
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PATCH: LEARNABLE TILE-LEVEL HYBRID SPARSITY
FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) deliver impressive performance but incur pro-
hibitive memory and compute costs at deployment. Model pruning is an effective
way to reduce these overheads, yet existing approaches face challenges: unstruc-
tured sparsity, where nonzeros can appear anywhere, preserves accuracy but yields
irregular access patterns that prevent GPU acceleration, while semi-structured 2:4
sparsity is hardware-friendly but enforces a rigid 50% pattern that degrades model
quality. To bridge this gap, we introduce PATCH, a hybrid sparsity framework
that enables a continuous sparsity ratio between 0% and 50%. PATCH partitions
weight matrices into tiles, assigning each tile to be either dense or 2:4 sparse via a
learnable mask selection mechanism. This design provides fine-grained control
over accuracy–acceleration tradeoffs and supports non-uniform sparsity across
layers, leading to superior overall quality. Across models from 0.5B to 8B param-
eters, PATCH consistently narrows the gap to dense accuracy while delivering
practical speedups. For instance, on LLaMA-2 7B with an A6000 GPU, PATCH
achieves 1.18×–1.38× end-to-end speedup over dense baselines while improving
accuracy by 0.37%–2.96% compared to the state-of-the-art 2:4 pruning method,
MaskLLM. 1

1 INTRODUCTION

Recent advancements in large language models (LLMs) have revolutionized natural language pro-
cessing, enabling breakthroughs in understanding and generating human language (Comanici et al.,
2025; Meta, 2025). These models power diverse applications, such as conversational agents and
automated content creation (Suzgun et al., 2022; Zhou et al., 2023). However, their extensive
parameter counts—often in the billions—result in significant memory overhead and high inference
costs (Guo et al., 2024; Ma et al., 2024). This computational burden has driven the need for efficient
model compression techniques.

Two primary approaches to model compression are quantization and sparsity. Quantization reduces
the precision of model parameters, compressing LLMs effectively while preserving performance
(Ashkboos et al., 2024; Tseng et al., 2024; Zhang et al., 2024; Saha et al., 2024). In contrast,
sparsity aims to lower memory and computational demands by setting many parameters to zero
(Hassibi et al., 1993; LeCun et al., 1989). However, sparsity alone struggles to maintain model
accuracy while delivering practical speedups, a limitation that current research seeks to overcome.

Unstructured sparsity, which permits non-zero elements to appear anywhere in the matrix, can match
dense model accuracy due to its flexibility in sparsity allocation (Sun et al., 2023; Frantar & Alistarh,
2023; Agarwalla et al., 2024). However, its irregular memory access patterns hinder acceleration on
modern hardware like GPUs (Xia et al., 2023; Fan et al., 2025). As a result, unstructured spar-
sity fails to deliver practical speedups, motivating the search for more hardware-friendly sparsity
techniques.

Semi-structured sparsity patterns, such as the 2:4 pattern (Mishra et al., 2021) supported by NVIDIA
and AMD GPUs, provide practical speedups in large-scale model inference. However, unlike un-
structured sparsity, which offers greater flexibility, 2:4 enforces rigid rules by requiring at least two
of every four consecutive elements to be zero. This rigidity often leads to significant accuracy loss

1Code and data for PATCH are available at https://anonymous.4open.science/r/PATCH-ICLR2026

1

https://anonymous.4open.science/r/PATCH-ICLR2026


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Mask Value

Gumbel

Softmax

3 -2 -4

4-1-2

-3 1 -2

0.95 0.15 0.01

0.980.40.2

0.05 0.55 0.15
Interleave

Repeat

Generate 2:4
Mask 

(Frozen or Jointly
Learned)

0 1

Figure 1: Illustration of the PATCH learning process for generating tile-level hybrid masks. Each
tile is parameterized by a learnable distribution and sampled with Gumbel Softmax to produce M̃tile.
The dense probability is expanded and merged with a 2:4 mask M̃2:4, which can be fixed or jointly
learned during training, yielding M̃ . The final mask assigns each tile to remain dense or follow the
2:4 pattern, enabling flexible sparsity across the weight matrix.

when models are pruned using one-shot methods (Sun et al., 2023; Frantar & Alistarh, 2023; Ilin
& Richtarik, 2025; Liu et al., 2025). MaskLLM (Fang et al., 2024) mitigates this issue by learning
sparsity masks end-to-end, but pruned models still lag behind their dense counterparts in accuracy.
Moreover, recent studies show that sparsity should be allocated non-uniformly (adaptively) across
layers for optimal performance (Yin et al., 2025; Wang & Tu, 2020; Lee et al., 2021), whereas 2:4
sparsity enforces a fixed, uniform allocation. These limitations indicate that relying solely on 2:4
sparsity is insufficient, underscoring the need for hybrid approaches.

