-Shot) 16.0 13.8 12.3 9.7 9.2 23.3 33.7 49.7 21.6 21.0 20.2 16.5 5.6 19.7 30.9 49.7
Linear Search (3-Shot) 17.0 15.2 12.8 9.5 9.9 23.7 35.8 50.3 34.2 28.2 24.5 18.2 12.0 27.5 38.9 55.3

XMC-AGENT (ours) 36.3 29.2 24.1 15.3 24.1 37.5 43.4 50.6 80.1 64.2 50.3 33.3 22.8 39.6 51.0 62.7

LF-Amazon-131K†

BM25 10.2 8.8 6.8 4.3 7.2 17.8 22.3 27.6 13.8 12.2 9.5 6.1 7.1 17.4 22.0 27.3

TAS-B (Hofstätter et al., 2021) 11.5 9.6 7.4 4.7 8.1 19.3 24.2 30.0 15.9 13.4 10.5 6.7 8.2 19.2 24.1 29.9

MACLR (Xiong et al., 2022) 11.6 9.6 7.5 4.8 8.0 19.3 24.5 30.8 15.9 13.6 10.7 6.9 8.1 19.4 24.6 31.1

SemSup-XC (Aggarwal et al., 2023) 21.5 15.3 11.2 6.7 10.0 31.2 37.2 43.7 19.1 17.5 13.8 8.7 10.1 25.9 32.6 40.2

ICXML (Zhu and Zamani, 2023) 19.0 12.7 9.5 5.5 14.0 26.4 32.2 37.5 24.6 17.1 12.7 7.6 13.4 26.3 31.7 37.3

XMC-AGENT (ours) 24.8 18.3 13.1 8.1 21.4 32.0 39.3 45.5 22.7 18.9 13.7 10.2 26.1 25.7 34.3 46.5

LF-WikiSeeAlso-320K†

BM25 10.4 7.8 6.1 4.0 7.1 14.6 18.0 22.6 13.8 10.9 8.6 5.8 7.1 14.5 17.9 22.5

TAS-B (Hofstätter et al., 2021) 13.2 10.1 7.9 5.2 9.3 19.4 23.9 29.9 17.4 14.0 11.1 7.4 9.3 19.3 23.8 29.8

MACLR (Xiong et al., 2022) 7.5 7.2 5.9 4.1 5.1 12.7 16.5 21.6 10.6 10.7 8.8 6.1 5.4 13.5 17.3 22.5

SemSup-XC (Aggarwal et al., 2023) 13.4 13.5 12.1 9.2 5.5 14.4 20.1 28.3 10.6 14.1 13.4 11.3 3.1 10.1 14.9 23.0

ICXML (Zhu and Zamani, 2023) 15.0 10.9 9.0 6.6 5.3 10.4 13.1 18.5 21.6 17.2 14.3 10.5 4.9 10.6 13.5 19.2

XMC-AGENT (ours) 15.8 14.3 12.6 9.9 10.3 16.0 25.3 32.5 24.3 18.4 15.6 13.0 12.4 19.9 26.3 33.0

Table 2: Main results of XMC-AGENT on three datasets, where Inc measures the performance on Y1 and Overall
measures the performance on both Y0 and Y1. Best/second-best performing score in each column is highlighted
with bold/underline. Considering the scale of the label sets, we only experiment Linear Search on AmazonCat-13K†.

