

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PATCH: LEARNABLE TILE-LEVEL HYBRID SPARSITY FOR LLMS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large language models (LLMs) deliver impressive performance but incur pro-
012 hibitive memory and compute costs at deployment. Model pruning is an effective
013 way to reduce these overheads, yet existing approaches face challenges: unstruc-
014 tured sparsity, where nonzeros can appear anywhere, preserves accuracy but yields
015 irregular access patterns that prevent GPU acceleration, while semi-structured 2:4
016 sparsity is hardware-friendly but enforces a rigid 50% pattern that degrades model
017 quality. To bridge this gap, we introduce PATCH, a hybrid sparsity framework
018 that enables a continuous sparsity ratio between 0% and 50%. PATCH partitions
019 weight matrices into tiles, assigning each tile to be either dense or 2:4 sparse via a
020 learnable mask selection mechanism. This design provides fine-grained control
021 over accuracy–acceleration tradeoffs and supports non-uniform sparsity across
022 layers, leading to superior overall quality. Across models from 0.5B to 8B param-
023 eters, PATCH consistently narrows the gap to dense accuracy while delivering
024 practical speedups. For instance, on LLaMA-2 7B with an A6000 GPU, PATCH
025 achieves 1.18x–1.38x end-to-end speedup over dense baselines while improving
026 accuracy by 0.37%–2.96% compared to the state-of-the-art 2:4 pruning method,
027 MaskLLM.¹

1 INTRODUCTION

030 Recent advancements in large language models (LLMs) have revolutionized natural language pro-
031 cessing, enabling breakthroughs in understanding and generating human language (Comanici et al.,
032 2025; Meta, 2025). These models power diverse applications, such as conversational agents and
033 automated content creation (Suzgun et al., 2022; Zhou et al., 2023). However, their extensive
034 parameter counts—often in the billions—result in significant memory overhead and high inference
035 costs (Guo et al., 2024; Ma et al., 2024). This computational burden has driven the need for efficient
036 model compression techniques.

037 Two primary approaches to model compression are quantization and sparsity. Quantization reduces
038 the precision of model parameters, compressing LLMs effectively while preserving performance
039 (Ashkboos et al., 2024; Tseng et al., 2024; Zhang et al., 2024; Saha et al., 2024). In contrast,
040 sparsity aims to lower memory and computational demands by setting many parameters to zero
041 (Hassibi et al., 1993; LeCun et al., 1989). However, sparsity alone struggles to maintain model
042 accuracy while delivering practical speedups, a limitation that current research seeks to overcome.

043 Unstructured sparsity, which permits non-zero elements to appear anywhere in the matrix, can match
044 dense model accuracy due to its flexibility in sparsity allocation (Sun et al., 2023; Frantar & Alistarh,
045 2023; Agarwalla et al., 2024). However, its irregular memory access patterns hinder acceleration on
046 modern hardware like GPUs (Xia et al., 2023; Fan et al., 2025). As a result, unstructured spar-
047 sity fails to deliver practical speedups, motivating the search for more hardware-friendly sparsity
048 techniques.

049 Semi-structured sparsity patterns, such as the 2:4 pattern (Mishra et al., 2021) supported by NVIDIA
050 and AMD GPUs, provide practical speedups in large-scale model inference. However, unlike un-
051 structured sparsity, which offers greater flexibility, 2:4 enforces rigid rules by requiring at least two
052 of every four consecutive elements to be zero. This rigidity often leads to significant accuracy loss

053 ¹Code and data for PATCH are available at <https://anonymous.4open.science/r/PATCH-ICLR2026>



069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

when models are pruned using one-shot methods (Sun et al., 2023; Frantar & Alistarh, 2023; Ilin & Richtarik, 2025; Liu et al., 2025). MaskLLM (Fang et al., 2024) mitigates this issue by learning sparsity masks end-to-end, but pruned models still lag behind their dense counterparts in accuracy. Moreover, recent studies show that sparsity should be allocated non-uniformly (adaptively) across layers for optimal performance (Yin et al., 2025; Wang & Tu, 2020; Lee et al., 2021), whereas 2:4 sparsity enforces a fixed, uniform allocation. These limitations indicate that relying solely on 2:4 sparsity is insufficient, underscoring the need for hybrid approaches.

To address the challenges of LLM pruning, while providing accelerated inference, we propose **Pruning with a Learnable Tile-level Configuration for Hybrid Sparsity (PATCH)**. PATCH learns a hybrid mask that partitions each weight matrix into hardware-friendly tiles, designating each tile as either dense (0% sparsity) or 2:4 sparse (50% sparsity). This adaptive mask allows the matrix to realize an effective global sparsity ratio anywhere between 0% and 50%, balancing accuracy in critical regions with hardware-friendly sparsity elsewhere. This design unites the hardware acceleration benefits of 2:4 sparsity with the flexibility of unstructured allocation, allowing sparsity to adapt to the varying importance of different layers. By jointly optimizing the sparsity within 2:4 tiles and the tile-level patterns during training, PATCH achieves higher accuracy than uniform sparsity across layers. Moreover, for resource-constrained settings, we offer a variant of PATCH that tunes only the dense tiles while freezing the initial 2:4 mask. Importantly, PATCH is compatible with tile-level sparsity acceleration libraries and compilers such as STOICC (Rafii et al., 2025), making it the first hybrid sparsity method to demonstrate practical speedups. For example, on LLaMA-2 7B running on a consumer-grade A6000 GPU, PATCH achieves $1.18\times$ – $1.38\times$ end-to-end speedup over the dense baseline while improving accuracy by 0.37%–2.96% compared to the state-of-the-art 2:4 pruning method, MaskLLM.

2 PRELIMINARIES

Differentiable Sampling. Sampling from a categorical distribution is inherently non-differentiable, which poses challenges for gradient-based optimization. The Gumbel Softmax (Jang et al., 2016) addresses this by combining the Gumbel-Max reparameterization trick together with a softmax relaxation. The reparameterization expresses the sampling process by decoupling the deterministic log-probabilities $p \in \mathbb{R}^n$ from the stochastic perturbations $z \in \mathbb{R}^n$ introduced by Gumbel noise, which emulate random draws from the distribution. The subsequent softmax yields a differentiable approximation to categorical sampling:

108

$$\text{GS}(p; \tau)_k = \frac{\exp((p_k + z_k)/\tau)}{\sum_j \exp((p_j + z_j)/\tau)} \quad (1)$$

112 where $z_k = -\log(-\log(u_k))$ with $u_k \sim \text{Uniform}(0, 1)$. The resulting vector $\text{GS}(p; \tau) \in \mathbb{R}^n$ is a
 113 soft index vector whose entries $\text{GS}(p; \tau)_k$ represent the relaxed probability of selecting class k .

114 Additionally, the temperature parameter τ controls the hardness of the sampled index. Lower values
 115 of τ yield a more peaked distribution, causing $\text{GS}(p)$ to converge to a one-hot vector as $\tau \rightarrow 0$.
 116

117 **Learnable 2:4 Mask.** MaskLLM (Fang et al., 2024) formulates 2:4 mask selection as a learnable
 118 probabilistic process over the six possible patterns. The underlying weights remain fixed, while
 119 training shifts the categorical distribution to favor masks that preserve better pruning performance.
 120 The mask for each four consecutive elements can be parameterized with a vector $p \in \mathbb{R}^{6 \times 1}$. Scaling
 121 this vector to a weight matrix $\mathbf{W} \in \mathbb{R}^{d_1 \times d_2}$ will result in $\mathbf{P}_{2:4} \in \mathbb{R}^{6 \times \frac{d_1 d_2}{4}}$ as the mask search
 122 parameters. The resulting mask can be computed as in Equation 2, where $\tilde{\mathbf{M}}_{2:4} \in [0, 1]^{d_1 \times d_2}$
 123 denotes the 2:4 soft mask, obtained as a weighted average over the candidate masks, and $\mathbf{S} \in \mathbb{R}^{6 \times 4}$
 124 is the matrix containing these six candidates as its rows.²

125

$$\tilde{\mathbf{M}}_{2:4} = \text{reshape}(\text{GS}(\mathbf{P}_{2:4}; \tau, \kappa) \times \mathbf{S}, \mathbb{R}^{d_1 \times d_2}) \quad (2)$$

126 A scaling factor κ is also introduced in Equation 1, where it multiplies the logits p before adding the
 127 Gumbel noise z , thereby controlling their relative influence. Small κ values let the noise dominate,
 128 encouraging exploration across candidate masks, while larger κ values amplify the logits and make
 129 the sampling more deterministic.
 130

132

3 PATCH

134

135 To overcome the rigidity of fixed 50% 2:4 sparsity, we introduce PATCH. PATCH learns a struc-
 136 tured mask—optimized on top of frozen weights—that is partitioned into tiles, where each tile de-
 137 cides whether its corresponding weights remain dense or are pruned with a 2:4 pattern. This design
 138 preserves accuracy in sensitive regions while exploiting hardware-accelerated sparsity elsewhere.
 139 Unlike fixed 2:4 sparsity, which enforces the same pattern across all weights, PATCH adapts at the
 140 tile level by assigning dense tiles to critical regions and sparse tiles elsewhere.

141 Finding the optimal allocation of dense tiles (value 1) and sparse tiles (2:4 pattern) within a mask
 142 is a combinatorially difficult problem, as the number of possible configurations grows rapidly with
 143 the number of tiles across the LLM. By also modelling this problem as a probabilistic sampling
 144 process, and adjusting the probability of each tile (and the 2:4 patterns within sparse tiles), PATCH
 145 can efficiently explore the space of configurations and converge toward masks that balance accuracy
 146 and sparsity. The mask distributions are learned end-to-end by training the Gumbel–Softmax logits
 147 while keeping the model weights frozen. We address this challenge by formulating mask selection
 148 as two coupled subproblems: (1) *selecting which tiles are dense or sparse*, and (2) *choosing the 2:4*
 149 *sparsity pattern within sparse tiles*.

150

151 **Tile-based pruning of LLMs.** We associate each parameter matrix $\mathbf{W} \in \mathbb{R}^{d_1 \times d_2}$ with a grid
 152 of tile-level distributions, each parameterized by a learnable logit. Collectively, these form $\mathbf{P}_{\text{tile}} \in$
 153 $\mathbb{R}^{\frac{d_1}{b_1} \times \frac{d_2}{b_2}}$, where each entry specifies the unnormalized score of keeping the corresponding $b_1 \times b_2$
 154 tile fully dense. To create a two-class distribution (keep dense vs. prune), we concatenate a fixed
 155 zero to each logit, yielding $[\mathbf{P}_{\text{tile}}, 0] \in \mathbb{R}^{\frac{d_1}{b_1} \times \frac{d_2}{b_2} \times 2}$. After applying Gumbel–Softmax, we broadcast
 156 the dense probabilities across their respective $b_1 \times b_2$ region (since the weighted average of the two
 157 outcomes reduces to $p_{\text{dense}} \cdot 1 + p_{\text{prune}} \cdot 0 = p_{\text{dense}}$), so that all elements of a tile receive the same
 158 mask value. Formally,

159

$$\tilde{\mathbf{M}}_{\text{tile}} = \text{GS}([\mathbf{P}_{\text{tile}}, 0]; \tau, \kappa)_{:, :, 0} \otimes \mathbf{1}. \quad (3)$$

160
 161

²We will refer to a mask value of 1 as *keeping* the corresponding weight and a value of 0 as *pruning* it.