To address the challenges of LLM pruning, while providing accelerated inference, we propose
Pruning with a Learnable Tile-level Configuration for Hybrid Sparsity (PATCH). PATCH learns
a hybrid mask that partitions each weight matrix into hardware-friendly tiles, designating each tile
as either dense (0% sparsity) or 2:4 sparse (50% sparsity). This adaptive mask allows the matrix to
realize an effective global sparsity ratio anywhere between 0% and 50%, balancing accuracy in crit-
ical regions with hardware-friendly sparsity elsewhere. This design unites the hardware acceleration
benefits of 2:4 sparsity with the flexibility of unstructured allocation, allowing sparsity to adapt to
the varying importance of different layers. By jointly optimizing the sparsity within 2:4 tiles and the
tile-level patterns during training, PATCH achieves higher accuracy than uniform sparsity across
layers. Moreover, for resource-constrained settings, we offer a variant of PATCH that tunes only
the dense tiles while freezing the initial 2:4 mask fixed. Importantly, PATCH is compatible with
tile-level sparsity acceleration libraries and compilers such as STOICC (Rafii et al., 2025), making
it the first hybrid sparsity method to demonstrate practical speedups. For example, on LLaMA-2
7B running on a consumer-grade A6000 GPU, PATCH achieves 1.18×–1.38× end-to-end speedup
over the dense baseline while improving accuracy by 0.37%–2.96% compared to the state-of-the-art
2:4 pruning method, MaskLLM.

2 PRELIMINARIES

Differentiable Sampling. Sampling from a categorical distribution is inherently non-
differentiable, which poses challenges for gradient-based optimization. The Gumbel Softmax (Jang
et al., 2016) addresses this by combining the Gumbel-Max reparameterization trick together with
a softmax relaxation. The reparameterization expresses the sampling process by decoupling the
deterministic log-probabilities p ∈ Rn from the stochastic perturbations z ∈ Rn introduced by
Gumbel noise, which emulate random draws from the distribution. The subsequent softmax yields
a differentiable approximation to categorical sampling:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

GS(p; τ)k =
exp((pk + zk)/τ)∑
j exp((pj + zj)/τ)

(1)

where zk = − log(− log(uk)) with uk ∼ Uniform(0, 1). The resulting vector GS(p; τ) ∈ Rn is a
soft index vector whose entries GS(p; τ)k represent the relaxed probability of selecting class k.

Additionally, the temperature parameter τ controls the hardness of the sampled index. Lower values
of τ yield a more peaked distribution, causing GS(p) to converge to a one-hot vector as τ → 0.

Learnable 2:4 Mask. MaskLLM (Fang et al., 2024) formulates 2:4 mask selection as a learnable
probabilistic process over the six possible patterns. The underlying weights remain fixed, while
training shifts the categorical distribution to favor masks that preserve better pruning performance.
The mask for each four consecutive elements can be parameterized with a vector p ∈ R6×1. Scaling
this vector to a weight matrix W ∈ Rd1×d2 will result in P2:4 ∈ R6× d1d2

4 as the mask search
parameters. The resulting mask can be computed as in Equation 2, where M̃2:4 ∈ [0, 1]d1×d2

denotes the 2:4 soft mask, obtained as a weighted average over the candidate masks, and S ∈ R6×4

is the matrix containing these six candidates as its rows.2

M̃2:4 = reshape(GS(P2:4; τ, κ)× S,Rd1×d2) (2)

A scaling factor κ is also introduced in Equation 1, where it multiplies the logits p before adding the
Gumbel noise z, thereby controlling their relative influence. Small κ values let the noise dominate,
encouraging exploration across candidate masks, while larger κ values amplify the logits and make
the sampling more deterministic.

3 PATCH

To overcome the rigidity of fixed 50% 2:4 sparsity, we introduce PATCH. PATCH learns a struc-
tured mask—optimized on top of frozen weights—that is partitioned into tiles, where each tile de-
cides whether its corresponding weights remain dense or are pruned with a 2:4 pattern. This design
preserves accuracy in sensitive regions while exploiting hardware-accelerated sparsity elsewhere.
Unlike fixed 2:4 sparsity, which enforces the same pattern across all weights, PATCH adapts at the
tile level by assigning dense tiles to critical regions and sparse tiles elsewhere.

Finding the optimal allocation of dense tiles (value 1) and sparse tiles (2:4 pattern) within a mask
is a combinatorially difficult problem, as the number of possible configurations grows rapidly with
the number of tiles across the LLM. By also modelling this problem as a probabilistic sampling
process, and adjusting the probability of each tile (and the 2:4 patterns within sparse tiles), PATCH
can efficiently explore the space of configurations and converge toward masks that balance accuracy
and sparsity. The mask distributions are learned end-to-end by training the Gumbel–Softmax logits
while keeping the model weights frozen. We address this challenge by formulating mask selection
as two coupled subproblems: (1) selecting which tiles are dense or sparse, and (2) choosing the 2:4
sparsity pattern within sparse tiles.

