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Abstract

We introduce Multi-Robot Connected Fermat Spiral (MCFS),
a novel algorithmic framework for Multi-Robot Coverage
Path Planning (MCPP) that adapts Coverage Fermat Spiral
(CFS) from the computer graphics community to multi-robot
coordination for the first time. MCFS uniquely enables the or-5

chestration of multiple robots to generate coverage paths that
contour around arbitrarily shaped obstacles, a feature notably
lacking in traditional methods. Our framework not only en-
hances area coverage and optimizes task performance, partic-
ularly in terms of makespan, for workspaces rich in irregular10

obstacles but also addresses the challenges of path continu-
ity and curvature critical for non-holonomic robots by gen-
erating smooth paths without decomposing the workspace.
MCFS solves MCPP by constructing a graph of isolines and
transforming MCPP into a combinatorial optimization prob-15

lem, aiming to minimize the makespan while covering all
vertices. Our contributions include developing a unified CFS
version for scalable and adaptable MCPP, extending it to
MCPP with novel optimization techniques for cost reduc-
tion and path continuity and smoothness, and demonstrating20

through extensive experiments that MCFS outperforms exist-
ing MCPP methods in makespan, path curvature, coverage
ratio, and overlapping ratio. Our research marks a significant
step in MCPP, showcasing the fusion of computer graphics
and automated planning principles to advance the capabilities25

of multi-robot systems in complex environments.

1 Introduction
In the evolving landscape of multi-robot systems, the ef-
ficiency and effectiveness of Multi-Robot Coverage Path
Planning (MCPP) (Almadhoun et al. 2019) remain pivotal30

in a myriad of applications, ranging from environmental
monitoring (Collins et al. 2021) to search-and-rescue opera-
tions (Song et al. 2022) in complex workspaces. Traditional
methodologies, such as cellular decomposition (Latombe
and Latombe 1991; Acar et al. 2002) and grid-based meth-35

ods (Gabriely and Rimon 2001; Hazon and Kaminka 2005),
have laid a solid foundation for understanding and navigat-
ing the challenges inherent in these tasks. However, as the
complexity of environments and the demand for more effi-
cient coverage increase, there is a growing need for inno-40

vative strategies that can adeptly handle workspaces rich in
irregular obstacles with both high precision and adaptability.

This paper introduces a novel algorithmic framework,

called Multi-Robot Connected Fermat Spiral (MCFS),
which revolutionizes MCPP by building upon the principles 45

of Coverage Fermat Spiral (CFS) (Zhao et al. 2016) from
the computer graphics community. This represents the first
application of leveraging CFS to solve MCPP challenges in
automated planning and robotics, showcasing a unique inter-
disciplinary fusion. MCFS stands out for its unique ability to 50

coordinate multiple robots in generating contour-like cover-
age paths, elegantly adapting to the intricacies of arbitrary-
shaped obstacles—a characteristic not typically addressed
by traditional methods. This contouring ability of MCFS re-
sults in not only more organic and less segmented coverage 55

but also enhanced task efficiency in both time and energy ex-
penditure by balancing the path costs across multiple robots,
as indicated by the makespan (Zheng et al. 2010) metric.

Besides task efficiency, a key challenge in MCPP is man-
aging the deceleration and sharp turns required by non- 60

holonomic robots. Traditional methods (Lu et al. 2023; Van-
dermeulen, Groß, and Kolling 2019), often focused on min-
imizing path turns, are constrained to rectilinear workspaces
and rely on decomposing the area into rectangles. This ap-
proach is less effective in arbitrary-shaped environments. 65

In contrast, the essence of our MCFS framework lies in
its global coverage strategy, conceptualizing the paths as
a series of interconnected spirals that seamlessly integrate
the movements of multiple robots. This strategy results in
smooth covering paths without the need for decomposition, 70

inherently accounting for path curvature—a vital factor for
efficient robotic navigation.

Drawing inspiration from the original application of
CFS (Zhao et al. 2016) in additive manufacturing (Gibson
et al. 2021), our MCFS framework innovatively adapts CFS 75

to tackle the MCPP problem, which generates continuous
and smooth coverage paths by converting a set of equidis-
tant contour-parallel isolines into connected Fermat spirals.
MCFS first constructs a graph of isolines (Sec. 3), associ-
ating each vertex with an isoline and connecting it to as- 80

sociated vertices of adjacent isolines. It then reduces the
MCPP problem to Min-Max Rooted Tree Cover (MMRTC),
a combinatorial optimization problem that finds a forest of
trees to cover all vertices of the graph while minimizing
the makespan (Sec. 4). Our framework is versatile, allow- 85

ing coverage paths to start from arbitrary starting points as
required in MCPP, and optimizes the distribution of the cov-



erage of both multiple whole isolines and segments of an
isoline among multiple robots, showcasing an innovative ap-
proach to effectively managing the makespan, curvature, and90

path continuity for each robot.
Key Contributions: (1) We propose a unified version of
CFS that standardizes the stitching of adjacent isolines, al-
lowing for customized priorities in selecting stitching points
and providing scalability and ease of adaptation to MCPP95

by enabling coverage paths to start from any given initial
robot positions. (2) We demonstrate how our MCFS frame-
work extends this unified version of CFS to MCPP and ef-
fectively solves the corresponding MMRTC problem. (3) We
introduce two optimization techniques: one that adds edges100

between non-adjacent but connectable pairs of isolines to
expand the solution space and another that refines the MM-
RTC solution for balanced path costs and reduced overlap in
multi-robot coverage. (4) We present extensive experimen-
tal results validating the superiority of our MCFS framework105

over state-of-the-art MCPP methods in metrics of makespan,
path curvature, coverage ratio, and overlapping ratio, show-
casing its effectiveness in diverse coverage scenarios.

