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ABSTRACT

We develop an interior-point approach to solve constrained variational inequality
(cVI) problems. Inspired by the efficacy of the alternating direction method of
multipliers (ADMM) method in the single-objective context, we generalize ADMM
to derive a first-order method for cVIs, that we refer to as ADMM-based interior-
point method for constrained VIs (ACVI). We provide convergence guarantees for
ACVI in two general classes of problems: (i) when the operator is ξ-monotone,
and (ii) when it is monotone, some constraints are active and the game is not
purely rotational. When the operator is, in addition, L-Lipschitz for the latter case,
we match known lower bounds on rates for the gap function of O(1/

√
K) and

O(1/K) for the last and average iterate, respectively. To the best of our knowledge,
this is the first presentation of a first-order interior-point method for the general
cVI problem that has a global convergence guarantee. Moreover, unlike previous
work in this setting, ACVI provides a means to solve cVIs when the constraints
are nontrivial. Empirical analyses demonstrate clear advantages of ACVI over
common first-order methods. In particular, (i) cyclical behavior is notably reduced
as our methods approach the solution from the analytic center, and (ii) unlike
projection-based methods that zigzag when near a constraint, ACVI efficiently
handles the constraints.

1 INTRODUCTION

We are interested in the constrained variational inequality problem (Stampacchia, 1964):

find x⋆ ∈ X s.t. ⟨x− x⋆, F (x⋆)⟩ ≥ 0, ∀x ∈ X , (cVI)

where X is a subset of the Euclidean n-dimensional space Rn, and where F : X 7→ Rn is a con-
tinuous map. Finding (an element of) the solution set S⋆X ,F of cVI is a key problem in multiple
fields such as economics and game theory. More pertinent to machine learning, CVIs generalize
standard single-objective optimization, complementarity problems (Cottle & Dantzig, 1968), zero-
sum games (von Neumann & Morgenstern, 1947; Rockafellar, 1970) and multi-player games. For
example, solving cVI is the optimization problem underlying reinforcement learning (e.g., Omid-
shafiei et al., 2017)—and generative adversarial networks (Goodfellow et al., 2014). Moreover,
even when training one set of parameters with one loss f , that is F (x) ≡ ∇xf(x), a natural way
to improve the model’s robustness in some regard is to introduce an adversary to perturb the ob-
jective or the input, or to consider the worst sample distribution of the empirical objective. As
has been noted in many problem domains, including robust classification (Mazuelas et al., 2020),
adversarial training (Szegedy et al., 2014), causal inference (Christiansen et al., 2020), and ro-
bust objectives (e.g., Rothenhäusler et al., 2018), this leads to a min-max structure, which is an
instance of the cVI problem. To see this, consider two sets of parameters (agents), x1 ∈ X1 and
x2 ∈ X2, that share a loss/utility function, f : X1 ×X2 → R, which the first agent aims to minimize

∗All authors contributed equally. Link to source code: https://github.com/Chavdarova/ACVI.
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Figure 1: ACVI (Algorithm 1) and EG iterates—
depicted in red and green, resp.—on the game:

min
x1∈R+

max
x2∈R+

0.05 · x2
1 + x1x2 − 0.05 · x2

2 .

The constraints are depicted with dashed lines and
the iterates with circles. ACVI gets close to the
Nash Equilibrium (⋆) in a single step, whereas EG
zigzags when hitting a constraint. The remaining
commonly used methods—GDA, OGDA, and LA-
GDA—perform similarly to EG, see App. E.

and the second agent aims to maximize. Then the problem is to find a saddle point of f , i.e., a
point (x⋆

1,x
⋆
2) such that f(x⋆

1,x2) ≤ f(x⋆
1,x

⋆
2) ≤ f(x1,x

⋆
2). This corresponds to a cVI with

F (x) ≡ [∇x1
f(x1,x2) −∇x2

f(x1,x2)]
⊺.

Solving cVIs is significantly more challenging than single-objective optimization problems, due to the
fact that F is a general vector field, leading to “rotational” trajectories in parameter space (App. A).
In response, the development of efficient algorithms with provable convergence has recently been
the focus of interest in machine learning and optimization, particularly in the unconstrained setting,
where X ≡ Rn (e.g., Tseng, 1995; Daskalakis et al., 2018; Mokhtari et al., 2019; 2020; Golowich
et al., 2020b; Azizian et al., 2020; Chavdarova et al., 2021a; Gorbunov et al., 2022; Bot et al., 2022).

In many applications, however, we have constraints on (part of) the decision variable x, that is, X is
often a strict subset of Rn. As an example, let us revisit the aforementioned distributionally robust
prediction problem: consider a linear setting (cf. Eq. 1 in Rothenhäusler et al., 2018) and class of
parametrized distributions△ ≡ {w ∈ Rd|w ≥ 0, e⊺w = 1}, where e ∈ Rd is a vector of all ones.
Thus, the robust problem is: minx∈Rn maxw∈Rd w⊺(y −Dx), subject to w ≥ 0, e⊺w = 1 ,
where D ∈ Rd×n contains d samples of an n-dimensional covariate vector, and y ∈ Rd is the
vector of target variables (the constraint w ≤ 1 is implied). This illustrates that given a standard
minimization problem, its robustification immediately leads to an instance of the cVI problem; see
further examples in § 5. Additional example applications include (i) machine learning applications in
business, finance, and economics where often the sum of the decision variables—representing, for
example, resources—cannot exceed a specific value, (ii) contract theory (e.g. §2.3.2 in (Bates et al.,
2022) where one player is the parameters of a probability distribution as above), and (iii) solving
optimal control problems numerically, among others.

Significantly fewer works address the convergence of first-order optimization methods in the con-
strained setting; see § 2 for an overview. Recently, Cai et al. (2022) established a convergence rate for
the projected extragradient method (Korpelevich, 1976), when F is monotone and Lipschitz (see § 3
for definitions). However, (i) the proof that the authors presented is computer-assisted, which makes it
hard to interpret and of limited usefulness for inspiring novel (e.g., accelerated) methods, and (ii) the
considered setting assumes the projection is fast to compute and thus ignores the projection in the
rate. The latter assumption only holds in rare cases when the constraints are relatively simple so that
operations such as clipping suffice. However, when the inequality and/or equality constraints are of
a general form, each EG update requires two projections (see App. A.4). Each projection requires
solving a new/separate constrained optimization problem, which if given general constraints implies
the need for a second-order method as explained next.

Interior point (IP) methods are the de facto family of iterative algorithms for constrained optimization.
These methods enjoy well-established guarantees and theoretical understanding in the context of
single-objective optimization [see, e.g., Boyd & Vandenberghe (2004), Ch.11, Megiddo (1989),
Wright (1997)], and have extensions to a wide range of problem settings (e.g., Tseng, 1993; Nesterov
& Nemirovski, 1994; Nesterov & Todd, 1998; Renegar, 2001; Wright, 2001). They build on a natural
idea of solving a simplified homotopic problem that makes it possible to “smoothly” transition to
the original complex problem; see § 3.1. Several works extend IP methods to cVI, by applying
the second-order Newton method to a modified Karush-Kuhn-Tucker (KKT) system appropriate for
the cVI (Ralph & Wright, 2000; Qi & Sun, 2002; Fan & Yan, 2010; Monteiro & Pang, 1996; Chen
et al., 1998). Many of these approaches, however, rely on strong assumptions—see § 2. Moreover,
although these methods enjoy fast convergence in terms of the number of iterations, each iteration
involves the computation of the Jacobian of F (or Hessian when F ≡ ∇f(x)) which quickly becomes
prohibitive for large dimension n of x. Hence first-order methods are preferred in practice.
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We are currently missing a first-order optimization method for solving cVI with general constraints.
Accordingly, in this paper, we focus on the following open question:

Can we derive first-order algorithms for the cVI problem that (i) can be applied when general
constraints are given, and that (ii) have global convergence guarantees?

In this paper, we develop precisely such a method. To mitigate the computational burden of second-
derivative computation, we replace the Newton step of the traditional IP methods with the alternating
direction method of multipliers (ADMM) method. ADMM was designed with a different purpose: it is
applicable only when the objective is separable into two or more different functions whose arguments
are non disjoint—see § 3.1 for full description—and can be seen as equivalent to Douglas–Rachford
operator splitting (Douglas & Rachford, 1956) applied in the dual space (see e.g. Lin et al., 2022).
ADMM owes its popularity primarily to its computational efficiency (Boyd et al., 2011) for large-
scale machine learning problems and its fast convergence in some machine-learning settings (e.g.,
Nishihara et al., 2015). The core idea of our approach is to reformulate the original cVI problem
with equality and inequality constraints via the KKT conditions, so as to apply ADMM in such a
way that the subproblems of the resulting algorithm have desirable properties (see § 4.1). That is, by
generalizing the technique underlying ADMM, we derive a novel first-order algorithm for solving
monotone VIs with very general constraints. Furthermore, this framework can be used to design
novel algorithms for solving cVIs; see App. C.

Our contributions can be summarized as follows:

• Based on the KKT system for the constrained VI problem and the ADMM technique, we derive
an algorithm that we refer to as the ADMM-based Interior Point Method for Constrained VIs
(ACVI)—see § 4.1 and Algorithm 1.

• We prove the global convergence of ACVI given two sets of assumptions: (i) when F is ξ-
monotone, and (ii) when it is monotone, the constraints are active at the solution, and the game is
not purely rotational. By further assuming F is a Lipschitz operator, we upper bound the rate
of decrease of the gap function and we match the known lower bound for the gap function of
O(1/

√
K) for the last iterate—see § 4.2.

• Empirically, we document two notable advantages of ACVI over popular projection-based saddle-
point methods: (i) the ACVI iterates exhibit significantly reduced rotations, as they approach
the solution from the analytic center, and (ii) while projection-based methods show extensive
zigzagging when hitting a constraint, ACVI avoids this, resulting in more efficient updates—§ 5.

Our convergence guarantees are parameter-free, meaning these do not require a priori knowledge
of the constants of the problem (such as the Lipschitz constant), and, interestingly, the convergence
guarantee does not require that F is Lipschitz. This assumption is solely used to express the rate of
decrease of the gap function (in contrast to the extragradient method (Korpelevich, 1976) where such
an assumption is necessary to show convergence. To the best of our knowledge, the proposed ACVI
method is the first first-order IP algorithm for VIs with a global convergence proof.

2 RELATED WORK

Unconstrained VIs: methods and guarantees. Apart from the standard gradient descent ascent
(GDA) method, among the most commonly used methods for VI optimization are the extragradi-
ent method (EG, Korpelevich, 1976), optimistic GDA (OGDA, Popov, 1980), and the lookahead
method (LA, Zhang et al., 2019; Chavdarova et al., 2021b). (See App. A for a full description). In
contrast to gradient fields (as in a single-objective setting), when F is a general vector field, the last
iterate can be far from the solution even though the average iterate converges to it (Daskalakis et al.,
2018; Chavdarova et al., 2019). This is problematic since it implies that the average convergence
guarantee is weaker in the sense that it may not extend to more general setups where we can no longer
rely on the convexity of X . Golowich et al. (2020b;a) provided a last-iterate lower bound of O( 1

p̃
√
K
)

for the broad class of p̃-stationary canonical linear iterative (p̃-SCLI) first-order methods (Arjevani
et al., 2016). An extensive line of further work has provided guarantees for the last iterate for other
problem classes. For the general monotone VI (MVI) class, the following p̃-SCLI methods come
with guarantees that match the lower bound: (i) Golowich et al. (2020b) obtained a rate in terms of
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the gap function relying on first- and second-order smoothness of F , and Gorbunov et al. (2022)
obtained a rate of O( 1

K ) in terms of reducing the squared norm of the operator relying on first-order
smoothness of F (Assumption 1), using a computer-assisted proof, and (ii) Golowich et al. (2020b)
and Chavdarova et al. (2021a) provided the best iterate rate for OGDA.

Constrained zero-sum and VI classes of problems. Gidel et al. (2017b) extended the Frank-
Wolfe (Frank & Wolfe, 1956; Jaggi, 2013; Lacoste-Julien & Jaggi, 2015) method—also known as the
conditional gradient (V.F Demyanov, 1970)—to solve a subclass of cVI, specifically constrained
zero-sum problems. This extension was carried out under a strong convex-concavity assumption
and also under the assumption that the constraint set is strongly convex; that is, it has sublevel
sets that are strongly convex functions (Vial, 1983). Daskalakis & Panageas (2019) provided an
asymptotic proof for the last iterate for zero-sum convex-concave constrained problems for the
optimistic multiplicative weights update (OMWU) method. Wei et al. (2021) focused on OGDA and
OMWU in the constrained setting and provided convergence rates for bilinear games over the simplex.
In her seminal work, Korpelevich (1976) proposed the classical (projected) extragradient method
(EG)—see App. A—and proved its convergence for monotone (c)VIs with an L-Lipschitz operator,
and Cai et al. (2022) established a rate with respect to the gap function using a computer-aided proof.
Tseng (1995) built on (Pang, 1987) and provided a linear convergence rate for EG in the setting
of strongly monotone F , whereas Malitsky (2015) focused on the same constrained setting but on
the projected reflected gradient method. Diakonikolas (2020) obtained parameter-free guarantee
for Halpern iteration (Halpern, 1967) for cocoercive operators. Goffin et al. (1997) described a
second-order cutting-plane method for solving pseudomonotone VIs with linear inequalities.

Interior point (IP) methods in single-objective and VI settings. Traditionally IP methods primarily
express the inequality constraints by augmenting the objective with a log-barrier penalty (see § 3.1),
and then use Newton’s method to solve the subproblem (Boyd & Vandenberghe, 2004). The latter
involves computing either the inverse of a large matrix or a Cholesky decomposition and yet it
can be highly efficient in low dimensions as it requires only a few iterations to converge. When
the dimensionality of the variable is large, however, the computation becomes infeasible. Among
other IP variants that address this issue, Lin et al. (2018) replaced the Newton step with the ADMM
method, which is known to be highly scalable in terms of the dimension (Boyd et al., 2011). In the
context of cVIs, a few works apply IP methods, mostly Newton-based (e.g., Nesterov & Nemirovski,
1994, Chapter 7). Monteiro & Pang (1996) analyze path-following IP methods for complementarity
problems, which are a subclass of cVI, using local homeomorphic maps. Chen et al. (1998) provided
a superlinear global convergence rate of the smoothing Newton method when F is semi-smooth
for box constrained VIs. Similarly, Qi & Sun (2002); Qi et al. (2000) focused on the smoothing
Newton method and provided the rate for the outer loop. Ralph & Wright (2000) showed superlinear
convergence for MVI problems under inequality constraints, under the following set of assumptions:
(i) existence of a strictly complementary solution, (ii) full rank of the Jacobian of the active constraints
at the solution, and (iii) twice differentiable constraints. They provided a local convergence rate. Fan
& Yan (2010) considered inequality constraints and proposed a second-order Newton-based method
that has global convergence guarantees under certain conditions. A rate was not provided.

3 PRELIMINARIES

Notation. Bold small and capital letters denote vectors and matrices, respectively. Sets are denoted
with curly capital letters, e.g., S . The Euclidean norm of v is denoted by ∥v∥, and the inner product
in Euclidean space with ⟨·, ·⟩. With ⊙ we denote element-wise product. We let [n] denote {1, . . . , n}
and let e denote vector of all 1’s. We let x ⊥ y denote x and y are perpendicular.

In the remainder of the paper, we consider a general setting in which the constraint set C ⊆ X is
defined as an intersection of finitely many inequalities and linear equalities:

C = {x ∈ Rn|φi(x) ≤ 0, i ∈ [m], Cx = d} , (CS)

where each φi : Rn 7→ R, C ∈ Rp×n, d ∈ Rp, where we assume rank(C) = p. For brevity, with φ
we denote the concatenated φi(·), i ∈ [m], and in the remainder of the paper, each φi ∈ C1(Rn), i ∈
[m] and is convex. For convenience we denote:

C≤ ≜ {x ∈ Rn |φ(x) ≤ 0} , C< ≜ {x ∈ Rn |φ(x) < 0} , and C= ≜ {y ∈ Rn|Cy = d} ;

thus the relative interior of C is int C ≜ C< ∩ C=, and we consider int C ̸= ∅ and C is compact.
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In the following, we list the definitions and assumptions we refer to later on.
Definition 1 ((strong/ξ) monotonicity). An operator F : X ⊇ S → Rn is monotone on S if:
⟨x − x′, F (x) − F (x′)⟩ ≥ 0,∀x,x′ ∈ S . F is said to be ξ–monotone on S iff there exist c > 0
and ξ > 1 such that ⟨x − x′, F (x) − F (x′)⟩ ≥ c∥x − x′∥ξ, for all x,x′ ∈ S. Finally, F is
µ-strongly monotone on S if there exists µ > 0, such that ⟨x− x′, F (x)− F (x′)⟩ ≥ µ∥x− x′∥2,
for all x,x′ ∈ S. Moreover, we say that an operator F is star–monotone, star–ξ-monotone or
star–strongly-monotone (on S) if the respective definition holds for x′ ≡ x⋆, where x⋆ ∈ S⋆S,F .