Tile-based pruning of LLMs. We associate each parameter matrix W ∈ Rd1×d2 with a grid
of tile-level distributions, each parameterized by a learnable logit. Collectively, these form Ptile ∈

R
d1

b1
×d2

b2 , where each entry specifies the unnormalized score of keeping the corresponding b1 × b2
tile fully dense. To create a two-class distribution (keep dense vs. prune), we concatenate a fixed

zero to each logit, yielding [Ptile, 0] ∈ R
d1

b1
×d2

b2
×2. After applying Gumbel–Softmax, we broadcast

the dense probabilities across their respective b1 × b2 region (since the weighted average of the two
outcomes reduces to pdense · 1 + pprune · 0 = pdense), so that all elements of a tile receive the same
mask value. Formally,

M̃tile = GS([Ptile, 0]; τ, κ):,:,0 ⊗ 1. (3)
2We will refer to a mask value of 1 as keeping the corresponding weight and a value of 0 as pruning it.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This yields the tile-level mask M̃tile ∈ [0, 1]d1×d2 in Equation 3, where 1 ∈ Rb1×b2 is an all-ones
matrix and ⊗ denotes the Kronecker product.

Joint optimization with sparse mask. To fully determine the effective sparsity pattern, the tile-
level mask must be combined with the fine-grained 2:4 mask. Assuming that the 2:4 mask M̃2:4 is
generated using Equation 2, PATCH combines it with the tile mask M̃tile as shown in Equation 4.
The resulting soft mask interpolates between dense and sparse behavior: values of M̃tile close to one
make the tile predominantly dense, while values close to zero shift the tile toward the soft 2:4 mask
pattern defined by M̃2:4. Thus, M̃ can be understood as a per-tile weighted average of the dense
option and the 2:4 patterns, with M̃tile determining the relative contribution of each. An overview
of the process is provided in Figure 1.

M̃ = M̃tile +
(
1− M̃tile

)
⊙ M̃2:4 (4)

Learning masks with targeted sparsity. PATCH uses a novel regularization term to achieve a
flexible 0%–50% sparsity ratio across the model by controlling the number of dense tiles. Unlike
traditional regularization methods like weight decay, which produce non-deterministic sparsity ra-
tios, our term penalizes deviations from the target sparsity, enabling precise control. This global
sparsity approach prunes sensitive linear layers less aggressively while setting redundant weight el-
ements to zero, offering greater flexibility than fixed per-layer sparsity. We directly compare global
versus per-layer sparsity regularization in § 5.

Training objective. The overall training objective, as shown in Equation 5, of PATCH combines
three components: the standard modeling loss, a sparsity regularization term that enforces the target
density of the model ρ, and a weight regularization term (as in MaskLLM) that promotes larger
weight magnitudes and gradient propagation. Formally,

L = LLM

(
x;M̃i ⊙Wi

)
+ λ1

∥∥∥∥∥
∑

i M̃i∑
i∥Wi∥0

− ρ

∥∥∥∥∥
1

− λ2

∑
i∥M̃i ⊙Wi∥22∑

i∥Wi∥22
(5)

Following MaskLLM, we progressively decrease τ and increase κ during training so that the
Gumbel-Softmax distribution converges to a clear one-hot choice of mask by the end of training.

Inference. After training, the sign of each logit in Ptile determines the final mask. Since a zero
logit is concatenated to represent the sparse class (Equation 3), positive values correspond to the
dense option, while negative values correspond to the sparse option. The complete procedure is
outlined in Algorithm 1.

Memory efficient PATCH. To further reduce overhead, PATCH can be run in a memory-efficient
manner by freezing the sparse mask parameters and optimizing only the tile-level decisions. This
reduces the number of learnable parameters to d1d2

b1b2
. While this lighter formulation limits mask-

selection flexibility and can reduce performance as seen in Table 5, it makes training feasible under
strict memory constraints, such as fitting an 8B model on a single 80GB GPU. We denote this version
of PATCH by PATCHTile and the joint optimization version of PATCH by PATCHJoint.

4 EFFICIENT DEPLOYMENT OF PATCH

Executing PATCH requires handling hybrid sparse–dense tiles, a capability not supported by ex-
isting GPU libraries. Current tools either focus exclusively on dense computation (e.g., cuBLAS
(NVIDIA Corporation, a), dense CUTLASS (Corporation, 2025), OpenAI Triton (Tillet et al.,
2019)), or restrict support to fixed 2:4 sparsity (e.g., cuSPARSELt (NVIDIA Corporation, b), sparse
CUTLASS). STOICC (Rafii et al., 2025) lifts these limitations by extending Triton with hybrid
tile-level sparsity, making it a suitable backend for accelerating PATCH.

