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ABSTRACT

Large language models (LLMs) deliver impressive performance but incur pro-
hibitive memory and compute costs at deployment. Model pruning is an effective
way to reduce these overheads, yet existing approaches face challenges: unstruc-
tured sparsity, where nonzeros can appear anywhere, preserves accuracy but yields
irregular access patterns that prevent GPU acceleration, while semi-structured 2:4
sparsity is hardware-friendly but enforces a rigid 50% pattern that degrades model
quality. To bridge this gap, we introduce PATCH, a hybrid sparsity framework
that enables a continuous sparsity ratio between 0% and 50%. PATCH partitions
weight matrices into tiles, assigning each tile to be either dense or 2:4 sparse via a
learnable mask selection mechanism. This design provides fine-grained control
over accuracy–acceleration tradeoffs and supports non-uniform sparsity across
layers, leading to superior overall quality. Across models from 0.5B to 8B param-
eters, PATCH consistently narrows the gap to dense accuracy while delivering
practical speedups. For instance, on LLaMA-2 7B with an A6000 GPU, PATCH
achieves 1.18×–1.38× end-to-end speedup over dense baselines while improving
accuracy by 0.37%–2.96% compared to the state-of-the-art 2:4 pruning method,
MaskLLM. 1

1 INTRODUCTION

Recent advancements in large language models (LLMs) have revolutionized natural language pro-
cessing, enabling breakthroughs in understanding and generating human language (Comanici et al.,
2025; Meta, 2025). These models power diverse applications, such as conversational agents and
automated content creation (Suzgun et al., 2022; Zhou et al., 2023). However, their extensive
parameter counts—often in the billions—result in significant memory overhead and high inference
costs (Guo et al., 2024; Ma et al., 2024). This computational burden has driven the need for efficient
model compression techniques.

Two primary approaches to model compression are quantization and sparsity. Quantization reduces
the precision of model parameters, compressing LLMs effectively while preserving performance
(Ashkboos et al., 2024; Tseng et al., 2024; Zhang et al., 2024; Saha et al., 2024). In contrast,
sparsity aims to lower memory and computational demands by setting many parameters to zero
(Hassibi et al., 1993; LeCun et al., 1989). However, sparsity alone struggles to maintain model
accuracy while delivering practical speedups, a limitation that current research seeks to overcome.

Unstructured sparsity, which permits non-zero elements to appear anywhere in the matrix, can match
dense model accuracy due to its flexibility in sparsity allocation (Sun et al., 2023; Frantar & Alistarh,
2023; Agarwalla et al., 2024). However, its irregular memory access patterns hinder acceleration on
modern hardware like GPUs (Xia et al., 2023; Fan et al., 2025). As a result, unstructured spar-
sity fails to deliver practical speedups, motivating the search for more hardware-friendly sparsity
techniques.

Semi-structured sparsity patterns, such as the 2:4 pattern (Mishra et al., 2021) supported by NVIDIA
and AMD GPUs, provide practical speedups in large-scale model inference. However, unlike un-
structured sparsity, which offers greater flexibility, 2:4 enforces rigid rules by requiring at least two
of every four consecutive elements to be zero. This rigidity often leads to significant accuracy loss

1Code and data for PATCH are available at https://anonymous.4open.science/r/PATCH-ICLR2026
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Figure 1: Illustration of the PATCH learning process for generating tile-level hybrid masks. Each
tile is parameterized by a learnable distribution and sampled with Gumbel Softmax to produce M̃tile.
The dense probability is expanded and merged with a 2:4 mask M̃2:4, which can be fixed or jointly
learned during training, yielding M̃ . The final mask assigns each tile to remain dense or follow the
2:4 pattern, enabling flexible sparsity across the weight matrix.

when models are pruned using one-shot methods (Sun et al., 2023; Frantar & Alistarh, 2023; Ilin
& Richtarik, 2025; Liu et al., 2025). MaskLLM (Fang et al., 2024) mitigates this issue by learning
sparsity masks end-to-end, but pruned models still lag behind their dense counterparts in accuracy.
Moreover, recent studies show that sparsity should be allocated non-uniformly (adaptively) across
layers for optimal performance (Yin et al., 2025; Wang & Tu, 2020; Lee et al., 2021), whereas 2:4
sparsity enforces a fixed, uniform allocation. These limitations indicate that relying solely on 2:4
sparsity is insufficient, underscoring the need for hybrid approaches.

To address the challenges of LLM pruning, while providing accelerated inference, we propose
Pruning with a Learnable Tile-level Configuration for Hybrid Sparsity (PATCH). PATCH learns
a hybrid mask that partitions each weight matrix into hardware-friendly tiles, designating each tile
as either dense (0% sparsity) or 2:4 sparse (50% sparsity). This adaptive mask allows the matrix to
realize an effective global sparsity ratio anywhere between 0% and 50%, balancing accuracy in crit-
ical regions with hardware-friendly sparsity elsewhere. This design unites the hardware acceleration
benefits of 2:4 sparsity with the flexibility of unstructured allocation, allowing sparsity to adapt to
the varying importance of different layers. By jointly optimizing the sparsity within 2:4 tiles and the
tile-level patterns during training, PATCH achieves higher accuracy than uniform sparsity across
layers. Moreover, for resource-constrained settings, we offer a variant of PATCH that tunes only
the dense tiles while freezing the initial 2:4 mask fixed. Importantly, PATCH is compatible with
tile-level sparsity acceleration libraries and compilers such as STOICC (Rafii et al., 2025), making
it the first hybrid sparsity method to demonstrate practical speedups. For example, on LLaMA-2
7B running on a consumer-grade A6000 GPU, PATCH achieves 1.18×–1.38× end-to-end speedup
over the dense baseline while improving accuracy by 0.37%–2.96% compared to the state-of-the-art
2:4 pruning method, MaskLLM.

2 PRELIMINARIES

Differentiable Sampling. Sampling from a categorical distribution is inherently non-
differentiable, which poses challenges for gradient-based optimization. The Gumbel Softmax (Jang
et al., 2016) addresses this by combining the Gumbel-Max reparameterization trick together with
a softmax relaxation. The reparameterization expresses the sampling process by decoupling the
deterministic log-probabilities p ∈ Rn from the stochastic perturbations z ∈ Rn introduced by
Gumbel noise, which emulate random draws from the distribution. The subsequent softmax yields
a differentiable approximation to categorical sampling:

2
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GS(p; τ)k =
exp((pk + zk)/τ)∑
j exp((pj + zj)/τ)

(1)

where zk = − log(− log(uk)) with uk ∼ Uniform(0, 1). The resulting vector GS(p; τ) ∈ Rn is a
soft index vector whose entries GS(p; τ)k represent the relaxed probability of selecting class k.

Additionally, the temperature parameter τ controls the hardness of the sampled index. Lower values
of τ yield a more peaked distribution, causing GS(p) to converge to a one-hot vector as τ → 0.