Note that the “star–” definitions are weaker relative to their respective non-star counterparts. The
above definition holds similarly for unconstrained VIs, by setting S ≡ Rn. The analog for cVI of the
function values used as a performance measure for convergence rates in convex optimization is the
gap function (a.k.a., the optimality gap or primal gap), defined next.
Definition 2 (gap function). Given a candidate point x′ ∈ X and a map F : X ⊇ S → Rn where S
is compact, the gap function G : Rn → R is defined as G(x′,S) ≜ max

x∈S
⟨F (x′),x′ − x⟩ .

Note that the gap function requires S to be compact in order to be defined (as otherwise, it can be
infinite). We will rely on the following assumption to express our rates in terms of the gap function.
Assumption 1 (first-order smoothness). Let F : X ⊇ S → Rn be an operator, we say that F satisfies
L-first-order smoothness on S, or L-smoothness, if F is an L-Lipschitz map; that is, there exists
L > 0 such that ∥F (x)− F (x′)∥ ≤ L ∥x− x′∥, for all x,x′ ∈ S.

As an informal summary, a solution existence guarantee follows when X is compact; see Chapter 2.2
of (Facchinei & Pang, 2003), and App. A.2.

3.1 RELEVANT PATH-FOLLOWING INTERIOR-POINT METHODS AND ADMM

In this section, we overview the interior-point approach to single-objective optimization, focusing on
aspects that are most relevant to our proposed method. Consider the following problem:

min
x

f(x) s.t. φ(x) ≤ 0 and Cx = d , (cCVX)

where f, φi : Rn → R are convex and continuously differentiable, x ∈ Rn, C ∈ Rp×n, and d ∈ Rp.
IP methods solve problem (cCVX) by reducing it to a sequence of linear equality-constrained
problems via a logarithmic barrier (see, e.g., Boyd & Vandenberghe, 2004, Chapter 11):

min
x

f(x)− µ

m∑
i=1

log(−φi(x)) s.t. Cx = d, with µ > 0 . (l-cCVX)

Assume that (l-cCVX) has a solution for each µ > 0, and let xµ denote the solution of (l-cCVX) for
a given µ. The central path of (l-cCVX) is defined as the set of points xµ, µ > 0. Note that xµ ∈ Rn

is a strictly feasible point of (cCVX) as it satisfies φ(xµ) < 0 and Cxµ = d.

Alternating direction method of multipliers (ADMM) method. ADMM (Glowinski & Marroco,
1975; Gabay & Mercier, 1976; Lions & Mercier, 1979; Glowinski & Le Tallec, 1989) is a gradient-
based algorithm for convex optimization problems that splits the objective into subproblems each
of which is easier to solve. Its popularity is due to its computational scalability (Boyd et al., 2011).
Consider a problem of the following form:

min
x,y

f(x) + g(y) s.t. Ax+By = b , (ADMM-Pr)

where f, g : Rn → R are convex, x,y ∈ Rn, A,B ∈ Rn′×n, and b ∈ Rn′
. The augmented

Lagrangian function, Lβ(·), of the (ADMM-Pr) problem is:

Lβ(x,y,λ) = f(x) + g(y) + ⟨Ax+By − b,λ⟩+ β

2
∥Ax+By − b∥2, (AL-CVX)

where β > 0 is referred to as the penalty parameter. If the augmented Lagrangian method is used
to solve (AL-CVX), at each step k we have: xk+1,yk+1 = argmin

x,y
Lβ(x,y,λk) and λk+1 =

λk + β(Axk+1 + Byk+1 − b) , where the latter step is gradient ascent on the dual. In contrast,
ADMM updates x and y in an alternating way as follows:

xk+1 = argmin
x
Lβ(x,yk,λk) ,

yk+1 = argmin
y
Lβ(xk+1,yk,λk) ,

λk+1 = λk + β(Axk+1 +Byk+1 − b) .

(ADMM)
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4 ACVI: FIRST-ORDER ADMM-BASED IP METHOD FOR CONSTRAINED VIS

4.1 DERIVING THE ACVI ALGORITHM

In this section, we derive an interior-point method for the cVI problem that we refer to as ACVI
(ADMM-based interior problem for constrained VIs). We first restate the cVI problem in a form
that will allow us to derive an interior-point procedure. By the definition of cVI it follows (see §1.3
in Facchinei & Pang, 2003) that:

x ∈ S⋆C,F ⇔


w = x

x = argmin
z

F (w)⊺z

s.t. φ(z) ≤ 0

Cz = d

⇔


F (x) +∇φ⊺(x)λ+C⊺ν = 0

Cx = d

0 ≤ λ⊥φ(x) ≤ 0,

(KKT)

where λ ∈ Rm and ν ∈ Rp are dual variables, and ⊥ denotes perpendicular. Recall that we assume
that int C ≠ ∅, thus, by the Slater condition (using the fact that φi(x), i ∈ [m] are convex) and the
KKT conditions, the second equivalence holds, yielding the KKT system of cVI. Note that the above
equivalence also guarantees the two solutions coincide; see Facchinei & Pang (2003, Prop. 1.3.4
(b)). Analogous to the method described in § 3, we add a log-barrier term to the objective to remove
the inequality constraints and obtain the following modified version of (KKT):

w = x

x = argmin
z

F (w)⊺z − µ
m∑
i=1

log
(
−φi(z)

)
s.t. Cz = d

⇔


F (x) +∇φ⊺(x)λ+C⊺ν = 0

λ⊙ φ(x) + µe = 0

Cx− d = 0

φ(x) < 0,λ > 0,

(KKT-2)

with µ > 0, e ≜ [1, . . . , 1]⊺ ∈ Rm. Again, the equivalence holds by the KKT and the Slater
condition. We derive the update rule at step k via the following subproblem: min

x
F (wk)

⊺x −

µ
m∑
i=1

log
(
− φi(x)

)
, s.t. Cx = d , where we fix w = wk. Directly projecting on the equality

constraint may cause the vectors to fall out of the domain of the log term. On the other hand, (i) wk

is a constant vector in this subproblem, and (ii) the objective is split, making ADMM a natural choice
to solve the subproblem. Hence, we introduce a new variable y ∈ Rn yielding:min

x,y
F (wk)

⊺x+ 1[Cx = d]− µ
m∑
i=1

log
(
− φi(y)

)
s.t. x = y

, 1[Cx = d] ≜

{
0, if Cx = d

+∞, if Cx ̸= d.
(1)

Note that 1[Cx = d] is a generalized real-valued convex function of x. We introduce the following:
Pc ≜ I −C⊺(CC⊺)−1C , (Pc) and dc ≜ C⊺(CC⊺)−1d , (dc-EQ)

where Pc ∈ Rn×n and dc ∈ Rn. The augmented Lagrangian of (1) is thus:

Lβ(x,y,λ)=F (wk)
⊺x+ 1(Cx = d)− µ

m∑
i=1

log(−φi(y)) + ⟨λ,x− y⟩ + β

2
∥x− y∥2 , (AL)

where β > 0 is the penalty parameter. Finally, using ADMM, we have the following update rule
for x at step k:

xk+1 = arg min
x∈C=

Lβ(x,yk,λk) = arg min
x∈C=

β

2

∥∥∥∥x− yk +
1

β
(F (wk) + λk)

∥∥∥∥2 . (2)

This yields the following update for x:

xk+1 = Pc

(
yk −

1

β

(
F (wk) + λk

))
+ dc . (X-EQ)

For y and the dual variable λ, we have:

yk+1=argmin
y
Lβ(xk+1,y,λk)=argmin

y

(
−µ

m∑
i=1

log
(
− φi(y)

)
+

β

2

∥∥∥∥y − xk+1 −
1

β
λk

∥∥∥∥2
)
,

(Y-EQ)

λk+1 = λk + β(xk+1 − yk+1). (λ-EQ)
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Next, we derive the update rule for w. We set wk to be the solution of the following equation:

w +
1

β
PcF (w)− Pcyk +

1

β
Pcλk − dc = 0. (W-EQ)

The following theorem ensures the solution of (W-EQ) exists and is unique, see App. B.1 for proof.
Theorem 1 (W-EQ: solution uniqueness). If F is monotone on C=, the following statements hold
true for the solution of (W-EQ): (i) it always exists, (ii) it is unique, and (iii) it is contained in C=.
Remark 1. Note that when there are no equality constraints, C= becomes the entire space Rn.
Further notice that wk = xk+1, thus it is redundant to state it in the algorithm, and we remove w.

We summarize the full algorithm as Algorithm 1. For problems such as affine or low-dimensional
VIs, or optimization over the probability simplex, (W-EQ) can be solved analytically, such that
step 8 is fast to compute. For problems where (W-EQ) is cumbersome to solve analytically—e.g., in
GANs—one could use optimization methods for the unconstrained case, e.g., EG and GDA, among
others. See App. B.5 for further discussion. In the remaining discussion, where clear from context,
we drop the superscript from the iterate x

(t)
k .

Algorithm 1 ACVI pseudocode.

1: Input: operator F : X → Rn, constraints Cx = d and φi(x) ≤ 0, i = [m], hyperparameters
µ−1, β > 0, δ ∈ (0, 1), number of outer and inner loop iterations T and K, resp.

2: Initialize: y(0)
0 ∈ Rn, λ(0)

0 ∈ Rn

3: Pc ≜ I −C⊺(CC⊺)−1C where Pc ∈ Rn×n

4: dc ≜ C⊺(CC⊺)−1d where dc ∈ Rn

5: for t = 0, . . . , T − 1 do
6: µt = δµt−1

7: for k = 0, . . . ,K − 1 do
8: Set x(t)

k+1 to be the solution of: x+ 1
βPcF (x)− Pcy

(t)
k + 1

βPcλ
(t)
k − dc = 0 (w.r.t. x)

9: y
(t)
k+1 = argmin

y
− µt

∑m
i=1 log

(
− φi(y)

)
+ β

2

∥∥∥y − x
(t)
k+1 −

1
βλ

(t)
k

∥∥∥2
10: λ

(t)
k+1 = λ

(t)
k + β(x

(t)
k+1 − y

(t)
k+1)

11: end for
12: (y

(t+1)
0 ,λ

(t+1)
0 ) ≜ (y

(t)
K ,λ

(t)
K )

13: end for

4.2 CONVERGENCE ANALYSIS

We consider two broad classes of problems. The first class assumes that F is ξ-monotone on C=—a
stronger assumption than monotonicity, yet weaker than strong monotonicity. The second setup
requires that (i) F is monotone, (ii) the constraints are active at the solution, and (iii) F is not purely
rotational. Note that (iii) is weaker than requiring that the active constraints at the solution form an
acute angle with the operator; in other words, given the latter, the former holds due to monotonicity
of F . (See App. B). Note that (iii) is not strong, as purely rotational games occur “almost never” in
a Baire category sense (Kupka, 1963; Smale, 1963; Balduzzi et al., 2018; Hsieh et al., 2021). The
proofs of the main theorems use the following lemma.
Lemma 1 (Upper bound for G(·)). When F is L-Lipschitz on C=—as per Assumption 1—we have
that any iterate xk produced by Algorithm 1 satisfies G(xk, C) ≤ M0 ∥xk − x⋆∥, where M0 > 0
depends linearly on L, and x⋆ ∈ S⋆C,F .

To state the results we define the following sets. For r, s > 0, let Ĉr ≜ {x ∈ Rn|Cx = d, φ(x) ≤
re}, and similarly let C̃s ≜ {x ∈ Rn| ∥Cx− d∥ ≤ s, φ(x) ≤ 0}. We have the following.
Theorem 2 (Last and average iterate convergence for star-ξ-monotone operator). Given an operator
F : X → Rn monotone on C= (Def. 1), assume that either F is strictly monotone on C or one of φi is
strictly convex. Assume there exists r > 0 or s > 0 such that F is star-ξ-monotone on either Ĉr or C̃s.
Let x(t)

K and x̂
(t)
K ≜ 1

K

∑K
k=1 x

(t)
k denote the last and average iterate of Algorithm 1, respectively,

run with sufficiently small µ−1. Then for all t ∈ [T ], we have that:
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1.
∥∥∥x(t)

K − x⋆
∥∥∥ ≤ O( 1

K1/(2ξ) ).

2. If in addition F is ξ-monotone on C=, we have
∥∥∥x̂(t)

K − x⋆
∥∥∥ ≤ O( 1

K1/ξ ) .

3. Moreover, if F is L-Lipschitz on C=—as per Assumption 1—the same corresponding upper bounds
hold for G(x(t)

K , C) and G(x̂(t)
K , C); that is, G(x(t)

K , C) ≤ O( L
K1/(2ξ) ) and G(x̂(t)

K , C) ≤ O( L
K1/ξ ) .

Remark 2. Note that the convergence guarantee does not rely on Assumption 1, and it is solely
used to relate the rate to the gap function. Also, note that µ−1 does not impact the convergence rate.
Moreover, for simplicity we state the result with sufficiently small µ−1, however, the proof extends to
any µ−1 > 0. That is, the above result can be made parameter-free; see App. B.4.

Theorem 3 (Last and average iterate convergence for monotone operator). Given an operator
F : X → Rn, assume (i) F is monotone on C=, and (ii) either F is strictly monotone on C or
one of φi is strictly convex, and (iii) inf

x∈S\{x⋆}
F (x)

⊺ x−x⋆

∥x−x⋆∥ > 0, where S ≡ Ĉr or C̃s. Let x(t)
K

and x̂
(t)
K ≜ 1

K

∑K
k=1 x

(t)
k denote the last and average iterate of Algorithm 1, respectively, run with

sufficiently small µ−1. Then for all t ∈ [T ], we have that:

1.
∥∥∥x(t)

K − x⋆
∥∥∥ ≤ O( 1√

K
).

2. If in addition inf
x∈S\{x⋆}

F (x⋆)⊺ x−x⋆

∥x−x⋆∥ > 0 (with S ≡ Ĉr or C̃s), then
∥∥∥x̂(t)

K − x⋆
∥∥∥ ≤ O( 1

K ) .

3. Moreover, if F is L-Lipschitz on C=—as per Assumption 1—the same corresponding upper bounds
hold for G(x(t)

K , C) and G(x̂(t)
K , C), that is, G(x(t)

K , C) ≤ O( L√
K
) and G(x̂(t)

K , C) ≤ O( L
K ) .

Assumption (iii) in Theorem 3 requires the angle of F (x) and x − x⋆ to be acute on S\ {x⋆},
where S = Ĉr or C̃s. For example, when there are no equality constraints, Assumption (iii) becomes

inf
x∈C\{x⋆}

F (x)
⊺ x−x⋆

∥x−x⋆∥ > 0. From (cVI) and by the monotonicity of F , we can see that for any

point x ∈ C\ {x⋆}, the angle between F (x) and x − x⋆ is always less than or equal to π/2. And
assumption (iii) requires that F (x⋆) ̸= 0, which means some constraints are active at x⋆, and
∃θ ∈ (0, π/2) s.t. for any x ∈ C\ {x⋆}, the angle between F (x) and x− x⋆ is upper bounded by θ.

Remark 3. Our proofs rely on the existence of the central path—see Appendix A. Note that since C
is compact, it suffices that either: (i) F is strictly monotone on C, or that (ii) one of the inequality
constraints φi is strictly convex for the central path to exist (Facchinei & Pang, 2003, Corollary
11.4.24). Thus, if F is ξ-monotone on C, then the central path exists. However, to relax the former
assumption, notice that—by the compactness of C—there exists a sufficiently large M such that for
any x ∈ C, x⊺x ≤ M . Thus, one can add a strictly convex inequality constraint φm+1(x)—e.g.,
x⊺x−M ≤ 0—and the solution set remains intact. That is, as µ tends to 0 the original problem is
recovered. This ensures the existence of the central path without changing the original problem.

5 EXPERIMENTS

Problems. To study the empirical performance of ACVI we use the following 2D problems: (i) cBG:
the common bilinear game, constrained on R+ for the two players, stated in Fig. 1, (ii) Von Neumann’s
ratio game (Von Neumann, 1971; Daskalakis et al., 2020; Diakonikolas et al., 2021), (iii) Forsaken
game (Hsieh et al., 2021)–which exhibits limit cycles, as well as (iv) toy GAN—used in (Daskalakis
et al., 2018; Antonakopoulos et al., 2021). Note that these are known to be challenging problems in
the literature, and interestingly the latter three are non-monotone, going beyond the assumptions that
we made in our theoretical results. We also consider the following higher-dimension bilinear game
on the probability simplex, with η ∈ (0, 1), n = 1000:

min
x1∈△

max
x2∈△

ηx⊺
1x1+(1− η)x⊺

1x2−ηx⊺
2x2 ; △={xi ∈ R500|xi ≥ 0, and , e⊺xi = 1}. (HBG)

As GANs on MNIST (Lecun & Cortes, 1998) enjoy well-established metrics, we use this setup and
augment it solely with linear inequalities. We implement the baselines with the greedy projection
algorithm—see App. D.3 for details—hence these baselines will be slower when equality constraints
are also given. App. E lists additional experiments, including on Fashion-MNIST (Xiao et al., 2017).
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(a) Von Neumann’s ratio game (b) Forsaken game

GDA
EG
OGDA
LA5-GDA
ACVI

(c) toy GAN

Figure 2: Convergence of GDA, EG, OGDA, LA-GDA, and ACVI on three different 2d problems,
for a fixed number of total iterations, where markers denote the iterates of the respective method.
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Figure 3: Comparison on the (HBG) problem: (a)–CPU
time given fixed error, (b)–number of iterations needed to
reach ϵ-distance to solution for varying intensity of the rota-
tional component (1 − η). For both plots, we set maximum
iterations/time to run. See § 5 for discussion.
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Figure 4: FID (lower is better)
on MNIST with added constraints,
over wall-clock time; averaged over
3 seeds. See § 5 and App. D for dis-
cussion and implementation, resp.