Similar to Triton, STOICC employs an inspector that benchmarks candidate kernel configurations
for each sparsity ratio, identifying the most hardware-efficient tile size for the target GPU. On

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Joint Tile & 2:4 Mask Learning
Input: Weight matrix W, tile size (b1, b2), sparsity target ρ, training steps T , loss hyperparameters λ1, λ2,
temperature schedule {τt}Tt=1, scaling schedule {κt}Tt=1.
Output: Learned pruning masks M⋆, pruned weights Ŵ.

1 Initialize tile logits Ptile ∈ R
d1
b1

× d2
b2 .

2 Initialize Ptile with one-shot prior.

3 Initialize differentiable 2:4 parameters P2:4 ∈ R6× d1d2
4 .

4 for t = 1 → T do
5 M̃tile ← GS([Ptile, 0]; τt, κt):,:,0 ⊗ 1b1×b2 ▷ Dense soft tile mask

6 M̃2:4 ← Eq. 2 ▷ Differentiable 2:4 mask

7 M̃i ← M̃tile + (1− M̃tile)⊙ M̃2:4 ▷ Merge masks

8 Compute loss:

L = LLM (x; M̃⊙W) + λ1

∥∥∥∥∥
∑

i M̃i∑
i∥Wi∥0

− ρ

∥∥∥∥∥
1

− λ2

∑
i∥M̃i ⊙Wi∥22∑

i∥Wi∥22

9 Update Ptile,P2:4 via backpropagation.
10 end for
11 M⋆

tile ← 1[Ptile > 0]⊗ 1b1×b2 ▷ Hard tile mask
12 M⋆

2:4 ← select best 2:4 mask from P2:4.
13 M⋆

i ←M⋆
tile + (1−M⋆

tile)⊙M⋆
2:4.

14 Ŵ←W ⊙M⋆
i ▷ Final pruned weights

Return: Learned mask M⋆, pruned weights Ŵ.

NVIDIA A100 and A6000 GPUs, our experiments show that the optimal configurations are con-
sistently drawn from 128×128 or its subdivisions (e.g., 128×64, 64×128, 64×64). In practice, this
means that regardless of the sparsity ratio or the layer shape, the chosen 128×128 granularity guar-
antees that STOICC’s autotuned tiles can be applied consistently. Unless otherwise specified, we
adopt these hardware-friendly tile sizes in all PATCH experiments. Further implementation details
are provided in Appendix A.

5 EXPERIMENTS

Model, dataset and evaluation. We evaluate PATCH across diverse transformer architectures,
including the Qwen-2.5 (Qwen et al., 2025), Gemma 3 (Team et al., 2025), and LLaMA-2 (Touvron
et al., 2023) and 3 (Grattafiori et al., 2024) model families, spanning 500M to 8B parameters. Fol-
lowing the dataset size and configurations in MaskLLM (Fang et al., 2024), masks are trained for
2000 steps with a batch size of 128 on sequences with a length of 4096 tokens from the SlimPajama
dataset (Soboleva et al., 2023).

Following previous LLM compression work (Mozaffari et al., 2025a; Fang et al., 2024), we evaluate
the models on eight zero-shot downstream tasks: PIQA (Bisk et al., 2020), ARC-Easy and ARC-
Challenge (Clark et al., 2018), Winogrande (Sakaguchi et al., 2019), OpenBookQA (Mihaylov et al.,
2018), RACE (Lai et al., 2017), HellaSwag (Zellers et al., 2019), and MMLU (Hendrycks et al.,
2021) using the Language Model Evaluation Harness (Gao et al., 2024) framework. Additionally,
similar to previous work (Mozaffari et al., 2025a; Frantar & Alistarh, 2023; Sun et al., 2023), we
evaluate the models on a language modeling task using the WikiText2 (Merity et al., 2016) dataset
with a sequence length of 4096, comparing against established baselines in the following sections.

Baselines. To evaluate PATCH against established 2:4 sparsity pruning techniques, we compare
it with the state-of-the-art learnable method MaskLLM (Fang et al., 2024), as well as one-shot
methods including Wanda (Sun et al., 2023), SparseGPT (Frantar & Alistarh, 2023), Thanos (Ilin
& Richtarik, 2025), ProxSparse (Liu et al., 2025) and magnitude pruning (Han et al., 2015). For
one-shot pruning methods, following the default configurations in each paper, we prune the models
over 128 samples from the C4 dataset.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
dataset) for different pruning methods. By jointly optimizing the location of dense tiles and the
sparsity pattern within the sparse tiles, PATCHJoint allows for a continuous sparsity ratio for the
models, providing a flexible tradeoff between sparsity and model quality.