of semantic and lexical similarity. 5) ICXML339

(Zhu and Zamani, 2023) propose three demonstra-340

tion selection approaches to create in-context learn-341

ing prompts for gpt-3.5-turbo to generate ap-342

proximate labels, then using TAS-B mapping these343

approximate labels to labels set and get final re-344

ranking results by gpt-3.5-turbo. 6) Linear345

Search To assess the efficacy of directly employ-346

ing LLMs for XMC, we traverse all labels using347

both zero-shot and few-shot approaches, sorting348

the labels based on the output logits. Consider-349

ing the scale of the label sets, we only conducted350

experiments on AmazonCat-13K†.351

4 Results and Analysis352

4.1 Main results353

In all experiments, we choose Vicuna-13B-v1.5354

(Zheng et al., 2023) as the base LLM. The experi-355

mental results over three datasets, as presented in356

Table 2, reveal that:357

1) XMC-AGENT exhibits a noteworthy improve-358

ment in addressing incremental XMC problem.359

Compared with previous methods, our classifica-360

tion as a navigation approach demonstrates an im-361

proved capability in handling new labels on three362

datasets of different scales. Simultaneously, our363

approach achieves optimal performance under the 364

overall setup, exemplifying a commendable bal- 365

ance between utility and generalization. 366

2) XMC-AGENT enhances its dynamic naviga- 367

tion capability by integrating the proposed com- 368

ponents. Compared with the Linear Search re- 369

sults on AmazonCat-13K, our approach achieves 370

an acceptable time cost while exhibiting superior 371

navigation performance under both setups (i.e., 372

9.3% P@1 improvement in Inc and 45.9% P@1 373

improvement in Overall), which indicates the effec- 374

tiveness of the proposed components. 375

3) XMC-AGENT demonstrates a stable perfor- 376

mance across various application scenarios. In 377

our experiments, we found that previous methods 378

have varying applicability across scenarios. For in- 379

stance, TAS-B exhibits a better performance in sce- 380

narios with longer label length (e.g., LF-Amazon- 381

131K and LF-WikiSeeAlso-320K), ICXML per- 382

forms better in cases where the mapping relation- 383

ship between instances and labels is complex (e.g., 384

LF-WikiSeeAlso), and SemSup-XC demonstrates 385

better capabilities in scenarios where the mapping 386

relationship is more direct (e.g., AmazonCat-13K 387

and LF-Amazon-131K). Our approach, which uti- 388

lizes an LLM to uniformly manage the label space 389
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Method

Components AmazonCat-13K† LF-Amazon-131K†

LLM
Index

Inductive
Reasoning

Deductive
Reasoning

Inc Overall Inc Overall

P@1 R@10 P@1 R@10 P@1 R@10 P@1 R@10

Ablating Label Index

XMC-AGENT ✓ ✓ ✓ 36.3 50.6 80.1 62.7 24.8 45.5 22.7 46.5
Replace LLM Index with K-Means Index ✗ ✓ ✓ 17.3 24.4 15.6 25.3 19.9 34.6 17.1 25.2

Replace LLM Index with Faiss Top 500 ✗ ✓ ✓ 22.4 34.0 56.0 53.3 20.2 34.1 20.0 36.9

Ablating Feedback Learning

XMC-AGENT ✓ ✓ ✓ 36.313.0↑ 50.68.4↑ 80.135.8↑ 62.720.2↑ 24.87.2↑ 45.55.9↑ 22.75.4↑ 46.55.7↑
Adopt Inductive Reasoning ✓ ✓ ✗ 26.63.3↑ 49.37.1↑ 57.513.2↑ 58.115.6↑ 21.64.0↑ 42.83.2↑ 19.52.2↑ 44.43.6↑
Adopt Deductive Reasoning ✓ ✗ ✓ 31.58.2↑ 47.55.3↑ 60.416.1↑ 56.714.2↑ 22.44.8↑ 42.12.5↑ 19.01.7↑ 43.42.6↑
Adopt None (base performance) ✓ ✗ ✗ 23.3 42.2 44.3 42.5 17.6 39.6 17.3 40.8

Table 3: Component-wise ablation of XMC-AGENT. First replace the self-construct label index with an K-Means
index and shortlist composed of the top 500 labels retrieved by Faiss to investigate the impact of label index on final
performance. Then, separately employing one feedback mechanism during iterative feedback learning to investigate
the influence of the feedback mechanism.