Methods. We compare ACVI with the projected variants of the common saddle point optimizers
(fully described in App. A.4): (i) GDA, (ii) EG (Korpelevich, 1976), (iii) OGDA (Popov, 1980), and
(iv) LAk̃-GDA (Chavdarova et al., 2021b; Zhang et al., 2019), where k̃ is the hyperparameter of LA.
For ACVI on MNIST, l denotes the number of steps to solve the subproblems; see Algorithm 4.

Results. From Fig. 1, we observe that projection-based algorithms may zigzag when hitting a
constraint due to the rotational nature of F , behavior that ACVI avoids because it incorporates the
constraints in its update rule; see Fig. 5 for the remaining baselines. Fig. 2 shows that even with
problems that go beyond our theoretical assumptions, a single step of ACVI significantly reduces the
distance to the solution. Moreover, from Fig. 2(b), we observe that ACVI escapes the limit cycles;
see also Fig. 6. Fig. 3 shows results for (HBG), indicating that ACVI is time efficient, and that ACVI
performs well relative to projection-based methods for varying rotational intensity (1− η). Fig. 4
summarizes the experiments on MNIST with linear inequality constraints; we observe that ACVI
converges significantly faster than the corresponding baseline.

6 CONCLUSION

Motivated by the lack of a first-order method to solve constrained VI (cVI) problems with general
constraints, we proposed a framework that combines (i) interior-point methods—needed to be able to
handle general constraints—with (ii) the ADMM method—designed to deal with separable objectives.
The combination yields ACVI—a first-order ADMM-based interior point method for cVIs. We proved
convergence for two broad classes of problems and derived the corresponding convergence rates.
Numerical experiments showed that while projection-based methods zigzag when hitting a constraint
due to the rotational vector field, ACVI avoids this by incorporating the constraints in the update rule.
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A BACKGROUND: ADDITIONAL DETAILS

This section lists additional background such as omitted definitions and a description of the used
baseline methods.

A.1 ADDITIONAL VI DEFINITIONS & EQUIVALENT FORMULATIONS

Seeing an operator F : X → Rn as the graph GrF = {(x,y)|x ∈ X ,y = F (x)}, its inverse F−1

is defined as GrF−1 = {(y,x)|(x,y) ∈ GrF}. See, for example, (Ryu & Yin, 2022) for further
discussion. We denote the projection to the set X with ΠX .

Definition 3 ( 1µ -cocoercive operator). An operator F : X ⊇ S → Rn is 1
µ -cocoercive (or 1

µ -inverse
strongly monotone) on S if its inverse (graph) F−1 is µ-strongly monotone on S, that is,

∃µ > 0, s.t. ⟨x− x′, F (x)− F (x′)⟩ ≥ µ ∥F (x)− F (x′)∥2 ,∀x,x′ ∈ S .

It is star 1
µ -cocoercive if the above holds when setting x′ ≡ x⋆ where x⋆ denotes a solution, that is:

∃µ > 0, s.t. ⟨x− x⋆, F (x)− F (x⋆)⟩ ≥ µ ∥F (x)− F (x⋆)∥2 ,∀x ∈ S,x⋆ ∈ S⋆X ,F .

Note from Def. 3 that cocoercivity is a strict subclass of monotone and L-Lipschitz operators, thus is
it is a stronger assumption. See Chapter 4.2 of (Bauschke & Combettes, 2017) for further relations of
cocoercivity with other properties of operators.

In the following, we will make use of the natural and normal mappings of an operator F : X → Rn,
whereX ⊂ Rn. Following the notation of (Facchinei & Pang, 2003), the natural map FNAT

X : X → Rn

is:
FNAT
X ≜ x−ΠX

(
x− F (x)

)
, ∀x ∈ X , (F-NAT)

whereas the normal map FNOR
X : Rn → Rn is:

FNOR
X ≜ F

(
ΠX (x)

)
+ x−ΠX (x), ∀x ∈ Rn . (F-NOR)

Moreover, we have the following solution characterizations:

(i) x⋆ ∈ S⋆X ,F iff FNAT
X (x⋆) = 0, and

(ii) x⋆ ∈ S⋆X ,F iff ∃x′ ∈ Rn s.t. x⋆ = ΠX (x′) and FNOR
X (x′) = 0.

Remark 4 (“rotational” component of the vector field). The rotational trajectories in parameter
space are induced by the fact that the eigenvalues of the Jacobian of the vector field F (the second-
order derivative matrix) belong to the complex set C; that is λi ∈ C. In contrast, when F ≡ ∇f the
second-order derivative matrix known as the Hessian is always symmetric, and thus the eigenvalues
are real.

A.2 EXISTENCE OF SOLUTION

We provide brief informal summary of some sufficient conditions for solution existence, that S⋆·,F ̸= ∅.
See Chapter 2 of (Facchinei & Pang, 2003) for a full treatment of the topic.

The common underlying tool to establish that a solution to the VI(X , F ) problem exists is using
topological degree. The topological degree tool is designed so as to satisfy the so-called homotopy
invariance axiom, which in turn allows for reducing a solution existence question of a complicated
map to a simpler one (which is homotopy-invariant to the original one) for which we can more easily
show that it has a solution (e.g., the identity map on a closed domain). It can be used (as one way) to
prove the celebrated Brouwer fixed-point theorem, which states that any continuous map Φ : S → S ,
where S is a nonempty convex compact set, has a fixed point in S.

We have the following sufficient condition, see (Cor. 2.2.5, Facchinei & Pang, 2003)

Theorem 4 (sufficient condition for existence of the solution, Cor. 2.2.5, (Facchinei & Pang, 2003)).
If X ⊆ Rn is compact and convex, and F : X → Rn is continuous, then the solution set is nonempty
and compact.
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It can also be shown that when X is closed convex (and F continuous), if one can find x′ ∈ X s.t.
⟨F (x),x − x′⟩ ≥ 0,∀x ∈ X , then S⋆X ,F ̸= ∅. The same conclusion follows if one can show that
∃x′ ∈ X and the set {x ∈ X |⟨F (x),x − x′⟩ < 0} is bounded (possibly empty, see Prop. 2.2.3
in (Facchinei & Pang, 2003)).

Sufficient conditions can also be established via the natural and the normal map due to the above
solution characterizations. In this case, we require that F is continuous on an open set S and we
are interested if S⋆X ,F ̸= ∅, where X is assumed closed and convex and subset of S, X ⊆ S. If one
establishes that a solution exists for FNAT

X on a bounded open set U , and if cl U ⊆ S, then it follows
that S⋆X ,F ̸= ∅. A similar implication holds when we have such a guarantee for FNOR

X . See Theorem
2.2.1 of (Facchinei & Pang, 2003).

In summary, the solution existence guarantee follows from the boundness of some set which includes
X , the boundness of the set of potential solutions (if we can construct such set), or the compactness
of X itself.

A.3 EXISTENCE OF CENTRAL PATH

In this section, we discuss the results that establish guarantees of the existence of the central path.
Let L(x,λ,ν) ≜ F (x) +∇φ⊺(x)λ+C⊺ν, h(x) = C⊺x− d. For (λ,w,x,ν) ∈ R2m+n+p, let

G(λ,w,x,ν) ≜

 w ◦ λ
w + φ(x)
L(x,λ,ν)

h(x)

 ∈ R2m+n+p,

and

H(λ,w,x,ν) ≜

(
w + φ(x)
L(x,λ,ν)

h(x)

)
∈ Rm+n+p.

Let H++ ≜ H(R2m
++ × Rn × Rp). By (Corollary 11.4.24, Facchinei & Pang, 2003) we have the

following proposition.

Proposition 1 (sufficient condition for the existence of the central path.). If F is monotone, either F
is strictly monotone or one of φi is strictly convex, and C is bounded. The following four statements
hold for the functions G and H:

1. G maps R2m
++ × Rn+p homeomorphically onto Rm

++ ×H++;

2. Rm
++ ×H++ ⊆ G(R2m

+ × Rn+p);

3. for every vector a ∈ Rm
+ , the system

H(λ,w,x,ν) = 0, w ◦ λ = a

has a solution (λ,w,x,ν) ∈ R2m
+ × Rn+p; and

4. the set H++ is convex.

A.4 SADDLE-POINT OPTIMIZATION METHODS

In this section, we describe in detail the saddle point methods that we compare within the main part
(in § 5). We denote the projection to the set X with ΠX , and when the method is applied in the
unconstrained setting ΠX ≡ I .

For an example of the associated vector field and its Jacobian, consider the following constrained
zero-sum game:

min
x1∈X1

max
x2∈X2

f(x1,x2) , (ZS-G)
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where f : X1 ×X2 → R is smooth and convex in x1 and concave in x2. As in the main paper, we
write x ≜ (x1,x2) ∈ Rn. The vector field F : X → Rn and its Jacobian J are defined as:

F (x)=

[
∇x1

f(x)
−∇x2

f(x)

]
, J(x)=

[
∇2

x1
f(x) ∇x2∇x1f(x)

−∇x1∇x2f(x) −∇2
x2
f(x)

]
.

In the remainder of this section, we will only refer to the joint variable x, and (with abuse of notation)
the subscript will denote the step. Let γ ∈ [0, 1] denote the step size.

(Projected) Gradient Descent Ascent (GDA). The extension of gradient descent for the cVI problem
is gradient descent ascent (GDA). The GDA update at step k is then:

xk+1 = ΠX
(
xk − γF (xk)

)
. (GDA)

(Projected) Extragradient (EG). EG (Korpelevich, 1976) uses a “prediction” step to obtain an ex-
trapolated point xk+ 1

2
using GDA: xk+ 1

2
=ΠX

(
xk−γF (xk)

)
, and the gradients at the extrapolated

point are then applied to the current iterate xt:

xk+1=ΠX

(
xk − γF

(
ΠX
(
xk − γF (xk)

)))
. (EG)

In the original EG paper, (Korpelevich, 1976) proved that the EG method (with a fixed step size)
converges for monotone VIs, as follows.

Theorem 5 (Korpelevich (1976)). Given a map F : X 7→ Rn, if the following is satisfied:

1. the set X is closed and convex,

2. F is single-valued, definite, and monotone on X–as per Def. 1,

3. F is L-Lipschitz–as per Asm. 1.

then there exists a solution x⋆ ∈ X , such that the iterates xk produced by the EG update rule with a
fixed step size γ ∈ (0, 1

L ) converge to it, that is xk → x⋆, as k →∞.

Facchinei & Pang (2003) also show that for any convex-concave function f and any closed convex
sets x1 ∈ X1 and x2 ∈ X2, the EG method converges (Facchinei & Pang, 2003, Theorem 12.1.11).

(Projected) Optimistic Gradient Descent Ascent (OGDA). The update rule of Optimistic Gradient
Descent Ascent OGDA ((OGDA) Popov, 1980) is:

xn+1 = ΠX
(
xn − 2γF (xn) + γF (xn−1)

)
. (OGDA)

(Projected) Lookahead–Minmax (LA). The LA algorithm for min-max optimization (Chavdarova
et al., 2021b), originally proposed for minimization by Zhang et al. (2019), is a general wrapper of
a “base” optimizer where, at every step t: (i) a copy of the current iterate x̃n is made: x̃n ← xn,
(ii) x̃n is updated k ≥ 1 times, yielding ω̃n+k, and finally (iii) the actual update xn+1 is obtained as
a point that lies on a line between the current xn iterate and the predicted one x̃n+k:

xn+1 ← xn + α(x̃n+k − xn), α ∈ [0, 1] . (LA)

In this work, we use solely GDA as a base optimizer for LA and thus denote it with LAk-GDA.

The projection-free Frank-Wolfe (FW). FW (Frank & Wolfe, 1956) is an IP-type method for solving
constrained smooth zero-sum games (ZS-G). It avoids the projection operator by ensuring we never
leave the constraint set. To do so, it finds the intersection points of the inequality constraints—hence,
it requires that the inequality constraints satisfy certain structures (such as linear) in order for this
operation to be computationally cheap. We state FW for zero-sum games in Algorithm 2 as proposed
by Gidel et al. (2017a, Alg. 2) for completeness. It requires access to a linear minimization oracle
(LMO) over the constraint set—to minimize the linear function in line 5 in Algorithm 2. Currently,
FW-style algorithms only have convergence guarantees when the constraint set is a polytope ((Gidel
et al., 2017a)) with additional assumptions (which we listed in § 2.
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Algorithm 2 Frank-Wolfe algorithm for zero-sum games.

1: Input: C,ν > 0

2: Initialize: z(0) = (x
(0)
1 ,x

(0)
2 ) ∈ X1 ×X2

3: for t = 0, . . . , T do

4: Compute r(t) ≜

[
∇x1

f(x
(t)
1 ,x

(t)
2 )

−∇x2
f(x

(t)
1 ,x

(t)
2 )

]
5: s(t) ≜ argminz∈X1×X2

⟨z, r(t)⟩
6: Compute gt ≜ ⟨z(t) − s(t), r(t)⟩
7: if gt ≤ ε then
8: return z(t)

9: end if
10: Let γ = min

(
1, ν

2C gt
)

or γ = 2
2+t

11: Update z(t+1) = (1− γ)z(t) + γs(t)

12: end for
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B OMITTED PROOFS AND DISCUSSIONS CONCERNING ALGORITHM 1

This section provides the proofs of the theoretical results in § 4.2.

B.1 PROOF OF THEOREM 1: UNIQUENESS OF THE SOLUTION OF EQ. W-EQ

Recall first that Eq. W-EQ is as follows:

x+
1

β
PcF (x)− Pcyk +

1

β
Pcλk − dc = 0 ,

since w = x.

Proof of Theorem 1: uniqueness of the solution of (W-EQ). Let G(x) denote the LHS of (W-EQ),
that is:

G(x) ≜ x+
1

β
PcF (x)− Pcyk +

1

β
Pcλk − dc (3)

We claim that G(x) is strongly monotone on C=. In fact, ∀x,y ∈ C=, Pc(x − y) = x − y. Note
that Pc is symmetric, thus we have:

⟨G(x)−G(y),x− y⟩ = ∥x− y∥2 + 1

β
⟨PcF (x)− PcF (y),x− y⟩

= ∥x− y∥2 + 1

β
⟨x− y, F (x)− F (y)⟩

≥ ∥x− y∥2.

Therefore, according to Theorem 2.3.3 (b) in (Facchinei & Pang, 2003), S⋆C=,G has a unique solution
x̃ ∈ C=. Thus, we have:

G(x̃)⊺(x− x̃) = 0, ∀x ∈ C= .

From the above, we deduce that G(x) ∈ Span {c1, · · · , cp}, where ci is the row vectors of C,
i ∈ [p].

Suppose that G(x̃) =
∑p

i=1 αici. Notice that CG(x) = 0, ∀x ∈ C=. Thus, we have that:

c⊺jG(x̃) = c⊺j

p∑
i=1

αici = 0, ∀j ∈ [p] .

Hence,

⟨G(x̃), G(x̃)⟩ = ⟨
p∑

i=1

αici,

p∑
i=1

αici⟩ = 0 ,

which indicates that G(x̃) = 0. Hence, x̃ is a solution of (W-EQ) in C=.

On the other hand, ∀x ∈ Rn, if x is a solution of (W-EQ), i.e. G(x) = 0, then x ∈ C=. By the
uniqueness of x̃ in C= we have that x = x̃, which means x̃ is unique in Rn.

B.2 PROOF OF LEMMA 1: UPPER BOUND ON THE GAP FUNCTION

Proof of Lemma 1: Upper bound on the gap function. Let xk denote an iterate produced by Algo-
rithm 1, and let x ∈ C. Note that we always have xk ∈ C=. We have that:

⟨F (xk),xk − x⟩ = ⟨F (x⋆),x⋆ − x⟩+ ⟨F (xk),xk − x⟩ − ⟨F (x⋆),x⋆ − x⟩
= ⟨F (x⋆),x⋆ − x⟩+ ⟨F (xk),xk − x⋆ + x⋆ − x⟩ − ⟨F (x⋆),x⋆ − x⟩ .

From the proof of Theorem 6 we know that xk is bounded, which gives: ⟨F (xk),xk − x⋆⟩ ≤
M ∥xk − x⋆∥, with M > 0, as well as that ⟨F (x⋆),x⋆ − x⟩ ≤ 0. Thus, for the above we get:

⟨F (xk),xk − x⟩ ≤ ⟨F (xk)− F (x⋆),x⋆ − x⟩+M ∥xk − x⋆∥
≤ D ∥F (xk)− F (x⋆)∥+M ∥xk − x⋆∥
≤ (DL+M) ∥xk − x⋆∥ ,
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where for the second row we used x⋆−x ≤ D where D ≜ maxx′∈C ∥x⋆ − x′∥ is the largest distance
between any point in C and x⋆. For the last row we used that F is L-Lipschitz—Assumption 1—which
concludes the proof.