Learnable 2:4 Mask. MaskLLM (Fang et al., 2024) formulates 2:4 mask selection as a learnable
probabilistic process over the six possible patterns. The underlying weights remain fixed, while
training shifts the categorical distribution to favor masks that preserve better pruning performance.
The mask for each four consecutive elements can be parameterized with a vector p ∈ R6×1. Scaling
this vector to a weight matrix W ∈ Rd1×d2 will result in P2:4 ∈ R6× d1d2

4 as the mask search
parameters. The resulting mask can be computed as in Equation 2, where M̃2:4 ∈ [0, 1]d1×d2

denotes the 2:4 soft mask, obtained as a weighted average over the candidate masks, and S ∈ R6×4

is the matrix containing these six candidates as its rows.2

M̃2:4 = reshape(GS(P2:4; τ, κ)× S,Rd1×d2) (2)

A scaling factor κ is also introduced in Equation 1, where it multiplies the logits p before adding the
Gumbel noise z, thereby controlling their relative influence. Small κ values let the noise dominate,
encouraging exploration across candidate masks, while larger κ values amplify the logits and make
the sampling more deterministic.

3 PATCH

To overcome the rigidity of fixed 50% 2:4 sparsity, we introduce PATCH. PATCH learns a struc-
tured mask—optimized on top of frozen weights—that is partitioned into tiles, where each tile de-
cides whether its corresponding weights remain dense or are pruned with a 2:4 pattern. This design
preserves accuracy in sensitive regions while exploiting hardware-accelerated sparsity elsewhere.
Unlike fixed 2:4 sparsity, which enforces the same pattern across all weights, PATCH adapts at the
tile level by assigning dense tiles to critical regions and sparse tiles elsewhere.

Finding the optimal allocation of dense tiles (value 1) and sparse tiles (2:4 pattern) within a mask
is a combinatorially difficult problem, as the number of possible configurations grows rapidly with
the number of tiles across the LLM. By also modelling this problem as a probabilistic sampling
process, and adjusting the probability of each tile (and the 2:4 patterns within sparse tiles), PATCH
can efficiently explore the space of configurations and converge toward masks that balance accuracy
and sparsity. The mask distributions are learned end-to-end by training the Gumbel–Softmax logits
while keeping the model weights frozen. We address this challenge by formulating mask selection
as two coupled subproblems: (1) selecting which tiles are dense or sparse, and (2) choosing the 2:4
sparsity pattern within sparse tiles.

Tile-based pruning of LLMs. We associate each parameter matrix W ∈ Rd1×d2 with a grid
of tile-level distributions, each parameterized by a learnable logit. Collectively, these form Ptile ∈

R
d1

b1
×d2

b2 , where each entry specifies the unnormalized score of keeping the corresponding b1 × b2
tile fully dense. To create a two-class distribution (keep dense vs. prune), we concatenate a fixed

zero to each logit, yielding [Ptile, 0] ∈ R
d1

b1
×d2

b2
×2. After applying Gumbel–Softmax, we broadcast

the dense probabilities across their respective b1 × b2 region (since the weighted average of the two
outcomes reduces to pdense · 1 + pprune · 0 = pdense), so that all elements of a tile receive the same
mask value. Formally,

M̃tile = GS([Ptile, 0]; τ, κ):,:,0 ⊗ 1. (3)
2We will refer to a mask value of 1 as keeping the corresponding weight and a value of 0 as pruning it.

3
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This yields the tile-level mask M̃tile ∈ [0, 1]d1×d2 in Equation 3, where 1 ∈ Rb1×b2 is an all-ones
matrix and ⊗ denotes the Kronecker product.

Joint optimization with sparse mask. To fully determine the effective sparsity pattern, the tile-
level mask must be combined with the fine-grained 2:4 mask. Assuming that the 2:4 mask M̃2:4 is
generated using Equation 2, PATCH combines it with the tile mask M̃tile as shown in Equation 4.
The resulting soft mask interpolates between dense and sparse behavior: values of M̃tile close to one
make the tile predominantly dense, while values close to zero shift the tile toward the soft 2:4 mask
pattern defined by M̃2:4. Thus, M̃ can be understood as a per-tile weighted average of the dense
option and the 2:4 patterns, with M̃tile determining the relative contribution of each. An overview
of the process is provided in Figure 1.

M̃ = M̃tile +
(
1− M̃tile

)
⊙ M̃2:4 (4)

Learning masks with targeted sparsity. PATCH uses a novel regularization term to achieve a
flexible 0%–50% sparsity ratio across the model by controlling the number of dense tiles. Unlike
traditional regularization methods like weight decay, which produce non-deterministic sparsity ra-
tios, our term penalizes deviations from the target sparsity, enabling precise control. This global
sparsity approach prunes sensitive linear layers less aggressively while setting redundant weight el-
ements to zero, offering greater flexibility than fixed per-layer sparsity. We directly compare global
versus per-layer sparsity regularization in § 5.

Training objective. The overall training objective, as shown in Equation 5, of PATCH combines
three components: the standard modeling loss, a sparsity regularization term that enforces the target
density of the model ρ, and a weight regularization term (as in MaskLLM) that promotes larger
weight magnitudes and gradient propagation. Formally,

L = LLM

(
x;M̃i ⊙Wi

)
+ λ1

∥∥∥∥∥
∑

i M̃i∑
i∥Wi∥0

− ρ

∥∥∥∥∥
1

− λ2

∑
i∥M̃i ⊙Wi∥22∑

i∥Wi∥22
(5)

Following MaskLLM, we progressively decrease τ and increase κ during training so that the
Gumbel-Softmax distribution converges to a clear one-hot choice of mask by the end of training.

Inference. After training, the sign of each logit in Ptile determines the final mask. Since a zero
logit is concatenated to represent the sparse class (Equation 3), positive values correspond to the
dense option, while negative values correspond to the sparse option. The complete procedure is
outlined in Algorithm 1.

Memory efficient PATCH. To further reduce overhead, PATCH can be run in a memory-efficient
manner by freezing the sparse mask parameters and optimizing only the tile-level decisions. This
reduces the number of learnable parameters to d1d2

b1b2
. While this lighter formulation limits mask-

selection flexibility and can reduce performance as seen in Table 5, it makes training feasible under
strict memory constraints, such as fitting an 8B model on a single 80GB GPU. We denote this version
of PATCH by PATCHTile and the joint optimization version of PATCH by PATCHJoint.

4 EFFICIENT DEPLOYMENT OF PATCH

Executing PATCH requires handling hybrid sparse–dense tiles, a capability not supported by ex-
isting GPU libraries. Current tools either focus exclusively on dense computation (e.g., cuBLAS
(NVIDIA Corporation, a), dense CUTLASS (Corporation, 2025), OpenAI Triton (Tillet et al.,
2019)), or restrict support to fixed 2:4 sparsity (e.g., cuSPARSELt (NVIDIA Corporation, b), sparse
CUTLASS). STOICC (Rafii et al., 2025) lifts these limitations by extending Triton with hybrid
tile-level sparsity, making it a suitable backend for accelerating PATCH.

