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Ground Truth: 
  pillow
Prediction: 
  cushion

Ground Truth: 
 pillow,  
 cushion, 
 fisherman, sky,
 art print, bag, 
 couch, sofa, 
 settee…
Prediction: 
 cushion

Fig. 1: The OpenLex3D evaluation benchmark enables detailed analysis of open-vocabulary 3D scene representations compared
to closed-vocabulary evaluation methods. We compare the same open-vocabulary representation when assessed under closed-vocabulary
semantics (left) and using OpenLex3D labels (right). In contrast to closed-vocabulary methods where a prediction must match the exact
ground truth label, OpenLex3D provides a manifold of label categories of varying precision: synonyms being the most precise; depictions,
which include, e.g., printed images on objects; visually similar, which refer to objects with comparable appearance; and clutter, which
accounts for label perturbation due to imprecise segmentation.

Abstract— We present a new evaluation benchmark for open-
vocabulary scene representations, generating novel label sets for
widely used RGB-D datasets. This enables detailed analysis of
failure cases and potential improvements. The benchmark is
publicly available at: https://openlex3d.github.io.

I. INTRODUCTION

Evaluating fixed-class models is relatively
straightforward—the predicted class label of each point-
wise prediction can be compared with the point’s ground
truth label as shown in Fig. 1. In contrast, assessing the
performance of open-vocabulary models is more challenging
and is not yet well defined by a benchmark. Published
works on open-vocabulary representations [13], [12] have
typically used closed-set semantic segmentation labels and
metrics—despite this underlying mismatch. This defeats
the purpose and flexibility of open-vocabulary predictions
by constraining the model assessment to a limited set of
evaluation classes [12], [8].

Furthermore, relying on evaluation benchmarks designed
for fixed-class semantics overlooks the nuance of real-
world language labeling, which rarely lends itself to binary
classification. Examples of this include synonyms or other

descriptive words that encompass more general classes. For
example, a couch might also be referred to as a “sofa”
or “seating”. Prior work has proposed using existing on-
tologies like WordNet (a large English language lexical
database) [7] to mitigate these ambiguities in language
benchmarks, though differentiating between similarities and
associations remains an open question [4].

Some open-vocabulary challenges have sought to evaluate
performance in a functional manner, by focusing on tasks
such as visual question answering and object retrieval [1],
[14], [2]. However, methods that focus on querying specific
prompts will fail to evaluate the full 3D representation and
offer limited insights into overall limitations.

In this work, we aim to overcome these limitations by
introducing OpenLex3D, a novel benchmark that evaluates
open-vocabulary scene representation methods. OpenLex3D
introduces a procedure built on four different label categories
of description accuracy: synonyms, depictions, visual similar-
ity, and clutter. These categories evaluate the performance
of a method in capturing the correct class (synonyms) while
also quantifying different degrees of misclassifications. Our
contributions are:

https://openlex3d.github.io


Fig. 2: OpenLex3D augmented labels example from Scan-
Net++ [15]. We provide not only synonyms for the object (bed
sheet, duvet) but also labels for various potential failure cases.

Open-set Category Labels. We introduce a new labeling
scheme where each object has multiple free-form text labels
organized into four categories with different accuracy levels
of linguistic description.
Dataset. We provide OpenLex3D labels for 23 scenes from
Replica [11], Scannet++ [15] and Habitat-Matterport 3D [9].
Each object has been reviewed by four human annotators,
resulting in an average of 11 labels per object.
Two Evaluation Tasks. We provide evaluation on two tasks
using the OpenLex3D dataset: semantic segmentation and
object retrieval given a text query. We introduce two novel
open-set metrics for segmentation and an extended query list
for object retrieval. We evaluate state-of-the-art 3D open-
vocabulary methods on both tasks.
Benchmark Tookit. We make the OpenLex3D toolkit
and ground truth data publicly available at: https://
openlex3d.github.io.

II. THE OPENLEX3D BENCHMARK

A. Benchmark Design

Our benchmark aims to provide a comprehensive eval-
uation of 3D scene representations. To achieve this, we
propose to change the goal of scene segmentation from
determining a single correct label per object, to determining a
descriptive category instead. The four categories we consider,
in decreasing order of description accuracy, are:
Synonyms includes the primary labels for the target object as
well as any other equally valid label. For instance, “glasses”
and “spectacles”.
Depictions describes any images or patterns depicted on the
target object. For example, if a pillow features an image of
a tree, the label “tree” would fall under this category.
Visually Similar includes objects that appear to be visually
similar to the target objects and are likely to be confused for
it. For example, visually similar terms for “glasses” could
include “sunglasses” or “goggles”.
Clutter covers any nearby or surrounding objects. Surround-
ing object features may “leak” into the features of interest
due to 1) co-visibility in the same RGB frames and/or 2)
incorrect merging in object-centric representations. This is
the only category not defined by word labels but object IDs
pointing to the surrounding objects.
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Fig. 3: Top-N IoU and Set Ranking metrics illustration. (a)
Top-N IoU measures whether any of the top-N responses contain
a label from category C. (b) Set Ranking evaluates the ranking of
responses, assessing how closely the predicted rankings align with
ideal rankings of categories.