and learn mapping relationships from feedback390

rather than integrating them into embedding, en-391

ables effective handling of various applications.392

4.2 Analysis393

To understand the impact of various key compo-394

nents on the results, we conduct ablation studies on395

the key components of XMC-AGENT and further396

provide qualitative analysis of the performance of397

previous methods with continual fine-tuning.398

4.2.1 Ablating the Label Index399

To investigate the impact of label index on the fi-400

nal performance, we replaced the index used in401

XMC-AGENT with two alternative methods. The402

first one uses K-Means to recursively partition the403

label set (with k=16) as mentioned in PECOS (Yu404

et al., 2022). The second one employs Faiss (John-405

son et al., 2019) as a retriever, to identify the top406

500 labels exhibiting the highest cosine similarity407

with the instances as shortlisted. Both the two ap-408

proaches use TAS-B as the embedder. From results409

presented in Table 3, we can observe that :410

1) Replacing with K-Means results in significant411

performance degradation. This is partly due to the412

cascading error propagation in the index, as each413

label only appears once in the K-Means index. Ad-414

ditionally, to navigate over the index, each cluster415

requires a description as representation. However,416

due to the limitations of LLMs’ context window417

and long-text processing capabilities, the generated418

descriptions cannot fully cover labels within the419

cluster, resulting in the inability to find relevant420

labels based on the center during navigation.421

2) Replacing with a shortlist is more effective422

than K-Means, but still inferior to our approach.423

Figure 5: Recall@k performance using TAS-B as em-
bedder and Faiss as retriever on three datasets.

This is due to the retrieval method can only detect a 424

fixed portion of relevant labels (as shown in Figure 425

5, even at R@3000, only 60%-70% of the relevant 426

labels can be detected), thereby restricting the ex- 427

ploration space for subsequent feedback learning. 428

4.2.2 Ablating Feedback Learning 429

To investigate the influence of the feedback mecha- 430

nisms, we exclusively employ one separately. From 431

the results presented in Table 3, we can observe 432

that both mechanisms contribute to the final per- 433

formance, but the emphasis on the improvements 434

differs between the two mechanisms. Employing 435

feedback based on inductive reasoning solely leads 436

to a greater improvement in recall. while solely 437

employing feedback based on deductive reasoning 438

leads to a greater improvement in precision. 439

This discrepancy arises from the feedback sig- 440

nals inherent in the two mechanisms. When using 441

deductive reasoning, the feedback signal originates 442

from the self-correction of the inconsistent label, 443

thereby enhancing the discriminatory ability for 444

one specific label. While using inductive reason- 445

ing, the signal comes from the exploration of ran- 446

dom candidates, leading to an improvement in the 447

discriminatory ability for overall labels. 448

Additionally, we assess the impact of iteratively 449

7



Figure 6: Precision @{1, 3, 5, 10} and Recall@10 results at different iterations. iter-0 stands for the model without
feedback learning. The various metrics of XMC-AGENT have all shown improvement during the iterative process,
and there is also an enhancement in the metrics on Y1 (Inc). Indicating our method exhibits good generalization
performance and does not merely learn the corresponding relationships within the training set.

Method
Inc Overall

P@1 R@10 P@1 R@10
AmazonCat-13K†

XMC-AGENT 36.3 50.6 80.1 62.7
MACLR 15.8 12.3 14.6 9.8
SemSup-XC 74.3 48.9 41.4 54.7

LF-Amazon-131K†

XMC-AGENT 24.8 45.5 22.7 46.5
MACLR 17.3 34.3 15.8 31.8
SemSup-XC 23.3 47.2 19.8 42.4

LF-WikiSeeAlso-320K†

XMC-AGENT 15.8 32.5 24.3 33.0
MACLR 12.3 23.6 11.2 22.8
SemSup-XC 14.6 28.3 13.5 24.7

Table 4: Continue fine-tuning on Y1 using previous
methods which first trained on Y0.