Sparsity Method Pattern Qwen-2.5 0.5B LLaMA-3.2 1B Gemma-3 1B

Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓)
0% Dense - 46.00 12.08 47.70 9.06 47.01 11.67

50% Magnitude 2:4 30.16 6734.97 29.66 563.44 31.66 5005.56
Wanda 2:4 32.97 72.48 31.61 78.18 34.16 69.41
SparseGPT 2:4 34.81 36.59 35.55 32.73 35.58 44.59
Thanos 2:4 31.31 37.32 35.71 33.03 35.09 62.63
ProxSparse 2:4 32.05 111.05 33.55 49.33 36.63 90.50
MaskLLM 2:4 39.33 15.22 41.04 12.93 41.84 12.82

45% PATCHJoint Dense/2:4 Tiles 40.29 14.57 42.08 12.23 42.80 11.96
35% PATCHJoint Dense/2:4 Tiles 41.15 13.84 42.72 11.67 43.30 11.48
25% PATCHJoint Dense/2:4 Tiles 42.39 13.47 43.81 11.00 44.07 11.17

The publicly available MaskLLM pruned checkpoints are limited to LLaMA-2 7B and LLaMA-3.1
8B models. To ensure a fair comparison across all models, we implemented MaskLLM in PyTorch
and replicated its results for additional architectures presented in this study.

We faced a similar challenge with ProxSparse as well, where only the LLaMA-2-7B and LLaMA-
3.1-8B checkpoints are publicly available. We have pruned other models with their official code
base using their default hyperparameters for comparison.

Additional implementation details and hyperparameters used in our experiments are provided in
Appendix D.

5.1 MODEL QUALITY RESULTS

Joint sparse and dense tile optimization. For smaller models like Qwen-2.5 0.5B, LLaMA-3.2
1B, and Gemma-3 1B, we apply the joint variant PATCHJoint, which simultaneously optimizes dense
tile locations and sparsity patterns within sparse tiles. This approach enables effective performance.

The average accuracy of the models across eight zero-shot downstream tasks and their perplexity on
the WikiText2 dataset is reported in Table 1. The results demonstrate that PATCHJoint provides a
flexible tradeoff between sparsity ratio and model quality, narrowing the performance gap to dense
models while ensuring hardware-friendly inference. A similar pattern holds for larger models using
a memory-efficient variant, as explored next.

Memory-efficient tile selection. For larger models such as LLaMA-2 7B and LLaMA-3.1 8B,
we employ the memory-efficient variant PATCHTile, which freezes the fine-grained sparse weight
structure while optimizing dense tile selections.

Table 2 summarizes the average accuracy of the models across eight downstream tasks in addition
to their perplexity on the WikiText2 dataset for different sparsity ratios, illustrating that PATCHTile

delivers a comparable flexible sparsity-quality tradeoff when using a high-quality frozen 2:4 mask.

Overall, across Tables 1 and 2, PATCH consistently surpasses one-shot methods like Wanda,
SparseGPT, and magnitude pruning due to its end-to-end training on large corpora. While
MaskLLM also trains end-to-end on a large dataset, its fixed 2:4 sparsity ratio limits achievable
accuracy and perplexity. In contrast, PATCH overcomes this limitation with flexible dense tile
allocation, achieving accuracy gains and perplexity reductions from 45% to 25% sparsity that pro-
gressively align with dense model performance. The full per-task accuracy results are provided in
Appendix B.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
dataset) for different pruning methods. By only optimizing the location of dense tiles while keeping
sparsity pattern within the sparse tiles frozen, PATCHTile provides a memory efficient variant for
PATCHJoint, allowing for a continuous sparsity ratio for the models and providing a flexible tradeoff
between sparsity and model quality.

Sparsity Method Pattern LLaMA-2 7B LLaMA-3.1 8B

Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓)
0% Dense - 54.61 5.12 60.31 5.84

50% Magnitude 2:4 43.44 54.39 35.93 765.92
Wanda 2:4 44.30 11.15 41.77 21.29
SparseGPT 2:4 45.09 10.12 45.53 15.11
Thanos 2:4 44.80 11.19 45.72 16.09
ProxSparse 2:4 45.92 9.18 45.14 15.17
MaskLLM 2:4 48.62 6.78 52.80 8.58

45% PATCHTile Dense/2:4 Tiles 48.99 6.55 53.60 8.20
35% PATCHTile Dense/2:4 Tiles 50.08 6.18 55.28 7.89
25% PATCHTile Dense/2:4 Tiles 51.58 5.86 56.48 7.34

Table 3: Impact of PATCH’s tile size across sparsity levels
(↓ is better). The effect of tile size on model quality is not
significant, showing PATCH’s robustness against tile size.

Sparsity
(0.5B) 128 64 32 16 8 4

45% 14.57 14.66 14.70 14.67 14.70 14.55
35% 13.84 14.08 14.15 14.03 14.01 13.72
25% 13.47 13.54 13.52 13.53 13.40 13.11

Table 4: Global sparsity yields
better quality by concentrating
pruning in less important blocks
and preserving density elsewhere
(↓ is better).