162 This yields the tile-level mask $\tilde{M}_{\text{tile}} \in [0, 1]^{d_1 \times d_2}$ in Equation 3, where $\mathbf{1} \in \mathbb{R}^{b_1 \times b_2}$ is an all-ones
 163 matrix and \otimes denotes the Kronecker product.
 164

165 **Joint optimization with sparse mask.** To fully determine the effective sparsity pattern, the tile-
 166 level mask must be combined with the fine-grained 2:4 mask. Assuming that the 2:4 mask $\tilde{M}_{2:4}$ is
 167 generated using Equation 2, PATCH combines it with the tile mask \tilde{M}_{tile} as shown in Equation 4.
 168 The resulting soft mask interpolates between dense and sparse behavior: values of \tilde{M}_{tile} close to one
 169 make the tile predominantly dense, while values close to zero shift the tile toward the soft 2:4 mask
 170 pattern defined by $\tilde{M}_{2:4}$. Thus, \tilde{M} can be understood as a per-tile weighted average of the dense
 171 option and the 2:4 patterns, with \tilde{M}_{tile} determining the relative contribution of each. An overview
 172 of the process is provided in Figure 1.
 173

$$\tilde{M} = \tilde{M}_{\text{tile}} + (1 - \tilde{M}_{\text{tile}}) \odot \tilde{M}_{2:4} \quad (4)$$

174 **Learning masks with targeted sparsity.** PATCH uses a novel regularization term to achieve a
 175 flexible 0%–50% sparsity ratio across the model by controlling the number of dense tiles. Unlike
 176 traditional regularization methods like weight decay, which produce non-deterministic sparsity
 177 ratios, our term penalizes deviations from the target sparsity, enabling precise control. This global
 178 sparsity approach prunes sensitive linear layers less aggressively while setting redundant weight
 179 elements to zero, offering greater flexibility than fixed per-layer sparsity. We directly compare global
 180 versus per-layer sparsity regularization in § 5.
 181

182 **Training objective.** The overall training objective, as shown in Equation 5, of PATCH combines
 183 three components: the standard modeling loss, a sparsity regularization term that enforces the target
 184 density of the model ρ , and a weight regularization term (as in MaskLLM) that promotes larger
 185 weight magnitudes and gradient propagation. Formally,
 186

$$\mathcal{L} = \mathcal{L}_{LM}(x; \tilde{M}_i \odot \mathbf{W}_i) + \lambda_1 \left\| \frac{\sum_i \tilde{M}_i}{\sum_i \|\mathbf{W}_i\|_0} - \rho \right\|_1 - \lambda_2 \frac{\sum_i \|\tilde{M}_i \odot \mathbf{W}_i\|_2^2}{\sum_i \|\mathbf{W}_i\|_2^2} \quad (5)$$

187 Following MaskLLM, we progressively *decrease* τ and *increase* κ during training so that the
 188 Gumbel-Softmax distribution converges to a clear one-hot choice of mask by the end of training.
 189

190 **Inference.** After training, the sign of each logit in \mathbf{P}_{tile} determines the final mask. Since a zero
 191 logit is concatenated to represent the sparse class (Equation 3), positive values correspond to the
 192 dense option, while negative values correspond to the sparse option. The complete procedure is
 193 outlined in Algorithm 1.
 194

195 **Memory efficient PATCH.** To further reduce overhead, PATCH can be run in a memory-efficient
 196 manner by freezing the sparse mask parameters and optimizing only the tile-level decisions. This
 197 reduces the number of learnable parameters to $\frac{d_1 d_2}{b_1 b_2}$. While this lighter formulation limits mask-
 198 selection flexibility and can reduce performance as seen in Table 5, it makes training feasible under
 199 strict memory constraints, such as fitting an 8B model on a single 80GB GPU. We denote this version
 200 of PATCH by PATCH^{Tile} and the joint optimization version of PATCH by PATCH^{Joint}.
 201

202 4 EFFICIENT DEPLOYMENT OF PATCH

203 Executing PATCH requires handling hybrid sparse–dense tiles, a capability not supported by ex-
 204 isting GPU libraries. Current tools either focus exclusively on dense computation (e.g., cuBLAS
 205 (NVIDIA Corporation, a), dense CUTLASS (Corporation, 2025), OpenAI Triton (Tillet et al.,
 206 2019)), or restrict support to fixed 2:4 sparsity (e.g., cuSPARSELT (NVIDIA Corporation, b), sparse
 207 CUTLASS). STOICC (Rafii et al., 2025) lifts these limitations by extending Triton with hybrid
 208 tile-level sparsity, making it a suitable backend for accelerating PATCH.
 209

210 Similar to Triton, STOICC employs an inspector that benchmarks candidate kernel configurations
 211 for each sparsity ratio, identifying the most hardware-efficient tile size for the target GPU. On
 212

Algorithm 1 Joint Tile & 2:4 Mask Learning

Input: Weight matrix \mathbf{W} , tile size (b_1, b_2) , sparsity target ρ , training steps T , loss hyperparameters λ_1, λ_2 , temperature schedule $\{\tau_t\}_{t=1}^T$, scaling schedule $\{\kappa_t\}_{t=1}^T$.

Output: Learned pruning masks \mathbf{M}^* , pruned weights $\widehat{\mathbf{W}}$.

- 1 Initialize tile logits $\mathbf{P}_{\text{tile}} \in \mathbb{R}^{\frac{d_1}{b_1} \times \frac{d_2}{b_2}}$.
- 2 Initialize \mathbf{P}_{tile} with one-shot prior.
- 3 Initialize differentiable 2:4 parameters $\mathbf{P}_{2:4} \in \mathbb{R}^{6 \times \frac{d_1 d_2}{4}}$.
- 4 **for** $t = 1 \rightarrow T$ **do**
 - 5 $\tilde{\mathbf{M}}_{\text{tile}} \leftarrow \text{GS}([\mathbf{P}_{\text{tile}}, 0]; \tau_t, \kappa_t)_{:, :, 0} \otimes \mathbf{1}_{b_1 \times b_2}$ ▷ Dense soft tile mask
 - 6 $\tilde{\mathbf{M}}_{2:4} \leftarrow \text{Eq. 2}$ ▷ Differentiable 2:4 mask
 - 7 $\tilde{\mathbf{M}}_i \leftarrow \tilde{\mathbf{M}}_{\text{tile}} + (1 - \tilde{\mathbf{M}}_{\text{tile}}) \odot \tilde{\mathbf{M}}_{2:4}$ ▷ Merge masks
 - 8 Compute loss:

$$\mathcal{L} = \mathcal{L}_{LM}(x; \tilde{\mathbf{M}} \odot \mathbf{W}) + \lambda_1 \left\| \frac{\sum_i \tilde{\mathbf{M}}_i}{\sum_i \|\mathbf{W}_i\|_0} - \rho \right\|_1 - \lambda_2 \frac{\sum_i \|\tilde{\mathbf{M}}_i \odot \mathbf{W}_i\|_2^2}{\sum_i \|\mathbf{W}_i\|_2^2}$$

9 Update $\mathbf{P}_{\text{tile}}, \mathbf{P}_{2:4}$ via backpropagation.

10 **end for**

11 $\mathbf{M}_{\text{tile}}^* \leftarrow \mathbf{1}[\mathbf{P}_{\text{tile}} > 0] \otimes \mathbf{1}_{b_1 \times b_2}$ ▷ Hard tile mask

12 $\mathbf{M}_{2:4}^* \leftarrow$ select be

$$13 \quad \widehat{\mathbf{M}}_i^* \leftarrow \mathbf{M}_{\text{tile}}^* + (1 - \mathbf{M}_{\text{tile}}^*) \odot \mathbf{M}_{2:4}^*.$$

14 $\mathbf{W} \leftarrow \mathbf{W} \odot \mathbf{M}_i^*$ ▷ Final pruned weights

Return: Learned

Return: Learned mask \mathbf{M} ; pruned weights \mathbf{W} .

NVIDIA A100 and A6000 GPUs, our experiments show that the optimal configurations are consistently drawn from 128×128 or its subdivisions (e.g., 128×64 , 64×128 , 64×64). In practice, this means that regardless of the sparsity ratio or the layer shape, the chosen 128×128 granularity guarantees that STOICC’s autotuned tiles can be applied consistently. Unless otherwise specified, we adopt these hardware-friendly tile sizes in all PATCH experiments. Further implementation details are provided in Appendix A.

5 EXPERIMENTS

Model, dataset and evaluation. We evaluate PATCH across diverse transformer architectures, including the Qwen-2.5 (Qwen et al., 2025), Gemma 3 (Team et al., 2025), and LLaMA-2 (Touvron et al., 2023) and 3 (Grattafiori et al., 2024) model families, spanning 500M to 8B parameters. Following the dataset size and configurations in MaskLLM (Fang et al., 2024), masks are trained for 2000 steps with a batch size of 256 on sequences with a length of 4096 tokens from the SlimPajama dataset (Soboleva et al., 2023).

Following previous LLM compression work (Mozaffari et al., 2025a; Fang et al., 2024), we evaluate the models on eight zero-shot downstream tasks: PIQA (Bisk et al., 2020), ARC-Easy and ARC-Challenge (Clark et al., 2018), Winogrande (Sakaguchi et al., 2019), OpenBookQA (Mihaylov et al., 2018), RACE (Lai et al., 2017), HellaSwag (Zellers et al., 2019), and MMLU (Hendrycks et al., 2021) using the Language Model Evaluation Harness (Gao et al., 2024) framework. Additionally, similar to previous work (Mozaffari et al., 2025a; Frantar & Alistarh, 2023; Sun et al., 2023), we evaluate the models on a language modeling task using the WikiText2 (Merity et al., 2016) dataset with a sequence length of 4096, comparing against established baselines in the following sections.

Baselines. To evaluate PATCH against established 2:4 sparsity pruning techniques, we compare it with the state-of-the-art learnable method MaskLLM (Fang et al., 2024), as well as one-shot methods including Wanda (Sun et al., 2023), SparseGPT (Frantar & Alistarh, 2023), Thanos (Ilin & Richtarik, 2025), ProxSparse (Liu et al., 2025) and magnitude pruning (Han et al., 2015). For one-shot pruning methods, following the default configurations in each paper, we prune the models over 128 samples from the C4 dataset.

270 Table 1: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
 271 dataset) for different pruning methods. By jointly optimizing the location of dense tiles and the
 272 sparsity pattern within the sparse tiles, $\text{PATCH}^{\text{Joint}}$ allows for a continuous sparsity ratio for the
 273 models, providing a flexible tradeoff between sparsity and model quality.

Sparsity	Method	Pattern	Qwen-2.5 0.5B		LLaMA-3.2 1B		Gemma-3 1B	
			Acc (%) \uparrow	PPL \downarrow	Acc (%) \uparrow	PPL \downarrow	Acc (%) \uparrow	PPL \downarrow
0%	Dense	-	46.00	12.08	47.70	9.06	47.01	11.67
50%	Magnitude	2:4	30.16	6734.97	29.66	563.44	31.66	5005.56
	Wanda	2:4	32.97	72.48	31.61	78.18	34.16	69.41
	SparseGPT	2:4	34.81	36.59	35.55	32.73	35.58	44.59
	Thanos	2:4	31.31	37.32	35.71	33.03	35.09	62.63
	ProxSparse	2:4	32.05	111.05	33.55	49.33	36.63	90.50
	MaskLLM	2:4	39.33	15.22	41.04	12.93	41.84	12.82
45%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	40.29	14.57	42.08	12.23	42.80	11.96
35%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	41.15	13.84	42.72	11.67	43.30	11.48
25%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	42.39	13.47	43.81	11.00	44.07	11.17

288
 289
 290 The publicly available MaskLLM pruned checkpoints are limited to LLaMA-2 7B and LLaMA-3.1
 291 8B models. To ensure a fair comparison across all models, we implemented MaskLLM in PyTorch
 292 and replicated its results for additional architectures presented in this study.

293 We faced a similar challenge with ProxSparse as well, where only the LLaMA-2-7B and LLaMA-
 294 3.1-8B checkpoints are publicly available. We have pruned other models with their official code
 295 base using their default hyperparameters for comparison.

296 Additional implementation details and hyperparameters used in our experiments are provided in
 297 Appendix D.

300 5.1 MODEL QUALITY RESULTS

301
 302 **Joint sparse and dense tile optimization.** For smaller models like Qwen-2.5 0.5B, LLaMA-3.2
 303 1B, and Gemma-3 1B, we apply the joint variant $\text{PATCH}^{\text{Joint}}$, which simultaneously optimizes dense
 304 tile locations and sparsity patterns within sparse tiles. This approach enables effective performance.

305 The average accuracy of the models across eight zero-shot downstream tasks and their perplexity on
 306 the WikiText2 dataset is reported in Table 1. The results demonstrate that $\text{PATCH}^{\text{Joint}}$ provides a
 307 flexible tradeoff between sparsity ratio and model quality, narrowing the performance gap to dense
 308 models while ensuring hardware-friendly inference. A similar pattern holds for larger models using
 309 a memory-efficient variant, as explored next.