employing the feedback mechanism, as illustrated450

in Figure 6. Across three rounds of iteration, both451

metrics on the two datasets exhibit an improvement,452

suggesting the proposed feedback learning mecha-453

nism possesses robust stability and generalization.454

4.2.3 Effect of Continual Fine-tuning455

As the baselines are not designed for incremental456

XMC problems, we conduct continual fine-tuning457

on the model trained with Y0 using additional la-458

bels to assess their adaptability in dealing with new459

labels. The corresponding results are shown in460

Table 4. It can be observed that the model’s classifi-461

cation ability for new labels significantly improved462

after fine-tuning. However, the overall performance463

across the entire labels does not show improvement,464

suggesting the forgetting of the capabilities learned465

by previous methods on a fixed label set.466

5 Related Works467

Previous research on XMC can be divided into468

two settings: full label coverage (Prabhu et al.,469

2018; Mittal et al., 2021b,a; Kharbanda et al.,470

2022; Yu et al., 2022) and weak label coverage 471

(Gupta et al., 2021; Dahiya et al., 2021; Xiong 472

et al., 2022; Gupta et al., 2023), the difference is 473

whether supporting predictions for newly added 474

labels during inference. 475

A prevalent approach for addressing weak la- 476

bel coverage entails the utilization of a bi-encoder 477

to map labels and instances into the same vector 478

space. SiameseXML (Dahiya et al., 2021) general- 479

izes existing Siamese Networks (Chen et al., 2020) 480

by combining Siamese architectures with per-label 481

extreme classifiers. MACLR (Xiong et al., 2022) 482

constructs label and input text encoders by training 483

a pseudo label-input annotation data through a two- 484

stage process. SemSup-XC (Aggarwal et al., 2023) 485

uses web information to augment label semantics 486

and calculates the similarity between label and in- 487

put from both semantic and lexicon perspectives. 488

Unlike previous approaches that transformed the 489

classification task into an end-to-end generation 490

task (Simig et al., 2022) or utilized the in-context 491

learning ability of LLMs to generate approximate 492

labels (Zhu and Zamani, 2023; D’Oosterlinck et al., 493

2024), we model XMC as an LLM-Agent dynamic 494

navigation task, allowing for better handling the 495

dynamically growing extensive labels. 496

6 Conclusion 497

In this paper, we propose XMC-AGENT to address 498

the challenge of dynamically expanding label set in 499

extreme multi-label classification. This framework 500

utilizes a self-constructed label index for effective 501

management of the extensive labels. And incor- 502

porates an iterative feedback learning mechanism 503

to adjust general navigational capabilities to a spe- 504

cific task. The results on three standard datasets 505

indicate that our approach effectively enhances the 506

classification performance in incremental settings. 507
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Limitations508

We identify two limitations in our work that neces-509

sitates further investigation. Firstly, we only em-510

ploy Vicuna-13B-v1.5 as the base model of XMC-511

AGENT, the impact of using different LLMs on the512

final performance requires further detailed research.513

Additionally, we only explore extreme multi-label514

text classification problem with XMC-AGENT, fu-515

ture works can extend the approach presented in516

this paper to other domains, like the extreme multi-517

label image classification problem.518
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A Self-Construct Algorithm707

We summarized the merge operation and scalable708

label integration of the hierarchical label index as709

follows.

Algorithm 2 Merge Operation of self-construction

Input: Sub-index set {Ii}, c the predecessor center of {Ii}
Output: Hierarchical label index I

1: Init: Sc ← [ ] ▷ Successors for c
2: for Ii ∈ {Ii} do
3: if Ii is other then ▷ The index for a group of labels

assigned to center other
4: Add successors of Ii to Sc

5: else
6: Add Ii to Sc

7: end if
8: end for
9: return (c, Sc)

Algorithm 3 Scalable Label Integration of self-
construction
Input: Hierarchical label index I, New Labels Y

′
, Task de-

scription T
Output: Extended Index I

1: for li ∈ Y
′

do
2: Pi ← Search(I, li) ▷ Compare li with centers in
I in a top-down manner

3: for pij ∈ Pi do
4: pij ← (cij ,Yi

j ∪ {li}) ▷ Insert li to partition pij
5: if pij should split then ▷ Pre-defined criteria
6: Iij ← QuickCluster(pij , T ) ▷ Algorithm1
7: pij ← Iij ▷ Replace pij with new index
8: end if
9: end for