Sparsity
(0.5B) Global Layer-wise

45% 14.57 15.17
35% 13.84 14.48
25% 13.47 13.95

5.2 UNDERSTANDING THE COMPONENTS OF PATCH

This subsection examines the design choices driving PATCH’s performance by analyzing its behav-
ior across various configurations on the Qwen-2.5 0.5B model.

Tile size. We initially assess the impact of tile size on PATCH’s performance, fixing hyperparam-
eters to those optimized for 128×128 tiles. Table 3 reveals that 4× 4 tiles maximize model quality
through finer sparse-dense control, though larger tile sizes show minimal variation, suggesting ro-
bustness. However, smaller tiles may hinder hardware efficiency, requiring a balance with hardware
specifications.

Joint vs. tile-only mask search. We then analyze the impact of fixing the 2:4 masks and optimiz-
ing only tile masks. Table 5 shows that among frozen 2:4 masks, MaskLLM provides the strongest
results. On the other hand, one-shot pruning methods perform comparably at higher sparsity levels
but diverge at lower sparsity, with SparseGPT emerging as the best overall. When comparing against
our full approach, joint optimization of both tile and 2:4 masks consistently outperforms tile-only
training across sparsity ratios. Nevertheless, tile-only training remains a practical alternative for
larger models in resource-constrained settings, as also reflected in Table 2.

Sparsity allocation. We analyze how sparsity is allocated across transformer blocks under a global
target. Across models, deeper transformer blocks are pruned far less, while the initial blocks also
tend to receive lighter pruning depending on the architecture. By contrast, the middle blocks con-
sistently absorb most of the sparsity, suggesting that they contain more redundancy (Figure 2). We
compare this flexible allocation to enforcing sparsity uniformly at the layer level. As shown in Ta-
ble 4, global targets deliver better results by pruning more aggressively in redundant layers while

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Impact of fixed 2:4 mask selection for PATCHTile, compared with joint optimization (↓
is better). PATCHJoint achieves the lowest perplexity overall, while for PATCHTile, MaskLLM
provides the best frozen mask.

Sparsity (0.5B) MaskLLM SparseGPT
(w/o weight update) Wanda Magnitude PATCHJoint

45% 15.06 21.84 21.83 21.33 14.57
35% 14.55 17.29 17.96 19.90 13.84
25% 14.17 14.89 15.09 16.05 13.47

0 3 6 9 12 15 18 21

Block Index

0.0

0.2

0.4

S
p

a
rs

it
y

R
a
ti

o

Qwen 2.5 0.5B

Global Sparsity

45%

35%

25%

0 3 6 9 12 15 18 21 24

Block Index

0.0

0.2

0.4

Gemma 3 1B

0 2 4 6 8 10 12 14

Block Index

0.0

0.2

0.4

Llama 3.2 1B

Figure 2: Layer-wise sparsity allocation under different global sparsity budgets for various models.
PATCH achieves the target global sparsity while flexibly distributing pruning across transformer
layers.

preserving capacity in sensitive ones. In contrast, layer-wise targets impose uniform sparsity that
can over-prune critical components (Li et al., 2024b; Xu et al., 2024; Li et al., 2024a; Yin et al.,
2025).

On top of variation across depth, sparsity is also distributed unevenly across the individual linear
layers within each transformer block. Figure 3 breaks down the allocation into the query, key, value,
and output matrices of the attention module, as well as the up, gate, and down matrices of the
MLP for the Qwen 2.5 0.5B model. The up, gate, and down layers absorb most of the sparsity and
largely explain the overall allocation pattern seen in Figure 2. In contrast, the attention module is
treated as more critical. The key and value matrices are never pruned, while the output matrix shows
moderate pruning at higher global sparsity targets. The query matrix is pruned the most, suggesting
it is the least important within the attention submodule. The distributions for the Gemma-3-1B and
LLaMA-3.2-1B models are provided in Appendix E, where the same pattern is observed.

5.3 COMBINATION WITH OTHER COMPRESSION METHODS

LLM compression relies on three orthogonal methods—sparsity, quantization, and low-rank approx-
imation—which can be combined. While this work focuses on sparsity, this section demonstrates
how PATCH integrates with these other techniques.

Quantization. Quantization reduces memory and accelerates computation by lowering numerical
precision on hardware optimized for low bitwidths.

Low-rank approximation. Low-rank methods complement sparsity and quantization by reintro-
ducing a small number of parameters to recover accuracy, with SLIM (Mozaffari et al., 2025a) as a
leading one-shot technique.