Similar to Triton, STOICC employs an inspector that benchmarks candidate kernel configurations
for each sparsity ratio, identifying the most hardware-efficient tile size for the target GPU. On

4
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Algorithm 1 Joint Tile & 2:4 Mask Learning
Input: Weight matrix W, tile size (b1, b2), sparsity target ρ, training steps T , loss hyperparameters λ1, λ2,
temperature schedule {τt}Tt=1, scaling schedule {κt}Tt=1.
Output: Learned pruning masks M⋆, pruned weights Ŵ.

1 Initialize tile logits Ptile ∈ R
d1
b1

× d2
b2 .

2 Initialize Ptile with one-shot prior.

3 Initialize differentiable 2:4 parameters P2:4 ∈ R6× d1d2
4 .

4 for t = 1 → T do
5 M̃tile ← GS([Ptile, 0]; τt, κt):,:,0 ⊗ 1b1×b2 ▷ Dense soft tile mask

6 M̃2:4 ← Eq. 2 ▷ Differentiable 2:4 mask

7 M̃i ← M̃tile + (1− M̃tile)⊙ M̃2:4 ▷ Merge masks

8 Compute loss:

L = LLM (x; M̃⊙W) + λ1

∥∥∥∥∥
∑

i M̃i∑
i∥Wi∥0

− ρ

∥∥∥∥∥
1

− λ2

∑
i∥M̃i ⊙Wi∥22∑

i∥Wi∥22

9 Update Ptile,P2:4 via backpropagation.
10 end for
11 M⋆

tile ← 1[Ptile > 0]⊗ 1b1×b2 ▷ Hard tile mask
12 M⋆

2:4 ← select best 2:4 mask from P2:4.
13 M⋆

i ←M⋆
tile + (1−M⋆

tile)⊙M⋆
2:4.

14 Ŵ←W ⊙M⋆
i ▷ Final pruned weights

Return: Learned mask M⋆, pruned weights Ŵ.

NVIDIA A100 and A6000 GPUs, our experiments show that the optimal configurations are con-
sistently drawn from 128×128 or its subdivisions (e.g., 128×64, 64×128, 64×64). In practice, this
means that regardless of the sparsity ratio or the layer shape, the chosen 128×128 granularity guar-
antees that STOICC’s autotuned tiles can be applied consistently. Unless otherwise specified, we
adopt these hardware-friendly tile sizes in all PATCH experiments. Further implementation details
are provided in Appendix A.

5 EXPERIMENTS

Model, dataset and evaluation. We evaluate PATCH across diverse transformer architectures,
including the Qwen-2.5 (Qwen et al., 2025), Gemma 3 (Team et al., 2025), and LLaMA-2 (Touvron
et al., 2023) and 3 (Grattafiori et al., 2024) model families, spanning 500M to 8B parameters. Fol-
lowing the dataset size and configurations in MaskLLM (Fang et al., 2024), masks are trained for
2000 steps with a batch size of 128 on sequences with a length of 4096 tokens from the SlimPajama
dataset (Soboleva et al., 2023).

Following previous LLM compression work (Mozaffari et al., 2025a; Fang et al., 2024), we evaluate
the models on eight zero-shot downstream tasks: PIQA (Bisk et al., 2020), ARC-Easy and ARC-
Challenge (Clark et al., 2018), Winogrande (Sakaguchi et al., 2019), OpenBookQA (Mihaylov et al.,
2018), RACE (Lai et al., 2017), HellaSwag (Zellers et al., 2019), and MMLU (Hendrycks et al.,
2021) using the Language Model Evaluation Harness (Gao et al., 2024) framework. Additionally,
similar to previous work (Mozaffari et al., 2025a; Frantar & Alistarh, 2023; Sun et al., 2023), we
evaluate the models on a language modeling task using the WikiText2 (Merity et al., 2016) dataset
with a sequence length of 4096, comparing against established baselines in the following sections.

Baselines. To evaluate PATCH against established 2:4 sparsity pruning techniques, we compare
it with the state-of-the-art learnable method MaskLLM (Fang et al., 2024), as well as one-shot
methods including Wanda (Sun et al., 2023), SparseGPT (Frantar & Alistarh, 2023), Thanos (Ilin
& Richtarik, 2025), ProxSparse (Liu et al., 2025) and magnitude pruning (Han et al., 2015). For
one-shot pruning methods, following the default configurations in each paper, we prune the models
over 128 samples from the C4 dataset.

5
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Table 1: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
dataset) for different pruning methods. By jointly optimizing the location of dense tiles and the
sparsity pattern within the sparse tiles, PATCHJoint allows for a continuous sparsity ratio for the
models, providing a flexible tradeoff between sparsity and model quality.

Sparsity Method Pattern Qwen-2.5 0.5B LLaMA-3.2 1B Gemma-3 1B

Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓)
0% Dense - 46.00 12.08 47.70 9.06 47.01 11.67

50% Magnitude 2:4 30.16 6734.97 29.66 563.44 31.66 5005.56
Wanda 2:4 32.97 72.48 31.61 78.18 34.16 69.41
SparseGPT 2:4 34.81 36.59 35.55 32.73 35.58 44.59
Thanos 2:4 31.31 37.32 35.71 33.03 35.09 62.63
ProxSparse 2:4 32.05 111.05 33.55 49.33 36.63 90.50
MaskLLM 2:4 39.33 15.22 41.04 12.93 41.84 12.82

45% PATCHJoint Dense/2:4 Tiles 40.29 14.57 42.08 12.23 42.80 11.96
35% PATCHJoint Dense/2:4 Tiles 41.15 13.84 42.72 11.67 43.30 11.48
25% PATCHJoint Dense/2:4 Tiles 42.39 13.47 43.81 11.00 44.07 11.17

The publicly available MaskLLM pruned checkpoints are limited to LLaMA-2 7B and LLaMA-3.1
8B models. To ensure a fair comparison across all models, we implemented MaskLLM in PyTorch
and replicated its results for additional architectures presented in this study.

We faced a similar challenge with ProxSparse as well, where only the LLaMA-2-7B and LLaMA-
3.1-8B checkpoints are publicly available. We have pruned other models with their official code
base using their default hyperparameters for comparison.

Additional implementation details and hyperparameters used in our experiments are provided in
Appendix D.

5.1 MODEL QUALITY RESULTS

Joint sparse and dense tile optimization. For smaller models like Qwen-2.5 0.5B, LLaMA-3.2
1B, and Gemma-3 1B, we apply the joint variant PATCHJoint, which simultaneously optimizes dense
tile locations and sparsity patterns within sparse tiles. This approach enables effective performance.

The average accuracy of the models across eight zero-shot downstream tasks and their perplexity on
the WikiText2 dataset is reported in Table 1. The results demonstrate that PATCHJoint provides a
flexible tradeoff between sparsity ratio and model quality, narrowing the performance gap to dense
models while ensuring hardware-friendly inference. A similar pattern holds for larger models using
a memory-efficient variant, as explored next.