10: end for
11: return I

710

B Ablating the Navigation Policy711

To investigate the impact of navigation policy on712

the results, we experiment with multiple combi-713

nations of strategies on AmazonCat-13K†. Due714

to the second-stage navigation strategy adopting715

an end-to-end approach to sequentially generate716

relevant labels from the shortlist, we only experi-717

ment with the first-stage strategy. We evaluate the718

effectiveness of the navigation policy from two as-719

pects: 1) The recall of the first stage, denoted as720

Recall, where a higher proportion of relevant labels721

in the shortlist obtained in the first stage implies a722

smaller performance loss in subsequent processing.723

2)The number of labels in the obtained shortlist,724

denoted as Size, where a higher number of labels in725

the shortlist leads to higher subsequent processing726

costs.727

Policy at first stage Recall Size

Faiss (base performance) 53.7 300

BFS w/ ancestor aug 60.0 219.7
BFS w/o ancestor aug 68.9 220.5

DFS w/ ancestor aug 53.2 192.0
DFS w/o ancestor aug 59.3 179.6

Table 5: Impact of different navigation policies on the
shortlist obtained in the first stage.

We employed two distinct navigation policies: 1) 728

Breadth-First Search (BFS): This policy explores 729

the label index in a breadth-first manner, employing 730

a queue to store upcoming sub-indices for search 731

initiation upon detection of a terminal index during 732

any iteration, and continuing until completion of 733

the process. 2) Depth-First Search (DFS): This 734

policy explores the index in a depth-first manner, 735

utilizing a stack to retain the next sub-indices for 736

search initiation upon detection of a terminal index 737

during any iteration. And we terminate the naviga- 738

tion process upon detecting 20 terminal indices. 739

When navigating over the label index, we em- 740

ploy two different methods to represent the sub- 741

index currently being compared: 1) Only utilizing 742

the description center of the sub-index currently be- 743

ing confronted (i.e., Dance, Music or Sports). 744

2) Providing a series of descriptions centers tra- 745

versed from the root to the current sub-index, de- 746

noted as ancestor augmentation, i.e., [ Root -> 747

Arts -> Dance ]. 748

From the results in Table 5 we can observe that 749

compared with retrieved top 300 similar labels us- 750

ing Faiss, employing a breadth-first manner nav- 751

igation policy achieved a higher recall rate while 752

retrieving fewer labels. Furthermore, despite the 753

additional information offered by ancestor augmen- 754

tation, it does not enhance the recall rate of nav- 755

igation results. This phenomenon is attributed to 756

the information from common ancestors enhancing 757

the similarity between different sub-indexes, thus 758

diminishing their distinctiveness. 759

C Full results for Linear Search 760

Considering the scale of the label set, we traverse 761

all tags in AmazonCat-13K† in a point-wise man- 762

ner, sorting the labels based on the output logits. 763

We conducted experiments using both zero-shot 764

and few-shot (k=1, 3, 5) approaches. When using 765

the few-shot approach, for each label, we randomly 766
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Figure 7: The comparison of Linear Search (k=0,1,3,5)
with SemSup-XC and XMC-AGENT on AmazonCat-
13K†

select k instances related to that label from the767

training set to construct demonstrations. We then768

employ the large language models to determine769

the relevance between the label and the input in-770

stance, and we rank all labels based on the logits771

of the response. The full results are present in Ta-772

ble 6 and the comparison results with the previous773

method and XMC-AGENT are shown in Figure 7.774

From the results, it can be observed that employing775

LLMs in a point-wise manner has achieved com-776

parable recall rates to the previous method, with777

slightly lower precision rates. However, the Linear778

Search approach incurs high time costs due to the779

need to traverse all labels for each instance. XMC-780

AGENT improves search speed by constructing a781

scalable hierarchical label index and employing782

feedback learning to adjust the navigational capa-783

bility, which simultaneously enhances precision.784

D Full results for ablation study785

The full results for ablation study are present in786

Table 7 and Table 8.787
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Linear Search

Inc Overall

Precision Recall Precision Recall

P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10

Zero-Shot 16.0 13.8 12.3 9.7 9.2 23.3 33.7 49.7 21.6 21.0 20.2 16.5 5.6 19.7 30.9 49.7

1-Shot 14.9 13.1 10.0 7.8 5.7 19.7 25.1 42.8 37.8 27.9 23.8 17.9 15.0 28.1 38.7 54.6

3-Shot 17.0 15.2 12.8 9.5 9.9 23.7 35.8 50.3 34.2 28.2 24.5 18.2 12.0 27.5 38.9 55.3

5-Shot 18.1 13.8 13.0 9.6 10.8 21.7 35.5 50.1 37.8 27.9 23.8 17.9 15.0 28.1 38.7 54.6

Table 6: Employ Vicuna-13B-v1.5 in zero-shot and few-shot (k=1, 3, 5) manner to to determine the relevance
between the label and the input instance.