2 Related Work
We categorize existing Single-Robot Coverage Path Plan-110

ning (CPP) and MCPP methods into grid-based, cellular de-
composition, and global methods. We refer interesting read-
ers to (Tomaszewski 2020) for a more detailed taxonomy.
Grid-Based Methods: Grid-based methods abstract
workspaces into square grids (Hazon and Kaminka 2005;115

Kapoutsis, Chatzichristofis, and Kosmatopoulos 2017;
Tang, Sun, and Zhang 2021), allowing for the application
of various graph algorithms. One prominent method, Span-
ning Tree Coverage (STC) (Gabriely and Rimon 2001),
constructs a minimum spanning tree and then generates120

circumnavigating paths on the tree to cover the workspace.
STC-based MCPP methods (Hazon and Kaminka 2005;
Tang and Ma 2023) work by finding a set of trees that
jointly visit all vertices and assigning each robot a path that
circumnavigates a tree. While convenient, the complexity of125

optimally solving grid-based MCPP grows exponentially in
the workspace size and the number of robots.
Cellular Decomposition Methods: These methods decom-
pose the workspace into sub-regions by detecting geometri-
cal critical points, such as trapezoid (Latombe and Latombe130

1991) and Morse (Acar et al. 2002) decomposition. CPP
methods generate zigzag paths in these sub-regions for
coverage (Choset 2000; Wong and MacDonald 2003), and
MCPP methods connect and assign these sub-regions, filled
with zigzag paths, to robots for cooperative coverage (Rek-135

leitis et al. 2008; Mannadiar and Rekleitis 2010; Karapetyan
et al. 2017). Additionally, some research optimizes the di-
rection of the zigzag paths for single robots (Oksanen and
Visala 2009; Bochkarev and Smith 2016). Although effi-
cient, these methods are less suitable for obstacle-rich or140

non-rectilinear workspaces due to their reliance on geomet-
ric partitioning.
Global Methods: Global CPP methods directly generate
paths to cover the workspace without decomposing it. They
fall into two types: the first type generates separate paths that145

contour around obstacles (Yang et al. 2002), and the second
type generates a closed path, including Spiral Path (Ren,
Sun, and Guo 2009) and CFS (Zhao et al. 2016) that are
notable for their continuous and smooth paths. CFS paths
are especially convenient as their entry and exit points are 150

adjacent, facilitating the integration of multiple paths. A re-
cent paper has built a CFS path based on an exact geodesic
distance field to cover a terrain surface (Wu et al. 2019).
However, to our knowledge, there are no global methods yet
developed for MCPP. 155

3 Connected Fermat Spiral (CFS)
In this section, we present our unified version of CFS,

an adaptation of the original CFS (Zhao et al. 2016) con-
cept. The original CFS employs a two-phase process to
transform a set of equidistant isolines into a closed path 160

that covers an input polygon workspace. It utilizes a graph
structure, where vertices represent individual isolines and
edges connect vertices whose respective isolines have ad-
jacent segments. Initially, the original CFS identifies a set
of “pockets”—connected components on the spanning tree 165

of the graph. The first phase transforms the isolines within
each pocket into a Fermat spiral (Wiki 2023a), and the sec-
ond phase stitches these isolated Fermat spirals to construct
the final, connected Fermat spiral by traversing the pockets
using the graph edges. 170

Our unified version of CFS modifies the graph construc-
tion of isolines and consolidates the original two-phase pro-
cess into a singular, cohesive operation for the CPP prob-
lem. The primary modification in our approach lies in the
stitching phase. Rather than explicitly identifying pockets 175

and then stitching isolated Fermat spirals, we employ a uni-
fied procedure for every pair of stitchable isolines. Instead
of explicitly identifying pockets and then stitching the resul-
tant isolated Fermat spirals, our method integrates a unified
process that simultaneously addresses both the conversion 180

of isolines within a pocket into Fermat spirals and the in-
terconnection of these spirals. This integrated process is ap-
plied to every pair of stitchable isolines, effectively merging
the conversion and stitching phases. By traversing a rooted
spanning tree of the graph, the same connected Fermat spiral 185

is obtained as the original CFS.
The advantage of our unified CFS approach is twofold.

Firstly, it enhances scalability, facilitating the incorporation
of diverse utilities within the framework. Secondly, it sim-
plifies the extension of CFS to MCPP, as will be elaborated 190

in Sec. 4. By integrating and streamlining the conversion and
stitching processes, our approach improves the efficiency
and versatility of CFS for complex CPP challenges.

3.1 Constructing Isolines and the Isograph
We describe our approach for generating layered isolines 195

from a given polygon workspace to be covered and build-
ing the isograph. The polygon is enclosed by its boundary,
consisting a set of interior boundary polylines that represent
obstacles and an exterior boundary polyline.
Generating Layered Isolines: The procedure starts by sam- 200

pling a 2D mesh grid of points within the polygon. A dis-
tance field is built for these points, representing their shortest



distance to the polygon boundary (encompassing both the
interior obstacle boundary polylines and the exterior bound-
ary polyline). We denote the distance step size between iso-205

lines as l, and the largest distance to the polygon boundary
among all points as lmax. We then use the Marching Squares
algorithm (Wiki 2023b) to generate layered isolines for each
layer i = 1, 2, ..., ⌊lmax/l⌋. This ensures that the distance
between each point in the layer-i isoline and the polygon210