310
 311
 312 **Memory-efficient tile selection.** For larger models such as LLaMA-2 7B and LLaMA-3.1 8B,
 313 we employ the memory-efficient variant $\text{PATCH}^{\text{Tile}}$, which freezes the fine-grained sparse weight
 314 structure while optimizing dense tile selections.

315 Table 2 summarizes the average accuracy of the models across eight downstream tasks in addition
 316 to their perplexity on the WikiText2 dataset for different sparsity ratios, illustrating that $\text{PATCH}^{\text{Tile}}$
 317 delivers a comparable flexible sparsity-quality tradeoff when using a high-quality frozen 2:4 mask.

318 Overall, across Tables 1 and 2, PATCH consistently surpasses one-shot methods like Wanda,
 319 SparseGPT, and magnitude pruning due to its end-to-end training on large corpora. While
 320 MaskLLM also trains end-to-end on a large dataset, its fixed 2:4 sparsity ratio limits achievable
 321 accuracy and perplexity. In contrast, PATCH overcomes this limitation with flexible dense tile
 322 allocation, achieving accuracy gains and perplexity reductions from 45% to 25% sparsity that
 323 progressively align with dense model performance. The full per-task accuracy results are provided in
 Appendix B.

324
 325
 326
 327
 328
 329
 330 Table 2: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
 331 dataset) for different pruning methods. By only optimizing the location of dense tiles while keeping
 332 sparsity pattern within the sparse tiles frozen, PATCH^{Tile} provides a memory efficient variant for
 333 PATCH^{Joint}, allowing for a continuous sparsity ratio for the models and providing a flexible tradeoff
 334 between sparsity and model quality.
 335
 336
 337
 338
 339
 340
 341
 342

330 Sparsity	331 Method	332 Pattern	333 LLaMA-2 7B		334 LLaMA-3.1 8B	
			335 Acc (%) ↑	336 PPL (↓)	337 Acc (%) ↑	338 PPL (↓)
0%	Dense	-	54.61	5.12	60.31	5.84
50%	Magnitude	2:4	43.44	54.39	35.93	765.92
	Wanda	2:4	44.30	11.15	41.77	21.29
	SparseGPT	2:4	45.09	10.12	45.53	15.11
	Thanos	2:4	44.80	11.19	45.72	16.09
	ProxSparse	2:4	45.92	9.18	45.14	15.17
	MaskLLM	2:4	48.62	6.78	52.80	8.58
45%	PATCH ^{Tile}	Dense/2:4 Tiles	48.99	6.55	53.60	8.20
35%	PATCH ^{Tile}	Dense/2:4 Tiles	50.08	6.18	55.28	7.89
25%	PATCH ^{Tile}	Dense/2:4 Tiles	51.58	5.86	56.48	7.34

343
 344 Table 3: Impact of PATCH’s tile size across sparsity levels
 345 (↓ is better). The effect of tile size on model quality is not
 346 significant, showing PATCH’s robustness against tile size.
 347

348 Sparsity	349 128	350 64	351 32	352 16	353 8	354 4
45%	14.57	14.66	14.70	14.67	14.70	14.55
35%	13.84	14.08	14.15	14.03	14.01	13.72
25%	13.47	13.54	13.52	13.53	13.40	13.11

355 Table 4: Global sparsity yields
 356 better quality by concentrating
 357 pruning in less important blocks
 358 and preserving density elsewhere
 359 (↓ is better).
 360

361 Sparsity	362 Global	363 Layer-wise
45%	14.57	15.17
35%	13.84	14.48
25%	13.47	13.95

364 5.2 UNDERSTANDING THE COMPONENTS OF PATCH

365 This subsection examines the design choices driving PATCH’s performance by analyzing its behavior
 366 across various configurations on the Qwen-2.5 0.5B model.
 367

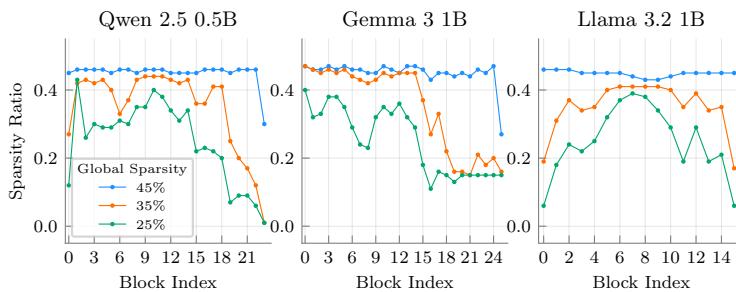
368 **Tile size.** We initially assess the impact of tile size on PATCH’s performance, fixing hyperparameters
 369 to those optimized for 128×128 tiles. Table 3 reveals that 4×4 tiles maximize model quality
 370 through finer sparse-dense control, though larger tile sizes show minimal variation, suggesting ro-
 371 bustness. However, smaller tiles may hinder hardware efficiency, requiring a balance with hardware
 372 specifications.
 373

374 **Joint vs. tile-only mask search.** We then analyze the impact of fixing the 2:4 masks and optimiz-
 375 ing only tile masks. Table 5 shows that among frozen 2:4 masks, MaskLLM provides the strongest
 376 results. On the other hand, one-shot pruning methods perform comparably at higher sparsity levels
 377 but diverge at lower sparsity, with SparseGPT emerging as the best overall. When comparing against
 378 our full approach, joint optimization of both tile and 2:4 masks consistently outperforms tile-only
 379 training across sparsity ratios. Nevertheless, tile-only training remains a practical alternative for
 380 larger models in resource-constrained settings, as also reflected in Table 2.
 381

382 **Sparsity allocation.** We analyze how sparsity is allocated across transformer blocks under a global
 383 target. Across models, deeper transformer blocks are pruned far less, while the initial blocks also
 384 tend to receive lighter pruning depending on the architecture. By contrast, the middle blocks con-
 385 sistently absorb most of the sparsity, suggesting that they contain more redundancy (Figure 2). We
 386 compare this flexible allocation to enforcing sparsity uniformly at the layer level. As shown in Ta-
 387 ble 4, global targets deliver better results by pruning more aggressively in redundant layers while
 388

378
 379 Table 5: Impact of fixed 2:4 mask selection for PATCH^{Tile}, compared with joint optimization (\downarrow
 380 is better). PATCH^{Joint} achieves the lowest perplexity overall, while for PATCH^{Tile}, MaskLLM
 381 provides the best frozen mask.

382 383 Sparsity (0.5B)	384 MaskLLM	385 SparseGPT (w/o weight update)	386 Wanda	387 Magnitude	388 PATCH ^{Joint}
45%	15.06	21.84	21.83	21.33	14.57
35%	14.55	17.29	17.96	19.90	13.84
25%	14.17	14.89	15.09	16.05	13.47



397 Figure 2: Layer-wise sparsity allocation under different global sparsity budgets for various models.
 398 PATCH achieves the target global sparsity while flexibly distributing pruning across transformer
 399 layers.

402 preserving capacity in sensitive ones. In contrast, layer-wise targets impose uniform sparsity that
 403 can over-prune critical components (Li et al., 2024b; Xu et al., 2024; Li et al., 2024a; Yin et al.,
 404 2025).

405 On top of variation across depth, sparsity is also distributed unevenly across the individual linear
 406 layers within each transformer block. Figure 3 breaks down the allocation into the query, key, value,
 407 and output matrices of the attention module, as well as the up, gate, and down matrices of the
 408 MLP for the Qwen 2.5 0.5B model. The up, gate, and down layers absorb most of the sparsity and
 409 largely explain the overall allocation pattern seen in Figure 2. In contrast, the attention module is
 410 treated as more critical. The key and value matrices are never pruned, while the output matrix shows
 411 moderate pruning at higher global sparsity targets. The query matrix is pruned the most, suggesting
 412 it is the least important within the attention submodule. The distributions for the Gemma-3-1B and
 413 LLaMA-3.2-1B models are provided in Appendix E, where the same pattern is observed.

414 5.3 COMBINATION WITH OTHER COMPRESSION METHODS

416 LLM compression relies on three orthogonal methods—sparsity, quantization, and low-rank approxi-
 417 mation—which can be combined. While this work focuses on sparsity, this section demonstrates
 418 how PATCH integrates with these other techniques.

420 **Quantization.** Quantization reduces memory and accelerates computation by lowering numerical
 421 precision on hardware optimized for low bitwidths.

423 **Low-rank approximation.** Low-rank methods complement sparsity and quantization by reintrodu-
 424 cing a small number of parameters to recover accuracy, with SLIM (Mozaffari et al., 2025a) as a
 425 leading one-shot technique.

427 **Table 6 reports results on LLaMA-2 7B and LLaMA-3.1 8B, comparing PATCH and MaskLLM**
 428 **under 4-bit weight-only quantization, as well as an additional setting that combines our method with**
 429 **a low-rank adapter (of 10% of the weight’s rank). These results show that sparsity, quantization, and**
 430 **low-rank approximation can be composed to achieve controllable tradeoffs between compression**
 431 **and model quality, and that our approach integrates seamlessly with both techniques within broader**
 432 **compression pipelines.**

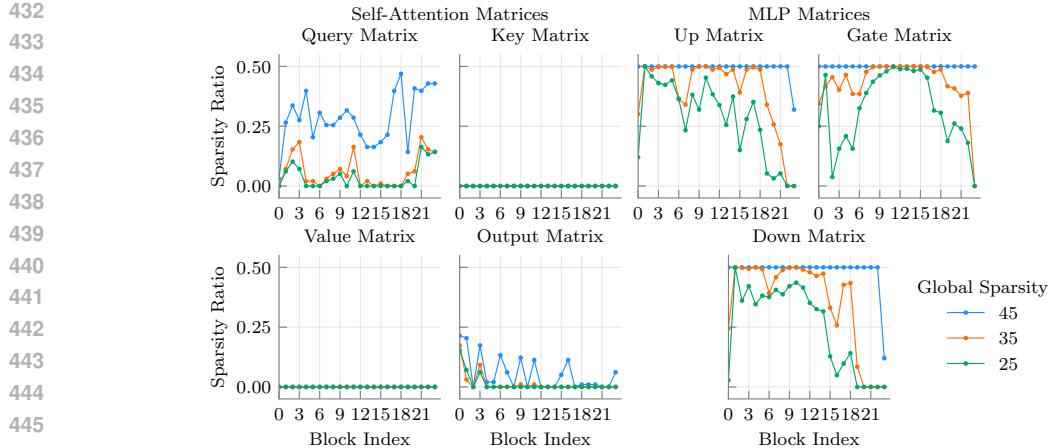


Figure 3: Sparsity distribution across Attention and MLP layers under varying global sparsity budgets in Qwen-2.5 0.5B.

Table 6: Average accuracy (\uparrow indicates better) across eight zero-shot downstream tasks and WikiText2 perplexity (\downarrow indicates better) of compressed models with **4-bit weight-only quantization**. Please note that using LORA adds additional parameters to the model. *Comp. Ratio* refers to the theoretical weight memory compression factor relative to the dense model.

Sparsity	Method	Bit	LoRA	LLaMA-2-7B		LLaMA-3.1-8B		Comp.
				Acc (%) \uparrow	PPL \downarrow	Acc (%) \uparrow	PPL \downarrow	
0%	Dense	-	-	54.61	5.12	60.31	5.84	1x
50%	MaskLLM	4	-	47.98	7.64	51.12	9.92	5.33x
45%	PATCH ^{Tile}	4	-	48.19	7.34	52.47	9.68	5.16x
45%	PATCH ^{Tile}	4	SLiM-LoRA	50.71	6.83	54.04	9.12	4.10x
35%	PATCH ^{Tile}	4	-	49.38	6.92	53.81	9.26	4.85x
35%	PATCH ^{Tile}	4	SLiM-LoRA	51.91	6.42	55.70	8.37	3.90x
25%	PATCH ^{Tile}	4	-	50.45	6.57	55.45	8.69	4.57x
25%	PATCH ^{Tile}	4	SLiM-LoRA	52.62	6.11	56.99	7.77	3.72x

5.4 SPEEDUP AND MEMORY SAVINGS

We evaluate the inference efficiency of the LLaMA-2 7B model pruned with PATCH using the STOICC (Rafii et al., 2025) compiler. With a batch size of 16 on an A6000 GPU, we observe end-to-end throughput improvements of $1.18\times$, $1.27\times$, and $1.38\times$ at sparsity levels of 25%, 35%, and 45%, respectively, compared to the dense baseline. At the same sparsity levels, the model’s GPU memory footprint during inference is also reduced, dropping to $0.76\times$, $0.68\times$, and $0.59\times$ of the fully dense model, respectively. These results underscore the trade-off between accuracy retention and the computational savings enabled by sparsity.