Table 6 reports results on LLaMA-2 7B and LLaMA-3.1 8B, showing that combining sparsity, quan-
tization, and low-rank approximation enables controllable tradeoffs between compression ratio and
model quality, highlighting PATCH ’s versatility.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 3 6 9 12151821

0.00

0.25

0.50

S
p

a
rs

it
y

R
a
ti

o

Query Matrix

0 3 6 9 12151821

Key Matrix

0 3 6 9 12151821

Block Index

0.00

0.25

0.50

S
p

a
rs

it
y

R
a
ti

o

Value Matrix

0 3 6 9 12151821

Block Index

Output Matrix

0 3 6 9 12151821

Up Matrix

0 3 6 9 12151821

Gate Matrix

0 3 6 9 12151821

Block Index

Down Matrix

Global Sparsity

45

35

25

Self-Attention Matrices MLP Matrices

Figure 3: Sparsity distribution across Attention and MLP layers under varying global sparsity bud-
gets in Qwen-2.5 0.5B.

Table 6: Average accuracy (↑ indicates better) across eight zero-shot downstream tasks and Wiki-
Text2 perplexity (↓ indicates better) of compressed models with 4-bit weight-only quantization.
Please note that using LoRA adds additional parameters to the model.

Sparsity Method Pattern LoRA LLaMA-2-7B LLaMA-3.1-8B

Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓)
0% Dense - - 56.44 5.12 59.85 5.84

50% MaskLLM 2:4 - 47.98 7.64 51.12 9.92

45% PATCHTile Dense/2:4 Tiles - 48.19 7.34 52.47 9.68
45% PATCHTile Dense/2:4 Tiles SLIM-LoRA 50.71 6.83 54.04 9.12
35% PATCHTile Dense/2:4 Tiles - 49.38 6.92 53.81 9.26
35% PATCHTile Dense/2:4 Tiles SLIM-LoRA 51.91 6.42 55.70 8.37
25% PATCHTile Dense/2:4 Tiles - 50.45 6.57 55.45 8.69
25% PATCHTile Dense/2:4 Tiles SLIM-LoRA 52.62 6.11 56.99 7.77

5.4 SPEEDUP AND MEMORY SAVINGS

We evaluate the inference efficiency of the LLaMA-2 7B model pruned with PATCH using the
STOICC (Rafii et al., 2025) compiler. With a batch size of 16 on an A6000 GPU, we observe end-
to-end throughput improvements of 1.18×, 1.27×, and 1.38× at sparsity levels of 25%, 35%, and
45%, respectively, compared to the dense baseline. At the same sparsity levels, the model’s GPU
memory footprint during inference is also reduced, dropping to 0.76×, 0.68×, and 0.59× of the fully
dense model, respectively. These results underscore the trade-off between accuracy retention and
the computational savings enabled by sparsity.

6 CONCLUSION

We introduced PATCH, a hybrid sparsity framework that bridges the gap between unstructured and
2:4 sparsity for large language models. By partitioning weight matrices into tiles designated as
either dense or 2:4 sparse, PATCH enables adaptive sparsity ratios between 0% and 50%, balancing
accuracy and acceleration.

Experiments across models up to 8B parameters show that PATCH consistently improves accuracy
over state-of-the-art 2:4 pruning methods while achieving up to 1.38× end-to-end speedup on con-
sumer grade GPUs. These results demonstrate the promise of hybrid sparsity as a practical approach
to efficient LLM inference and motivate future work on broader sparsity formats, integration with
quantization, and co-design with hardware kernels.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abhinav Agarwalla, Abhay Gupta, Alexandre Marques, Shubhra Pandit, et al. Enabling high-
sparsity foundational llama models with efficient pretraining and deployment. arXiv preprint
arXiv:2405.03594, 2024.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, et al. Quarot: Outlier-free
4-bit inference in rotated llms. Advances in Neural Information Processing Systems, 37:100213–
100240, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, et al. Piqa: Reasoning about physical
commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial Intelligence,
2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, et al. Think you have solved question
answering? try arc, the ai2 reasoning challenge. ArXiv, abs/1803.05457, 2018.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, et al. Gemini 2.5: Pushing
the frontier with advanced reasoning, multimodality, long context, and next generation agentic
capabilities. arXiv preprint arXiv:2507.06261, 2025.

NVIDIA Corporation. Cutlass 4.2.0: Cuda templates for linear algebra subroutines. https://
github.com/NVIDIA/cutlass, 2025. Also see: Kerr, A., Merrill, D., Demouth, J., Tran,
J. “CUTLASS: Fast Linear Algebra in CUDA C++”, NVIDIA blog, Dec. 2017.

Ruibo Fan, Xiangrui Yu, Peijie Dong, Zeyu Li, et al. Spinfer: Leveraging low-level sparsity for
efficient large language model inference on gpus. In Proceedings of the Twentieth European
Conference on Computer Systems, pp. 243–260, 2025.

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, et al. Maskllm: Learnable semi-
structured sparsity for large language models. arXiv preprint arXiv:2409.17481, 2024.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. NeurIPS, 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In Icml, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, et al. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, et al. A survey of quantization methods
for efficient neural network inference. In Low-Power Computer Vision. Chapman and Hall/CRC,
2022.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International journal of computer vision, 129(6):1789–1819, 2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. LQ-LoRA: Low-rank Plus Quantized Ma-
trix Decomposition for Efficient Language Model Finetuning. arXiv preprint arXiv:2311.12023,
2023.