boundary is l × i. The last step resamples equidistant points
along each isoline, maintaining a consistent distance of l be-
tween adjacent points.
Building the Isograph: We define isograph of the layered
isolines as an undirected graph G = (V,E), where V is215

the set of isovertices, each associated with a unique isoline.
For ease of reference, we let Iv and Lv denote the isoline
associated with any v ∈ V and its respective layer. Similar to
the original CFS (Zhao et al. 2016), we define a connecting
segment set Ou,v for any pair of isovertices u, v ∈ V in220

adjacent layers (i.e., |Lu − Lv| = 1) as:
Ou→v = {p ∈ Iu | ∀z ∈ V, d(p, Iv) < d(p, Iz) ∧ Lz = Lv} (1)

where d(p, I) denotes the distance between point p and iso-
line I . Unlike the original CFS which directly constructs an
undirected edge (u, v) if Ou→v is nonempty, we also con-
sider Ov→u for edge construction. This consideration pro-225

vides flexibility in traversing the isograph in any order and
from any root isovertex in the CFS context. It also avoids
adding edges (u, v) where the respective isolines Iu and
Iv are separated by multiple isolines, as such pairs may be
unsuitable for stitching in the CPP context (see Sec. 3.4).230

Therefore, we define a set Ou,v of stitching tuples for any
u, v ∈ V in adjacent layers as:
Ou,v = {(p,q) ∈ Ou→v ×Ov→u |p = Cu(q) ∧ q = Cv(p)} (2)

where Cu(p) denotes the nearest point along isoline Iu to
point p. Subsequently, an undirected edge (u, v) is formed
for any u, v ∈ V in adjacent layers with a nonempty Ou,v .235

Each tuple (p,q) ∈ Ou,v serves as a candidate stitching
tuple to connect isolines Iu and Iv by stitching p to q and
Bu(p) to Bv(q), where Bu(p) denotes the point preceding
p along isoline Iu in counterclockwise order.

While the original CFS assigns a weight of |Ou→v| to240

each edge to retain a low-curvature path when determin-
ing the isograph traversal order for connecting isolated Fer-
mat spirals, we currently leave the edge weight definition
application-specific and will explicitly address this objective
in Sec. 3.3 for every stitching operation.245

3.2 Unifying the CFS algorithm
We detail our unified version of CFS in Alg. 1, which takes
as input an isograph G and an entry point p0. The algorithm
starts by identifying the isovertex r containing p0 (line 1) as
the root for obtaining the Depth-First-Search (DFS) traver-250

sal edges of G. Line 2 initializes the CFS path π to be con-
structed and the set U to record points already used for
stitching the isolines. The main loop then iterates over the
DFS edges (line 3) and stitches the corresponding pair of
isolines for each edge (line 5-6). Specifically, a stitching tu-255

ple (p,q) is selected via any selector (line 5). For any isover-
tex v ∈ V , we use Iv(p) to denote the counterclockwise path
along isoline Iv starting at p and ending at Bv(p). This path

Algorithm 1: Unified Version of CFS

Input: isograph G, entry point p0

1 r ← the isovertex of G containing p0

2 π ← Ir(p0), U ← ∅
3 for (u, v) ∈ DFS traversal edges of G from r do
4 remove any (p,q) from Ou,v where p ∈ U or q ∈ U
5 (p,q)← f (Ou,v) ▷ by any selector f in Sec. 3.3
6 stitch Iv(p) into π by stitching p to q and B(p) to B(q)
7 U ← U ∪ {p,q}
8 return π

𝑧

𝑢

𝑣

𝑟

𝑝! 𝑝!

Figure 1: The unified version of CFS. Colored squares rep-
resent the stitching tuples. From left to right: The input iso-
graph, the path resulting from the CFS selector, and the path
resulting from the MCS selector.

segment is then stitched into π using the selected stitching
tuple (line 6). The set U is updated to include these newly se- 260

lected stitching tuples (line 7). Following the interation over
all DFS edges, the final path π is constructed to stitch to-
gether all isolines and completely cover the given polygon.

3.3 Stitching Tuple Selector
We now propose three stitching tuple selectors, each de- 265

signed to select an appropriate stitching tuple s from a given
set Ou,v for connecting isolines Iu and Iv . Fig. 1 demon-
strates an example of these selectors.
Random Selector: The random selector frnd randomly se-
lects a stitching tuple from the set Ou,v . 270

Connected Fermat Spiral (CFS) Selector: The CFS selec-
tor fcfs aligns our unified version of CFS with the original
CFS. It attempts to select a stitching tuple from Ou,v for
(u, v) ∈ E that is adjacent to the previously selected stitch-
ing tuple of (z, u) ∈ E or (z, v) ∈ E. Either (z, u) or (z, v), 275

with its stitching tuple already selected by fcfs, will be vis-
ited before (u, v) in the DFS traversal (line 3). Assuming
that (z, u) is visited first with the selected stitching tuple
(p′,q′) ∈ Oz,u, fcfs then checks for s = (p,q) in Ou,v

where B(p) = q′. If such a tuple exists, it is selected for 280

(u, v); otherwise, the first tuple in Ou,v is selected.
Minimum Curvature Stitching (MCS) Selector: The
MCS selector fmcs iterates through Ou,v to identify the
stitching tuple s = (p,q) that minimizes the curvature dif-
ference ∆κ(s) before and after stitching, defined as: 285

∆κ(s) =
∑
p∈s

[κπ(p)− κIu(p)] (3)

where κπ(p) and κIu(p) denote the curvatures at any point
p on the new stitched path π using s and on the original iso-
line Iu, respectively. Formally, the MCS selector is defined
as fmcs(Ou,v) = argmax s∈Ou,v

∆κ(s).