6 CONCLUSION

We introduced PATCH, a hybrid sparsity framework that bridges the gap between unstructured and 2:4 sparsity for large language models. By partitioning weight matrices into tiles designated as either dense or 2:4 sparse, PATCH enables adaptive sparsity ratios between 0% and 50%, balancing accuracy and acceleration.

Experiments across models up to 8B parameters show that PATCH consistently improves accuracy over state-of-the-art 2:4 pruning methods while achieving up to $1.38\times$ end-to-end speedup on consumer grade GPUs. These results demonstrate the promise of hybrid sparsity as a practical approach

486 to efficient LLM inference and motivate future work on broader sparsity formats, integration with
487 quantization, and co-design with hardware kernels.
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Abhinav Agarwalla, Abhay Gupta, Alexandre Marques, Shubhra Pandit, et al. Enabling high-
543 sparsity foundational llama models with efficient pretraining and deployment. *arXiv preprint*
544 *arXiv:2405.03594*, 2024.

545 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, et al. Quarot: Outlier-free
546 4-bit inference in rotated llms. *Advances in Neural Information Processing Systems*, 37:100213–
547 100240, 2024.

548 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, et al. Piqa: Reasoning about physical
549 commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial Intelligence*,
550 2020.

552 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, et al. Think you have solved question
553 answering? try arc, the ai2 reasoning challenge. *ArXiv*, abs/1803.05457, 2018.

555 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, et al. Gemini 2.5: Pushing
556 the frontier with advanced reasoning, multimodality, long context, and next generation agentic
557 capabilities. *arXiv preprint arXiv:2507.06261*, 2025.

558 NVIDIA Corporation. Cutlass 4.2.0: Cuda templates for linear algebra subroutines. <https://github.com/NVIDIA/cutlass>, 2025. Also see: Kerr, A., Merrill, D., Demouth, J., Tran,
559 J. “CUTLASS: Fast Linear Algebra in CUDA C++”, NVIDIA blog, Dec. 2017.

560 Ruibo Fan, Xiangrui Yu, Peijie Dong, Zeyu Li, et al. Spinfer: Leveraging low-level sparsity for
561 efficient large language model inference on gpus. In *Proceedings of the Twentieth European
562 Conference on Computer Systems*, pp. 243–260, 2025.

565 Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, et al. Maskllm: Learnable semi-
566 structured sparsity for large language models. *arXiv preprint arXiv:2409.17481*, 2024.

568 Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
569 quantization and pruning. *NeurIPS*, 2022.

570 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
571 one-shot. In *Icml*, 2023.

573 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, et al. The language model evaluation
574 harness, 07 2024. URL <https://zenodo.org/records/12608602>.

575 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, et al. A survey of quantization methods
576 for efficient neural network inference. In *Low-Power Computer Vision*. Chapman and Hall/CRC,
577 2022.

579 Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
580 survey. *International journal of computer vision*, 129(6):1789–1819, 2021.

581 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, et al. The llama 3 herd of
582 models. *arXiv preprint arXiv:2407.21783*, 2024.

584 Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. LQ-LoRA: Low-rank Plus Quantized Ma-
585 trix Decomposition for Efficient Language Model Finetuning. *arXiv preprint arXiv:2311.12023*,
586 2023.

587 Jinyang Guo, Jianyu Wu, Zining Wang, Jiaheng Liu, et al. Compressing large language models by
588 joint sparsification and quantization. In *Icml*, 2024.

590 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
591 efficient neural network. *Advances in neural information processing systems*, 28, 2015.

593 Babak Hassibi, David Stork, and Gregory Wolff. Optimal brain surgeon: Extensions and perfor-
594 mance comparisons. *NeurIPS*, 1993.

594 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, et al. Measuring massive multitask lan-
 595 guage understanding. *Proceedings of the International Conference on Learning Representations*
 596 (*ICLR*), 2021.

597 Ivan Ilin and Peter Richtarik. Thanos: A block-wise pruning algorithm for efficient large language
 598 model compression, 2025. URL <https://arxiv.org/abs/2504.05346>.

600 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv*
 601 *preprint arXiv:1611.01144*, 2016.

602 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, et al. RACE: Large-scale ReADING compre-
 603 hension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.),
 604 *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pp.
 605 785–794, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
 606 doi: 10.18653/v1/D17-1082. URL <https://aclanthology.org/D17-1082>.

607 Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *NeurIPS*, 1989.

608 Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, et al. Layer-adaptive sparsity for the magnitude-
 609 based pruning, 2021. URL <https://arxiv.org/abs/2010.07611>.

610 Lujun Li, Peijie Dong, Zhenheng Tang, Xiang Liu, Qiang Wang, Wenhan Luo, Wei Xue, Qifeng
 611 Liu, Xiaowen Chu, and Yike Guo. Discovering sparsity allocation for layer-wise pruning of
 612 large language models. *Advances in Neural Information Processing Systems*, 37:141292–141317,
 613 2024a.

614 Wei Li, Lujun Li, Mark Lee, and Shengjie Sun. Adaptive layer sparsity for large language models
 615 via activation correlation assessment. *Advances in Neural Information Processing Systems*, 37:
 616 109350–109380, 2024b.

617 Hongyi Liu, Rajarshi Saha, Zhen Jia, Youngsuk Park, et al. Proxspars: Regularized learning of
 618 semi-structured sparsity masks for pretrained llms. *arXiv preprint arXiv:2502.00258*, 2025.

619 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

620 Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W Mahoney, and Yaoqing Yang.
 621 Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise pruning of
 622 large language models. *Advances in neural information processing systems*, 37:9117–9152, 2024.

623 Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, et al. Affinequant: Affine transformation quanti-
 624 zation for large language models. *arXiv preprint arXiv:2403.12544*, 2024.

625 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 626 models. *arXiv preprint arXiv:1609.07843*, 2016.

627 Meta. Llama 4: Open source large language model, 2025. URL <https://www.llama.com>.

628 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 629 electricity? a new dataset for open book question answering. In *Emnlp*, 2018.

630 Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, et al. Accelerating sparse deep neural
 631 networks. *arXiv preprint arXiv:2104.08378*, 2021.

632 Mohammad Mozaffari, Sikan Li, Zhao Zhang, and Maryam Mehri Dehnavi. MKOR: Momentum-
 633 Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates. In *NeurIPS*, 2023.

634 Mohammad Mozaffari, Amir Yazdanbakhsh, and Maryam Mehri Dehnavi. SLiM: One-shot Quan-
 635 tized Sparse Plus Low-rank Approximation of LLMs, 2025a. URL <https://openreview.net/forum?id=4UfRP8MopP>.

636 Mohammad Mozaffari, Amir Yazdanbakhsh, Zhao Zhang, and Maryam Mehri Dehnavi. Slope:
 637 Double-pruned sparse plus lazy low-rank adapter pretraining of llms, 2025b.

638 NVIDIA Corporation. NVIDIA cuBLAS. <https://docs.nvidia.com/cuda/cublas/>, a.

648 NVIDIA Corporation. NVIDIA cuSPARSELt. <https://docs.nvidia.com/cuda/cusparselt/index.html>, b.
 649
 650

651 Qwen, An Yang, Baosong Yang, et al. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.
 652
 653

654 Arya Rafi, Victor Kamel, and Maryam Mehri Dehnavi. Stoicc. <https://paramathic.github.io/stoicc-docs/>, 2025.
 655
 656 Babak Rokh, Ali Azarpeyvand, and Alireza Khanteymoori. A comprehensive survey on model
 657 quantization for deep neural networks in image classification. *ACM Transactions on Intelligent
 658 Systems and Technology*, 14(6):1–50, 2023.
 659

660 Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea Goldsmith, et al. Compressing large lan-
 661 guage models using low rank and low precision decomposition. *NeurIPS*, 2024.
 662
 663 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 664 sarial winograd schema challenge at scale. *arXiv preprint arXiv:1907.10641*, 2019.
 665
 666 Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
 667 network compression. *NeurIPS*, 2020.
 668
 669 Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, et al. SlimPajama: A 627B
 670 token cleaned and deduplicated version of RedPajama. <https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama>,
 671 2023. URL <https://huggingface.co/datasets/cerebras/SlimPajama-627B>.
 672
 673 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
 674 for large language models. *arXiv preprint arXiv:2306.11695*, 2023.
 675
 676 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, et al. Challenging big-bench
 677 tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.
 678
 679 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, et al. Gemma 3 technical report,
 680 2025. URL <https://arxiv.org/abs/2503.19786>.
 681
 682 Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
 683 for tiled neural network computations. In *Proceedings of the 3rd ACM SIGPLAN International
 684 Workshop on Machine Learning and Programming Languages*, pp. 10–19, 2019.
 685
 686 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, et al. Llama 2: Open foundation and
 687 fine-tuned chat models, 2023. URL <https://arxiv.org/abs/2307.09288>.
 688
 689 Albert Tseng, Qingyao Sun, David Hou, and Christopher M De Sa. Qtip: Quantization with trellises
 690 and incoherence processing. *Advances in Neural Information Processing Systems*, 37:59597–
 691 59620, 2024.
 692
 693 Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components, 2020. URL
 694 <https://arxiv.org/abs/2011.03803>.
 695
 696 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, et al. Huggingface’s transformers:
 697 State-of-the-art natural language processing, 2020. URL <https://arxiv.org/abs/1910.03771>.
 698
 699 Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, et al. Flash-llm: Enabling cost-effective
 700 and highly-efficient large generative model inference with unstructured sparsity. *arXiv preprint
 701 arXiv:2309.10285*, 2023.
 702
 703 Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
 704 Yu Qiao, and Ping Luo. Besa: Pruning large language models with blockwise parameter-efficient
 705 sparsity allocation. *arXiv preprint arXiv:2402.16880*, 2024.
 706
 707 Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, et al. Outlier weighed layerwise sparsity (owl):
 708 A missing secret sauce for pruning llms to high sparsity, 2025. URL <https://arxiv.org/abs/2310.05175>.

702 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, et al. Hellaswag: Can a machine really
703 finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Compu-*
704 *tational Linguistics*, 2019.

705 Cheng Zhang, Jeffrey TH Wong, Can Xiao, George A Constantinides, et al. Qera: an analytical
706 framework for quantization error reconstruction. *arXiv preprint arXiv:2410.06040*, 2024.

708 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, et al. Instruction-following evalua-

709 *tion for large language models. arXiv preprint arXiv:2311.07911*, 2023.

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757

A STOICC INTEGRATION

758
759
760
761
762
763

Triton (Tillet et al., 2019) enables developers to write efficient GPU kernels with a Python-like syntax, but it natively supports only dense matrix operations and cannot handle sparsity. To accelerate the mixed-tile format produced by PATCH, we employ the STOICC compiler (Rafii et al., 2025). STOICC extends Triton with a sparse code-generation backend that allows tiles within a matrix to be either dense or sparse, enabling mixed execution within a single matrix multiplication.

764
765
766
767
768
769
770

We rely on STOICC’s inspector to autotune both tile sizes and execution schedules (i.e., alternative kernel execution schemes such as split- K parallelism) for the prefill and decoding stages of LLM inference. Matrix compression and metadata generation are determined by the chosen tile size, which must remain consistent across both stages. To address this, we first autotune the decoding stage, which is the primary bottleneck of autoregressive generation, since it is executed once per generated token (e.g., 128 times for 128 new tokens), unlike the single pass of prefill. The optimal tile size identified for decoding are then fixed and reused for prefill, where we perform a second round of autotuning over the remaining independent parameters.

771
772
773

In contrast, for fully 2:4 sparse matrices, compression is independent of the block size, so they can be autotuned in the same way as dense kernels in Triton without this coupling constraint.