Memory-efficient tile selection. For larger models such as LLaMA-2 7B and LLaMA-3.1 8B,
we employ the memory-efficient variant PATCHTile, which freezes the fine-grained sparse weight
structure while optimizing dense tile selections.

Table 2 summarizes the average accuracy of the models across eight downstream tasks in addition
to their perplexity on the WikiText2 dataset for different sparsity ratios, illustrating that PATCHTile

delivers a comparable flexible sparsity-quality tradeoff when using a high-quality frozen 2:4 mask.

Overall, across Tables 1 and 2, PATCH consistently surpasses one-shot methods like Wanda,
SparseGPT, and magnitude pruning due to its end-to-end training on large corpora. While
MaskLLM also trains end-to-end on a large dataset, its fixed 2:4 sparsity ratio limits achievable
accuracy and perplexity. In contrast, PATCH overcomes this limitation with flexible dense tile
allocation, achieving accuracy gains and perplexity reductions from 45% to 25% sparsity that pro-
gressively align with dense model performance. The full per-task accuracy results are provided in
Appendix B.
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Table 2: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
dataset) for different pruning methods. By only optimizing the location of dense tiles while keeping
sparsity pattern within the sparse tiles frozen, PATCHTile provides a memory efficient variant for
PATCHJoint, allowing for a continuous sparsity ratio for the models and providing a flexible tradeoff
between sparsity and model quality.

Sparsity Method Pattern LLaMA-2 7B LLaMA-3.1 8B

Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓)
0% Dense - 54.61 5.12 60.31 5.84

50% Magnitude 2:4 43.44 54.39 35.93 765.92
Wanda 2:4 44.30 11.15 41.77 21.29
SparseGPT 2:4 45.09 10.12 45.53 15.11
Thanos 2:4 44.80 11.19 45.72 16.09
ProxSparse 2:4 45.92 9.18 45.14 15.17
MaskLLM 2:4 48.62 6.78 52.80 8.58

45% PATCHTile Dense/2:4 Tiles 48.99 6.55 53.60 8.20
35% PATCHTile Dense/2:4 Tiles 50.08 6.18 55.28 7.89
25% PATCHTile Dense/2:4 Tiles 51.58 5.86 56.48 7.34

Table 3: Impact of PATCH’s tile size across sparsity levels
(↓ is better). The effect of tile size on model quality is not
significant, showing PATCH’s robustness against tile size.

Sparsity
(0.5B) 128 64 32 16 8 4

45% 14.57 14.66 14.70 14.67 14.70 14.55
35% 13.84 14.08 14.15 14.03 14.01 13.72
25% 13.47 13.54 13.52 13.53 13.40 13.11

Table 4: Global sparsity yields
better quality by concentrating
pruning in less important blocks
and preserving density elsewhere
(↓ is better).

Sparsity
(0.5B) Global Layer-wise

45% 14.57 15.17
35% 13.84 14.48
25% 13.47 13.95

5.2 UNDERSTANDING THE COMPONENTS OF PATCH

This subsection examines the design choices driving PATCH’s performance by analyzing its behav-
ior across various configurations on the Qwen-2.5 0.5B model.

Tile size. We initially assess the impact of tile size on PATCH’s performance, fixing hyperparam-
eters to those optimized for 128×128 tiles. Table 3 reveals that 4× 4 tiles maximize model quality
through finer sparse-dense control, though larger tile sizes show minimal variation, suggesting ro-
bustness. However, smaller tiles may hinder hardware efficiency, requiring a balance with hardware
specifications.

Joint vs. tile-only mask search. We then analyze the impact of fixing the 2:4 masks and optimiz-
ing only tile masks. Table 5 shows that among frozen 2:4 masks, MaskLLM provides the strongest
results. On the other hand, one-shot pruning methods perform comparably at higher sparsity levels
but diverge at lower sparsity, with SparseGPT emerging as the best overall. When comparing against
our full approach, joint optimization of both tile and 2:4 masks consistently outperforms tile-only
training across sparsity ratios. Nevertheless, tile-only training remains a practical alternative for
larger models in resource-constrained settings, as also reflected in Table 2.

Sparsity allocation. We analyze how sparsity is allocated across transformer blocks under a global
target. Across models, deeper transformer blocks are pruned far less, while the initial blocks also
tend to receive lighter pruning depending on the architecture. By contrast, the middle blocks con-
sistently absorb most of the sparsity, suggesting that they contain more redundancy (Figure 2). We
compare this flexible allocation to enforcing sparsity uniformly at the layer level. As shown in Ta-
ble 4, global targets deliver better results by pruning more aggressively in redundant layers while

7
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Table 5: Impact of fixed 2:4 mask selection for PATCHTile, compared with joint optimization (↓
is better). PATCHJoint achieves the lowest perplexity overall, while for PATCHTile, MaskLLM
provides the best frozen mask.

Sparsity (0.5B) MaskLLM SparseGPT
(w/o weight update) Wanda Magnitude PATCHJoint

45% 15.06 21.84 21.83 21.33 14.57
35% 14.55 17.29 17.96 19.90 13.84
25% 14.17 14.89 15.09 16.05 13.47
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Figure 2: Layer-wise sparsity allocation under different global sparsity budgets for various models.
PATCH achieves the target global sparsity while flexibly distributing pruning across transformer
layers.

preserving capacity in sensitive ones. In contrast, layer-wise targets impose uniform sparsity that
can over-prune critical components (Li et al., 2024b; Xu et al., 2024; Li et al., 2024a; Yin et al.,
2025).

On top of variation across depth, sparsity is also distributed unevenly across the individual linear
layers within each transformer block. Figure 3 breaks down the allocation into the query, key, value,
and output matrices of the attention module, as well as the up, gate, and down matrices of the
MLP for the Qwen 2.5 0.5B model. The up, gate, and down layers absorb most of the sparsity and
largely explain the overall allocation pattern seen in Figure 2. In contrast, the attention module is
treated as more critical. The key and value matrices are never pruned, while the output matrix shows
moderate pruning at higher global sparsity targets. The query matrix is pruned the most, suggesting
it is the least important within the attention submodule. The distributions for the Gemma-3-1B and
LLaMA-3.2-1B models are provided in Appendix E, where the same pattern is observed.

5.3 COMBINATION WITH OTHER COMPRESSION METHODS

LLM compression relies on three orthogonal methods—sparsity, quantization, and low-rank approx-
imation—which can be combined. While this work focuses on sparsity, this section demonstrates
how PATCH integrates with these other techniques.

Quantization. Quantization reduces memory and accelerates computation by lowering numerical
precision on hardware optimized for low bitwidths.

Low-rank approximation. Low-rank methods complement sparsity and quantization by reintro-
ducing a small number of parameters to recover accuracy, with SLIM (Mozaffari et al., 2025a) as a
leading one-shot technique.

Table 6 reports results on LLaMA-2 7B and LLaMA-3.1 8B, showing that combining sparsity, quan-
tization, and low-rank approximation enables controllable tradeoffs between compression ratio and
model quality, highlighting PATCH ’s versatility.
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Figure 3: Sparsity distribution across Attention and MLP layers under varying global sparsity bud-
gets in Qwen-2.5 0.5B.