The proof is analogous for the yk ∈ C≤ iterates produced by Algorithm 1.

B.3 PROOFS OF THE CONVERGENCE RATE: THEOREMS 2 AND 3

Let
f (t)(x) ≜ F (xµt)⊺x+ 1(Cx = d) ,

f
(t)
k (x) ≜ F (x

(t)
k+1)

⊺x+ 1(Cx = d) ,

g(t)(y) ≜ −µt

m∑
i=1

log
(
− φi(y)

)
,

where xµt is a solution of (KKT-2) when µ = µt. Note that the existence of xµt is guaranteed by the
existence of the central path-see App. A, and that f (t), f

(t)
k and g(t) are all convex.

In the following proofs, unless causing confusion, we drop the subscript t to simplify notations.

Let yµ = xµ, from (KKT-2) we can see that (xµ,yµ) is an optimal solution of{
min f(x) + g(y)

s.t. x = y
. (4)

There exists λµ ∈ Rn such that (xµ,yµ,λµ) is a KKT point of (4). We give the following proposition
which we will repeatedly use in the proofs:

Proposition 2. If F is monotone, then ∀k ∈ N,

fk(xk+1)− fk(x
µ) ≥ f(xk+1)− f(xµ).

Furthermore, if F is ξ-monotone, as per Def. 1

fk(xk+1)− fk(x
µ) ≥ f(xk+1)− f(xµ) + c∥xk+1 − xµ∥ξ2.

Proof of Proposition 2. It suffices to note that:

fk(xk+1)− fk(x
µ)− (f(xk+1)− f(xµ)) = (F (xk+1)− F (xµ))⊺(xk+1 − xµ).

Some of our proofs that follow are inspired by some convergence proofs in ADMM (Gabay, 1983;
Eckstein & Bertsekas, 1992; Davis & Yin, 2016; He & Yuan, 2012; 2015; Lin et al., 2022). How-
ever, although Algorithm 1 adopts the high level idea of ADMM, we can not directly refer to the
convergence proofs of ADMM, but need to substantially modify these.

We will use the following lemma.

Lemma 2. f(x) + g(y)− f(xµ)− g(yµ) + ⟨λµ,x− y⟩ ≥ 0,∀x,y.

Proof. The Lagrange function of (4) is

L(x,y,λ) = f(x) + g(y) + λ⊺(x− y).

And by the property of KKT point, we have

L(xµ,yµ,λ) ≤ L(xµ,yµ,λµ) ≤ L(x,y,λµ), ∀(x,y,λ) ,

from which the conclusion follows.
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The following lemma is straightforward to verify:
Lemma 3. If

f(x) + g(y)− f(xµ)− g(yµ) + ⟨λµ,x− y⟩ ≤ α1,

∥x− y∥ ≤ α2

then we have
−∥λµ∥α2 ≤ f(x) + g(y)− f(xµ)− g(yµ) ≤ ∥λµ∥α2 + α1.

The following lemma lists some simple but useful facts that we will use in the following proofs.
Lemma 4. For (4) and Algorithm 1, we have

0 ∈ ∂fk(xk+1) + λk + β(xk+1 − yk+1) (5)
0 ∈ ∂g(yk+1)− λk − β(xk+1 − yk+1), (6)

λk+1 − λk = β(xk+1 − yk+1), (7)
0 ∈ ∂f(xµ) + λµ, (8)
0 ∈ ∂g(yµ)− λµ, (9)

xµ = yµ. (10)

We define:
∇̂fk(xk+1) ≜ −λk − β(xk+1 − yk), (11)

∇̂g(yk+1) ≜ λk + β(xk+1 − yk+1). (12)

Then from (5) and (6) we can see that

∇̂fk(xk+1) ∈ ∂fk(xk+1) and ∇̂g(yk+1) ∈ ∂g(yk+1). (13)

Lemma 5. For Algorithm 1, we have

⟨∇̂g(yk+1),yk+1 − y⟩ = −⟨λk+1,y − yk+1⟩, (14)

and

⟨∇̂fk(xk+1),xk+1 − x⟩+ ⟨∇̂g(yk+1),yk+1 − y⟩
=− ⟨λk+1,xk+1 − yk+1 − x+ y⟩+ β⟨−yk+1 + yk,xk+1 − x⟩.

(15)

Proof of Lemma 5. From (7), (11) and (12) we have:

⟨∇̂fk(xk+1),xk+1 − x⟩
=− ⟨λk + β(xk+1 − yk),xk+1 − x⟩
=− ⟨λk+1,xk+1 − x⟩+ β⟨−yk+1 + yk,xk+1 − x⟩,

and
⟨∇̂g(yk+1),yk+1 − y⟩ = −⟨λk+1,y − yk+1⟩.

Adding these together yields (15).

Lemma 6. For Algorithm 1, we have

⟨∇̂fk(xk+1),xk+1 − xµ⟩+ ⟨∇̂g(yk+1),yk+1 − yµ⟩+ ⟨λµ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥yµ − yk∥2 −

β

2
∥yµ − yk+1∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥yk − yk+1∥2
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Proof of Lemma 6. Letting (x,y,λ) = (xµ,yµ,λµ) in(15), adding ⟨λµ,xk+1 − yk+1⟩ to both
sides, and using (7) and (10), we have:

⟨∇̂fk(xk+1),xk+1 − xµ⟩+ ⟨∇̂g(yk+1),yk+1 − yµ⟩+ ⟨λµ,xk+1 − yk+1⟩
=− ⟨λk+1 − λµ,xk+1 − yk+1⟩+ β⟨−yk+1 + yk,xk+1 − xµ⟩

=− 1

β
⟨λk+1 − λµ,λk+1 − λk⟩+ ⟨−yk+1 + yk,λk+1 − λk⟩

− β⟨−yk+1 + yk,−yk+1 + yµ⟩ (16)

=
1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2 − 1

2β
∥λk+1 − λk∥2

+
β

2
∥−yk + y⋆∥2 − β

2
∥−yk+1 + y⋆∥2 − β

2
∥−yk+1 + yk∥2

+⟨−yk+1 + yk,λk+1 − λk⟩ . (17)

On the other hand, (14) gives

⟨∇̂g(yk),yk − y⟩+ ⟨λk,−yk + y⟩ = 0 . (18)

Letting y = yk in (14) and y = yk+1 in (18), and adding them together, we have:

⟨∇̂g(yk+1)− ∇̂g(yk),yk+1 − yk⟩+ ⟨λk+1 − λk,−yk+1 + yk⟩ = 0 .

By the monotonicity of ∂g we know that the first term of the above equality is non-negative. Thus,
we have:

⟨λk+1 − λk,−yk+1 + yk⟩ ≤ 0 . (19)

Plugging it into (17), we have the conclusion.

Lemma 7. For Algorithm 1, we have

f(xk+1) + g(yk+1)− f(xµ)− g(yµ) + ⟨λµ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2 (20)

Furthermore, if F is ξ-monotone on C=, we have

c∥xk+1 − xµ∥ξ2 + f(xk+1) + g(yk+1)− f(xµ)− g(yµ) + ⟨λµ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2. (21)
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Proof. From the convexity of fk(x) and g(y) and using Proposition 2 and (13), we have

f(xk+1) + g(yk+1)− f(xµ)− g(yµ) + ⟨λµ,xk+1 − yk+1⟩
≤fk(xk+1) + g(yk+1)− fk(x

µ)− g(yµ) + ⟨λµ,xk+1 − yk+1⟩
≤⟨∇̂fk(xk+1),xk+1 − xµ⟩+ ⟨∇̂g(yk+1),yk+1 − yµ⟩
+⟨λµ,xk+1 − yk+1⟩

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

− 1

2β
∥λk+1 − λk∥2 −

β

2
∥−yk+1 + yk∥2.

(22)

If F is ξ-monotone on C=, again by Proposition 2, we can add the term c∥xk+1 − xµ∥ξ2 to the first
line and the inequality still holds.

Theorem 6. For Algorithm 1, we have

f(xk+1)− f(xµ) + g(yk+1)− g(yµ)→ 0,

fk(xk+1)− fk(x
µ) + g(yk+1)− g(yµ)→ 0,

xk+1 − yk+1 → 0,

as k →∞. Furthermore, if F is ξ-monotone on C=, we have

xk+1 → xµ, k →∞

Proof of Theorem 6. Proof From Lemma 2 and (20), we have

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2.

(23)

Summing over k = 0, · · · ,∞, we have
∞∑
k=0

(
1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2)

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2.

from which we deduce that λk+1 − λk → 0 and −yk+1 + yk → 0. Moreover, ∥λk − λµ∥2 and
∥−yk + yµ∥2 are bounded for all k, as well as ∥λk∥. Since

λk+1 − λk = β(xk+1 − yk+1) = β(xk+1 − xµ) + β(−yk+1 + yµ)

we deduce that xk+1 − yk+1 → 0 and xk+1 − xµ is also bounded.

From (15) and the convexity of f and g, and using Proposition 2, we have:

f(xk+1)− f(xµ) + g(yk+1)− g(yµ)

≤fk(xk+1)− fk(x
µ) + g(yk+1)− g(yµ)

≤− ⟨λk+1,xk+1 − yk+1⟩+ β⟨−yk+1 + yk,xk+1 − xµ⟩ → 0.

On the other hand, from (8), (9), and (10), we have:

fk (xk+1)− fk (x
µ) + g (yk+1)− g (yµ)

≥f (xk+1)− f (xµ) + g (yk+1)− g (yµ)

≥⟨−λµ,xk+1 − xµ⟩+ ⟨λµ,yk+1 − yµ⟩
=− ⟨λµ,xk+1 − yk+1⟩ → 0.
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Thus, we have f (xk+1)− f (xµ)+ g (yk+1)− g (yµ)→ 0 and fk (xk+1)− fk (x
µ)+ g (yk+1)−

g (yµ)→ 0, k →∞.

If F is ξ-monotone on C=, from Lemma 2 and (21) we have

c∥xk+1 − xµ∥ξ2 +
1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λµ∥2 − 1

2β
∥λk+1 − λµ∥2

+
β

2
∥−yk + yµ∥2 − β

2
∥−yk+1 + yµ∥2

(24)

From this we deduce that:

c∥xk+1 − xµ∥ξ2 +
∞∑
k=0

(
1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

)
≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2.

Therefore, ∥xk+1 − xµ∥2 → 0, k →∞.

Lemma 8. For Algorithm 1, we have

1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2.

(25)

Furthermore, if F is ξ-monotone on C=, we have

c∥xk+1 − xk∥2 +
1

2β
∥λk+1 − λk∥2 +

β

2
∥−yk+1 + yk∥2

≤ 1

2β
∥λk − λk−1∥2 +

β

2
∥−yk + yk−1∥2.

(26)

Proof of Lemma 8. (15) gives:

⟨∇̂fk−1 (xk) ,xk − x⟩+ ⟨∇̂g (yk) ,yk − y⟩
=− ⟨λk,xk − yk − x+ y⟩+ β⟨−yk + yk−1,xk − x⟩.

(27)
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Letting (x,y,λ) = (xk,yk,λk) in (15) and (x,y,λ) = (xk+1,yk+1,λk+1) in (27), and adding
them together, and using (7), we have

⟨∇̂fk (xk+1)− ∇̂fk−1 (xk) ,xk+1 − xk⟩+ ⟨∇̂g (yk+1)− ∇̂g (yk) ,yk+1 − yk⟩
=− ⟨λk+1 − λk,xk+1 − yk+1 − xk + yk⟩+ β⟨−yk+1 + yk − (−yk + yk−1) ,xk+1 − xk⟩

=− 1

β
⟨λk+1 − λk,λk+1 − λk − (λk − λk−1)⟩

+⟨−yk+1 + yk + (yk − yk−1) ,λk+1 − λk + βyk+1 − (λk − λk−1 + βyk)⟩

=
1

2β

[
∥λk − λk−1∥2 − ∥λk+1 − λk∥2 − ∥λk+1 − λk − (λk − λk−1)∥2

]
+
β

2

[
∥−yk + yk−1∥2 − ∥−yk+1 + yk∥2 − ∥−yk+1 + yk − (−yk + yk−1)∥2

]
+⟨−yk+1 + yk − (−yk + yk−1) ,λk+1 − λk − (λk − λk−1)⟩

=
1

2β

(
∥λk − λk−1∥2 − ∥λk+1 − λk∥2

)
+

β

2

(
∥−yk + yk−1∥2 − ∥−yk+1 + yk∥2

)
− 1

2β
∥λk+1 − λk − (λk − λk−1)∥2 −

β

2
∥−yk+1 + yk − (−yk + yk−1)∥2

+⟨−yk+1 + yk − (−yk + yk−1) ,λk+1 − λk − (λk − λk−1)⟩

≤ 1

2β

(
∥λk − λk−1∥2 − ∥λk+1 − λk∥2

)
+

β

2

(
∥−yk + yk−1∥2 − ∥−yk+1 + yk∥2

)
By the convexity of fk and fk−1, we have

⟨∇̂fk (xk+1) ,xk+1 − xk⟩ ≥fk(xk+1)− fk(xk) ,

−⟨∇̂fk−1 (xk) ,xk+1 − xk⟩ ≥fk−1(xk)− fk−1(xk+1) .

Adding them together gives that:

⟨∇̂fk (xk+1)− ∇̂fk−1 (xk) ,xk+1 − xk⟩ ≥fk(xk+1)− fk−1(xk+1)− fk(xk) + fk−1(xk)

=⟨F (xk+1)− F (xk),xk+1 − xk⟩ ≥ 0 .

Thus by the monotonicity of F and ∇̂g, (25) follows.

Theorem 7. If F is monotone on C=, then for Algorithm 1, we have

−∥λµ∥

√
∆µ

β (K + 1)
≤f (xK+1) + g (yK+1)− f (xµ)− g (yµ)

≤fK (xK+1) + g (yK+1)− fK (xµ)− g (yµ)

≤ ∆µ

K + 1
+

2∆µ

√
K + 1

+ ∥λµ∥

√
∆µ

β (K + 1)
,

(28)

∥xK+1 − yK+1∥ ≤

√
∆µ

β (K + 1)
, (29)

where ∆µ ≜ 1
β ∥λ0 − λµ∥2 + β∥y0 − yµ∥2.

Furthermore, if F is ξ-monotone on C=, we have

c∥x̂K+1 − xµ∥ξ ≤ ∆µ

K + 1
, (30)

c∥xK+1 − xµ∥ξ2 ≤
∆µ

K + 1
+

2∆µ

√
K + 1

. (31)

where x̂K+1 = 1
K+1

∑K+1
k=1 xK .
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Proof of Theorem 7. Summing (23) over k = 0, 1, . . . ,K and using the monotonicity of 1
2β ∥λk+1−

λk∥2 + β
2 ∥−yk+1 + yk∥2 from Lemma 8, we have:

1

β
∥λK+1 − λK∥2 + β∥−yK+1 + yK∥2 ≤

1

K + 1

(
1

β
∥λ0 − λµ∥2 + β∥−y0 + yµ∥2

)
(32)

From the above we deduce that

β∥xK+1 − yK+1∥ = ∥λK+1 − λK∥ ≤

√
β∆µ

(K + 1)
,

∥−yK+1 + yK∥ ≤

√
∆µ

β (K + 1)
.

On the other hand, (23) gives:
1

2β
∥λk+1 − λµ∥2 + β

2
∥−yk+1 + yµ∥2

≤ 1

2β
∥λk − λµ∥2 + β

2
∥−yk + yµ∥2

≤ 1

2β
∥λ0 − λµ∥2 + β

2
∥−y0 + yµ∥2 =

1

2
∆µ .

Hence, we have:
∥λK+1 − λµt∥ ≤

√
β∆µt , (33)

∥−yK+1 + yµt∥ ≤

√
∆µt

β
. (34)

Then from (16) and the convexity of f and g, we have:
f (xK+1)− f (xµ) + g (yK+1)− g (yµ) + ⟨λµ,xK+1 − yK+1⟩
≤fK (xK+1)− fK (xµ) + g (yK+1)− g (yµ) + ⟨λµ,xK+1 − yK+1⟩

≤ 1

β
∥λK+1 − λµ∥∥λK+1 − λK∥+ ∥−yK+1 + yK∥∥λK+1 − λK∥

+β∥−yK+1 + yK∥∥−yK+1 + yµ∥

≤ ∆µ

K + 1
+

2∆µ

√
K + 1

.

(35)

From Lemma 3, we have (28).

If in addition F is ξ-monotone on C=, using (24), we can obtain the following inequality similar to
(32):

c

∑K
k=0∥xk+1 − xµ∥ξ2

K + 1
+

1

β
∥λK+1 − λK∥2 + β∥−yK+1 + yK∥2

≤ 1

K + 1

(
1

β
∥λ0 − λµ∥2 + β∥−y0 + yµ∥2

)
By the convexity of ∥·∥ξ2 we have c∥x̂K+1 − xµ∥ξ2 ≤ ∆µ

K+1 . And from (35) we can see that
c∥xK+1 − xµ∥ξ2 ≤ ∆µ

K+1 + 2∆µ
√
K+1

.