(a) (b)

(c) (d)

Figure 2: CFS paths resulting from the (a) random selector,
(b) CFS selector, (c) MCS selector, and (d) MCS selector
with Ou→v . Black triangles, blue lines, and red lines are the
entry and exit points, the stitching path segments, and the
removed isoline segments after stitching.

3.4 Case Study: Unified vs Original CFS290

We discuss the necessity of modification in the construc-
tion of the isograph edge set of our unified version of CFS
in the CPP context. Unlike the original CFS (Zhao et al.
2016) that uses a set Ou→v in (Eqn. (1)) for edge set con-
struction and always starts traversal from the lowest-layer295

isovertices, our unified CFS defines a more versatile set Ou,v

(Eqn. (2)). This modification addresses the requirement in
CPP (and MCPP) for starting a coverage path from an arbi-
trary given point p0, as accommodated by Alg. 1. Our uni-
fied CFS starts the graph traversal from isovertex r, whose300

respective isoline contains p0, without the restriction of r
being the lowest-layer isovertex. Consequently, valid stitch-
ing tuples may not exist for edge construction if only the
single-directional tuples from layer i to layer i + 1 are con-
sidered as in the original CFS. Moreover, an isovertex u with305

a local innermost isoline may find a nonempty Ou→v for any
isovertex v with Lv = Lu+1, recognizing (u, v) as an edge,
which potentially introduces path overlapping. Fig. 2-(d) ex-
emplifies two such cases where two local innermost layer-6
isolines are stitched to a layer-7 isoline separated by other310

isolines, a scenario effectively managed in our unified CFS
but problematic in using the original CFS definitions. The
other figures in Fig. 2 further visualize the three stitching tu-
ple selectors in Sec. 3.3. Fig. 2-(b) visualizes the staircase-
like stitching scheme in the original CFS (Zhao et al. 2016)315

using the CFS selector. Fig. 2-(c) shows that the MCS selec-
tor always picks the stitching tuples at high-curvature posi-
tions in order to minimize the curvature.

4 Multi-Robot CFS Coverage
In this section, we present our MCFS framework for solv-320

ing MCPP. MCFS computes multiple trees from an input
isograph, each corresponding to a different robot, and then
applies CFS on each tree to compute individual coverage
paths. In Sec. 4.1, we detail the CFS-based formulation of
MCPP and introduce its reduction to Min-Max Rooted Tree325

Cover (MMRTC) (Even et al. 2004; Tang and Ma 2023).
Since there can still be unnecessary repetition in the cov-
erage paths resulting from an optimal MMRTC solution, we
present two optimization techniques, isograph augmentation
in Sec. 4.2 and solution refinement in Sec. 4.3, aiming to fur- 330

ther enhance the MCPP solution.

4.1 Problem Formulation
We present our problem formulation of MCPP that facili-
tates the extension of CFS. The problem of MCPP is to find
a set Π = {πi}i∈I of coverage paths for a set I of robots 335

that minimizes the makespan (i.e., the maximum path cost).
Following existing literature (Zheng et al. 2010; Tang, Sun,
and Zhang 2021), we assume that each robot starts and ends
at a given position, corresponding to a pair of adjacent entry
and exit points in the CFS context. Formally, the objective 340

of MCPP is minimizing the makespan τ , represented as:
min
Π

τ = min
Π={πi}i∈I

max{c(π1), c(π2), ..., c(π|I|)}. (4)

When using CFS to generate each coverage path in Π, the
path length is linear in |π| and thus the cost of any path π can
be evaluated as c(π) = |π|, given that each isoline in CFS
contains equidistant points (as detailed in Sec.3.1). For an 345

isograph G = (V,E), each v ∈ V is assigned a weight wv =
|Iv|, representing the number or points in isoline Iv . Conse-
quently, the cost of any tree T ⊆ G is c(T ) =

∑
v∈V (T ) wv .

The MMRTC problem parallels MCPP in its aim to find a
makespan-minimizing set of rooted trees, where each graph 350

vertex is covered by at least one tree. Given a graph G =
(V,E) and a set R = {ri}i∈I ⊆ V of root isovertices for
the robots, the objective of MMRTC is defined as:

min
T ={Ti}i∈I

max{c(T1), c(T2), ..., c(T|I|)} (5)

where each Ti ∈ T is a tree rooted at ri. Let V (T ) and E(T )
denote the vertex set and edge set of any tree T , respectively. 355

The solution set T must satisfy v ∈
⋃

i∈I V (Ti) to ensure
coverage of every v ∈ V . Since CFS stitches each isoline
Iv of v ∈ V (Ti) to construct the coverage path πi ∈ Π, we
have c(πi) = |πi| =

∑
v∈V (Ti)

|Iv| = c(Ti). Hence, for any
isograph G and set R of root isovertices for the robots, the 360

heuristic values in Eqn. (4) and Eqn. (5) are identical under
CFS, effectively reducing MCPP to MMRTC.

We employ the Mixed Integer Programming (MIP) model
proposed in (Tang and Ma 2023) to solve MMRTC opti-
mally. The optimal set of trees obtained is then used to pro- 365

duce coverage paths by applying our unified CFS (Alg. 1)
on each tree. Fig. 4-(a) and (b) illustrate a 2-tree MMRTC
instance and its crresponding solution.