774
775

The pseudocode outlining this process, including the handling of dense, fully 2:4 sparse, and mixed-sparsity modules, is provided in PseudoCode 1.

```

776 1 def tune_and_convert_model(M, backend_name):
777 2     // backend_name ∈ {"STOICC", "cuSPARSELT"}
778 3     2_4_backend = select_2_4_backend(backend_name)
779 4
780 5     // create all configs & schedules to tune over
781 6     base_configs = STOICC.create_configs()
782 7     inspector = Inspector()
783 8
784 9     for each module in M:
785 10        s = get_sparsity_ratio(module.weight)
786 11
787 12        // Keep dense Torch (cuBLAS) module
788 13        if s == 0:
789 14            continue
790 15
791 16        // Use STOICC or cuSPARSELT for fully 2:4
792 17        elif s == 0.5:
793 18            c = 2_4_backend.compress(module.weight)
794 19            new_module = 2_4_backend.create_module(c)
795 20            replace(module, new_module)
796 21            continue
797 22
798 23        else:
799 24            decoding_input = Tensor(BS, module.weight.shape[1])
800 25            prefill_input = Tensor(BS * SL, module.weight.shape[1])
801 26
802 27            // Tune on decoding input first
803 28            inspector.set_configs(base_configs)
804 29            best_cfg_dec = inspector.inspect(
805 30                decoding_input,
806 31                module.weight,
807 32                isASparse=False)
808 33            BN = best_cfg_dec["BLOCK_N"]
809 34            BK = best_cfg_dec["BLOCK_K"]
810 35
811 36            // Tune on prefill using decoding tile sizes
812 37            prefill_cfg = STOICC.create_configs(BLOCK_N=BN, BLOCK_K=BK)
813 38            inspector.set_configs(prefill_cfg)
814 39            best_cfg_pre = inspector.inspect(
815 40                prefill_input,
816 41                module.weight,

```

```

810
811     isASparse=False)
812
813     c = inspector.compress(module.weight, BN, BK)
814     mixed_module = MixedModule(c, best_cfg_dec, best_cfg_pre)
815     replace(module, mixed_module)
816
817     return M

```

PseudoCode 1: Tuning and Converting Model Weights to Mixed Format.

Table 7 reports the measured throughput (tokens processed per second) of LLaMA-2 7B at sparsity levels of 45%, 35%, and 25% with a batch size of 16 on an A6000 GPU. To reduce CPU overhead from launching Triton kernels in PyTorch, we executed generation through CUDA graphs, capturing both the prefill and decoding stages. With sparsity ratios between 25% and 45%, our heterogeneous approach achieves $1.18 \times$ – $1.38 \times$ end-to-end acceleration over the dense baseline. We also report timings on A100 in Table 8.

Table 7: Throughput of LLaMA-2 7B with mixed sparsity compared to the dense model. Measurements taken on an A6000 GPU with batch size 16. Throughput is reported in tokens processed/sec.

Sparsity	Prefill length	Tokens generated	Throughput (tok/s)	Speedup vs. dense
0%	128	128	1023.80	1.00 \times
25%	128	128	1212.79	1.18 \times
35%	128	128	1304.46	1.27 \times
45%	128	128	1410.20	1.38 \times
0%	128	1024	435.42	1.00 \times
25%	128	1024	493.33	1.13 \times
35%	128	1024	515.39	1.18 \times
45%	128	1024	542.87	1.25 \times

B PER TASK RESULTS

This appendix provides detailed per-task accuracy results for the models evaluated in Section 5, covering eight zero-shot downstream tasks: MMLU, PIQA, ARC-Easy, ARC-Challenge, Winogrande, OpenbookQA, RACE, and Hellaswag. The results are presented for each model at various sparsity levels and pruning methods, including our proposed PATCH^{Joint} and PATCH^{Tile} variants, alongside baseline methods such as Magnitude, Wanda, SparseGPT, Thanos, ProxSparse, and MaskLLM. These tables complement the average accuracy and perplexity results reported in Tables 1 and 2 of the main paper, offering a granular view of model performance across individual tasks.

For smaller models (Qwen-2.5 0.5B, LLaMA-3.2 1B, and Gemma-3 1B), we report results using the PATCH^{Joint} variant, which jointly optimizes dense tile locations and sparsity patterns within

Table 8: Throughput of LLaMA-2 7B with mixed sparsity compared to the dense model. Measurements taken on an A100 GPU with batch size 16. Throughput is reported in tokens processed/sec.

Sparsity	Prefill length	Tokens generated	Throughput (tok/s)	Speedup vs. dense
0%	128	128	1876.24	1.00 \times
25%	128	128	2002.02	1.07 \times
35%	128	128	2088.98	1.11 \times
45%	128	128	2180.88	1.16 \times
0%	128	1024	812.55	1.00 \times
25%	128	1024	864.66	1.06 \times
35%	128	1024	885.90	1.09 \times
45%	128	1024	907.12	1.12 \times

864 sparse tiles. For larger models (LLaMA-2 7B and LLaMA-3.1 8B), we report results using the
 865 memory-efficient $\text{PATCH}^{\text{Tile}}$ variant, which optimizes dense tile selections with a fixed 2:4 sparsity
 866 mask. The per-task accuracies highlight the effectiveness of our approaches in maintaining robust
 867 performance across diverse tasks, even at high sparsity levels, compared to baseline methods.
 868

869 The following tables detail the per-task accuracies for each model:

870

- 871 • **Qwen-2.5 0.5B:** Table 9 presents the per-task accuracies for the $\text{PATCH}^{\text{Joint}}$ variant and
 872 baselines at 0% and 50% sparsity, with $\text{PATCH}^{\text{Joint}}$ evaluated at 25%, 35%, and 45% sparsity.
 873
- 874 • **LLaMA-2 7B:** Table 10 shows the per-task accuracies for the $\text{PATCH}^{\text{Tile}}$ variant and base-
 875 lines, with $\text{PATCH}^{\text{Tile}}$ evaluated at 25%, 35%, and 45% sparsity.
 876
- 877 • **LLaMA-3.1 8B:** Table 11 provides the per-task accuracies for the $\text{PATCH}^{\text{Tile}}$ variant and
 878 baselines, with $\text{PATCH}^{\text{Tile}}$ at 25%, 35%, and 45% sparsity.
 879
- 880 • **LLaMA-3.2 1B:** Table 12 reports the per-task accuracies for the $\text{PATCH}^{\text{Joint}}$ variant and
 881 baselines, with $\text{PATCH}^{\text{Joint}}$ at 25%, 35%, and 45% sparsity.
 882
- 883 • **Gemma-3 1B:** Table 13 details the per-task accuracies for the $\text{PATCH}^{\text{Joint}}$ variant and
 884 baselines, with $\text{PATCH}^{\text{Joint}}$ at 25%, 35%, and 45% sparsity.
 885

886 These results enable a deeper analysis of the task-specific performance trends, demonstrating the
 887 flexibility and robustness of $\text{PATCH}^{\text{Joint}}$ and $\text{PATCH}^{\text{Tile}}$ in achieving high accuracy across diverse
 888 tasks while maintaining hardware-friendly sparsity patterns.
 889

890 Table 9: Model quality (task accuracy across eight zero-shot tasks, reported in %) for Qwen-2.5 0.5B
 891 with different pruning methods. $\text{PATCH}^{\text{Joint}}$ optimizes dense tile locations and sparsity patterns,
 892 enabling a flexible sparsity-quality tradeoff.

893 Sparsity	894 Method	895 Pattern	896 MMLU	897 PIQA	898 ARC-E	899 ARC-C	900 WinoG.	901 OBQA	902 RACE	903 HellaS.	904 Avg
0%	Dense	-	47.71	70.24	64.48	29.52	56.20	24.20	35.02	40.63	46.00
50%	Magnitude	2:4	23.00	54.24	31.23	19.20	49.96	13.60	23.44	26.59	30.16
	Wanda	2:4	24.43	58.71	43.18	17.75	51.62	12.20	26.32	29.58	32.97
	SparseGPT	2:4	22.93	60.77	46.60	20.82	52.88	14.00	29.57	30.93	34.81
	Thanos	2:4	22.97	60.17	45.37	19.20	53.59	15.20	31.00	31.31	34.85
	ProxSparse	2:4	23.00	57.34	40.53	18.26	48.62	14.00	25.65	29.02	32.05
	MaskLLM	2:4	25.11	67.03	56.57	23.98	52.57	20.20	33.30	35.90	39.33
45%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	27.39	68.44	59.13	25.77	53.67	19.80	32.15	35.99	40.29
35%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	29.04	68.88	60.40	26.37	55.09	20.40	32.44	36.58	41.15
25%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	30.89	69.15	62.79	29.10	55.33	20.00	34.16	37.71	42.39

905 Table 10: Model quality (task accuracy across eight zero-shot tasks, reported in %) for LLaMA-2
 906 7B with different pruning methods. $\text{PATCH}^{\text{Tile}}$ optimizes tile-based sparsity, enabling a flexible
 907 sparsity-quality tradeoff.

908 Sparsity	909 Method	910 Pattern	911 MMLU	912 PIQA	913 ARC-E	914 ARC-C	915 WinoG.	916 OBQA	917 RACE	918 HellaS.	919 Avg
0%	Dense	-	41.82	78.07	76.35	43.52	69.06	31.40	39.52	57.13	54.61
50%	Magnitude	2:4	25.82	70.02	61.78	30.12	61.01	21.80	31.48	45.45	43.44
	Wanda	2:4	25.80	71.00	63.80	30.29	61.09	25.20	35.50	41.75	44.30
	SparseGPT	2:4	26.17	70.73	63.80	30.63	65.04	24.00	37.13	43.18	45.09
	Thanos	2:4	25.27	70.78	63.43	30.97	64.56	23.80	36.46	43.11	44.80
	ProxSparse	2:4	26.77	71.60	65.70	33.02	62.90	24.20	35.31	47.84	45.92
	MaskLLM	2:4	27.65	74.76	69.44	35.58	65.04	26.80	38.56	51.15	48.62
45%	$\text{PATCH}^{\text{Tile}}$	Dense/2:4 Tiles	27.28	75.41	70.16	35.84	65.27	27.60	38.76	51.61	48.99
35%	$\text{PATCH}^{\text{Tile}}$	Dense/2:4 Tiles	29.93	76.71	70.88	36.95	65.67	28.20	39.33	52.96	50.08
25%	$\text{PATCH}^{\text{Tile}}$	Dense/2:4 Tiles	32.33	76.99	72.81	38.57	68.27	29.80	39.52	54.34	51.58

918
 919 Table 11: Model quality (task accuracy across eight zero-shot tasks, reported in %) for LLaMA-3.1
 920 8B with different pruning methods. $\text{PATCH}^{\text{Tile}}$ optimizes tile-based sparsity, enabling a flexible
 921 sparsity-quality tradeoff.

Sparsity	Method	Pattern	MMLU	PIQA	ARC-E	ARC-C	WinoG.	OBQA	RACE	HellaS.	Avg
0%	Dense	-	63.57	80.09	81.44	51.37	73.48	33.40	39.14	60.02	60.31
50%	Magnitude	2:4	23.06	63.82	45.33	25.94	53.91	15.20	26.70	33.49	35.93
	Wanda	2:4	27.85	68.88	58.33	26.71	60.93	19.00	33.78	38.70	41.77
	SparseGPT	2:4	31.82	70.46	63.85	31.74	64.56	21.60	37.22	42.99	45.53
	Thanos	2:4	34.23	70.40	63.13	31.40	63.61	23.20	37.03	42.75	45.72
	ProxSparse	2:4	29.89	71.71	62.63	33.28	58.56	23.80	35.22	46.03	45.14
	MaskLLM	2:4	42.47	77.04	73.15	40.19	68.43	28.80	38.28	54.04	52.80
45%	$\text{PATCH}^{\text{Tile}}$	Dense/2:4 Tiles	47.32	77.96	73.61	41.89	68.03	29.00	36.56	54.44	53.60
35%	$\text{PATCH}^{\text{Tile}}$	Dense/2:4 Tiles	51.15	77.97	76.14	42.41	69.46	31.40	38.18	55.54	55.28
25%	$\text{PATCH}^{\text{Tile}}$	Dense/2:4 Tiles	52.95	77.75	77.57	44.62	70.56	31.80	39.90	56.69	56.48

932
 933
 934 Table 12: Model quality (task accuracy across eight zero-shot tasks, reported in %) for LLaMA-3.2
 935 1B with different pruning methods. $\text{PATCH}^{\text{Joint}}$ optimizes dense tile locations and sparsity patterns,
 936 enabling a flexible sparsity-quality tradeoff.