Theorem 8. If F is monotone on C=, then for Algorithm 1, we have

|f (x̂K+1) + g (ŷK+1)− f (xµ)− g (yµ)| ≤ ∆µ

2 (K + 1)
+

2
√
β∆µ∥λµ∥

β (K + 1)
,

∥x̂K+1 − ŷK+1∥ ≤
2
√
β∆µ

β (K + 1)
(36)

where x̂K+1 = 1
K+1

∑K+1
k=1 xk, ŷK+1 = 1

K+1

∑K+1
k=1 yk, and ∆µ ≜ 1

β ∥λ0−λµ∥2+β∥y0−yµ∥2.
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Proof of Theorem 8. Summing (20) over k = 0, 1, . . . ,K, dividing both sides with K+1, and using
the definitions of x̂K+1 and ŷK+1 and the convexity of f and g, we have

f (x̂K+1) + g (ŷK+1)− f (xµ)− g (yµ) + ⟨λµ, x̂K+1 − ŷK+1⟩ ≤
∆µ

2 (K + 1)
.

From (7) and (33), we have:

∥x̂K+1 − ŷK+1∥ =
1

β (K + 1)
∥

K∑
k=0

(λk+1 − λk)∥

=
1

β (K + 1)
∥λK+1 − λ0∥

≤ 1

β (K + 1)
(∥λ0 − λµ∥+ ∥λK+1 − λµ∥)

≤ 2
√
β∆µ

β (K + 1)

Finally, from Lemma 3, the conclusion follows.

From Proposition 1 and the fact that C is compact we can see that lim
µ→0

xµ and lim
µ→0

λµ exist and are

finite. Let x⋆ = lim
µ→0

xµ and λ⋆ = lim
µ→0

λµ, then x⋆ ∈ S⋆C,F .

Theorem 9. ∃µ̃ > 0, s.t. if µt < µ̃, then
∣∣∣F (x

(t)
K+1)

⊺(x
(t)
K+1 − x⋆)

∣∣∣ ≤ 2( ∆µ

K+1 +

2∆µ
√
K+1

+ ∥λ⋆∥
√

∆µ

β(K+1) ),
∣∣∣F (x⋆)⊺(x

(t)
K+1 − x⋆)

∣∣∣ ≤ 2( ∆µ

K+1 + 2∆µ
√
K+1

+ ∥λ⋆∥
√

∆µ

β(K+1) ) and∣∣∣F (x⋆)⊺(x̂
(t)
K+1 − x⋆)

∣∣∣ ≤ 2( ∆µ

2(K+1) +
2
√
β∆µ∥λ⋆∥
β(K+1) ), ∀K ≥ 0.

Proof of Theorem 9. For simplicity we let B(x) denote the log-barrier term −
∑m

i=1 log(−φi(x)).
From Theorem 7 and 8 we have∣∣∣F (xµ)⊺(x

(t)
K+1 − xµ) + µ(B(y

(t)
K+1)−B(yµ))

∣∣∣
=
∣∣∣f(x(t)

K+1)− f(xµ) + g(y
(t)
K+1)− g(yµ)

∣∣∣
≤ ∆µ

K + 1
+

2∆µ

√
K + 1

+ ∥λµ∥

√
∆µ

β (K + 1)
(37)∣∣∣F (xK+1)⊺(x

(t)
K+1 − xµ) + µ(B(y

(t)
K+1)−B(yµ))

∣∣∣
=
∣∣∣fK(x

(t)
K+1)− fK(xµ) + g(y

(t)
K+1)− g(yµ)

∣∣∣
≤ ∆µ

K + 1
+

2∆µ

√
K + 1

+ ∥λµ∥

√
∆µ

β (K + 1)
(38)∣∣∣F (xµ)⊺(x̂

(t)
K+1 − xµ) + µ(B(ŷ

(t)
K+1)−B(yµ))

∣∣∣
=
∣∣∣f(x̂(t)

K+1)− f(xµ) + g(ŷ
(t)
K+1)− g(yµ)

∣∣∣
≤ ∆µ

2 (K + 1)
+

2
√
β∆µ∥λµ∥

β (K + 1)
. (39)
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From Proposition 1 in App. A we know that when µ→ 0, xµ → x⋆, λµ → λ⋆ and µ(B(y
(t)
K+1)−

B(yµ))→ 0, so ∃µ̃ > 0, s.t. if µt < µ̃, then we have∣∣∣F (x⋆)⊺(x
(t)
K+1 − x⋆)

∣∣∣ ≤ 2

(
∆µ

K + 1
+

2∆µ

√
K + 1

+ ∥λ⋆∥

√
∆µ

β (K + 1)

)
∣∣∣F (x

(t)
K+1)

⊺(x
(t)
K+1 − x⋆)

∣∣∣ ≤ 2

(
∆µ

K + 1
+

2∆µ

√
K + 1

+ ∥λ⋆∥

√
∆µ

β (K + 1)

)
∣∣∣F (x⋆)⊺(x̂

(t)
K+1 − x⋆)

∣∣∣ ≤ 2

(
∆µ

2 (K + 1)
+

2
√
β∆µ∥λ⋆∥

β (K + 1)

)
.

To make the dependencies of the constants clear, here we restate Theorem 2 and Theorem 3 and
provide their proofs.
Theorem 10 (restatement of Theorem 2). Given an operator F : X → Rn monotone on C=
(Def. 1), and either F is strictly monotone on C or one of φi is strictly convex. Assume there exists
r > 0 or s > 0 such that F is star-ξ-monotone—as per Def. 1—on either Ĉr or C̃s, resp. Let
∆ ≜ 1

β ∥λ0 − λ⋆∥2 + β∥y0 − y⋆∥2.

Let x(t)
K and x̂

(t)
K ≜ 1

K

∑K
k=1 x

(t)
k denote the last and average iterate of Algorithm 1, respectively,

run with sufficiently small µ−1. Then there exists K0 ∈ N, K0 depends on r or s, s.t.∀K > K0, for
all t ∈ [T ], we have that:

1. ∥x(t)
K − x⋆∥ ≤ ( 4c (

∆
K + 2∆√

K
+ ∥λ⋆∥

√
∆
βK ))1/ξ.

2. If in addition F is ξ-monotone on C=, we have ∥x̂(t)
K − x⋆∥ ≤ ( 2∆cK )1/ξ.

3. Moreover, if F is L-Lipschitz on C=—as per Assumption 1— then G(x(t)
K , C) ≤M0(

4
c (

∆
K + 2∆√

K
+

∥λ⋆∥
√

∆
βK ))1/ξ and G(x̂(t)

K , C) ≤M0

(
2∆

c(K+1)

)1/ξ
,

where M0 = DL+M is a linear function of L, see the proof of Lemma 1 in App. B.

Proof of Theorem 10. Without loss of generality, we suppose that F is star-ξ-monotone on Ĉr. Since
you ϕ(yk) ≤ 0, from (29) we can see that ∃K0 ∈ N, K0 depends on r, s.t.∀K ≥ K0, xk ∈ Ĉr, so
if µt < µ̃ (µ̃ is defined in Theorem 9), by Theorem 9 we have

c∥x(t)
K+1 − x⋆∥ξ ≤

∣∣∣(F (x
(t)
K+1)

⊺ − F (x⋆)⊺)(x
(t)
K+1 − x⋆)

∣∣∣
≤
∣∣∣F (x⋆)⊺(x

(t)
K+1 − x⋆)

∣∣∣+ ∣∣∣F (x
(t)
K+1)

⊺(x
(t)
K+1 − x⋆)

∣∣∣
≤4

(
∆

K + 1
+

2∆√
K + 1

+ ∥λ⋆∥

√
∆

β (K + 1)

)
.

So we have

∥x(t)
K+1 − x⋆∥ ≤

(
4

c

(
∆

K + 1
+

2∆√
K + 1

+ ∥λ⋆∥

√
∆

β (K + 1)

))1/ξ

.

If in addition F is ξ-monotone on C=, then from (30) we know that when µ̂ is small enough, we have

∥x̂(t)
K+1 − x⋆∥ ≤

(
2∆

c(K + 1)

)1/ξ

.
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If F is L-Lipschitz on C=, then from Lemma 1 we can see that

G(x(t)
K , C) ≤M0

(
4

c

(
∆

K + 1
+

2∆√
K + 1

+ ∥λ⋆∥

√
∆

β (K + 1)

))1/ξ

,

G(x̂(t)
K , C) ≤M0

(
2∆

c(K + 1)

)1/ξ

.

Theorem 11 (restatement of Theorem 3). Given an operator F : X → Rn, assume: (i) F is monotone
on C=, as per Def. 1; (ii) either F is strictly monotone on C or one of φi is strictly convex; and (iii)

inf
x∈S\{x⋆}

F (x)
⊺ x−x⋆

∥x−x⋆∥ = a > 0, where S ≡ Ĉr or C̃s. Let ∆ ≜ 1
β ∥λ0 − λ⋆∥2 + β∥y0 − y⋆∥2.

Let x(t)
K and x̂

(t)
K ≜ 1

K

∑K
k=1 x

(t)
k denote the last and average iterate of Algorithm 1, respectively,

run with sufficiently small µ−1. Then there exists K0 ∈ N, K0 depends on r or s, s.t.∀t ∈ [T ],
∀K > K0, we have that:

1.
∥∥∥x(t)

K − x⋆
∥∥∥ ≤ 2

a

(
∆
K + 2∆√

K
+ ∥λ⋆∥

√
∆
βK

)
.

2. If in addition inf
x∈S\{x⋆}

F (x⋆)⊺ x−x⋆

∥x−x⋆∥ = b > 0 (with S ≡ Ĉr or C̃s), then
∥∥∥x̂(t)

K − x⋆
∥∥∥ ≤

2
b

(
∆
2K + 2

√
β∆∥λ⋆∥
βK

)
.

3. Moreover, if F is L-Lipschitz on C=—as per Assumption 1—then G(x(t)
K , C) ≤

2M0

a

(
∆
K + 2∆√

K
+ ∥λ⋆∥

√
∆
βK

)
and G(x̂(t)

K , C) ≤ 2M0

b

(
∆
2K + 2

√
β∆∥λ⋆∥
βK

)
,

where M0 = DL+M is a linear function of L, see the proof of Lemma 1 in App. B.

Proof of Theorem 11. Without loss of generality, we suppose inf
x∈Ĉr\{x⋆}

F (x)
⊺ x−x⋆

∥x−x⋆∥ = a > 0.

When K ≥ K0 (K0 and µ̃ are defined in the proof of Theorem 10 and in Theorem 9, resp.), by
Theorem 9 we have that

∥x(t)
K+1 − x⋆∥ ≤ 1

a

∣∣∣F (x
(t)
K+1)

⊺(x
(t)
K+1 − x⋆)

∣∣∣
≤2

a

(
∆

K + 1
+

2∆√
K + 1

+ ∥λ⋆∥

√
∆

β (K + 1)

)
.

Similarly, if inf
x∈Ĉr\{x⋆}

F (x⋆)
⊺ x−x⋆

∥x−x⋆∥ = b > 0, we have that

∥x̂(t)
K+1 − x⋆∥ ≤ 2

b

(
∆

2 (K + 1)
+

2
√
β∆∥λ⋆∥

β (K + 1)

)
.

If F is L-Lipschitz on C=, then from Lemma 1 we can see that

G(x(t)
K , C) ≤ 2M0

a

(
∆

K + 1
+

2∆√
K + 1

+ ∥λ⋆∥

√
∆

β (K + 1)

)
,

G(x̂(t)
K , C) ≤ 2M0

b

(
∆

2 (K + 1)
+

2
√
β∆∥λ⋆∥

β (K + 1)

)
.

From the above proofs, we can see that by setting µ−1 small enough, Theorem 2 and 3 hold true. But
since we do not know exactly how small µ−1 should be, in practice, we can set a small µ−1, and
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µt could be smaller than any fixed positive number after a very small number of outer loops, as µt

decays exponentially. Thus, Algorithm 1 is actually parameter-free.

Note that the assumption (iii) in Theorem 3 is the weakening of the assumption
inf

x∈S\{x⋆}
F (x⋆)⊺ x−x⋆

∥x−x⋆∥ > 0, where S = Ĉr or C̃s. In fact, by the monotonicity of F , we

have F (x)⊺(x − x⋆) ≥ F (x⋆)⊺(x − x⋆), so if inf
x∈S\{x⋆}

F (x⋆)⊺ x−x⋆

∥x−x⋆∥ > 0, there must be

inf
x∈S\{x⋆}

F (x)⊺ x−x⋆

∥x−x⋆∥ > 0.

B.4 PARAMETER-FREE CONVERGENCE RATE

In this section, we give a convergence rate taking into account both the inner and the outer loop when
the operator F is L-Lipschitz.

First, we bound ∥x⋆ − xµ∥ under the assumptions in Theorem 2 and Theorem 3, resp, and give the
following lemma:
Lemma 9. For monotone F , then for any µ > 0, we have:

(i) If F is star-ξ-monotone (Def. 1), then ∥x⋆ − xµ∥ ≤
(
m
c µ
) 1

ξ ;

(ii) If a ≜ inf
x∈S\{x⋆}

F (x)
⊺ x−x⋆

∥x−x⋆∥ > 0, where S ≡ Ĉr or C̃s, then ∥x⋆ − xµ∥ ≤ m
a µ.

Proof. Consider convex problem 
minx F (xµ)⊺x

s.t. φ(x) ≤ 0

Cx = d

(P)

The Lagrangian of (P) is

L(x,λ,ν) = F (xµ)⊺x+ λ⊺φ(x) + ν⊺(Cx− d).

There exists λ̄µ > 0 and νµ, s.t. (xµ, λ̄µ,νµ) is a KKT point of (KKT-2). By the stationarity
condition in (KKT-2), we have that

g(λ̄µ,νµ) = inf
x

L(xµ, λ̄µ,νµ) = F (xµ)⊺xµ + λ̄⊺φ(xµ) + ν⊺(Cxµ − d︸ ︷︷ ︸
=0

).

Note that by the complementarity slackness condition in (KKT-2), we have λ̄⊺φ(xµ) = −mµ.

Since x⋆ is a feasible point of (P), (λ̄µ,νµ) dual feasible, thus by the duality theory, we have:

F (xµ)⊺x⋆ ≥ g(λ̄µ,νµ) = F (xµ)⊺xµ −mµ ,

from where we deduce that
F (xµ)⊺(xµ − x⋆) ≤ mµ . (40)

Therefore,

(i) If F is star-ξ-monotone:

Since x⋆ ∈ S⋆C,F , we have
F (x⋆)⊺(xµ = x⋆) ≥ 0 . (41)

Subtract (40) by (41) and using the star-ξ-monotonicity of F , we obtain

c ∥xµ − x⋆∥ξ ≤ (F (xµ)− F (x⋆))⊺(xµ − x⋆) ≤ mµ .

(ii) If a ≜ inf
x∈S\{x⋆}

F (x)
⊺ x−x⋆

∥x−x⋆∥ > 0, where S ≡ Ĉr or C̃s, since xµ ∈ S, by (40) we have that

a ∥xµ − x⋆∥ ≤ mµ.
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We give another lemma that would be used in the proofs of our main results in this section.

Lemma 10. Assume F is monotone and L-smooth (Assumption 1), then we have∣∣∣F (x⋆)⊺(x
(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣
≤ ∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)
+mµt

+L ∥xµt − x⋆∥

(
∥xµt − x⋆∥+

√
∆µt

β (K + 1)
+

√
∆µt

β

)
,

(42)

∣∣∣F (x
(t)
K )⊺(x

(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣
≤ ∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)
+M ∥xµt − x⋆∥ ,

(43)

and ∣∣∣F (x⋆)⊺(x
(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣
≤ ∆µt

2 (K + 1)
+

2
√
β∆µt∥λµt∥
β (K + 1)

+mµt

+L ∥xµt − x⋆∥

(
∥xµt − x⋆∥+ 2

√
β∆µt

β (K + 1)
+

√
∆µt

β

)
,

(44)

where M = supx∈C ∥F (x)∥, and B(x) = −
∑m

i=1 log(−φi(x)).

Proof. Note that∥∥∥x(t)
K+1 − xµt

∥∥∥ =
∥∥∥x(t)

K+1 − yµt

∥∥∥ ≤ ∥∥∥x(t)
K+1 − y

(t)
K+1

∥∥∥+ ∥∥∥y(t)
K+1 − yµt

∥∥∥ . (45)

Recall that (29) gives

∥x(t)
K+1 − y

(t)
K+1∥ ≤

√
∆µt

β (K + 1)
,

and (34) gives ∥∥∥y(t)
K+1 − yµt

∥∥∥ =

√
∆µt

β
.