An example of these categories is shown in Fig. 2. An
ideal 3D scene representation would generate predictions that
fall exclusively under the synonym category.

We use nouns (including multiple word labels such as
“sofa cushion”) for our ground truth categories to reduce the
ambiguities of sentences and captions. For instance, sentence
embedding models [10], are sensitive to variations in word
order and struggle to distinguish between sentences with
similar structures but different meanings.

B. Evaluation Methodology

We propose two tasks: a semantic segmentation task and
an object retrieval task. The first task tests the accuracy of the
method in describing different objects in the scene, the latter
assesses whether it can identify and segment all instances
that best match a given query.

1) Task 1: Open-Set Semantic Segmentation: In the first
task, we first compute the cosine similarity of the features
against the prompt list embeddings. The prompt lists we
introduce in OpenLex3D are built from unique labels across
all categories and scenes in each dataset, containing between
1,000 and 3,000 unique words. To evaluate the performance
of the 3D representation, we introduce two metrics:

a) Top-N IoU at Category: This metric characterizes
the proportion of objects o ∈ O in a scene that are correctly
classified into a particular category C. We define it as:

IoUC =

∑
o∈O

TPC
o

no∑
o∈O

(
TP o

no
+ FP o

no
+ FNo

no

) , (1)

TPC
o is the number of true positive points in category
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Fig. 4: Top-5 IoU results for category classification for OpenMask3D [12], ConceptGraphs [3] and ConceptFusion [5] colored by
category class. Object-centric methods that segment in 3D, like OpenMask3D (top), often miss points due to generalization or depth
quality issues. Those merging 2D segments tend to merge smaller ones, leading to misclassifications (middle). Dense representations,
such as ConceptFusion, produce noisier predictions due to point-level features aggregating information from various context scales. In the
highly cluttered environments of ScanNet++ [15], all evaluated methods show reduced performance.

C; TP o, FP o, and FN i are the number of true positive,
false positive and false negative points for all categories,
normalized by the number of points of the object no.

To compute these quantities, we consider a predicted point
label as a match for category C if any of the top-N responses
of the text-feature similarity feature a label in category C
(see Fig. 3a). A point is classified as clutter if it does not fit
into any of the previous categories but shares a label with
any category of a neighboring object. If no match is found
the point is labeled as incorrect. Any points in the ground
truth point cloud that have no corresponding points in the
predicted cloud are labeled as missing.

b) Set Ranking: Our second metric assesses the dis-
tribution of the text-feature similarity of each point in the
scene representation. For this, we quantify the mismatch of
the responses when compared against an ideal ranking of
category sets. We establish synonyms (S) as the first-rank set,
while depictions and visually similar are considered as a joint
second-rank set (DV S). The size of the sets is determined
by the number of corresponding labels in the ground truth
categories for each point. An example is shown in Fig. 3(b).

We first sort the predictions according to the ideal set
ranking. We obtain left and right ranking bounds for each
set, bCl and bCr , where C denotes the category set (S or
DV S). We then compute a rank score si for each prediction
i, as a function of its rank ri:

s(ri) = min (1 + min (0,
ri − bCl

bCl
), 1−max (0,

ri − bCr
L− bCr

)),

(2)
where L denotes the total number of predictions in the text-
feature similarity (given by the evaluation prompt list). If the
prediction falls in the right category set, we define s(ri) =
1.0, and s(ri) < 1.0 otherwise. The rank scores are then

used to determine set inlier rates RS and RDV S as:

RC =
1

|P|
∑
p∈P

(
1

LC

LC∑
i

1 (s(ri) = 1)

)
, (3)

where LC denotes the number of labels per point p ∈ P for
the set C (S or DV S), and 1(·) is an indicator function. In
addition, we compute penalty scores that constitute inverse
set ranking scores quantifying underscoring of synonyms and
both under- and overscoring of the labels within the DV S
category set, defined as PS , PDV S , and PDV S . We also
report a mean ranking score mR.