Table 6: Average accuracy (↑ indicates better) across eight zero-shot downstream tasks and Wiki-
Text2 perplexity (↓ indicates better) of compressed models with 4-bit weight-only quantization.
Please note that using LoRA adds additional parameters to the model.

Sparsity Method Pattern LoRA LLaMA-2-7B LLaMA-3.1-8B

Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓)
0% Dense - - 56.44 5.12 59.85 5.84

50% MaskLLM 2:4 - 47.98 7.64 51.12 9.92

45% PATCHTile Dense/2:4 Tiles - 48.19 7.34 52.47 9.68
45% PATCHTile Dense/2:4 Tiles SLIM-LoRA 50.71 6.83 54.04 9.12
35% PATCHTile Dense/2:4 Tiles - 49.38 6.92 53.81 9.26
35% PATCHTile Dense/2:4 Tiles SLIM-LoRA 51.91 6.42 55.70 8.37
25% PATCHTile Dense/2:4 Tiles - 50.45 6.57 55.45 8.69
25% PATCHTile Dense/2:4 Tiles SLIM-LoRA 52.62 6.11 56.99 7.77

5.4 SPEEDUP AND MEMORY SAVINGS

We evaluate the inference efficiency of the LLaMA-2 7B model pruned with PATCH using the
STOICC (Rafii et al., 2025) compiler. With a batch size of 16 on an A6000 GPU, we observe end-
to-end throughput improvements of 1.18×, 1.27×, and 1.38× at sparsity levels of 25%, 35%, and
45%, respectively, compared to the dense baseline. At the same sparsity levels, the model’s GPU
memory footprint during inference is also reduced, dropping to 0.76×, 0.68×, and 0.59× of the fully
dense model, respectively. These results underscore the trade-off between accuracy retention and
the computational savings enabled by sparsity.

6 CONCLUSION

We introduced PATCH, a hybrid sparsity framework that bridges the gap between unstructured and
2:4 sparsity for large language models. By partitioning weight matrices into tiles designated as
either dense or 2:4 sparse, PATCH enables adaptive sparsity ratios between 0% and 50%, balancing
accuracy and acceleration.

Experiments across models up to 8B parameters show that PATCH consistently improves accuracy
over state-of-the-art 2:4 pruning methods while achieving up to 1.38× end-to-end speedup on con-
sumer grade GPUs. These results demonstrate the promise of hybrid sparsity as a practical approach
to efficient LLM inference and motivate future work on broader sparsity formats, integration with
quantization, and co-design with hardware kernels.
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A STOICC INTEGRATION

Triton (Tillet et al., 2019) enables developers to write efficient GPU kernels with a Python-like syn-
tax, but it natively supports only dense matrix operations and cannot handle sparsity. To accelerate
the mixed-tile format produced by PATCH, we employ the STOICC compiler (Rafii et al., 2025).
STOICC extends Triton with a sparse code-generation backend that allows tiles within a matrix to
be either dense or sparse, enabling mixed execution within a single matrix multiplication.

We rely on STOICC’s inspector to autotune both tile sizes and execution schedules (i.e., alternative
kernel execution schemes such as split-K parallelism) for the prefill and decoding stages of LLM
inference. Matrix compression and metadata generation are determined by the chosen tile size,
which must remain consistent across both stages. To address this, we first autotune the decoding
stage, which is the primary bottleneck of autoregressive generation, since it is executed once per
generated token (e.g., 128 times for 128 new tokens), unlike the single pass of prefill. The optimal
tile size identified for decoding are then fixed and reused for prefill, where we perform a second
round of autotuning over the remaining independent parameters.

In contrast, for fully 2:4 sparse matrices, compression is independent of the block size, so they can
be autotuned in the same way as dense kernels in Triton without this coupling constraint.

The pseudocode outlining this process, including the handling of dense, fully 2:4 sparse, and mixed-
sparsity modules, is provided in PseudoCode 1.

Table 7 reports the measured throughput (tokens processed per second) of LLaMA-2 7B at sparsity
levels of 45%, 35%, and 25% with a batch size of 16 on an A6000 GPU. To reduce CPU overhead
from launching Triton kernels in PyTorch, we executed generation through CUDA graphs, capturing
both the prefill and decoding stages. With sparsity ratios between 25% and 45%, our heterogeneous
approach achieves 1.18×–1.38× end-to-end acceleration over the dense baseline. We also report
timings on A100 in Table 8.

Table 7: Throughput of LLaMA-2 7B with mixed sparsity compared to the dense model. Measure-
ments taken on an A6000 GPU with batch size 16. Throughput is reported in tokens processed/sec.

Sparsity Prefill length Tokens generated Throughput (tok/s) Speedup vs. dense
0% 128 128 1023.80 1.00×
25% 128 128 1212.79 1.18×
35% 128 128 1304.46 1.27×
45% 128 128 1410.20 1.38×
0% 128 1024 435.42 1.00×
25% 128 1024 493.33 1.13×
35% 128 1024 515.39 1.18×
45% 128 1024 542.87 1.25×

1 def tune_and_convert_model(M, backend_name):

Table 8: Throughput of LLaMA-2 7B with mixed sparsity compared to the dense model. Measure-
ments taken on an A100 GPU with batch size 16. Throughput is reported in tokens processed/sec.

Sparsity Prefill length Tokens generated Throughput (tok/s) Speedup vs. dense
0% 128 128 1876.24 1.00×
25% 128 128 2002.02 1.07×
35% 128 128 2088.98 1.11×
45% 128 128 2180.88 1.16×
0% 128 1024 812.55 1.00×
25% 128 1024 864.66 1.06×
35% 128 1024 885.90 1.09×
45% 128 1024 907.12 1.12×
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2 // backend_name ∈ {"STOICC", "cuSPARSELt"}
3 2_4_backend = select_2_4_backend(backend_name)
4

5 // create all configs & schedules to tune over
6 base_configs = STOICC.create_configs()
7 inspector = Inspector()
8

9 for each module in M:
10 s = get_sparsity_ratio(module.weight)
11

12 // Keep dense Torch (cuBLAS) module
13 if s == 0:
14 continue
15

16 // Use STOICC or cuSPARSELt for fully 2:4
17 elif s == 0.5:
18 c = 2_4_backend.compress(module.weight)
19 new_module = 2_4_backend.create_module(c)
20 replace(module, new_module)
21 continue
22

23 else:
24 decoding_input = Tensor(BS, module.weight.shape[1])
25 prefill_input = Tensor(BS * SL, module.weight.shape[1])
26

27 // Tune on decoding input first
28 inspector.set_configs(base_configs)
29 best_cfg_dec = inspector.inspect(
30 decoding_input,
31 module.weight,
32 isASparse=False)
33 BN = best_cfg_dec["BLOCK_N"]
34 BK = best_cfg_dec["BLOCK_K"]
35

36 // Tune on prefill using decoding tile sizes
37 prefill_cfg = STOICC.create_configs(BLOCK_N=BN, BLOCK_K=BK)
38 inspector.set_configs(prefill_cfg)
39 best_cfg_pre = inspector.inspect(
40 prefill_input,
41 module.weight,
42 isASparse=False)
43

44 c = inspector.compress(module.weight, BN, BK)
45 mixed_module = MixedModule(c, best_cfg_dec, best_cfg_pre)
46 replace(module, mixed_module)
47

48 return M

PseudoCode 1: Tuning and Converting Model Weights to Mixed Format.