Plugging (29) and (34) into (45), we have

∥∥∥x(t)
K+1 − xµt

∥∥∥ ≤√ ∆µt

β (K + 1)
+

√
∆µt

β
. (46)

Note that

F (x⋆)⊺(x
(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

=F (xµt)⊺(x
(t)
K+1 − xµ

t ) + µt(B(y
(t)
K+1)−B(yµt)) + F (xµ)⊺(xµ − x⋆)

+ (F (x⋆)− F (xµt))⊺(x
(t)
K+1 − x⋆) .
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Thus by the L-Lipschitzness of F , using (40), (46) and (37) in the proof of Thm. 9, we have

∣∣∣F (x⋆)⊺(x
(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣
≤
∣∣∣F (xµt)⊺(x

(t)
K+1 − xµt) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣+ |F (xµ
t )

⊺(xµ
t − x⋆)|

+
∣∣∣(F (x⋆)− F (xµt))⊺(x

(t)
K+1 − x⋆)

∣∣∣
≤
∣∣∣F (xµt)⊺(x

(t)
K+1 − xµt) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣+ |F (xµt)⊺(xµt − x⋆)|

+ L ∥xµt − x⋆∥
(∥∥∥xµt − x

(t)
K+1

∥∥∥+ ∥xµt − x⋆∥
)

≤ ∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)
+mµt

+L ∥xµt − x⋆∥

(
∥xµt − x⋆∥+

√
∆µt

β (K + 1)
+

√
∆µt

β

)
.

Using (38), we have

∣∣∣F (x
(t)
K+1)

⊺(x
(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣
=
∣∣∣F (xµt)⊺(x

(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt)) + F (x

(t)
K+1)

⊺(xµt − x⋆)
∣∣∣

≤
∣∣∣F (xµt)⊺(x

(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣+M ∥xµt − x⋆∥

≤ ∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)
+M ∥xµt − x⋆∥ .

Similarly, recall that (36) gives

∥x̂K+1 − ŷK+1∥ ≤
2
√
β∆µt

β (K + 1)
.

By (34) and the convexity of ∥·∥, we have

∥∥∥ŷ(t)
K+1 − yµt

∥∥∥ =

∥∥∥∥∥ 1

K + 1

K+1∑
k=1

(y
(t)
k+1 − yµt)

∥∥∥∥∥ ≤
√

∆µt

β
. (47)

Note that Thus we have∥∥∥x̂(t)
K+1 − xµt

∥∥∥ =
∥∥∥x̂(t)

K+1 − yµt

∥∥∥ ≤ ∥∥∥x̂(t)
K+1 − ŷ

(t)
K+1

∥∥∥+ ∥∥∥ŷ(t)
K+1 − yµt

∥∥∥ . (48)

Plugging (36) and (47) into (48), we have

∥∥∥x̂(t)
K+1 − xµt

∥∥∥ ≤ 2
√
β∆µt

β (K + 1)
+

√
∆µt

β
. (49)
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Using the L-Lipschitzness of F , (39) and (49), we have

∣∣∣F (x⋆)⊺(x̂
(t)
K+1 − x⋆) + µt(B(ŷ

(t)
K+1)−B(yµt))

∣∣∣
≤
∣∣∣F (xµt)⊺(x̂

(t)
K+1 − xµt) + µt(B(ŷ

(t)
K+1)−B(yµt))

∣∣∣+ |F (xµt)⊺(xµt − x⋆)|

+
∣∣∣(F (x⋆)− F (xµt))⊺(x̂

(t)
K+1 − x⋆)

∣∣∣
≤
∣∣∣F (xµt)⊺(x̂

(t)
K+1 − xµ

t ) + µt(B(ŷ
(t)
K+1)−B(yµt))

∣∣∣+ |F (xµt)⊺(xµt − x⋆)|

+ L ∥xµt − x⋆∥
(∥∥∥xµt − x̂

(t)
K+1

∥∥∥+ ∥xµt − x⋆∥
)

≤ ∆µt

2 (K + 1)
+

2
√
β∆µt∥λµt∥
β (K + 1)

+mµt

+ L ∥xµt − x⋆∥

(
∥xµt − x⋆∥+ 2

√
β∆µt

β (K + 1)
+

√
∆µt

β

)
.

Now we are ready to give our main theorems in this section.

Theorem 12 (Complete convergence rate for star-ξ-monotone operator). Given an operator F :
X → Rn monotone and L-Lipschitz on C= (Def. 1, 1), and either F is strictly monotone on C or one
of φi is strictly convex. Assume there exists r > 0 or s > 0 such that F is star-ξ-monotone—as per
Def. 1—on either Ĉr or C̃s, resp. Let ∆µt ≜ 1

β ∥λ0 − λµt∥2 + β∥y0 − yµt∥2,

Let x(t)
K and x̂

(t)
K ≜ 1

K

∑K
k=1 x

(t)
k denote the last and average iterate of Algorithm 1, respectively,

run with sufficiently small µt−1. Then there exists K0 ∈ N, K0 depends on r or s, s.t.∀K > K0, for
all t ∈ [T ], we have that:

1.
∥∥∥x(t)

K − x⋆
∥∥∥ ≤

(
2
c

(
∆µt

K + 2∆µt√
K

+ ∥λµt∥
√

∆µt

βK

)
+ LM1

c

(
m
c µ−1

) 1
ξ δ

t+1
ξ

) 1
ξ

, and

G(x(t)
K , C) ≤M0

(
2
c

(
∆µt

K + 2∆µt√
K

+ ∥λµt∥
√

∆µt

βK

)
+ LM1

c

(
m
c µ−1

) 1
ξ δ

t+1
ξ

) 1
ξ

.

2. If in addition F is ξ-monotone on C=, we have ∥x̂(t)
K − x⋆∥ ≤

(
∆µt

cK

) 1
ξ +

(
m
c µt

) 1
ξ , and

G(x̂(t)
K , C) ≤M0

((
∆µt

cK

)1/ξ
+
(
m
c µt

) 1
ξ

) 1
ξ

,

where M0 = DL +M is a linear function of L, see the proof of Lemma 1 in App. B, and M1 ≜(
m
c µ−1

) 1
ξ + 2

√
∆µt

β + M
L .
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Proof. By the star-ξ-monotonicity of course F , using (42) and (43) in Lemma 10, we have

c
∥∥∥x(t)

K+1 − x⋆
∥∥∥ξ

≤(F (x
(t)
K )− F (x⋆))⊺(x

(t)
K+1 − x⋆)

=F (x
(t)
K )⊺(x

(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

− (F (x⋆)⊺(x
(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt)))

≤∥F (x
(t)
K )⊺(x

(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt)∥

+ ∥F (x⋆)⊺(x
(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt)∥

≤ ∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)
+M ∥xµt − x⋆∥

+
∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)
+mµt

+ L ∥xµt − x⋆∥

(
∥xµt − x⋆∥+

√
∆µt

β (K + 1)
+

√
∆µt

β

)

≤2

(
∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)

)

+ L ∥xµt − x⋆∥

(
∥xµt − x⋆∥+

√
∆µt

β (K + 1)
+

√
∆µt

β
+

M

L

)
+mµt

≤2

(
∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)

)

+ L
(m
c
µt

) 1
ξ

((m
c
µt

) 1
ξ

+

√
∆µt

β (K + 1)
+

√
∆µt

β
+

M

L

)
where in the last inequality we use Lemma 9 (i).

We let M1 ≜
(
m
c µ−1

) 1
ξ + 2

√
∆µt

β + M
L , then we have

∥∥∥x(t)
K+1 − x⋆

∥∥∥ ≤ (2

c

(
∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)

)
+

LM1

c

(m
c
µt

) 1
ξ

) 1
ξ

.

By Lemma 1, we obtain

G(x(t)
K+1, C) ≤M0

(
2

c

(
∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)

)
+

LM1

c

(m
c
µ−1

) 1
ξ

δ
t+1
ξ

) 1
ξ

.

If in addition F is ξ-monotone on C=, then from (30) we have:

∥x̂(t)
K+1 − x⋆∥ ≤

(
∆µt

c(K + 1)

) 1
ξ

+
(m
c
µt

) 1
ξ

.

Again by Lemma 1, we have G(x̂(t)
K+1, C) ≤M0

((
∆µt

c(K+1)

) 1
ξ

+
(
m
c µt

) 1
ξ

)
.

Theorem 13 (Complete convergence rate for star-ξ-monotone operator). Given an operator F :
X → Rn, assume: (i) F is monotone and L-smooth on C=, as per Def. 1, 1; (ii) either F is strictly
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monotone on C or one of φi is strictly convex; and (iii) inf
x∈S\{x⋆}

F (x)
⊺ x−x⋆

∥x−x⋆∥ = a > 0, where

S ≡ Ĉr or C̃s. Let ∆µt ≜ 1
β ∥λ0 − λµt∥2 + β∥y0 − yµt∥2.

Let x(t)
K and x̂

(t)
K ≜ 1

K

∑K
k=1 x

(t)
k denote the last and average iterate of Algorithm 1, respectively.

Then there exists K0 ∈ N, K0 depends on r or s, s.t.∀t ∈ [T ], ∀K > K0, we have that:

1.
∥∥∥x(t)

K − x⋆
∥∥∥ = 1

a

(
∆µt

K + 2∆µt√
K

+ ∥λµt∥
√

∆µt

βK

)
+
(

mM
a2 + B(yµt )−B⋆

a

)
µ−1δ

t+1, and

G(x(t)
K , C) ≤M0

(
1
a

(
∆µt

K + 2∆µt√
K

+ ∥λµt∥
√

∆µt

βK

)
+
(

mM
a2 + B(yµt )−B⋆

a

)
µ−1δ

t+1
)

.

2. If in addition inf
x∈S\{x⋆}

F (x⋆)⊺ x−x⋆

∥x−x⋆∥ = b > 0 (with S ≡ Ĉr or C̃s),

then
∥∥∥x̂(t)

K − x⋆
∥∥∥ ≤ 1

b

(
∆µt

2K + 2
√
β∆µt∥λµt∥
β(K)

)
+ M3

b µ−1δ
t+1, and G(x̂(t)

K , C) ≤

M0

(
1
b

(
∆µt

2K + 2
√
β∆µt∥λµt∥
β(K)

)
+ M3

b µ−1δ
t+1
)

,

where M = supx∈C ∥F (x)∥, M0 = DL+M is a linear function of L, see the proof of Lemma 1 in

App. B, and M3 ≜ m+ Lm
a

(
m
a µ−1 +

2
√
β∆µt

β(K+1) +
√

∆µt

β

)
+B(yµt)−B⋆.

Proof. If the barrier term B(y
(t)
K+1) ≥ B(yµt), using (43) in Lemma 10, we have

F (x
(t)
K )⊺(x

(t)
K+1 − x⋆)

≤F (x
(t)
K )⊺(x

(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

≤ ∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)
+M ∥xµt − x⋆∥ .

If B(y
(t)
K+1) ≤ B(yµt), since B is lower bounded in any compact set, and by (46) in Lemma 9 we

have
∥∥∥x̂(t)

K+1 − xµt

∥∥∥ ≤ 2
√
β∆µt

β(K+1) +
√

∆µt

β ≤ 3
√

∆µt

β ≜ M2, we let B⋆ = inf∥x−x⋆∥≤M2
B(x).

Then we have
F (x

(t)
K )⊺(x

(t)
K+1 − x⋆)

≤
∣∣∣F (x

(t)
K )⊺(x

(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣+ µt(B(yµt)−B⋆)

≤ ∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)
+M ∥xµt − x⋆∥+ µt(B(yµt)−B⋆) .

Thus in both case we have

a
∥∥∥x(t)

K+1 − x⋆
∥∥∥

≤F (x
(t)
K )⊺(x

(t)
K+1 − x⋆)

≤ ∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)
+

mM

a
µt + µt(B(yµt)−B⋆) .

where in the first inequality assumption (iii) is used and in the last inequality Lemma 9 is used. Thus
we have:∥∥∥x(t)

K+1 − x⋆
∥∥∥ =

1

a

(
∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)

)
+

(
mM

a2
+

B(yµt)−B⋆

a

)
µt .

And by Lemma 1, we obtain

G(x(t)
K+1, C) ≤M0

(
1

a

(
∆µt

K + 1
+

2∆µt

√
K + 1

+ ∥λµt∥

√
∆µt

β (K + 1)

)
+

(
mM

a2
+

B(yµt)−B⋆

a

)
µt

)
.
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If in addition inf
x∈S\{x⋆}

F (x⋆)⊺ x−x⋆

∥x−x⋆∥ = b > 0, then similarly, from (44) in Lemma 10, we have

b
∥∥∥x̂(t)

K+1 − x⋆
∥∥∥

≤
∣∣∣F (x⋆)⊺(x

(t)
K+1 − x⋆) + µt(B(y

(t)
K+1)−B(yµt))

∣∣∣+ µt(B(yµt)−B⋆)

≤ ∆µt

2 (K + 1)
+

2
√
β∆µt∥λµt∥
β (K + 1)

+mµt

+ L
m

a
µt

(
m

a
µt +

2
√
β∆µt

β (K + 1)
+

√
∆µt

β

)
+ µt(B(yµt)−B⋆)

=
∆µt

2 (K + 1)
+

2
√
β∆µt∥λµt∥
β (K + 1)

+

(
m+

Lm

a

(
m

a
µ−1 +

2
√
β∆µt

β (K + 1)
+

√
∆µt

β

)
+B(yµt)−B⋆

)
µt ,

Let M3 ≜ m+ Lm
a

(
m
a µ−1 +

2
√
β∆µt

β(K+1) +
√

∆µt

β

)
+B(yµt)−B⋆, then we have∥∥∥x̂(t)

K+1 − x⋆
∥∥∥ ≤ 1

b

(
∆µt

2 (K + 1)
+

2
√
β∆µt∥λµt∥
β (K + 1)

)
+

M3

b
µt .

By Lemma 1, we have

G(x(t)
K+1, C) ≤

1

b

(
∆µt

2 (K + 1)
+

2
√
β∆µt∥λµt∥
β (K + 1)

)
+

M3

b
µt .

Remark 5. In Theorem 12, for any t ≥ O(lnK), we have
∥∥∥x(t)

K − x⋆
∥∥∥, G(x(t)

K , C) ≤ O( 1
K1/(2ξ) ),

and
∥∥∥x̂(t)

K − x⋆
∥∥∥, G(x̂(t)

K , C) ≤ O( 1
K1/ξ ). Similarly, in Theorem 13, for any t ≥ O(lnK), we have∥∥∥x(t)

K − x⋆
∥∥∥, G(x(t)

K , C) ≤ O( 1√
K
), and

∥∥∥x̂(t)
K − x⋆

∥∥∥, G(x̂(t)
K , C) ≤ O( 1

K ).

B.5 DISCUSSION ON ALGORITHM 1

Advantages and disadvantages of Algorithm 1. In Algorithm 1, the update of x (step 8) requires
solving (W-EQ). Our method is especially suitable for problems where (W-EQ) is easy to solve
analytically. This includes the class of affine variational inequalities, low-dimensional problems, and
when optimization variables represent probabilities, for example.

For problems where (W-EQ) is hard to solve—for example, min-max optimization problems in
GANs—one could use other unconstrained methods like GDA or EG methods (without projection)
so as to solve V I(Rn, G), where G is defined in (3). Algorithm 4 describes ACVI when using
an unconstrained solver for the inner problems. We observe that Algorithm 4 outperforms the
projection-based baseline algorithms, see for example Fig. 4.

Note that when there are constraints, the projection-based methods such as GDA, EG, OGDA etc.
require solving a quadratic programming problem in each iteration (or twice per iteration for EG).
This problem is often nontrivial and solving it may require using an interior point method or variants
(such as the Frank-Wolfe algorithm). Because of this, Algorithm 1 can be seen as an orthogonal
approach to projection-based methods, or in other words, as a complementary tool to solve (cVI) and
particularly relevant when the constraints are non-trivial.

ACVI with only equality or inequality constraints. If there are no equality constraints, then C=
becomes Rn. In this case, we have that x(t)

k+1 is the solution of:

x+
1

β
(F (x) + λ

(t)
k )− y

(t)
k = 0 .
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When there are no inequality constraints, we let yk = xk and λk = 0 for every k, and we can remove
the outer loop. Thus, Algorithm 1 can be simplified to update only one variable x each iteration with
the following updating rule:

xk+1 is the unique solution of x+
1

β
PcF (x)− Pcxk − dc = 0 .
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C VARIANT OF THE ACVI ALGORITHM (V-ACVI)

The presented approach of combining interior point methods with ADMM can be used as a framework
to derive additional algorithms that may be more suitable for some specific problems. More precisely,
observe from Eq. 1 that we could also consider a different splitting than that in § 4. Following this
approach, we present a variant of Algorithm 1 and discuss its advantages and disadvantages relative
to Algorithm 1.

C.1 INTRODUCTION OF THE VARIANT ACVI

Deriving the v-ACVI algorithm. By considering a different splitting in (1) we get:min
x,y

F (w)⊺x− µ
m∑
i=1

log
(
− φi(x)

)
+ 1[Cy = d]

s.t. x = y
,

where: 1[Cy = d] =

{
0, if Cy = d

+∞, if Cy ̸= d
.

(50)

The augmented Lagrangian of (50) is thus:

Lβ(x,y,λ) = F (w)⊺x− µ

m∑
i=1

log(−φi(x)) + 1(Cy = d) + ⟨λ,x− y⟩ + β

2
∥x− y∥2

(AL-CVI)
where β > 0 is the penalty parameter. We have that for x at step k + 1:

xk+1 = argmin
x
Lβ(x,yk,λk)

= argmin
x

1

2

∥∥∥∥x− yk +
1

β
(F (w) + λk)

∥∥∥∥2 − µ

β

m∑
i=1

log(−φi

(
x)
) (51)

The following proposition ensures the existence and uniqueness of xk+1 in C<. i.e. We show that
xk+1 is the unique solution in C< of the following closed-form equation (see App. C.2 for its proof):

x− yk +
1

β
(F (w) + λk)−

µ

β

m∑
i=1

∇φi(x)

φi(x)
= 0 . (X-CF)

Proposition 3 (unique solution). The problem (X-CF) has a solution in C< and the solution is unique.