4.2 Optimization: Isograph Augmentation
In Sec. 3.1, the isograph building process considers each 370

edge only for two isolines in adjacent layers. This process,
while efficient, often results in a sparse graph structure in the
isograph and thus an undesirable MMRTC solution where
certain isovertices are repetitively covered by multiple trees.
One common example of such repetition appears for a cut 375

isovertex, defined as a vertex whose removal increases the
number of connected components in the graph. Such repeti-
tions become more common as the number of trees (robots)



𝑣!

𝑣"

𝑣#

𝑝!

𝑝"

𝑝#

Figure 3: Left: The augmented isograph with original edges
(solid lines) and an augmented edge (dashed line). Right:
Three sequences of stitching tuples (black boxes) for Ov1,v3 .

increases or when tree roots are clustered, thereby leading
to increased makespan and reducing the overall quality of380

MCPP solutions. To mitigate this issue, we propose to aug-
ment the sparse isograph with additional edges connecting
isovertices in non-adjacent layers. This augmentation aims
to reduce the sparsity of the isograph and allow MMRTC
trees to explore new routes for joint coverage, thereby re-385

ducing repetitions and balancing tree costs.
The augmentation of an isograph G = (V,E) operates by

adding a set E# of augmented edges, defined as:
E# = {(u, v) | ∀u, v ∈ V, 2 ≤ dG(u, v) ≤ δ} (6)

where dG(·, ·) denotes the graph distance between any two
isovertices in G, and δ is a hyperparameter that sets the aug-390

mentation level. The set E# is then used to update G by set-
ting E = E∪E#. For edges in E#, stitching tuples are con-
structed differently from those in adjacent layers described
in Sec. 3.1. Without loss of generality, we consider an edge
(v1, vk+1) ∈ E# and its shortest path (v1, v2, ..., vk+1) in395

the original G (i.e., each segment (vi, vi+1) is part of E and
k is the graph distance between v1 and vk). The set Ov1,vk+1

comprises all pairs of p1 on the isoline of v1 and pk+1 on
the isoline of vk+1 that can be feasibly connected, form-
ing valid stitching tuples (p1,pk+1). Such points are con-400

nectable iff they form a sequence of consecutive stitching tu-
ples (p1,p2) ∈ Ov1,v2 , . . . , (pk,pk+1) ∈ Ovk,vk+1

, which
ensures that the straight-line segment between the pair does
not intersect more than k − 1 or any obstacles within the
workspace. Given that the distance between adjacent iso-405

lines is set as l (Sec. 3.1), we assign a weight we = l × k
to each augmented edge e = (u, v) ∈ E with a layer dif-
ference of k (i.e., |Lu − Lv| = k), which approximates
the additional path cost incurred by any tree containing the
augmented edge. The cost of any tree T is thus updated to410

c(T ) =
∑

v∈V (T ) wv +
∑

e∈E(T ) we in MMRTC solving.

4.3 Optimization: MMRTC Solution Refinement
Despite isograph augmentation reducing isovertex repeti-
tions in the optimal MMRTC solution, two bottlenecks per-
sist in achieving a better MCPP solution. The first bottle-415

neck results from certain isovertex repetitions that remain
unresolved by augmentation alone, notably when multiple
robots share the same root isovertex or multiple trees use
the same vertex. To tackle this, we implement the PAIRWI-
SEISOVERTICESSPLITTING (PIS) function, designed to dis-420

perse the coverage of the isoline of an isovertex with repeti-
tions amount multiple robots. The second bottleneck arises
from the limitation of an optimal MMRTC solution in bal-
ancing tree costs when isoline traversing costs vary signifi-

Algorithm 2: MMRTC Solution Refinment

Input: isograph G = (V,E), optimal MMRTC solution T
1 T ∗ ← T , U ← ∅
2 M ← {u ∈ V |

∑
T∈T |{u} ∩ V (T )| > 1}

3 ADDIMPROVINGREPETITION(T ,M,U ) if M = ∅
4 max-heapify M ordered by the number of occurrences
5 while M ̸= ∅ do
6 u←M.pop()
7 Ts ← {T ∈ T |u ∈ V (T )}
8 h∗ ← +∞, T ∗

s ← Ts, Tn ← T /Ts
9 for (u, v) ∈ {(u, v) ∈ E | v /∈ U} do

10 h, Ts ← PAIRWISEISOVERTICESSPLITTING(Ts, u, v)
11 set h∗ to h and T ∗

s to Ts if h < h∗

12 T ← Tn ∪ T ∗
s , U ← U ∪ {u, v}, M ←M/{v}

13 set T ∗ to T if its evaluated makespan is smaller
14 ADDIMPROVINGREPETITION(T ,M,U ) if M = ∅
15 return T ∗

16 Function ADDIMPROVINGREPETITION(T ,M,U ):
17 sort T by the evaluated costs in ascending order
18 P ← {(u, v) |u, v ∈ V (T [−1])/U ∧ deg(u, T [−1]) = 1}
19 for ((u, v) , T ) ∈ P × T do
20 if u ∈ {b ∈ V (T ) | ∃(b, x) ∈ E, x /∈ V (T )} then
21 T ← (V (T ) ∪ {u}, E(T ) ∪ {(u, v)}),M ←M ∪ {u}
22 return

23 Function PAIRWISEISOVERTICESSPLITTING(Ts, u, v):
24 k ← |Ts|, h∗ ← +∞, T ∗

s ← Ts
25 for c = (s1, s2, ..., sk) ∈ Ok

u,v do
26 Z ← a set of k new isovertices split from u, v by stitching Iu, Iv

using s1, s2, ..., sk ▷ see Fig. 4-(d)
27 for (T, z) ∈ zip(Ts, Z) do
28 ET ← {(u, x) | x ∈ NT (u)} ∪ {(v, x) | x ∈ NT (v)}
29 E′