2) Task 2: Open-Set Object Retrieval: This task involves
segmenting object instances that correspond to a given text-
based query in a similar manner to [2]. We generate queries
using the synonyms in the OpenLex3D label set, along with
combinations of synonyms and their associated depictions.
The resulting queries include references to motifs (“polka
dots duvet cover”), specific characters (“ironman portrait”)
and brands (“nike athletic sneaker”). The number of queries
ranges from 200 to 1,500 per scene. For evaluation, we use
the Average Precision (AP). We report AP50 (IoU of 50%),
AP25 (IoU of 25%), and mAP scores averaged over the IoU
range of [0.5 : 0.95 : 0.05].

III. EXPERIMENTS

A. Implementation

We evaluate four object-centric representations–
ConceptGraphs [3], HOV-SG [13], OpenMask3D [12], and
a minimal pipeline based on the findings in Kassab2024 [6].
For ConceptGraphs, we benchmark both a CLIP-based
(ConceptGraphs) and a GPT-based pipeline (ConceptGraphs
(GPT)). We also evaluate two dense representations:
OpenScene [8] and ConceptFusion [5]. We exclude floors,



Dataset Method S ↑ D ↓ V S ↓ C ↓ M ↓ I ↓

ConceptGraphs [3] 0.41 0.01 0.11 0.24 0.02 0.22
ConceptGraphs (GPT) [3] 0.47 0.03 0.05 0.21 0.02 0.23
HOV-SG [13] 0.45 0.00 0.05 0.27 0.07 0.16
Kassab2024 [6] 0.26 0.00 0.06 0.26 0.12 0.30
OpenMask3D [12] 0.43 0.01 0.07 0.29 0.10 0.10
ConceptFusion [5] 0.32 0.01 0.09 0.16 0.00 0.41

Replica

OpenScene [8] 0.44 0.00 0.06 0.30 0.07 0.13

ConceptGraphs [3] 0.26 0.02 0.05 0.10 0.13 0.44
ConceptGraphs (GPT) [3] 0.43 0.01 0.04 0.11 0.13 0.28
HOV-SG [13] 0.40 0.02 0.04 0.16 0.08 0.30
Kassab2024 [6] 0.11 0.00 0.03 0.17 0.38 0.31
OpenMask3D [12] 0.27 0.01 0.03 0.29 0.13 0.27
ConceptFusion [5] 0.29 0.01 0.03 0.08 0.04 0.54

ScanNet++

OpenScene [8] 0.16 0.00 0.02 0.23 0.22 0.36

ConceptGraphs [3] 0.27 0.02 0.03 0.12 0.08 0.47
ConceptGraphs (GPT) [3] 0.45 0.01 0.04 0.11 0.09 0.31
HOV-SG [13] 0.33 0.02 0.04 0.18 0.08 0.36
Kassab2024 [6] 0.19 0.01 0.01 0.15 0.23 0.41
OpenMask3D [12] 0.31 0.01 0.03 0.13 0.26 0.26
ConceptFusion [5] 0.23 0.01 0.03 0.09 0.08 0.57

HM3D

OpenScene [8] 0.18 0.00 0.02 0.16 0.06 0.59

TABLE I: IoU Top 5 Results for Object-Centric and Dense
Representations. Where S is the IoU at synonyms, D is depictions,
VS is visually similar, C is clutter, M is missing and I is incorrect.
A perfectly performing method would achieve an IoUS score
approaching 1 and an IoU score of 0 for all other categories.

ceilings, and walls from our evaluation. We use the ViT-
H-14 CLIP backbone for all methods except OpenScene,
which uses the ViT-L OpenSeg backbone.

B. Open-Set Semantic Segmentation

1) Top-N IoU: We report the Top-5 IoU in Tab. I. Top
down views of a selection of the output point clouds colored
by category are presented in Fig. 4. ConceptGraphs (GPT)
is the top performing method in the synonyms category.
The GPT prompt generates precise descriptions of the target
object, which is then encoded into a highly specific text em-
bedding. In contrast, CLIP, used by other methods, encodes
both object-related and broader contextual information from
the image, making it more prone to confusion. In general,
dense methods produce noisier predictions as they use per-
pixel features (Fig. 4). Regarding depictions and visually
similar categories, OpenScene and Kassab2024 consistently
yield the best results. This may stem from their distinct
feature association strategies. For example, Kassab2024 se-
lects a distinctive feature for each object using Shannon
entropy instead of feature merging. This may preserve feature
granularity and reduce classification confusion. The clutter
category has worse IoU results across all methods, suggesting
that crop scaling and/or segmentation is critical in improving
overall classification performance. This is also apparent in
the missing category. In general, most methods struggle with
ScanNet++ and HM3D, indicating that cluttered, real-world
environments still pose challenges for all approaches.