B PER TASK RESULTS

This appendix provides detailed per-task accuracy results for the models evaluated in Section 5, cov-
ering eight zero-shot downstream tasks: MMLU, PIQA, ARC-Easy, ARC-Challenge, Winogrande,
OpenbookQA, RACE, and Hellaswag. The results are presented for each model at various sparsity
levels and pruning methods, including our proposed PATCHJoint and PATCHTile variants, along-
side baseline methods such as Magnitude, Wanda, SparseGPT, Thanos, ProxSparse, and MaskLLM.
These tables complement the average accuracy and perplexity results reported in Tables 1 and 2 of
the main paper, offering a granular view of model performance across individual tasks.

For smaller models (Qwen-2.5 0.5B, LLaMA-3.2 1B, and Gemma-3 1B), we report results using
the PATCHJoint variant, which jointly optimizes dense tile locations and sparsity patterns within
sparse tiles. For larger models (LLaMA-2 7B and LLaMA-3.1 8B), we report results using the
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memory-efficient PATCHTile variant, which optimizes dense tile selections with a fixed 2:4 sparsity
mask. The per-task accuracies highlight the effectiveness of our approaches in maintaining robust
performance across diverse tasks, even at high sparsity levels, compared to baseline methods.

The following tables detail the per-task accuracies for each model:

• Qwen-2.5 0.5B: Table 9 presents the per-task accuracies for the PATCHJoint variant and
baselines at 0% and 50% sparsity, with PATCHJoint evaluated at 25%, 35%, and 45% spar-
sity.

• LLaMA-2 7B: Table 10 shows the per-task accuracies for the PATCHTile variant and base-
lines, with PATCHTile evaluated at 25%, 35%, and 45% sparsity.

• LLaMA-3.1 8B: Table 11 provides the per-task accuracies for the PATCHTile variant and
baselines, with PATCHTile at 25%, 35%, and 45% sparsity.

• LLaMA-3.2 1B: Table 12 reports the per-task accuracies for the PATCHJoint variant and
baselines, with PATCHJoint at 25%, 35%, and 45% sparsity.

• Gemma-3 1B: Table 13 details the per-task accuracies for the PATCHJoint variant and
baselines, with PATCHJoint at 25%, 35%, and 45% sparsity.

These results enable a deeper analysis of the task-specific performance trends, demonstrating the
flexibility and robustness of PATCHJoint and PATCHTile in achieving high accuracy across diverse
tasks while maintaining hardware-friendly sparsity patterns.

Table 9: Model quality (task accuracy across eight zero-shot tasks, reported in %) for Qwen-2.5 0.5B
with different pruning methods. PATCHJoint optimizes dense tile locations and sparsity patterns,
enabling a flexible sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 47.71 70.24 64.48 29.52 56.20 24.20 35.02 40.63 46.00

50% Magnitude 2:4 23.00 54.24 31.23 19.20 49.96 13.60 23.44 26.59 30.16
Wanda 2:4 24.43 58.71 43.18 17.75 51.62 12.20 26.32 29.58 32.97
SparseGPT 2:4 22.93 60.77 46.60 20.82 52.88 14.00 29.57 30.93 34.81
Thanos 2:4 22.97 60.17 45.37 19.20 53.59 15.20 31.00 31.31 34.85
ProxSparse 2:4 23.00 57.34 40.53 18.26 48.62 14.00 25.65 29.02 32.05
MaskLLM 2:4 25.11 67.03 56.57 23.98 52.57 20.20 33.30 35.90 39.33

45% PATCHJoint Dense/2:4 Tiles 27.39 68.44 59.13 25.77 53.67 19.80 32.15 35.99 40.29
35% PATCHJoint Dense/2:4 Tiles 29.04 68.88 60.40 26.37 55.09 20.40 32.44 36.58 41.15
25% PATCHJoint Dense/2:4 Tiles 30.89 69.15 62.79 29.10 55.33 20.00 34.16 37.71 42.39

Table 10: Model quality (task accuracy across eight zero-shot tasks, reported in %) for LLaMA-2
7B with different pruning methods. PATCHTile optimizes tile-based sparsity, enabling a flexible
sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 41.82 78.07 76.35 43.52 69.06 31.40 39.52 57.13 54.61

50% Magnitude 2:4 25.82 70.02 61.78 30.12 61.01 21.80 31.48 45.45 43.44
Wanda 2:4 25.80 71.00 63.80 30.29 61.09 25.20 35.50 41.75 44.30
SparseGPT 2:4 26.17 70.73 63.80 30.63 65.04 24.00 37.13 43.18 45.09
Thanos 2:4 25.27 70.78 63.43 30.97 64.56 23.80 36.46 43.11 44.80
ProxSparse 2:4 26.77 71.60 65.70 33.02 62.90 24.20 35.31 47.84 45.92
MaskLLM 2:4 27.65 74.76 69.44 35.58 65.04 26.80 38.56 51.15 48.62

45% PATCHTile Dense/2:4 Tiles 27.28 75.41 70.16 35.84 65.27 27.60 38.76 51.61 48.99
35% PATCHTile Dense/2:4 Tiles 29.93 76.71 70.88 36.95 65.67 28.20 39.33 52.96 50.08
25% PATCHTile Dense/2:4 Tiles 32.33 76.99 72.81 38.57 68.27 29.80 39.52 54.34 51.58
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Table 11: Model quality (task accuracy across eight zero-shot tasks, reported in %) for LLaMA-3.1
8B with different pruning methods. PATCHTile optimizes tile-based sparsity, enabling a flexible
sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 63.57 80.09 81.44 51.37 73.48 33.40 39.14 60.02 60.31

50% Magnitude 2:4 23.06 63.82 45.33 25.94 53.91 15.20 26.70 33.49 35.93
Wanda 2:4 27.85 68.88 58.33 26.71 60.93 19.00 33.78 38.70 41.77
SparseGPT 2:4 31.82 70.46 63.85 31.74 64.56 21.60 37.22 42.99 45.53
Thanos 2:4 34.23 70.40 63.13 31.40 63.61 23.20 37.03 42.75 45.72
ProxSparse 2:4 29.89 71.71 62.63 33.28 58.56 23.80 35.22 46.03 45.14
MaskLLM 2:4 42.47 77.04 73.15 40.19 68.43 28.80 38.28 54.04 52.80