Sparsity	Method	Pattern	MMLU	PIQA	ARC-E	ARC-C	WinoG.	OBQA	RACE	HellaS.	Avg
0%	Dense	-	37.57	74.54	65.53	31.32	60.62	26.40	37.89	47.76	47.70
50%	Magnitude	2:4	23.31	53.81	27.74	18.94	51.38	11.80	24.02	26.26	29.66
	Wanda	2:4	22.90	58.11	37.08	19.20	49.09	13.20	25.17	28.11	31.61
	SparseGPT	2:4	22.93	61.43	45.03	22.35	54.93	15.80	29.86	32.08	35.55
	Thanos	2:4	23.12	62.40	44.91	21.76	54.30	16.00	31.10	32.09	35.71
	ProxSparse	2:4	22.96	60.83	39.44	20.31	51.54	16.80	25.17	31.37	33.55
	MaskLLM	2:4	26.28	69.10	57.41	25.85	55.48	21.40	32.82	39.94	41.04
45%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	23.81	70.89	60.77	27.22	56.27	22.80	34.07	40.78	42.08
35%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	25.13	71.32	60.27	29.18	57.06	22.00	34.64	42.17	42.72
25%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	28.59	71.44	61.57	28.67	58.25	23.20	35.22	43.52	43.81

948
 949
 950 Table 13: Model quality (accuracy across eight zero-shot tasks) for Gemma-3 1B with different
 951 pruning methods. $\text{PATCH}^{\text{Joint}}$ optimizes dense tile locations and sparsity patterns, enabling a flexi-
 952 ble sparsity-quality tradeoff.

Sparsity	Method	Pattern	MMLU	PIQA	ARC-E	ARC-C	WinoG.	OBQA	RACE	HellaS.	Avg
0%	Dense	-	24.95	75.03	71.84	34.90	58.64	28.60	34.83	47.26	47.01
50%	Magnitude	2:4	23.08	59.79	37.29	17.66	50.59	14.00	22.87	27.97	31.66
	Wanda	2:4	23.96	59.52	48.02	18.34	51.22	14.20	27.85	30.18	34.16
	SparseGPT	2:4	23.62	62.79	49.83	19.03	51.54	15.20	30.62	31.99	35.58
	Thanos	2:4	23.44	62.24	48.86	18.34	50.12	15.60	30.81	31.28	35.09
	ProxSparse	2:4	23.10	64.25	50.72	21.59	53.43	18.00	29.09	32.86	36.63
	MaskLLM	2:4	25.03	69.91	60.27	27.65	56.27	21.20	34.55	39.84	41.84
45%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	23.54	71.65	63.97	27.47	57.30	23.60	33.49	41.39	42.80
35%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	25.38	72.31	63.80	27.39	56.67	24.00	34.74	42.07	43.30
25%	$\text{PATCH}^{\text{Joint}}$	Dense/2:4 Tiles	25.45	71.87	66.16	30.55	57.85	22.80	34.55	43.33	44.07

C TILE TRANSFER LEARNING

We also test whether initializing tile logits with priors from one-shot pruning methods improves performance, as done in MaskLLM (Fang et al., 2024). In our case, the initialization is derived from one-shot pruning with unstructured sparsity. We initialize tiles that retain more nonzeros after unstructured pruning with positive logits (favoring dense assignment), while the remaining tiles receive negative logits, controlled by a strength parameter. The number of tiles initialized as dense is selected such that the overall layer-wise sparsity target is satisfied. As shown in Table 14, the

choice of prior has little impact on final performance: all priors yield nearly identical perplexity, with random initialization often performing best. This is likely because the global sparsity target enables dynamic reallocation of sparsity across layers during training, overriding the effect of any fixed initialization. For consistency with prior work, we adopt SparseGPT initialization in all experiments.

Table 14: Perplexity (\downarrow) under different tile prior initializations. All priors yield nearly identical performance, suggesting that the global sparsity target allows dynamic reallocation of sparsity during training, overriding the influence of fixed initialization.

Sparsity (0.5B)	Nothing	SparseGPT	Wanda	Magnitude	Random
45%	14.80	14.57	14.50	14.48	14.51
35%	13.97	13.84	13.87	13.85	13.79
25%	13.47	13.47	13.37	13.44	13.33

D IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We train all masks using the HuggingFace Trainer API (Wolf et al., 2020) for 2000 steps with a global batch size of 256 and a sequence length of 4096, resulting in 2B tokens processed from the SlimPajama corpus (Soboleva et al., 2023).

Training is accelerated via data parallelism across a single node with 4 H100 GPUs. In this setup, $\text{PATCH}^{\text{Joint}}$ requires 18 and 24 GPU hours on the 0.5B and 1B models, respectively, while $\text{PATCH}^{\text{Tile}}$ requires 84 and 96 GPU hours on the 7B and 8B models.

The hyperparameters for $\text{PATCH}^{\text{Joint}}$ and $\text{PATCH}^{\text{Tile}}$ are summarized in Table 15, tuned on Qwen-2.5-0.5B. For the 2:4 mask parameters, we follow the configuration from MaskLLM (Fang et al., 2024).

Table 15: Hyper-parameters used for $\text{PATCH}^{\text{Joint}}$ and $\text{PATCH}^{\text{Tile}}$ across sparsity ratios. All hyper parameters were tuned on Qwen-2.5-0.5B.

Sparsity	Method	Optimizer	Logits Init	Gumbel Scaling	Gumbel	Prior(Strength)	Sparse Reg.	Weight Reg.
25%	$\text{PATCH}^{\text{Joint}}$	Adam(0.001)	$\mathcal{N}(0, 0.014)$	25 \rightarrow 350	2 \rightarrow 0.05	SparseGPT(3)	7	10
	$\text{PATCH}^{\text{Joint}}$	Adam(0.001)	$\mathcal{N}(0, 0.014)$	25 \rightarrow 350	2 \rightarrow 0.05	SparseGPT(3)	7	10
	$\text{PATCH}^{\text{Joint}}$	Adam(0.001)	$\mathcal{N}(0, 0.014)$	25 \rightarrow 350	4 \rightarrow 0.05	SparseGPT(3)	7	10
25%	$\text{PATCH}^{\text{Tile}}$	Adam(0.0001)	$\mathcal{N}(0, 0.014)$	100 \rightarrow 500	2 \rightarrow 0.05	SparseGPT(3)	3	0.1
	$\text{PATCH}^{\text{Tile}}$	Adam(0.0001)	$\mathcal{N}(0, 0.014)$	100 \rightarrow 500	2 \rightarrow 0.05	SparseGPT(3)	3	0.1
	$\text{PATCH}^{\text{Tile}}$	Adam(0.0001)	$\mathcal{N}(0, 0.014)$	100 \rightarrow 500	2 \rightarrow 0.05	SparseGPT(3)	3	0.1

E ADDITIONAL LAYER-WISE SPARSITY DISTRIBUTIONS

In this appendix, we provide the sparsity distributions for the Gemma-3-1B (Figure 4) and Llama-3.2-1B (Figure 5) models, as referenced in the main text. Similar to the Qwen-2.5 0.5B model, the patterns observed here indicate that MLP layers (up, gate, and down matrices) are pruned more aggressively, absorbing the majority of sparsity. In contrast, the self-attention layers are treated as more critical, with key and value matrices remaining largely dense or unpruned, while the query matrix experiences the highest pruning within the attention submodule, and the output matrix shows moderate pruning under higher global sparsity targets. This consistent behavior across models underscores the redundancy in MLP components and the sensitivity of attention mechanisms.

F RELATED WORK

F.1 PRUNING METHODS

Pruning is one of the most widely studied approaches for compressing deep neural networks, with the goal of removing redundant parameters while preserving accuracy. Classical pruning methods can be broadly categorized into *local* (layer-wise) and *global* (end-to-end) strategies.

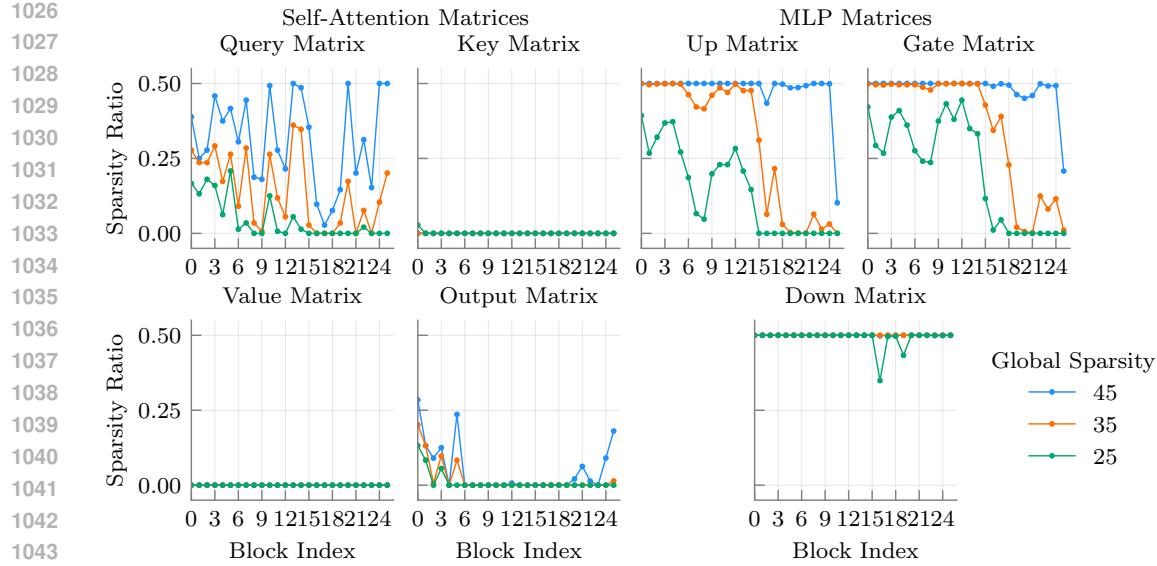


Figure 4: Sparsity distribution across Attention and MLP layers under varying global sparsity budgets in Gemma-3 1B.

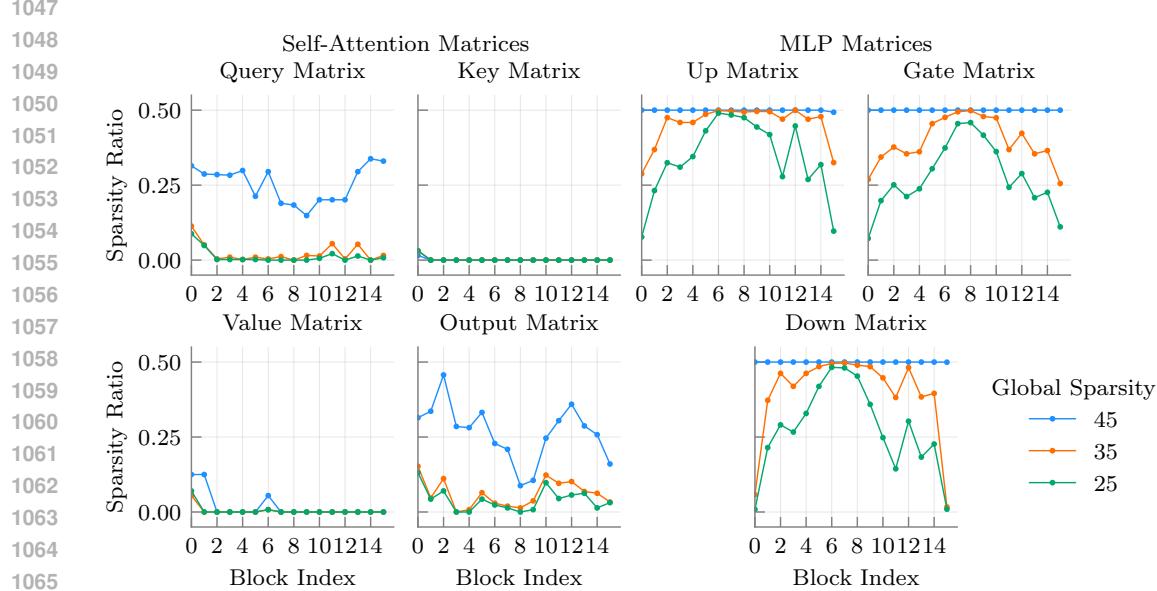


Figure 5: Sparsity distribution across Attention and MLP layers under varying global sparsity budgets in LLaMA-3.2 1B.