2) Set Ranking Evaluation: In Tab. II, we report set
ranking results. The mean results are high, suggesting that
synonyms tend to score higher in the predicted ranks, and that
depictions and visually similar labels generally score below
synonyms, described as the ideal ranking in Sec. II-B.1. We
observe high RS scores for ConceptGraphs (GPT), similar to
the Top-5 IoUS , again suggesting that the text embeddings
produced from GPT captions are highly specific compared to

Dataset Method mR ↑ RS ↑ PS ↓ RDV S ↑ PDV S ↓ PDV S ↓

R
ep

lic
a

ConceptGraphs [3] 0.82 0.13 0.14 0.06 0.63 0.23
ConceptGraphs (GPT) [3] 0.63 0.21 0.33 0.07 0.52 0.43
HOV-SG [13] 0.82 0.17 0.14 0.07 0.50 0.23
Kassab2024 [6] 0.76 0.10 0.21 0.03 0.54 0.27
OpenMask3D [12] 0.83 0.17 0.12 0.06 0.51 0.21
ConceptFusion [5] 0.76 0.11 0.21 0.05 0.57 0.28
OpenScene [8] 0.85 0.16 0.10 0.05 0.53 0.21

Sc
an

N
et

++

ConceptGraphs [3] 0.80 0.09 0.19 0.03 0.59 0.24
ConceptGraphs (GPT) [3] 0.66 0.18 0.31 0.03 0.60 0.40
HOV-SG [13] 0.84 0.15 0.14 0.04 0.64 0.19
Kassab2024 [6] 0.72 0.05 0.26 0.01 0.60 0.30
OpenMask3D [12] 0.79 0.12 0.19 0.02 0.57 0.25
ConceptFusion [5] 0.74 0.10 0.26 0.02 0.63 0.30
OpenScene [8] 0.77 0.06 0.18 0.01 0.57 0.31

H
M

3D

ConceptGraphs [3] 0.86 0.08 0.13 0.02 0.59 0.20
ConceptGraphs (GPT) [3] 0.68 0.15 0.32 0.03 0.59 0.36
HOV-SG [13] 0.88 0.12 0.11 0.02 0.59 0.19
Kassab2024 [6] 0.80 0.06 0.19 0.01 0.62 0.26
OpenMask3D [12] 0.86 0.10 0.12 0.02 0.56 0.20
ConceptFusion [5] 0.78 0.07 0.20 0.02 0.61 0.27
OpenScene [8] 0.87 0.05 0.10 0.01 0.56 0.22

TABLE II: Set Ranking Evaluation. For mR, RS , RDV S being
the mean score and the respective inlier rates, higher is better. In
contrast, for the underscoring and overscoring penalties PS , PDV S ,
PDV S , lower is better.

Dataset Method mAP ↑ AP50 ↑ AP25 ↑

Replica

ConceptGraphs [3] 5.86 11.32 22.39
ConceptGraphs (GPT) [3] 5.13 10.77 18.19
HOV-SG [13] 5.76 11.67 25.30
Kassab2024 [6] 1.38 2.87 7.54
OpenMask3D + NMS [12] 11.47 17.01 24.02

ScanNet++

ConceptGraphs [3] 1.45 4.36 15.27
ConceptGraphs (GPT) [3] 1.97 5.54 13.39
HOV-SG [13] 1.79 4.95 18.75
Kassab2024 [6] 0.40 1.19 3.39
OpenMask3D + NMS [12] 4.00 6.90 10.34

HM3D

ConceptGraphs [3] 5.09 8.05 11.18
ConceptGraphs (GPT) [3] 4.80 7.75 10.76
HOV-SG [13] 3.44 5.39 7.42
Kassab2024 [6] 1.03 1.87 3.97
OpenMask3D + NMS [12] 4.03 5.56 8.35

TABLE III: Object Retrieval Evaluation. NMS stands for Non-
maximum Suppression and is used to select object masks in the
OpenMask3D [12] pipeline.

CLIP image encodings. However, ConceptGraphs (GPT) also
consistently overscores the depictions and visually-similar
categories (high PDV S) while underscoring synonyms com-
pared to the remaining methods (high PS).

C. Open-Set Object Retrieval

We report AP results in Tab. III. Overall AP is low and
in line with comparable benchmarks [2], highlighting the
challenges of this task and the potential for improvement.
OpenMask3D leads the Replica and ScanNet++ metrics
but fails to generalize to the larger HM3D scenes where
ConceptGraphs is the top performing method. Overall, the
relative performance of the methods is largely consistent
across all three metrics.

IV. CONCLUSION

We introduced OpenLex3D, a new benchmark for open-
vocabulary evaluation that captures real-world language vari-
ability across multiple levels of specificity. Our bench-
mark includes human-annotated labels for three RGB-D
datasets—ScanNet++, Replica, and HM3D—enabling com-
prehensive evaluation across diverse environments.
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