For y, the updating rule is

yk+1 = argmin
y
Lβ(xk+1,y,λk)

= argmin
y∈C=

− 1

β
(λk)

⊺y +
1

2
∥y − xk+1∥22

= argmin
y∈C=

1

2
∥y − xk+1 −

1

β
λk∥22

= Pc(xk+1 +
λk

β
) + dc

(y)

And the updating rule for dual variable λ is

λk+1 = λk + β(xk+1 − yk+1) (λ)

As in § 4, we would like to choose wk so that wk = xk+1. To this end, we need the following
assumption:

Assumption 2. ∀b ∈ Rn and µ > 0, x+ 1
βF (x)− µ

β

∑m
i=1

∇φi(x)
φ(x) + b = 0 has a solution in C<.
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If Assumption 2 holds true, we can let wk be a solution of

w − yk+1 +
1

β
(F (w) + λk+1)−

µ

β

m∑
i=1

∇φi(w)

φi(w)
= 0 (52)

in C<. And by Proposition 3, we can let xk+1 be the unique solution of

x− yk +
1

β

(
F (wk) + λk

)
− µ

β

m∑
i=1

∇φi(x)

φi(x)
= 0 (x)

in C<.

Note that wk is also a solution of (x). By the uniqueness of the solution of (x) shown in Prop. 3, we
know that wk = xk+1.

So in the (k+1)-th step, we can compute x,y,λ and w by (x), (y), (λ) and (52), respectively. Since
wk = xk+1, we can simplify our algorithm by removing variable w and only keep x,y and λ, see
Algorithm 3.

Algorithm 3 v-ACVI pseudocode.

1: Input: operator F : X → Rn, equality Cx = d and inequality constraints φi(x) ≤ 0, i = [m],
hyperparameters µ−1, β > 0, δ ∈ (0, 1), number of outer and inner loop iterations T and K,
resp.

2: Initialize: y(0)
0 ∈ Rn, λ(0)

0 ∈ Rn

3: Pc ≜ I −C⊺(CC⊺)−1C where Pc ∈ Rn×n

4: dc ≜ C⊺(CC⊺)−1d where dc ∈ Rn

5: for t = 0, . . . , T − 1 do
6: µt = δµt

7: Denote φ̂(λ,y) as the solution of 1
β

(
µt

∑m
i=1

∇φi(x)
φi(x)

−F (x)−λ
)
+y−x = 0 with respect

to x, where y,λ are variables
8: for k = 0, . . . ,K − 1 do
9: x

(t)
k+1 = φ̂(λ

(t)
k ,y

(t)
k ) Ensures xk+1 ∈ X≤

10: y
(t)
k+1 = Pc(x

(t)
k+1 +

λ
(t)
k

β ) + dc

11: λ
(t)
k+1 = λ

(t)
k + β(x

(t)
k+1 − y

(t)
k+1)

12: end for
13: (y

(t+1)
0 ,λ

(t+1)
0 ) ≜ (y

(t)
K ,λ

(t)
K )

14: end for

Discussion: ACVI Vs. v-ACVI. Relative to Algorithm 1, the subproblem for solving x in line 7
in Algorithm 3 becomes more complex, whereas the subproblem for y becomes simpler. Hence, in
cases when the inequality constraints are simpler, or there are no inequality constraints Alg. 3 may
be more suitable, as that simplifies the x subproblem. However, Algorithm 1 balances better the
complexities of the subproblems, hence it may be simpler to use for general problems.

Convergence of v-ACVI. By analogous proofs to those in App. B, we can get similar convergence
results as for Algorithm 1, that is Theorems 2 and 3. Specifically, Theorem 2 and 3 hold for Algorithm
3, provided that we replace the assumption “F is monotone on C=” with “F is monotone on C≤” in
Theorems 2 and 3.

C.2 PROOF OF PROPOSITION 3

To prove proposition 3, we will use the following lemma.
Lemma 11. ∀b ∈ Rn,∀x ∈ C<, 1

2∥x− b∥22 −
µ
β

∑m
i=1 log(−φi(x))→ +∞, ∥x∥2 → +∞

Proof of Lemma 11. We denote ϕ : C< → R by

ϕ(x) =
1

2
∥x− b∥22 −

µ

β

m∑
i=1

log(−φi(x))
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let B(x) = −µ
β

∑m
i=1 log(−φi(x)). We choose an arbitrary x0 ∈ C<. Then by the convexity of

B(x) we deduce that

∀x ∈ C<, ϕ(x) ⩾
1

2
∥x− b∥22 +B(x0) +∇B(x0)

⊺(x− x0)→ +∞, ∥x∥2 → +∞

In the remaining, we prove Proposition 3 which guarantees that (X-CF) has a unique solution.

Proof of Proposition 3: uniqueness of the solution of (X-CF). Let ϕ : C< → R denote:

ϕ(x) =
1

2
∥x− yk +

1

β
(F (w) + λk)∥22 −

µ

β

m∑
i=1

log(−φi(x))

We choose x0 ∈ C<. By Lemma 11, ∀x ∈ C<, ϕ(x)→ +∞, ∥x∥2 → +∞.
So there exists M > 0 such that x0 ∈ B(0,M) and ∀x ∈ S, ϕ(x) ≤ ϕ(x0),x must belong to
B(0,M),where

B(0,M) = {x ∈ Rn |∥x∥ ≤M }
It’s clear that there exists t > 0 such that for every x ∈ C< that satisfies ϕ(x) ≤ ϕ(x0), x must
belong to Ct,where

Ct = {x ∈ B(0,M) |φi(x) ≤ −t} ⊂ C< (53)

And we can make t small enough so that x0 ∈ Ct. Ct is a nonempty compact set and ϕ is continuous,
so there exists x⋆ ∈ Ct such that ϕ(x⋆) ≤ ϕ(x),∀x ∈ C<.

Note that ∀x ∈ C<\Ct, ϕ(x) ≥ ϕ(x0) ≥ ϕ(x⋆). Therefore, x⋆ is a global minimizer of ϕ. ϕ is
strongly-convex thus xk+1 = x⋆ is its unique minimizer. So x = xk+1 if and only if ∇ϕ(x) = 0.
Therefore, xk+1 is the unique solution of x− yk + 1

β (F (w) + λk)− µ
β

∑m
i=1

∇φi(x)
φi(x)

= 0.
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D DETAILS ON THE IMPLEMENTATION

In this section, we provide the details on the implementation of the experiments shown in the main
part in 2D and higher dimension bilinear game, see § D.1 and § D.2, respectively. We also provide
here in § D.3 the details of the MNIST experiments presented later in App. E. In addition, we provide
the source code through the following link: https://github.com/Chavdarova/ACVI.

D.1 EXPERIMENTS IN 2D

We first state the considered problem fully, then describe the setup what includes the hyperparameters.

Problems. We consider the following constrained bilinear game (for the same experiment shown in
Fig. 1 and 5):

min
x1∈R+

max
x2∈R+

0.05x2
1 + x1x2 − 0.05x2

2 . (cBG)

The Von Neumann’s ratio game (Von Neumann, 1971) (results in Fig. (a)) is as follows:

min
x∈∆2

max
y∈∆2

⟨x,Ry⟩
⟨x,Sy⟩

, (RG)

where ∆2 =
{
z ∈ R2|z ≥ 0, e⊺z = 1

}
,R =

(
−0.6 −0.3
0.6 −0.3

)
and S =

(
0.9 0.5
0.8 0.4

)
.

The so called Forsaken (Hsieh et al., 2021) game—used in Fig. 2(b) and in App. E—is as follows:

min
x1∈X1

max
x2∈X2

x1(x2 − 0.45) + h(x1)− h(x2) , (Forsaken)

where h(z) = 1
4z

2 − 1
2z

4 + 1
6z

6. The original version is unconstrained X ≡ R2. In Fig. 2(b) we use
the constraint x2

1 + x2
2 ≤ 4, and in App. E we use two other constraints: x1 ≥ 0.08 and x2 ≥ 0.4.

For the toy GAN experiments, shown in Fig. 2(c), the problem is as follows:

min
θ

max
φ

E
x∼N (0,2)

(φx2)− E
z∼N (0,1)

(φθ2z2)

s.t. φ2 + θ2 ≤ 4
(toy-GAN)

In the experiment, we look at a finite sum (sample average) approximation, which we then solve
deterministically in a full batch fashion.

Setup. For all the 2D problems, we set the step size of GDA, EG and OGDA to 0.1, we use k = 5
and α = 0.5 for LA-GDA, we set β = 0.08, µ−1 = 10−5, δ = 0.5 and λ0 = 0 for ACVI; and run
for 50 iterations. For ACVI, we set the number of outer loop iterations to T = 20. In the first 19
outer loop iterations, we only run one inner loop iteration, and in the last outer loop iteration, we run
30 inner loop iterations (for a total of 50 updates). In Fig. 1 and Fig. (c), we set the starting point for
all algorithms. In Fig. 2(a) and (b), we set the starting point to be (0.5, 0.5)⊺ for all algorithms.

D.2 HIGH-DIMENSION BILINEAR GAME

We set the step size of GDA, EG, and OGDA to 0.1, using k = 4 and α = 0.5 for LA-GDA. For
ACVI, we set β = 0.5, µ−1 = 10−6, δ = 0.5 and λ0 = 0 for ACVI.

The solution of (HBG) is x⋆ = 1
500e, where e ∈ R1000. As a metric of the experiments on this

problem, we use the relative error: εr(xk) =
∥xk−x⋆∥

∥x⋆∥ . In Fig.3(b), we set ε = 0.02 and compute the
number of iterations of ACVI needed to reach the relative error given different rotation “strength”1−η,
η ∈ (0, 1). Here we set the maximum number of iterations to be 50 for all algorithms. In Fig. 3(a),
we set η = 0.05 and compute CPU times needed for ACVI, EG, OGDA, and LA4-GDA to reach
different relative errors. Here we set the maximum run time to 1500 seconds for all algorithms. In
Fig. 7 in App. E on the other hand, we fix η = 0.05, and for varying CPU time limits, we compute
the relative error of the last iterates of ACVI, GDA, EG, OGDA, and LA4-GDA.

More general HD-BG game (g-HBG). Since (HBG) has perfect conditioning (that is, the interactive
term x⊺

1Bx2, is with B ≡ I), in App. E.2 we present results on the following more general high
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dimensional bilinear game:

min
x1∈△

max
x2∈△

η

2
· x⊺

1Ax1 + (1− η)x⊺
1Bx2 −

η

2
x⊺
2Cx2,

△={xi ∈ R500|xi ≥ −e, and , e⊺xi = 0}.
(g-HBG)

Where A, B and C are randomly generated 500× 500 matrices, and A, C are positive semi-definite.

The solution of (g-HBG) is x⋆ = 0, where 0 ∈ R1000. As a metric of the experiments on this
problem, we use the error ε(xk) = ∥xk∥. The remaining settings are identical to those of (HBG),
explained above.

Comparison with the Frank-Wolfe algorithm on general HD-BG (g-HBG) and (gg-HBG). In
App. E, we compare with the FW method (see A.4) on two problems: (i) (g-HBG), and (ii) (gg-HBG),
where the objective is the same as (g-HBG) but the constraint set becomes more general, in which
Ci is a randomly generated 10 × 500 matrix, i = {1, 2}. In both experiments, we implement FW
as in Algorithm 2, where we choose γ to be 2/(2 + t) at the t-th iterate, t = 0, · · · , T . For (i), the
constraint set of (g-HBG) is a “shifted simplex”, hence its vertices are easy to compute. This allows
us to solve the linear minimization problem in Algorithm 2 of (Gidel et al., 2017a) much faster, and
we refer to this implementation as fast-FW. In contrast, for the (gg-HBG) problem, we cannot apply
this, and in that case, we use the standard linear programming routine covopt.solvers.lp in Python—
referred herein as FW.

min
x1∈U1

max
x2∈U2

η

2
· x⊺

1Ax1 + (1− η)x⊺
1Bx2 −

η

2
x⊺
2Cx2,

Ui={xi ∈ R500| − 100e ≤ xi ≤ 100e, and ,Cixi = 0}, i = 1, 2.
(gg-HBG)

The solution of both (g-HBG) and (gg-HBG) is 0. As a metric of the experiments on this problem,
we use the error ε(xk) = ∥xk∥. The remaining settings are identical to those of (HBG), explained
above.

D.3 MNIST AND FASHION-MNIST EXPERIMENTS

For the experiments on the MNIST dataset 1, we use the source code of Chavdarova et al. (2021b) for
the baselines and we build on it to implement ACVI. For completeness, we provide an overview of
the implementation.

Models. We used the DCGAN architectures (Radford et al., 2016), listed in Table 1, and the
parameters of the models are initialized using PyTorch default initialization. For experiments on this
dataset, we used the non-saturating GAN loss as proposed in (Goodfellow et al., 2014):

LD = E
x̃d∼pd

log
(
D(x̃d)

)
+ E

z̃∼pz

log
(
1−D

(
G(z̃)

))
(L-D)

LG = E
z̃∼pz

log
(
D
(
G(z̃)

))
, (L-G)

where G(·), D(·) denote the generator and discriminator, resp., and pd and pz denote the data and the
latent distributions (the latter predefined as normal distribution).

Details on the ACVI implementation. When implementing ACVI on MNIST, we “remove” the
outer loop of Algorithm 1 (that is we set T = 1), and fix µ to be a small number, in particular,
we select µ = 10−9. We randomly initialize x and y and initialize λ to zero. For lines 8 and 9
of Algorithm 1, we run l steps of (unconstrained) EG and GD, respectively. For the update of x
(using EG), we use step-size ηx = 0.001, whereas for y (using GD), we use step-size ηy = 0.2. We
present results when l ∈ {1, 10}. At every iteration, we update λ using the expression in line 11 of
Algorithm 1, with β = 0.5.

Because the problem in step 8 of Algorithm 1 does not change a lot over the iterations (as well as
when computing y), when we implement Algorithm 1 we do not reinitialize the variable x. We

1Provided under Creative Commons Attribution-Share Alike 3.0.
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Generator
Input: z ∈ R128 ∼ N (0, I)

transposed conv. (ker: 3×3, 128→ 512; stride: 1)
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 512→ 256, stride: 2)

Batch Normalization
ReLU

transposed conv. (ker: 4×4, 256→ 128, stride: 2)
Batch Normalization

ReLU
transposed conv. (ker: 4×4, 128→ 1, stride: 2, pad: 1)

Tanh(·)

Discriminator
Input: x ∈ R1×28×28

conv. (ker: 4×4, 1→ 64; stride: 2; pad:1)
LeakyReLU (negative slope: 0.2)

conv. (ker: 4×4, 64→ 128; stride: 2; pad:1)
Batch Normalization

LeakyReLU (negative slope: 0.2)
conv. (ker: 4×4, 128→ 256; stride: 2; pad:1)

Batch Normalization
LeakyReLU (negative slope: 0.2)

conv. (ker: 3×3, 256→ 1; stride: 1)
Sigmoid(·)

Table 1: DCGAN architectures (Radford et al., 2016) used for experiments on MNIST. With “conv.”
we denote a convolutional layer and “transposed conv” a transposed convolution layer (Radford
et al., 2016). We use ker and pad to denote kernel and padding for the (transposed) convolution
layers, respectively. With h×w we denote the kernel size. With cin → yout we denote the number
of channels of the input and output, for (transposed) convolution layers. The models use Batch
Normalization (Ioffe & Szegedy, 2015) layers.

instead use the one from the previous iteration as initialization and update it l times. The full details
of the training when using an inner optimizer for step 8 of Algorithm 1 are provided in Algorithm 4,
where we recall that G(x) is defined as:

G(x) ≜ x+
1

β
PcF (x)− Pcyk +

1

β
Pcλk − dc (G-EQ)

Note that in the case of MNIST, we consider only inequality constraints (and there are no equality
constraints), therefore, the matrices Pc and dc are identity and zero, respectively. Thus, there is no
need for lines 3 and 4 in Algorithm 4.

Algorithm 4 Pseudocode for ACVI when using an inner optimizer (MNIST experiments).

1: Input: operator F : X → Rn, equality Cx = d and inequality constraints φi(x) ≤ 0, i = [m],
hyperparameters µ, β > 0, δ ∈ (0, 1), inner optimizer A (e.g. EG, GDA, OGDA), l number of
steps for the inner-optimizer, number of iterations K.