Local pruning. Local approaches prune each layer independently, typically by minimizing reconstruction error within that layer. A seminal example is Optimal Brain Surgeon (OBS) (Hassibi et al., 1993; Frantar & Alistarh, 2022), which leverages second-order information to identify and remove weights while updating the remaining parameters to compensate for loss. While highly principled, the quadratic cost of computing and inverting the Hessian makes OBS infeasible for large models.

Recent work adapts these ideas to LLM-scale pruning. SparseGPT (Frantar & Alistarh, 2023) formulates layer-wise pruning as a sparse regression problem, enabling efficient approximations of OBS that scale to billion-parameter models. Thanos (Ilin & Richtarik, 2025) further improves accuracy by employing multi-column approximations to reduce error accumulation. Wanda (Sun et al., 2023), on the other hand, discards explicit weight updates and instead uses a simple magnitude-

1080 activation criterion with calibration data, yielding competitive quality with extremely fast runtimes.
 1081 Despite their efficiency, local methods often suffer from limited capacity to recover accuracy since
 1082 pruning decisions ignore cross-layer dependencies.
 1083

1084 **Global pruning.** Global approaches aim to jointly optimize pruning decisions across layers, typ-
 1085 ically leading to better overall trade-offs. Optimal Brain Damage (OBD) (LeCun et al., 1989) is an
 1086 early global method that estimates weight saliency using the diagonal Hessian. Extensions such as
 1087 WoodFisher (Singh & Alistarh, 2020) approximate the Hessian via Kronecker factorizations, mak-
 1088 ing computation more tractable but still challenging for modern LLMs (Mozaffari et al., 2023).

1089 More recent approaches bypass costly second-order computations. MaskLLM (Fang et al., 2024)
 1090 formulates pruning as a binary classification task (keep vs. prune) and solves it using standard optim-
 1091 izers such as AdamW (Loshchilov, 2017), achieving strong results even under hardware-friendly
 1092 structured sparsity (e.g., 2:4). ProxSparse (Liu et al., 2025) instead adopts a proximal regularization
 1093 framework, reducing the overhead of MaskLLM while trading off some pruning accuracy. These
 1094 works highlight the tension between pruning quality and efficiency: global methods often achieve
 1095 higher accuracy but remain more computationally expensive than simple one-shot local pruning.

1096 F.2 COMPLEMENTARY COMPRESSION TECHNIQUES

1097 Beyond pruning, several orthogonal compression techniques are widely used and can be combined
 1098 with sparsity for additional gains. *Quantization* reduces the bit precision of parameters and activa-
 1099 tions, e.g., from 32-bit floating point to 8- or 4-bit integers, thereby reducing memory footprint and
 1100 accelerating inference (Gholami et al., 2022; Rokh et al., 2023).

1101 *Low-rank adaptation* methods decompose weight matrices into smaller factors, effectively reducing
 1102 parameter counts while maintaining expressivity. Recent approaches such as LQ-LoRA (Guo et al.,
 1103 2023), SLiM (Mozaffari et al., 2025a), and SLoPe (Mozaffari et al., 2025b) demonstrate that low-
 1104 rank structures can be used both for efficient fine-tuning and for direct model compression.

1105 Finally, *knowledge distillation* (Gou et al., 2021) transfers knowledge from a large teacher model to
 1106 a smaller student, yielding compact models that retain much of the teacher’s performance. These
 1107 methods are complementary to pruning, and hybrid frameworks that integrate sparsity, quantization,
 1108 and low-rank factorization represent a promising direction for achieving high compression ratios
 1109 without sacrificing accuracy.

1112 G COMPARISON WITH UNSTRUCTURED SPARSITY

1113 In this section, we compare the quality of the models pruned with PATCH against other unstructured
 1114 sparsity methods. Table 16 summarizes the average accuracy of the models across eight downstream
 1115 tasks and the model perplexity on WikiText2 dataset. The results indicate that while unstructured
 1116 sparsity consistently outperforms the hybrid sparsity, the gap between the two is not significant,
 1117 showing that PATCH is helping bridging the gap between unstructured sparsity and semi-structured
 1118 sparsity.

1122 H LAYER-WISE SPARSITY DISTRIBUTION COMPARISON WITH OTHER WORK

1123 We compare the sparsity allocation learned by PATCH with OWL (Yin et al., 2025) and AlphaPrun-
 1124 ing (Lu et al., 2024). To ensure a robust baseline, we performed extensive hyperparameter sweeps
 1125 for both methods and selected the configurations that achieved the best perplexity when applying
 1126 Wanda as the underlying pruning operator:

- 1127 • OWL: We swept $\lambda \in \{0.01, 0.03, 0.05, 0.08, 0.1\}$ and $M \in \{3, 5, 7, 10\}$.
- 1128 • AlphaPruning: We swept 20 values of the temperature parameter τ between 0 and 0.5.

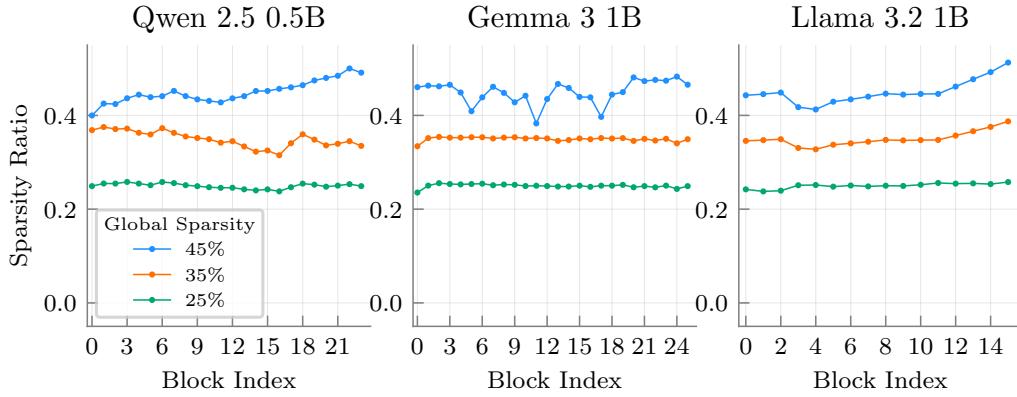
1129 A critical distinction is that OWL and AlphaPruning are primarily designed for unstructured spar-
 1130 sity. While OWL includes an N:M structured variant, it is restricted to a fixed 50% global sparsity.
 1131 Furthermore, OWL allocates sparsity at the block level (assigning uniform sparsity to all matrices

1134
 1135 Table 16: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
 1136 dataset) for PATCH, Wanda, and SparseGPT. For models with less than or equal to 1B parameters,
 1137 PATCH^{Joint} optimizes both dense tile locations and sparsity patterns, while for larger models
 1138 PATCH^{Tile} optimizes only dense tile locations with frozen sparsity patterns, both using Dense/2:4
 1139 Tiles pattern allowing continuous sparsity ratios and flexible tradeoffs between sparsity and model
 quality. Wanda and SparseGPT are unstructured pruning methods.
 1140

Sparsity	Method	Pattern	Qwen-2.5 0.5B		LLaMA-3.2 1B		Gemma-3 1B		LLaMA-2 7B		LLaMA-3.1 8B	
			Acc (%) \uparrow	PPL \downarrow								
45%	PATCH	Dense/2:4 Tiles	40.29	14.57	42.08	12.23	42.80	11.96	48.99	6.55	53.60	8.20
45%	Wanda	Unstructured	41.45	18.81	40.76	16.56	42.87	25.38	52.72	6.36	55.67	8.24
45%	SparseGPT	Unstructured	42.31	17.65	42.66	15.01	43.52	22.26	52.77	6.46	56.70	8.21
35%	PATCH	Dense/2:4 Tiles	41.15	13.84	42.72	11.67	43.30	11.48	50.08	6.18	55.28	7.89
35%	Wanda	Unstructured	43.46	15.04	44.60	11.95	45.50	16.98	54.37	5.87	58.68	7.02
35%	SparseGPT	Unstructured	44.66	14.79	45.62	11.68	45.45	16.92	54.18	5.92	58.81	7.07
25%	PATCH	Dense/2:4 Tiles	42.39	13.47	43.81	11.00	44.07	11.17	51.58	5.86	56.48	7.34
25%	Wanda	Unstructured	45.70	13.70	46.50	10.46	46.56	15.14	54.60	5.65	59.80	6.54
25%	SparseGPT	Unstructured	45.28	13.63	46.52	10.42	46.37	15.05	54.71	5.68	59.52	6.55

1149
 1150 within a Transformer block). Although the authors propose a weight-wise variant, they report, and
 1151 our experiments confirm, that it yields inferior performance. In contrast, PATCH operates with
 1152 tile-level granularity within a semi-structured constraint, offering a unique combination of hardware
 1153 acceleration and fine-grained control.
 1154

1155 As seen in Figures 6 and 7, both baselines produce relatively flat sparsity distributions across the
 1156 model. AlphaPruning exhibits only minor fluctuations in the middle layers, whereas PATCH dis-
 1157 covers distinct, highly non-uniform patterns (e.g., preserving Attention layers while aggressively
 1158 pruning MLP blocks).
 1159



1173 Figure 6: Layer-wise sparsity distribution of OWL across models and global sparsity budgets.
 1174

1175 For OWL, we performed a sweep over the λ parameter in 0.01, 0.03, 0.05, 0.08, 0.1 and the M
 1176 parameter in 3, 5, 7, 10 for each model. For AlphaPruning, we swept 20 values of $\tau \in [0, 0.5]$. For
 1177 both methods, we selected the hyperparameters that achieved the best perplexity using Wanda as the
 1178 pruning metric.
 1179

I VARIATION ACROSS SEEDS

1183 We evaluate PATCH on Qwen-2.5 0.5B and Llama-3.2 1B across different seeds. As shown in
 1184 Table 17, model performance remains consistent across seeds.
 1185

1186 In addition, we include the corresponding sparsity allocations across layers (Figure 9) and across
 1187 individual weight matrices for both Llama-3.2 1B (Figure 10) and Qwen-2.5 0.5B (Figure 11). From
 1188 these, we observe the following:

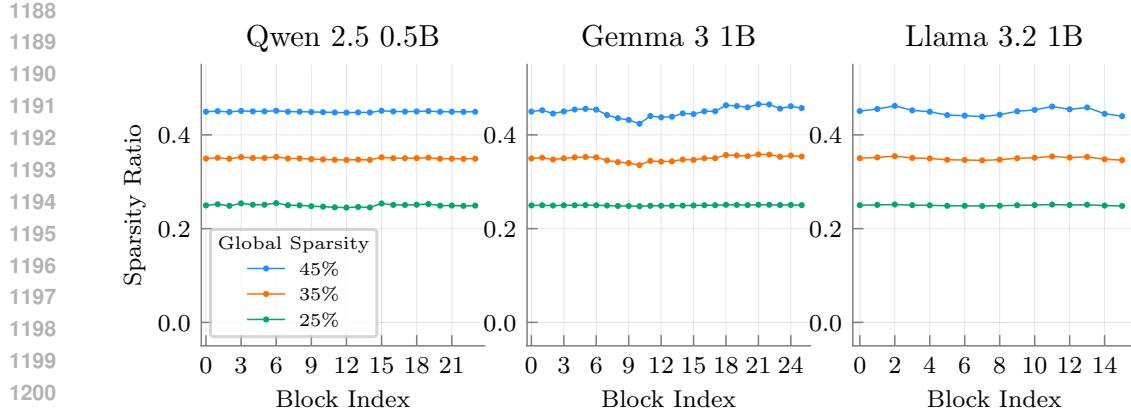


Figure 7: Layer-wise sparsity distribution of AlphaPruning across models and global sparsity budgets.