T ← {(z, x) | (·, x) ∈ ET } ▷ see Fig. 4-(c)

30 T ′
s ← {(V (T ) ∪ {z}/{u, v}, E(T ) ∪ E′

T /ET ) |T ∈ Ts}
31 h← σ({c(T )}T∈T ′

s
)

32 mark T ′
s as nonadjacent if ∃ T ∈ Ts and (z, x) ∈ E′

T , |Oz,x| = 0

33 for (z, x) ∈ E′
T with an empty Oz,x do

34 add the distance between Iz, Ix to h

35 set h∗ to h and T ∗
s to T ′

s if h < h∗

36 return h∗, T ∗
s

cantly. To tackle this, we propose the ADDIMPROVINGREP- 425

ETITION (AIR) function that selectively adds an isovertex
from a higher-cost tree to a lower-cost tree and uses PIS to
split this reassigned isovertex, effectively redistributing iso-
line coverage between trees. We call the additional repeti-
tion introduced by AIR an improving repetition. Both PIS 430

and AIR are crucial in refining the MMRTC solution: PIS
directly addresses the issue of shared isovertices, while AIR
strategically adjusts coverage load distribution to balance
costs among the trees, enhancing the overall MCPP solution.
Pseudocode: Alg. 2 (Lines 1-14) details the process for re- 435

fining an MMRTC solution using the AIR and PIS func-
tions. The process starts with initializing the MMRTC so-
lution T ∗ to be returned and the set U of isovertices already
used for PIS [Line 1]. It then builds the set M of isover-
tices with repetitions from the input solution T [Line 2]. 440

If M is empty, the process calls AIR to potentially add an
improving repetition to M [Line 3]. The process then ar-
ranges M into a max-heap to prioritize splitting the isover-
tex with the largest number of occurrences among different
trees [Line 4]. It then iterates over M and to address each 445

isovertex with repetitions one at a time [Lines 5-14]. Each
u popped from M [Line 6] identifies the set Ts of all trees
containing u [Line 7]. PIS then evaluates the splitting of u
with each adjacent, unused neighbor v [Line 10], returning
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Figure 4: Pairwise isovertices splitting from u, v into a, b at
stitching tuples s1, s2. (a) Isograph G. (b)(c) Two trees of G
(in dashed and solid lines, respectively) before and after the
splitting. (d) The layered isolines, each corresponding to the
isovertex highlighted in the same color.

its heuristic value h and the post-split tree set Ts to update450

T ∗s if h < h∗ [Line 11]. The best tree set T ∗s for splitting u
with the smallest heuristic value is then integrated into the
MMRTC solution T [Line 12], with a subsequent update to
T ∗ [Line 13]. If M is empty, the process calls AIR again to
potentially add an additional improving repetition [Line 14].455

As every iteration records isovertices used for PIS in U and
AIR only adds unused isovertices, Alg. 2 terminates after at
most |V |/2 iterations since two new isovertices are added to
U in Line 12 in each iteration.
Add Improving Repetition (AIR): The AIR function460

(Lines 16-22) identifies an isovertex from the highest-cost
tree in the tree set T and adds it to a low-cost tree. It first
sorts T by tree costs in ascending order [Line 17] and then
builds a set P of isovertex pairs from the highest-cost tree
T [−1] [Line 18]. Note that P contains only those pairs465

where both isovertices are not in U (hence, unused for PIS),
and the first isovertex u in each pair must be a leaf (having
a degree of 1), making it an ideal candidate to be split from
T [−1]. By iterating through each tree in T , ordered by cost
[Line 19], the first isovertex u is validated for addition to the470

first tree [Line 21] where u is a neighbor of any isovertex in
that tree [Line 20]. Once an isovertex is added to a low-cost
tree, the function terminates [Line 22], ensuring that only
one improving repetition is added to M per AIR call.
Pairwise Isovertices Splitting (PIS): The PIS function475

(Lines 23-36) splits isovertex u with repetitions and its
neighbor v into a set of new isovertices, each integrated into
a corresponding tree in Ts. The function iterates through all
possible mappings c = (s1, s2, ..., sk) from the splitting tu-
ples in Ou,v to the k trees in Ts (through the k-th Cartesian480

power set of Ou,v) [Line 25] and finds the best mapping with
the smallest heuristic value h∗. For each c, it splits u and v
into a set Z of k new isovertices, each representing a seg-
ment of isolines Iu and Iv connected via the corresponding
splitting tuples [Line 26]. The function then constructs edge485

subsets ET and E′T for each tree T ∈ Ts [Lines 27-29],
where ET comprises edges connected to u or v to be re-
moved from T [Line 28] and E′T comprises new edge to be
added to T [Line 29]. Notably, the stitching tuple set Oz,x

Selectors char-I char-C char-A char-P char-S 2-torus office
random 2.824 0.924 1.228 2.095 1.084 1.070 12.93

CFS 1.306 0.747 0.848 1.724 0.887 0.819 11.77
MCS 1.269 0.782 0.874 1.277 0.960 0.969 8.289

Table 1: Curvature comparison between stitching tuple se-
lectors in the unified version of CFS for single-robot CPP.