2: Initialize: x0 ∈ Rn, y0 ∈ Rn, λ0 ∈ Rn

3: Pc ≜ I −C⊺(CC⊺)−1C where Pc ∈ Rn×n

4: dc ≜ C⊺(CC⊺)−1d where dc ∈ Rn

5: for k = 0, . . . ,K − 1 do
6: To obtain xk+1: run l steps of A solving VI(Rn, G), where G is defined in (G-EQ)
7: To obtain yk+1: run l steps of GD to find yk+1 that minimizes:

−µ
∑m

i=1 log
(
− φi(y)

)
+ β

2

∥∥∥y − xk+1 − 1
βλk

∥∥∥2
8: λk+1 = λk + β(xk+1 − yk+1)
9: end for

10: Return: xK

The implementation details for the Fashion-MNIST experiment are identical to those of the MNIST
experiment.

Setup 1: MNIST. The MNIST experiment in Fig. 4 in the main part (and Fig. 11, 12) has 100
randomly generated linear inequality constraints for the Generator and 100 for the Discriminator.

Setup 1: projection details. Suppose the linear inequality constraints for the Generator are Aθ ≤ b,
where θ ∈ Rn is the vector of all parameters of the Generator, A = (a⊺

1 , · · · ,a
⊺
100)

⊺ ∈ R100×n,
b = (b1, . . . , b100) ∈ R100. We use the greedy projection algorithm described in (Beck, 2017). A
greedy projection algorithm is essentially a projected gradient method, it is easy to implement in
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high-dimension problems, and it has a convergence rate of O(1/
√
K). See Chapter 8.2.3 in (Beck,

2017) for more details. Since the dimension n is very large, at each step of the projection, one could
only project θ to one hyperplane a⊺

i x = bi for some i ∈ I(θ), where

I(θ) ≜ {j|a⊺
j θ > bj}.

For every j ∈ {1, 2, . . . , 100}, let
Sj ≜ {x|a⊺

jx ≤ bj}.

The greedy projection method chooses i so that i ∈ argmax{dist(θ,Si)}. Note that as long as θ is
not in the constraint set C≤ = {x|Ax ≤ b}, i would be in I(θ). Algorithm 5 gives the details of the
greedy projection method we use for the baseline, written for the Generator only for simplicity; the
same projection method is used for the Discriminator as well.

Algorithm 5 Greedy projection method for the baseline.

1: Input: θ ∈ Rn, A = (a⊺
1 , . . . ,a

⊺
100)

⊺ ∈ R100×n, b = (b1, . . . , b100) ∈ R100, ε > 0
2: while True do
3: I(θ) ≜ {j|a⊺

j θ > bj}
4: if I(θ) = ∅ or max

j∈I(θ)

|a⊺
j θ−bj |
∥aj∥ < ε then

5: break
6: end if
7: choose i ∈ argmax

j∈I(θ)

|a⊺
j θ−bj |
∥aj∥

8: θ ← θ − |a⊺
i θ−bi|
∥ai∥2 ai

9: end while
10: Return: θ

Setup 2: MNIST & Fashion-MNIST. We add two constraints for the MNIST experiment: we set the
squared sum of all parameters of the Generator and that of the Discriminator (separately) to be less
than or equal to a hyperparameter M . We select a large number for M ; in particular, we set M = 50.

Metrics. We describe the metrics for the MNIST experiments shown later in App. E. We use the two
standard GAN metrics, Inception Score (IS, Salimans et al., 2016) and Fréchet Inception Distance
(FID, Heusel et al., 2017). Both FID and IS rely on a pre-trained classifier and take a finite set of
m̃ samples from the generator to compute these. Since MNIST has greyscale images, we used a
classifier trained on this dataset and used m̃ = 5000.

Metrics: IS. Given a sample from the generator x̃g ∼ pg—where pg denotes the data distribution of
the generator—IS uses the softmax output of the pre-trained network p(ỹ|x̃g) which represents the
probability that x̃g is of class ci, i ∈ 1 . . . C, i.e., p(ỹ|x̃g) ∈ [0, 1]C . It then computes the marginal
class distribution p(ỹ) =

∫
x̃
p(ỹ|x̃g)pg(x̃g). IS measures the Kullback–Leibler divergence DKL

between the predicted conditional label distribution p(ỹ|x̃g) and the marginal class distribution p(ỹ).
More precisely, it is computed as follows:

IS(G) = exp
(

E
x̃g∼pg

[
DKL

(
p(ỹ|x̃g)||p(ỹ)

)])
= exp

( 1

m̃

m̃∑
i=1

C∑
c=1

p(yc|x̃i) log
p(yc|x̃i)

p(yc)

)
. (IS)

It aims at estimating (i) if the samples look realistic i.e., p(ỹ|x̃g) should have low entropy, and (ii) if
the samples are diverse (from different ImageNet classes), i.e., p(ỹ) should have high entropy. As
these are combined using the Kullback–Leibler divergence, the higher the score is, the better the
performance.

Metrics: FID. Contrary to IS, FID compares the synthetic samples x̃g ∼ pg with those of the training
dataset x̃d ∼ pd in a feature space. The samples are embedded using the first several layers of a
pre-trained classifier. It assumes pg and pd are multivariate normal distributions and estimates the
means mg and md and covariances Cg and Cd, respectively, for pg and pd in that feature space.
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Finally, FID is computed as:

DFID(pd, pg) ≈ D2

(
(md,Cd), (mg,Cg)

)
= ∥md −mg∥22 + Tr

(
Cd +Cg − 2(CdCg)

1
2

)
,

(FID)

where D2 denotes the Fréchet Distance. Note that as this metric is a distance, the lower it is, the
better the performance.

Hardware. We used the Colab platform (https://colab.research.google.com/) and
Tesla P100 GPUs. The running times are reported in App. E.
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E ADDITIONAL EMPIRICAL ANALYSIS

In this section, we provide some omitted plots/analyses of the results in the main paper as well as addi-
tional experiments. In particular, (i) App. E.1 lists results in 2D, (ii) App. E.2 on (HBG) and (g-HBG),
whereas (iii) App. E.3 provides more detailed plots of those experiments summarized in Fig. 4 and
presents additional results on other constraints on MNIST where we compare computationally-wise
with unconstained baselines.

E.1 ADDITIONAL EXPERIMENTS IN 2D, ON HBG AND ON G-HBG

Depicting the omitted baselines of Fig. 1. While Fig. 1 lists solely EG and ACVI for clarity, Fig. 5
depicts all the considered baselines in this paper on the cBG problem for completeness.

GDA
EG
OGDA
LA5-GDA
ACVI

Figure 5: In addition to Fig. 1, here we depict all the considered baselines on the cBG problem. The
solution at (0, 0) is denoted with a red star (⋆), and the vector field of this problem with gray arrows.
See App. D.1 for details on the implementation.

Additional experiments: varying constraints on the Forsaken problem. The Forsaken game
was first pointed out in (Hsieh et al., 2021) and is particularly relevant because it has limit cycles,
despite that it is in 2D. Since we are missing a tool to detect if we are in a limit cycle when in
higher dimensions, this example is a popular benchmark in many recent works. Interestingly, in
Fig. 2(b) we observe that ACVI is the only method that escapes the limit cycle. However, since in
those simulations, given the initial point the constraints are not active throughout the training, in
this section, we run experiments with additional constraints. Fig. 6 depicts the baseline methods
and ACVI on the Forsaken problem with two different constraints than that considered in Fig. 2
(that x2

1 + x2
2 ≤ 4). Since this game is non-monotone, we observe that for some constraints the

baseline methods—GDA, EG, OGDA, LA4-GDA—stay near the constraint (and do not converge).
This may indicate that ACVI may have better chances of converging for broader problem classes
than monotone VIs, relative to baseline methods whose convergence may depend on the constraints,
and when hitting a constraint may be significantly slower (as Fig. 1 illustrates).
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(b) x2 ≥ 0.4

Figure 6: Forsaken game with different constraints: we consider two additional (to that in Fig. 2)
constraints: (a) that x1 ≥ 0.08, and (b) that x2 ≥ 0.4. See App. D.1 for details on the implementation,
and App. E.1 for a discussion.

E.2 ADDITIONAL EXPERIMENTS HBG AND ON G-HBG

Complementary analysis to those in Fig. 3. Similar to Fig. 3, in Fig. 7 we run experiments on
the HBG problem. However, here for a given fixed CPU time, we depict the relative error of the
considered baselines and ACVI.

100 200
CPU time (s)

10−5

10−4

10−3

10−2

10−1

re
la

tiv
e

er
ro

r

GDA
EG
OGDA
LA4-GDA
ACVI

Figure 7: Given varying CPU time (in seconds), depicting the relative error (see App. D.2)
of GDA, EG, OGDA, LA4-GDA, and ACVI (Algorithm 1) on the HBG problem where η is fixed to
η = .05 (hence the vector field is highly rotational). This experiment complements those in Fig. 3 in
the main paper. For the details on the implementation, see App. D.2.

Additional experiments on (g-HBG). In Fig. 8 we run experiments on the generalized HBG
problem (g-HBG). In figure 8(a), we compute the number of iterations needed to reach ε-distance to
solution for varying intensity of the rotational component (1− η); in figure 8(b), we compute the
error of the last iterate given fixed CPU time. We observe that despite the highly rotational monotone
vector field, ACVI converges significantly faster in terms of wall clock time in higher dimensions as
well.

Comparison with Frank-Wolf algorithm on (g-HBG) and (gg-HBG). Similar to Fig. 8, in Fig. 9
we also run experiments on (g-HBG), but here we compare ACVI with FW. We observe that ACVI
outperforms FW even when we make use of the special structure of the simple constraint set when
solving the linear minimization problem in FW (the fast FW method). Similar to Fig. 9(b), in Fig. 10
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(a) Varying rotational intensity (1− η)
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Figure 8: General high-dimensional bilinear game (g-HBG): comparison of ACVI with the GDA,
EG, OGDA, and LA4-GDA baselines (described in App. A.4). Left: number of iterations (y-axis)
needed to reach an ϵ-distance to the solution, for varying intensity of the rotational component 1− η
(η is the x-axis) of the vector field (the smaller the η the higher the rotational component). We fix
a threshold of the maximum number of iterations, and we stop the experiment. Right: distance to
the solution (see App. D.2) of the last iterate (y-axis) for a varying wall-clock CPU time allowed to
run each experiment (x-axis); in this experiment η is fixed to η = 0.05. See App. E.2 and D.2 for
discussion and details on the implementation, respectively.

we run experiments on the (gg-HBG) problem, where we fix CPU time and depict the relative error
of ACVI and FW.
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(a) Varying rotational intensity (1− η)
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Figure 9: General high-dimensional bilinear game (g-HBG): comparison of ACVI with FW baseline
(Algorithm 2). Left: number of iterations (y-axis) needed to reach an ϵ-distance to the solution, for
varying intensity of the rotational component 1−η (η is the x-axis) of the vector field (the smaller the
η the higher the rotational component). We fix a threshold of the maximum number of iterations, and
we stop the experiment. Right: distance to the solution (see App. D.2) of the last iterate (y-axis) for
a varying wall-clock CPU time allowed to run each experiment (x-axis); in this experiment η is fixed
to η = 0.05. See App. E.2 and D.2 for discussion and details on the implementation, respectively.

Since FW (and variants, such as approximate and accelerated) rely on a specific structure of the
constraints, FW can be extremely slow when those assumptions are not met–see discussion by Jaggi
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(2013) in §3 as well as examples in §4 therein. In contrast, the herein-presented ACVI Algorithm
focuses on constraints of a general form, and further variants can be derived out of it to also exploit
the structure of the constraints. We leave exploiting such constraint structure—including extending
FW to VIs and deriving variants of ACVI—for future work.
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Figure 10: Given varying CPU time (in seconds), depicting the relative error (see App. D.2) of FW
and ACVI (Algorithm 1) on the HBG problem where η is fixed to η = .05 (hence the vector field is
highly rotational). For the details on the implementation, see App. D.2.

E.3 EXPERIMENTS ON MNIST AND FASHION-MNIST

E.3.1 SETUP 1: EXPERIMENTS ON MNIST WITH LINEAR INEQUALITIES

In this section, we present more detailed results of the summarizing plot in Fig. 4 of the main paper.
For this experiment, we used linear inequalities as described in § D.3. Unlike in subsection E.3.2,
here all the baselines are projected methods (that is, the same problem setting applies to ACVI and
the baselines).

Fig. 11 and 12 depict the comparisons with projected GDA and projected EG, respectively. We
observe that ACVI converges fast relative to the corresponding baseline. When choosing a larger
number of steps for the inner problem l = 10 (see Algorithm 4) the wall-clock time per iteration
increases, and interestingly the ACVI steps compensate for that and overall converge as fast as when
l = 1.

E.3.2 SETUP 2: EXPERIMENTS ON (FASHION-)MNIST WITH QUADRATIC INEQUALITIES

In this section, we consider the MNIST and Fashion-MNIST datasets, which are unconstrained
problems so as to make use of the well-established performance metrics (which are otherwise unclear
in the non-monotone settings, where we do not know the optimal solution apriori). We augment the
problem with a mild constraint which requires that the norm of the per-player parameters does not
exceed a certain value (see App. D.3). We compare ACVI with unconstrained baselines, which sets
ACVI at a disadvantage as the projection requires additional computation. However, the primary
purpose of these experiments is to observe if Algorithm 1 is competitive computationally-wise when
lines 8 and 9 are non-trivial and require an (unconstrained) solver. However note that since MNIST is
a relatively easy problem, it may not answer the natural question if ACVI has advantages on problems
augmented with constraints over standard unconstrained methods. We leave such analyses for future
work. The implementation and the used metrics are described in App. D.3.

Fig. 13 summarizes the experiments in terms of the obtained FID score over time. We observe
that ACVI (although it uses two solvers at each iteration) is yet performing competitively to uncon-
strained GDA and EG. Figures 14–19 provide in addition samples of the Generator and IS scores,
separately for each method. Figures 20 and 21 depict samples generated by the different methods,
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Figure 11: Setup 1: Comparison between ACVI and GDA, and the projected GDA on MNIST with
linear inequalities (described in § D.3). l denotes the number of steps for the inner problems, see
Algorithm 4. The depicted results are over multiple seeds. The FID and IS metrics as well as the
implementation details are described in App. D.3. See App. E.3.1 for discussion.
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Figure 12: Setup 1: Comparison between ACVI and EG, and the projected EG on MNIST with
linear inequalities (described in § D.3). l denotes the number of steps for the inner problems, see
Algorithm 4. The depicted results are over multiple seeds. The FID and IS metrics as well as the
implementation details are described in App. D.3. See App. E.3.1 for discussion.

when trained on the Fashion-MNIST dataset. We believe that further exploring the type of constraints
to be added, or the implementation options (e.g., l, step-size) may be proven fruitful even for problems
that are originally unconstrained–as such an approach may reduce the rotational component of the
original vector field, what in turn causes faster convergence or may help in escaping limit cycles for
problems beyond monotone ones.
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Figure 13: Summary of the experiments on MNIST, using FID (lower is better). 13(a): GDA and
ACVI with GDA, and 13(b): EG and ACVI with EG, using l = {1, 10} for ACVI. Using step size
of 0.001. The depicted results are over multiple seeds. See App. D.3 and E.3 for details on the
implementation and discussion, resp.

Figure 14: GDA on MNIST. Left: samples x̃g ∼ pg of the last iterate of the Generator. Right: FID
and IS of GDA, depicted in blue and red, respectively. Using step size of 0.001.
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Figure 15: ACVI (Algorithm 1) with 10 GDA steps on MNIST. Left: samples x̃g ∼ pg of the last
iterate of the Generator. Right: FID and IS of GDA, depicted in blue and red, respectively. Using
step size of 0.001 for x and 0.2 for y, and l = 10 both for x and y.

Figure 16: ACVI (Algorithm 1) with 1 GDA step on MNIST. Left: samples x̃g ∼ pg of the last
iterate of the Generator. Right: FID and IS of GDA, depicted in blue and red, respectively. Using
step size of 0.001 for x and 0.2 for y, and l = 1 both for x and y.

Figure 17: EG on MNIST. Left: samples x̃g ∼ pg of the last iterate of the Generator. Right: FID and
IS of EG, depicted in blue and red, respectively. Using step size of 0.001.
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Figure 18: ACVI (Algorithm 1) with 10 EG steps on MNIST. Left: samples x̃g ∼ pg of the last
iterate of the Generator. Right: FID and IS of GDA, depicted in blue and red, respectively. Using
step size of 0.001 for x and 0.2 for y, and l = 10 both for x and y.

Figure 19: ACVI (Algorithm 1) with 1 EG step on MNIST. Left: samples x̃g ∼ pg of the last iterate
of the Generator. Right: FID and IS of GDA, depicted in blue and red, respectively. Using step size
of 0.001 for x and 0.2 for y, and l = 1 both for x and y.

(a) EG (b) ACVI+EG 1 step (c) ACVI+EG 10 step

Figure 20: Generated images at fixed wall-clock computation time (3000s) by: the baseline EG, and
by ACVI with l ∈ {1, 10} on the Fashion-MNIST (Xiao et al., 2017) dataset. See App. D.3 and E.3
for details on the implementation and discussion, resp.
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(a) GDA (b) ACVI+GDA 1 step (c) ACVI+GDA 10 step

Figure 21: Generated images at fixed wall-clock computation time (3000s) by: the baseline GDA,
and by ACVI with l ∈ {1, 10} on the Fashion-MNIST (Xiao et al., 2017) dataset. See App. D.3
and E.3 for details on the implementation and discussion, resp.
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