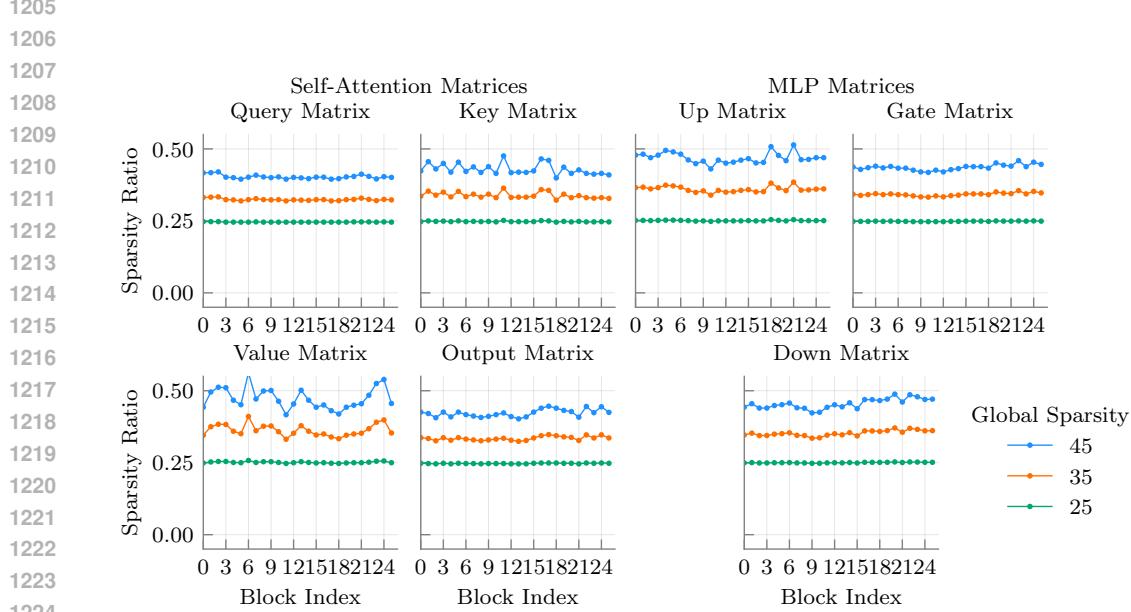


Figure 8: AlphaPruning sparsity distribution across attention and MLP layers under varying global sparsity budgets in Gemma-3 1B.

- At the global block level, the optimization consistently identifies the middle Transformer blocks as the most redundant (receiving the highest sparsity), while the initial and (especially) final blocks are pruned less.
- At the weight-matrix level, The allocation of sparsity between attention and MLP modules remains stable. For example, in Llama-3.2 1B (Figure 10), the Key and Value matrices consistently remain dense across all seeds, while the Query and MLP matrices absorb the majority of the sparsity

While the specific tile indices may vary slightly due to the stochastic sampling, the macroscopic pruning strategy learned by PATCH is highly reproducible and robust to initialization.

Table 17: Perplexity across seeds for Qwen-2.5 0.5B and Llama-3.2 1B.

Model	Sparsity (%)	Seed 0 (default)	Seed 25	Seed 26	Seed 42
Qwen-2.5 0.5B	25	13.47	13.41	13.38	13.36
	35	13.84	13.89	13.85	13.84
	45	14.56	14.59	14.61	14.49
Llama-3.2 1B	25	11.00	11.09	11.03	11.21
	35	11.67	11.72	11.56	11.86
	45	12.23	12.32	12.26	12.55

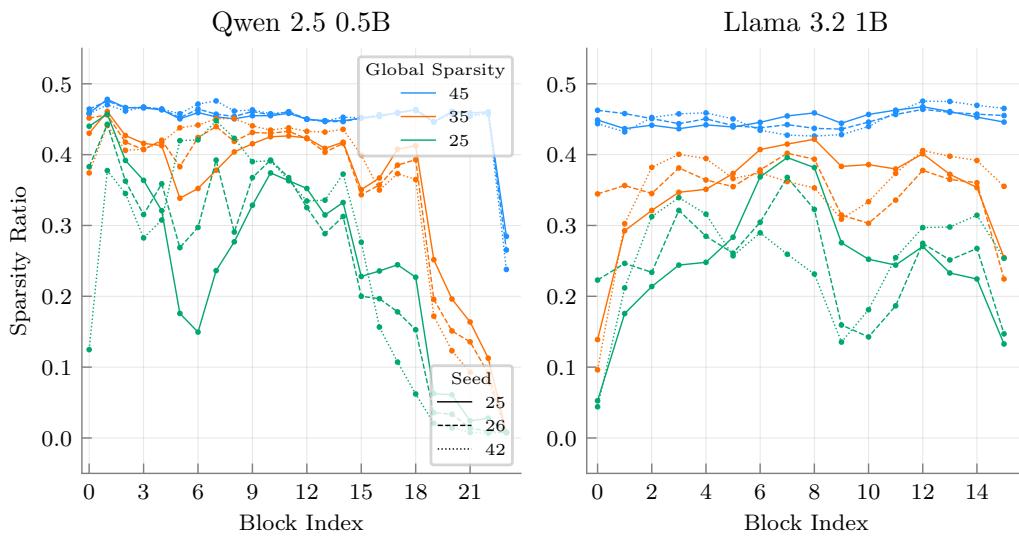


Figure 9: Layer-wise sparsity distribution of PATCH across seeds.

J FINE-TUNING AFTER MASK TRAINING

In this section, we present results from fine-tuning the remaining unpruned weights after mask training. We conducted a brief 5.6M-token run on the SlimPajama dataset so that the fine-tuning phase matches the mask search of PATCH.

Fine-tuning yields a consistent improvement in average zero-shot accuracy (e.g., +0.8% for Llama-3.2 1B at 25% sparsity and +0.6% for Qwen-2.5 0.5B at 45% sparsity), as seen on on Table 18. Interestingly, we observe a slight degradation in perplexity. We attribute this to the limited calibration data (5.6M tokens) compared to the trillions of tokens seen during pre-training; short fine-tuning can sometimes slightly drift the language modeling distribution while sharpening downstream task performance.

These results confirm that PATCH creates a high-quality sparsity topology that serves as a strong foundation. While the mask alone delivers state-of-the-art performance, subsequent fine-tuning, even with a limited budget, can further recover accuracy, offering a flexible path for users with additional compute resources.

K IMPACT OF SPARSE FINE-TUNING UNDER FIXED COMPUTE BUDGET

To assess whether the performance gains of PATCH are solely due to training, we conducted a controlled experiment comparing PATCH against fine-tuned (FT) one-shot baselines under a strictly fixed compute budget. We fine-tuned the weights of Wanda and SparseGPT (2:4 sparsity) models on

Figure 10: Sparsity distribution across attention and MLP layers under varying global sparsity budgets in Llama-3.2 1B across seeds.

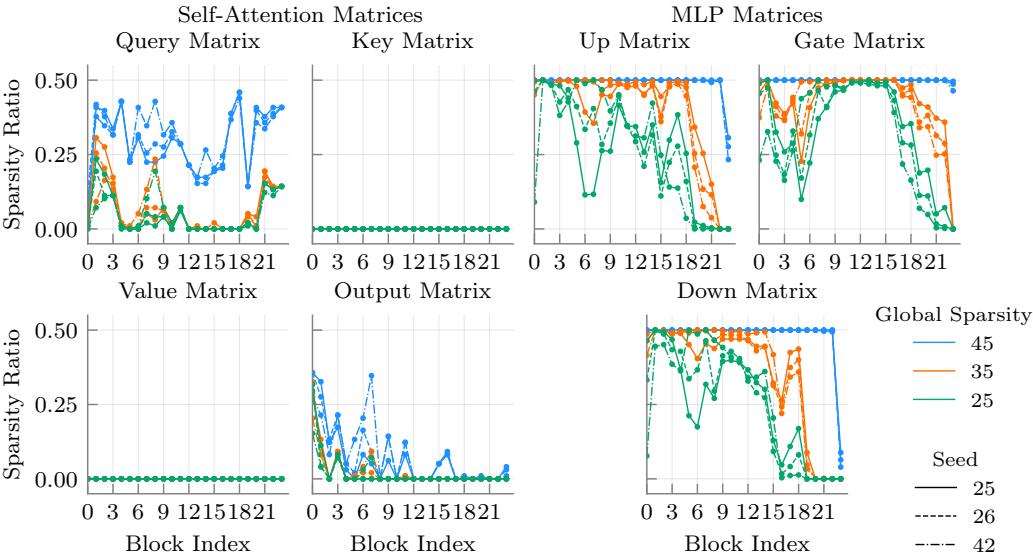


Figure 11: Sparsity distribution across attention and MLP layers under varying global sparsity budgets in Qwen-2.5 0.5B across seeds.

the SlimPajama dataset for 5.6M tokens. We trained the PATCH masks for the equivalent compute budget (matching the 5.6M token run).

As shown in Table 19, PATCH consistently outperforms the fine-tuned baselines, even when the baselines are allowed to update their weights. For example, on LLaMA-3.2 1B, PATCH at 45% sparsity achieves 42.08% accuracy, surpassing SparseGPT + FT (41.74%) and Wanda + FT (41.27%). This demonstrates that under a fixed compute budget, learning a flexible, non-uniform sparsity mask yields better performance than fine-tuning weights with a rigid, uniform mask.

1350 Table 18: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
1351 dataset) for PATCH after a short fine-tuning.

Model	Sparsity	Method	Wiki PPL (↓)	Avg Acc (% ↑)
Qwen-2.5 0.5B	45%	PATCH ^{Joint}	14.56	40.29
		PATCH ^{Joint} + FT	14.96	40.87
	35%	PATCH ^{Joint}	13.84	41.15
		PATCH ^{Joint} + FT	14.32	41.59
	25%	PATCH ^{Joint}	13.47	42.39
LLaMA-3.2 1B		PATCH ^{Joint} + FT	13.85	42.55
	35%	PATCH ^{Joint}	11.67	42.72
		PATCH ^{Joint} + FT	12.02	43.50
	25%	PATCH ^{Joint}	11.00	43.81
		PATCH ^{Joint} + FT	11.36	44.61

1365
1366 Table 19: Comparison of PATCH vs. Fine-Tuned (FT) Baselines under a Fixed Compute Budget.
1367

Model	Method	Sparsity (%)	PPL (↓)	Avg Acc (↑)
Qwen-2.5 0.5B	Wanda (2:4)	50	72.48	32.97
	Wanda + FT	50	15.21	39.98
	SparseGPT (2:4)	50	36.59	34.81
	SparseGPT + FT	50	16.98	38.89
	PATCH^{Joint}	45	14.56	40.29
	PATCH^{Joint}	35	13.84	41.15
	PATCH^{Joint}	25	13.47	42.39
LLaMA-3.2 1B	Wanda (2:4)	50	78.18	31.61
	Wanda + FT	50	13.98	41.27
	SparseGPT (2:4)	50	32.73	35.55
	SparseGPT + FT	50	13.54	41.74
	PATCH^{Joint}	45	12.23	42.08
	PATCH^{Joint}	35	11.67	42.72
	PATCH^{Joint}	25	11.00	43.81

1384
1385

L LANGUAGE MODEL USAGE IN PAPER

1386
1387 We used language models to enhance the readability of the manuscript, correct grammatical and
1388 typographical errors, and ensure conformity with the ICLR author guidelines. Beyond their applica-
1389 tion in benchmark evaluations and experimental procedures, language models were not employed
1390 in any other aspect of this study.
13911392

M REPRODUCIBILITY STATEMENT

1393
1394 To support reproducibility, we release a repository linked in the abstract footnote that contains our
1395 implementation, training scripts, and evaluation pipeline. The paper outlines the method in § 3 and
1396 provides a thorough experimental description in § 5. Appendix D discusses the hyperparameter val-
1397 ues in our work and additional information about our implementation. These materials collectively
1398 allow others to replicate our experiments and validate the claims made in the paper.
13991400
1401
1402
1403