Method char-I char-C char-A char-P char-S 2-torus office
robots 2 2 3 4 5 6 9

M
akespan

(τ)

TMC 99.94 136.3 87.75 75.19 62.51 133.7 154.0
TMSTC∗ 91.33 117.9 84.35 50.63 56.41 113.9 238.1

M
C

FS

NONE 132.3 179.8 75.4 106.8 50.46 174.2 291.0
+REF 69.74 125.7 63.44 52.86 50.46 108.9 213.4
+AUG 85.37 106.3 63.14 48.23 46.26 87.86 155.5

+BOTH 70.75 105.0 63.14 35.13 36.04 80.73 141.2

C
urvature

TMC 2.541 3.433 7.482 6.115 5.011 3.341 8.459
TMSTC∗ 2.476 1.801 2.655 2.869 2.259 1.335 2.117

M
C

FS

NONE 1.129 0.776 0.950 0.970 1.050 1.299 1.192
+REF 2.512 0.842 0.981 1.184 1.050 1.357 1.737
+AUG 0.972 0.758 1.047 0.828 0.787 1.070 1.087

+BOTH 1.026 0.795 1.047 1.428 1.068 1.064 1.352

C
overage

TMC 86.8% 87.6% 88.4% 88.0% 85.8% 91.5% 89.2%
TMSTC∗ 90.6% 92.4% 91.0% 90.2% 91.2% 93.7% 91.3%

M
C

FS
NONE 91.1% 92.4% 89.5% 89.4% 91.9% 94.6% 91.2%
+REF 91.1% 92.4% 89.4% 89.4% 91.9% 94.5% 91.1%
+AUG 91.1% 92.5% 89.4% 89.4% 91.9% 94.5% 91.1%

+BOTH 91.0% 92.4% 89.4% 89.4% 91.8% 94.5% 91.1%

O
verlapping

TMC 8.76% 7.76% 5.59% 7.89% 18.8% 15.8% 15.3%
TMSTC∗ 8.12% 6.25% 9.37% 13.1% 16.5% 15.5% 17.1%

M
C

FS

NONE 82.6% 5.46% 5.91% 62.5% 6.79% 86.6% 50.2%
+REF 6.50% 5.44% 5.92% 7.95% 6.79% 25.0% 24.0%
+AUG 22.4% 6.41% 6.75% 22.2% 7.48% 20.0% 24.5%

+BOTH 7.27% 6.25% 6.63% 10.8% 7.41% 9.62% 13.1%

R
untim

e

TMC 0.25s 1.26s 0.97s 0.33s 76.0s 30.4m 31.2m
TMSTC∗ 1.21s 1.78s 1.77s 1.02s 2.70s 8.22s 27.9s

M
C

FS

NONE 0.24s 0.38s 0.44s 0.29s 0.31s 1.57s 30.1m
+REF 8.59s 11.7s 8.60s 5.08s 0.60s 39.8s 33.1m
+AUG 0.34s 0.60s 0.85s 0.46s 0.60s 13.9m 30.2m

+BOTH 7.13s 12.5s 20.0s 7.89s 15.6s 15.2m 37.5m

Table 2: Solution quality for different MCPP algorithms.

of each new edge (z, x) is conveniently obtained by admit- 490

ting all valid stitching tuples for isoline Iz and the new com-
bined isoline Ix. The function builds the new tree set for c
[Line 30] and calculates the standard deviation of the tree
costs as its heuristic value [Line 31], aiming for cost bal-
ance. The function then validates for c that each such Oz,x 495

set is non-empty, otherwise marking the new tree set as non-
adjacent [Line 32] and penalizing the heuristic value h for
any empty Oz,x by adding the distance between Iz and Ix
[Line 34]. Finally, the heuristic value h is compared with h∗

for potential updates to T ∗s [Line 35]. Note that if the final 500

T ∗s [Line 15] is marked nonadjacent in Line 32 and used in
CFS, then shortest paths are inserted between isoline pairs
with empty O sets to compensate for missing valid stitching
tuples. Fig. 4-(b) shows isovertex u, with repetitions of two
trees, split into two new isovertices via PIS in Fig. 4-(c). 505

5 Empirical Evaluation
This section presents our experimental results on a 3.49 GHz
Apple® M2 CPU laptop with 16GB RAM. Our code will be
publicly available upon acceptance of this paper.
Setup: The MMRTC MIP model in Sec. 4.1 is solved using 510

the Gurobi solver (Gurobi Optimization, LLC 2023) with a
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Figure 5: Coverage paths from MCFS. Different paths are in different colors. Yellow circles are root positions.

runtime limit of 30 minutes and an MST-based initial so-
lution for warm start-up (Tang and Ma 2023). Whenever
MCFS is equipped with isograph augmentation, the hyper-
parameter δ in Sec. 4.3 is set to min{|I|, 4}, where |I| is the515

number of robots for the MCPP instance, balancing between
the MMRTC model complexity and the solution quality.
Instances: We conduct the experiments using MCPP in-
stances displayed in Fig. 5, where the polygon workspace
that needs to be covered is already filled with paths. The520

distance l between adjacent isolines in all instances is 0.1,
which is also the cover diameter of the robots. The number
of robots (|I|) of the instances range from 2 to 9. In instances
char-I and char-P, two robots and four robots share the same
root isovertex, respectively. In instance 2-torus, three pairs525

of robots share three root isovertices, respectively. In all
other instances, robots start from different root isovertices.
Metrics: In addition to the makespan τ , we report the fol-
lowing metrics to evaluate an MCPP method and its solu-
tion: (1) Curvature: Average curvature of all paths (smaller530

values indicate smoother paths). (2) Coverage: Ratio be-
tween the covered area and the total workspace. (3) Overlap-
ping: Ratio between the repeatedly covered area and the total
workspace area. (4) Runtime: Total runtime of the method,
including the MIP model solving time (when applicable).535

Stitching Tuple Selectors: Tab. 1 compares curvature
among the random, CFS, and MCS stitching tuple selectors.
Both CFS and MCS selectors outperform the random selec-
tor, with average reductions of 24.6% and 27.9%, respec-
tively. For less complex workspaces like 2-torus that can be540

filled with smooth isolines, the CFS selector with staircase-
like stitching paths outperforms the MCS selector since the

MCS selector struggles to distinguish small curvature dif-
ferences. However, for complex workspaces like office, the
MCS selector significantly excels by strategically selecting 545

sharp corner points as stitching tuples, thereby substantially
reducing the curvature. Based on these findings, the MCS
selector will be used in the MCFS framework for the re-
mainder of our experiments.