45% PATCHTile Dense/2:4 Tiles 47.32 77.96 73.61 41.89 68.03 29.00 36.56 54.44 53.60
35% PATCHTile Dense/2:4 Tiles 51.15 77.97 76.14 42.41 69.46 31.40 38.18 55.54 55.28
25% PATCHTile Dense/2:4 Tiles 52.95 77.75 77.57 44.62 70.56 31.80 39.90 56.69 56.48

Table 12: Model quality (task accuracy across eight zero-shot tasks, reported in %) for LLaMA-3.2
1B with different pruning methods. PATCHJoint optimizes dense tile locations and sparsity patterns,
enabling a flexible sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 37.57 74.54 65.53 31.32 60.62 26.40 37.89 47.76 47.70

50% Magnitude 2:4 23.31 53.81 27.74 18.94 51.38 11.80 24.02 26.26 29.66
Wanda 2:4 22.90 58.11 37.08 19.20 49.09 13.20 25.17 28.11 31.61
SparseGPT 2:4 22.93 61.43 45.03 22.35 54.93 15.80 29.86 32.08 35.55
Thanos 2:4 23.12 62.40 44.91 21.76 54.30 16.00 31.10 32.09 35.71
ProxSparse 2:4 22.96 60.83 39.44 20.31 51.54 16.80 25.17 31.37 33.55
MaskLLM 2:4 26.28 69.10 57.41 25.85 55.48 21.40 32.82 39.94 41.04

45% PATCHJoint Dense/2:4 Tiles 23.81 70.89 60.77 27.22 56.27 22.80 34.07 40.78 42.08
35% PATCHJoint Dense/2:4 Tiles 25.13 71.32 60.27 29.18 57.06 22.00 34.64 42.17 42.72
25% PATCHJoint Dense/2:4 Tiles 28.59 71.44 61.57 28.67 58.25 23.20 35.22 43.52 43.81

Table 13: Model quality (accuracy across eight zero-shot tasks) for Gemma-3 1B with different
pruning methods. PATCHJoint optimizes dense tile locations and sparsity patterns, enabling a flexi-
ble sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 24.95 75.03 71.84 34.90 58.64 28.60 34.83 47.26 47.01

50% Magnitude 2:4 23.08 59.79 37.29 17.66 50.59 14.00 22.87 27.97 31.66
Wanda 2:4 23.96 59.52 48.02 18.34 51.22 14.20 27.85 30.18 34.16
SparseGPT 2:4 23.62 62.79 49.83 19.03 51.54 15.20 30.62 31.99 35.58
Thanos 2:4 23.44 62.24 48.86 18.34 50.12 15.60 30.81 31.28 35.09
ProxSparse 2:4 23.10 64.25 50.72 21.59 53.43 18.00 29.09 32.86 36.63
MaskLLM 2:4 25.03 69.91 60.27 27.65 56.27 21.20 34.55 39.84 41.84

45% PATCHJoint Dense/2:4 Tiles 23.54 71.65 63.97 27.47 57.30 23.60 33.49 41.39 42.80
35% PATCHJoint Dense/2:4 Tiles 25.38 72.31 63.80 27.39 56.67 24.00 34.74 42.07 43.30
25% PATCHJoint Dense/2:4 Tiles 25.45 71.87 66.16 30.55 57.85 22.80 34.55 43.33 44.07

C TILE TRANSFER LEARNING

We also test whether initializing tile logits with priors from one-shot pruning methods improves
performance, as done in MaskLLM (Fang et al., 2024). In our case, the initialization is derived
from one-shot pruning with unstructured sparsity. We initialize tiles that retain more nonzeros after
unstructured pruning with positive logits (favoring dense assignment), while the remaining tiles
receive negative logits, controlled by a strength parameter. The number of tiles initialized as dense
is selected such that the overall layer-wise sparsity target is satisfied. As shown in Table 14, the
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choice of prior has little impact on final performance: all priors yield nearly identical perplexity, with
random initialization often performing best. This is likely because the global sparsity target enables
dynamic reallocation of sparsity across layers during training, overriding the effect of any fixed
initialization. For consistency with prior work, we adopt SparseGPT initialization in all experiments.

Table 14: Perplexity (↓) under different tile prior initializations. All priors
yield nearly identical performance, suggesting that the global sparsity target
allows dynamic reallocation of sparsity during training, overriding the influ-
ence of fixed initialization.

Sparsity (0.5B) Nothing SparseGPT Wanda Magnitude Random

45% 14.80 14.57 14.50 14.48 14.51
35% 13.97 13.84 13.87 13.85 13.79
25% 13.47 13.47 13.37 13.44 13.33

D IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We train all masks using the HuggingFace Trainer API (Wolf et al., 2020) for 2000 steps with a
global batch size of 256 and a sequence length of 4096, resulting in 2B tokens processed from the
SlimPajama corpus (Soboleva et al., 2023).

Training is accelerated via data parallelism across a single node with 4 H100 GPUs. In this
setup, PATCHJoint requires 4.5 and 6 GPU hours on the 0.5B and 1B models, respectively, while
PATCHTile requires 21 and 24 GPU hours on the 7B and 8B models.

The hyperparameters for PATCHJoint and PATCHTile are summarized in Table 15, tuned on Qwen-
2.5-0.5B. For the 2:4 mask parameters, we follow the configuration from MaskLLM (Fang et al.,
2024).

Table 15: Hyper-parameters used for PATCHJoint and PATCHTile across sparsity ratios. All hyper
parameters were tuned on Qwen-2.5-0.5B.

Sparsity Method Optimizer Logits Init Gumbel Scaling Gumbel Prior(Strength) Sparse Reg. Weight Reg.

25% PATCHJoint Adam(0.001) N (0, 0.014) 25 → 350 2 → 0.05 SparseGPT(3) 7 10
35% PATCHJoint Adam(0.001) N (0, 0.014) 25 → 350 2 → 0.05 SparseGPT(3) 7 10
45% PATCHJoint Adam(0.001) N (0, 0.014) 25 → 350 4 → 0.05 SparseGPT(3) 7 10

25% PATCHTile Adam(0.0001) N (0, 0.014) 100 → 500 2 → 0.05 SparseGPT(3) 3 0.1
35% PATCHTile Adam(0.0001) N (0, 0.014) 100 → 500 2 → 0.05 SparseGPT(3) 3 0.1
45% PATCHTile Adam(0.0001) N (0, 0.014) 100 → 500 2 → 0.05 SparseGPT(3) 3 0.1

E ADDITIONAL LAYER-WISE SPARSITY DISTRIBUTIONS

In this appendix, we provide the sparsity distributions for the Gemma-3-1B (Figure 4) and Llama-
3.2-1B (Figure 5) models, as referenced in the main text. Similar to the Qwen-2.5 0.5B model,
the patterns observed here indicate that MLP layers (up, gate, and down matrices) are pruned more
aggressively, absorbing the majority of sparsity. In contrast, the self-attention layers are treated as
more critical, with key and value matrices remaining largely dense or unpruned, while the query
matrix experiences the highest pruning within the attention submodule, and the output matrix shows
moderate pruning under higher global sparsity targets. This consistent behavior across models un-
derscores the redundancy in MLP components and the sensitivity of attention mechanisms.