Method

Inc Overall

Precision Recall Precision Recall

P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10

Ablating Label Index

XMC-AGENT 36.3 29.2 24.1 15.3 24.1 37.5 43.4 50.6 80.1 64.2 50.3 33.3 22.8 39.6 51.0 62.7
Replace LLM Index with K-Means Index 17.3 12.7 9.0 6.2 9.6 15.1 20.4 24.4 15.6 13.1 8.7 6.5 10.8 15.7 22.0 25.3
Replace LLM Index with Faiss Top 500 20.2 15.3 10.3 5.7 10.4 16.5 22.5 34.1 20.0 16.5 13.1 8.4 17.0 21.6 28.5 36.9

Ablating Feedback Learning

XMC-AGENT 36.3 29.2 24.1 15.3 24.1 37.5 43.4 50.6 80.1 64.2 50.3 33.3 22.8 39.6 51.0 62.7
Adopt Inductive Reasoning 26.6 23.7 18.3 13.0 22.8 36.4 42.1 49.3 57.5 45.7 40.1 26.3 18.2 33.3 46.9 58.1]
Adopt Deductive Reasoning 31.5 26.6 19.4 11.9 22.3 36.2 41.2 47.5 60.4 47.8 37.7 26.0 18.3 33.8 43.2 56.7
Adopt None (base performance) 23.3 20.1 14.8 10.2 21.5 35.8 38.4 42.2 44.3 38.6 32.8 19.3 17.3 30.1 39.7 42.5

Table 7: Component-wise ablation results of XMC-AGENT on AmazonCat-13K†. First replace the self-construct
label index with an K-Means index and shortlist composed of the top 500 labels retrieved by Faiss to investigate the
impact of label index on final performance. Then, separately employing one feedback mechanism during iterative
feedback learning to investigate the influence of the feedback mechanism.

Method

Inc Overall

Precision Recall Precision Recall

P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10 P@1 P@3 P@5 P@10 R@1 R@3 R@5 R@10

Ablating Label Index

XMC-AGENT 24.8 18.3 13.1 8.1 21.4 32.0 39.9 45.5 22.7 18.9 13.7 10.2 26.1 25.7 34.3 46.5
Replace LLM Index with K-Means Index 19.9 8.7 7.8 6.6 10.3 17.7 26.2 34.6 17.1 16.8 8.7 5.5 8.4 14.5 20.7 25.2
Replace LLM Index with Faiss Top 500 20.2 15.3 10.3 5.7 10.4 16.5 22.5 34.1 20.0 16.5 13.1 8.4 17.0 21.6 28.5 36.9

Ablating Feedback Learning

XMC-AGENT 24.8 18.3 13.1 8.1 21.4 32.0 39.9 45.5 22.7 18.9 13.7 10.2 26.1 25.7 34.3 46.5
Adopt Inductive Reasoning 21.6 16.5 11.3 7.8 20.2 30.7 36.4 42.8 19.5 16.8 12.3 10.0 19.5 16.8 12.3 10.0
Adopt Deductive Reasoning 22.4 17.2 11.1 7.4 20.2 29.5 34.2 42.1 19.0 17.0 12.6 9.7 19.1 25.5 33.2 43.4
Adopt None (base performance) 17.6 14.8 9.8 6.1 16.7 25.7 33.1 39.6 17.3 15.5 10.8 7.2 18.4 25.7 29.4 40.8

Table 8: Component-wise ablation results of XMC-AGENT on LF-Amazon-131K†. First replace the self-construct
label index with an K-Means index and shortlist composed of the top 500 labels retrieved by Faiss to investigate the
impact of label index on final performance. Then, separately employing one feedback mechanism during iterative
feedback learning to investigate the influence of the feedback mechanism.
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