Ablation Study: To validate the effectiveness of isograph 550

augmentation (Aug) and MMRTC solution refinement (Ref)
presented in Sec. 4.2 and Sec. 4.3, respectively, Tab. 2 re-
ports results for four MCFS variants: using only the original
MMRTC solution, with Aug, with Ref, and combining both
(labeled NONE, AUG, REF, and BOTH, respectively). Com- 555

pared to NONE, REF and AUG reduce the makespan by
an average of 29.7% and 36.0%, respectively. For instances
char-I, char-P, 2-torus, and office, this reduction is attributed
to decreased overlapping ratio, particularly where the robot
root positions are identical or adjacent. BOTH further en- 560

hances this effect in more complex instances for more com-
plex instances like 2-torus and office, doubling the reduc-
tion in the overlapping ratio, resulting in greater makespan
reduction. For instances char-C, char-A, char-S where over-
lapping ratios of NONE are already low, the makespan re- 565

duction of REF results from the iterative cost-balancing pro-
cedure, whereas the makespan reduction of AUG results
from a larger MMRTC solution space via the augmented
edges. Although both REF and AUG require a longer run-
time, this increase in runtime is less pronounced for complex 570

instances where the MMRTC MIP model solving dominates.
Overall, BOTH yields the largest average makespan reduc-
tion of 43.6% compared to NONE, combining the strengths
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Figure 6: MCFS comparison on instance office with different
number of robots.

of both REF and AUG in makespan minimization at the cost
of slightly longer runtime. Fig. 6 further shows the evolving575

performance of four MCFS variants for office with increas-
ing numbers of robots and unique roots. It indicates that Ref
is more crucial with more robots because each robot needs to
cover fewer isolines, often leading to imbalanced MMRTC
trees, making isovertex splitting more effective in cost bal-580

ancing. Aug consistently aids in reducing makespan by ex-
panding the MMRTC solution space, though it increases the
complexity and runtime of the resulting MIP model. The fig-
ure also shows that for |I| ≥ 7, the MIP models become too
complex for all four variants to obtain satisfactory MMRTC585

solutions within the runtime limit, whereas Ref, employed
by REF and BOTH, continues to significantly reduce the
makespan of the resulting suboptimal MMRTC solutions.

Comparison: We compare MCFS (+BOTH) with two state-
of-the-art grid-based MCPP methods, TMC (Vandermeulen,590

Groß, and Kolling 2019) and TMSTC∗ (Lu et al. 2023),
that minimize path turns. To adapt TMC and TMSTC∗
to the non-rectilinear workspaces in our instances, we use
overlay grids to approximate the workspaces, followed by
shortest pathfinding for robot return to root positions post-595

coverage. Note that the reported coverage and overlapping
ratios for TMC and TMSTC∗ are approximations due to
the workspace approximation and small intersection of their
coverage paths with obstacles, whereas the values for MCFS
are exact. In Tab. 2, while the average coverage ratios of600

TMC, TMSTC∗, and MCFS are comparably close (with a
3.51% variance), MCFS demonstrates an average makespan
reduction of 32.0% and 27.9%, curvature reduction of 75.7%
and 47.8%, and overlapping ratio reduction of 13.6% and
20.9% compared to TMC and TMSTC∗, respectively. Both605

MCFS and TMC require longer runtime due to solving MIP
models for MMRTC and MTSP, respectively, especially in
instances with larger isographs or more robots, such as 2-
torus and office). Fig. 7 and Fig. 8 visualize the coverage
paths planned by TMC and TMSTC∗, respectively. These610

paths exhibit a back-and-forth boustrophedon pattern, lead-
ing to high curvature and imperfect coverage around com-
plex obstacles. In contrast, MCFS notably excels in gener-
ating smooth paths that efficiently contour around arbitrar-
ily shaped obstacles, a clear visual advantage over the other615

methods as shown in Fig. 5.

Figure 7: TMC MCPP solutions of 2-torus and office.

Figure 8: TMSTC∗ MCPP solutions of 2-torus and office.

6 Conclusions
We proposed the MCFS framework, an innovative approach
that blends principles from computer graphics and auto-
mated planning to tackle the challenges of covering arbi- 620

trarily shaped workspaces in complex MCPP tasks. MCFS
leverages our novel unified version of CFS to bring scala-
bility and versatility for multi-robot scenarios by comput-
ing multiple rooted trees that jointly cover an input graph
of isolines. We also developed two effective optimization 625

techniques that significantly enhance the solution quality.
We validated the effectiveness of MCFS in various scenar-
ios through rigorous experimentation and analyses, bench-
marked against state-of-the-art MCPP methods. Future work
includes improving isoline generation to further boost the 630

coverage ratio, developing heuristics to accelerate the PIS
function for large numbers of robots or isolines, and speed-
ing up MMRTC solving.
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