F RELATED WORK

F.1 PRUNING METHODS

Pruning is one of the most widely studied approaches for compressing deep neural networks, with
the goal of removing redundant parameters while preserving accuracy. Classical pruning methods
can be broadly categorized into local (layer-wise) and global (end-to-end) strategies.
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Figure 4: Sparsity distribution across Attention and MLP layers under varying global sparsity bud-
gets in Gemma-3 1B.
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Figure 5: Sparsity distribution across Attention and MLP layers under varying global sparsity bud-
gets in LLaMA-3.2 1B.

Local pruning. Local approaches prune each layer independently, typically by minimizing recon-
struction error within that layer. A seminal example is Optimal Brain Surgeon (OBS) (Hassibi et al.,
1993; Frantar & Alistarh, 2022), which leverages second-order information to identify and remove
weights while updating the remaining parameters to compensate for loss. While highly principled,
the quadratic cost of computing and inverting the Hessian makes OBS infeasible for large models.

Recent work adapts these ideas to LLM-scale pruning. SparseGPT (Frantar & Alistarh, 2023) for-
mulates layer-wise pruning as a sparse regression problem, enabling efficient approximations of
OBS that scale to billion-parameter models. Thanos (Ilin & Richtarik, 2025) further improves accu-
racy by employing multi-column approximations to reduce error accumulation. Wanda (Sun et al.,
2023), on the other hand, discards explicit weight updates and instead uses a simple magnitude-
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activation criterion with calibration data, yielding competitive quality with extremely fast runtimes.
Despite their efficiency, local methods often suffer from limited capacity to recover accuracy since
pruning decisions ignore cross-layer dependencies.

Global pruning. Global approaches aim to jointly optimize pruning decisions across layers, typ-
ically leading to better overall trade-offs. Optimal Brain Damage (OBD) (LeCun et al., 1989) is an
early global method that estimates weight saliency using the diagonal Hessian. Extensions such as
WoodFisher (Singh & Alistarh, 2020) approximate the Hessian via Kronecker factorizations, mak-
ing computation more tractable but still challenging for modern LLMs (Mozaffari et al., 2023).

More recent approaches bypass costly second-order computations. MaskLLM (Fang et al., 2024)
formulates pruning as a binary classification task (keep vs. prune) and solves it using standard opti-
mizers such as AdamW (Loshchilov, 2017), achieving strong results even under hardware-friendly
structured sparsity (e.g., 2:4). ProxSparse (Liu et al., 2025) instead adopts a proximal regularization
framework, reducing the overhead of MaskLLM while trading off some pruning accuracy. These
works highlight the tension between pruning quality and efficiency: global methods often achieve
higher accuracy but remain more computationally expensive than simple one-shot local pruning.

F.2 COMPLEMENTARY COMPRESSION TECHNIQUES

Beyond pruning, several orthogonal compression techniques are widely used and can be combined
with sparsity for additional gains. Quantization reduces the bit precision of parameters and activa-
tions, e.g., from 32-bit floating point to 8- or 4-bit integers, thereby reducing memory footprint and
accelerating inference (Gholami et al., 2022; Rokh et al., 2023).

Low-rank adaptation methods decompose weight matrices into smaller factors, effectively reducing
parameter counts while maintaining expressivity. Recent approaches such as LQ-LoRA (Guo et al.,
2023), SLiM (Mozaffari et al., 2025a), and SLoPe (Mozaffari et al., 2025b) demonstrate that low-
rank structures can be used both for efficient fine-tuning and for direct model compression.

Finally, knowledge distillation (Gou et al., 2021) transfers knowledge from a large teacher model to
a smaller student, yielding compact models that retain much of the teacher’s performance. These
methods are complementary to pruning, and hybrid frameworks that integrate sparsity, quantization,
and low-rank factorization represent a promising direction for achieving high compression ratios
without sacrificing accuracy.

G COMPARISON WITH UNSTRUCTURED SPARSITY

In this section, we compare the quality of the models pruned with PATCH against other unstructured
sparsity methods. Table 16 summarizes the average accuracy of the models across eight downstream
tasks and the model perplexity on WikiText2 dataset. The results indicate that while unstructured
sparsity consistently outperforms the hybrid sparsity, the gap between the two is not significant,
showing that PATCH is helping bridging the gap between unstructured sparsity and semi-structured
sparsity.

H LANGUAGE MODEL USAGE IN PAPER

We used language models to enhance the readability of the manuscript, correct grammatical and
typographical errors, and ensure conformity with the ICLR author guidelines. Beyond their appli-
cation in benchmark evaluations and experimental procedures, language models were not employed
in any other aspect of this study.

I REPRODUCIBILITY STATEMENT

To support reproducibility, we release a repository linked in the abstract footnote that contains our
implementation, training scripts, and evaluation pipeline. The paper outlines the method in § 3 and
provides a thorough experimental description in § 5. Appendix D discusses the hyperparameter val-
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Table 16: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
dataset) for PATCH, Wanda, and SparseGPT. For models with less than or equal to 1B parame-
ters, PATCHJoint optimizes both dense tile locations and sparsity patterns, while for larger models
PATCHTile optimizes only dense tile locations with frozen sparsity patterns, both using Dense/2:4
Tiles pattern allowing continuous sparsity ratios and flexible tradeoffs between sparsity and model
quality. Wanda and SparseGPT are unstructured pruning methods.

Sparsity Method Pattern Qwen-2.5 0.5B LLaMA-3.2 1B Gemma-3 1B LLaMA-2 7B LLaMA-3.1 8B

Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓)
45% PATCH Dense/2:4 Tiles 40.29 14.57 42.08 12.23 42.80 11.96 48.99 6.55 53.60 8.20
45% Wanda Unstructured 41.45 18.81 40.76 16.56 42.87 25.38 52.72 6.36 55.67 8.24
45% SparseGPT Unstructured 42.31 17.65 42.66 15.01 43.52 22.26 52.77 6.46 56.70 8.21

35% PATCH Dense/2:4 Tiles 41.15 13.84 42.72 11.67 43.30 11.48 50.08 6.18 55.28 7.89
35% Wanda Unstructured 43.46 15.04 44.60 11.95 45.50 16.98 54.37 5.87 58.68 7.02
35% SparseGPT Unstructured 44.66 14.79 45.62 11.68 45.45 16.92 54.18 5.92 58.81 7.07

25% PATCH Dense/2:4 Tiles 42.39 13.47 43.81 11.00 44.07 11.17 51.58 5.86 56.48 7.34
25% Wanda Unstructured 45.70 13.70 46.50 10.46 46.56 15.14 54.60 5.65 59.80 6.54
25% SparseGPT Unstructured 45.28 13.63 46.52 10.42 46.37 15.05 54.71 5.68 59.52 6.55

ues in our work and additional information about our implementation. These materials collectively
allow others to replicate our experiments and validate the claims made in the paper.
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