Jinyang Guo, Jianyu Wu, Zining Wang, Jiaheng Liu, et al. Compressing large language models by
joint sparsification and quantization. In Icml, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Babak Hassibi, David Stork, and Gregory Wolff. Optimal brain surgeon: Extensions and perfor-
mance comparisons. NeurIPS, 1993.

10

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://zenodo.org/records/12608602


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, et al. Measuring massive multitask lan-
guage understanding. Proceedings of the International Conference on Learning Representations
(ICLR), 2021.

Ivan Ilin and Peter Richtarik. Thanos: A block-wise pruning algorithm for efficient large language
model compression, 2025. URL https://arxiv.org/abs/2504.05346.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, et al. RACE: Large-scale ReAding compre-
hension dataset from examinations. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.),
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
785–794, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
doi: 10.18653/v1/D17-1082. URL https://aclanthology.org/D17-1082.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. NeurIPS, 1989.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, et al. Layer-adaptive sparsity for the magnitude-
based pruning, 2021. URL https://arxiv.org/abs/2010.07611.

Lujun Li, Peijie Dong, Zhenheng Tang, Xiang Liu, Qiang Wang, Wenhan Luo, Wei Xue, Qifeng
Liu, Xiaowen Chu, and Yike Guo. Discovering sparsity allocation for layer-wise pruning of
large language models. Advances in Neural Information Processing Systems, 37:141292–141317,
2024a.

Wei Li, Lujun Li, Mark Lee, and Shengjie Sun. Adaptive layer sparsity for large language models
via activation correlation assessment. Advances in Neural Information Processing Systems, 37:
109350–109380, 2024b.

Hongyi Liu, Rajarshi Saha, Zhen Jia, Youngsuk Park, et al. Proxsparse: Regularized learning of
semi-structured sparsity masks for pretrained llms. arXiv preprint arXiv:2502.00258, 2025.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, et al. Affinequant: Affine transformation quanti-
zation for large language models. arXiv preprint arXiv:2403.12544, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Meta. Llama 4: Open source large language model, 2025. URL https://www.llama.com.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Emnlp, 2018.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, et al. Accelerating sparse deep neural
networks. arXiv preprint arXiv:2104.08378, 2021.

Mohammad Mozaffari, Sikan Li, Zhao Zhang, and Maryam Mehri Dehnavi. MKOR: Momentum-
Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates. In NeurIPS, 2023.

Mohammad Mozaffari, Amir Yazdanbakhsh, and Maryam Mehri Dehnavi. SLiM: One-shot Quan-
tized Sparse Plus Low-rank Approximation of LLMs, 2025a. URL https://openreview.
net/forum?id=4UfRP8MopP.

Mohammad Mozaffari, Amir Yazdanbakhsh, Zhao Zhang, and Maryam Mehri Dehnavi. Slope:
Double-pruned sparse plus lazy low-rank adapter pretraining of llms, 2025b.

NVIDIA Corporation. NVIDIA cuBLAS. https://docs.nvidia.com/cuda/cublas/, a.

NVIDIA Corporation. NVIDIA cuSPARSELt. https://docs.nvidia.com/cuda/
cusparselt/index.html, b.

11

https://arxiv.org/abs/2504.05346
https://aclanthology.org/D17-1082
https://arxiv.org/abs/2010.07611
https://www.llama.com
https://openreview.net/forum?id=4UfRP8MopP
https://openreview.net/forum?id=4UfRP8MopP
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cusparselt/index.html
https://docs.nvidia.com/cuda/cusparselt/index.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen, An Yang, Baosong Yang, et al. Qwen2.5 technical report, 2025. URL https://arxiv.
org/abs/2412.15115.

Arya Rafii, Victor Kamel, and Maryam Mehri Dehnavi. Stoicc. https://paramathic.
github.io/stoicc-docs/, 2025.

Babak Rokh, Ali Azarpeyvand, and Alireza Khanteymoori. A comprehensive survey on model
quantization for deep neural networks in image classification. ACM Transactions on Intelligent
Systems and Technology, 14(6):1–50, 2023.

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea Goldsmith, et al. Compressing large lan-
guage models using low rank and low precision decomposition. NeurIPS, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. NeurIPS, 2020.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, et al. SlimPajama: A 627B
token cleaned and deduplicated version of RedPajama. https://cerebras.ai/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, et al. Challenging big-bench
tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, et al. Gemma 3 technical report,
2025. URL https://arxiv.org/abs/2503.19786.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, et al. Llama 2: Open foundation and
fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Albert Tseng, Qingyao Sun, David Hou, and Christopher M De Sa. Qtip: Quantization with trellises
and incoherence processing. Advances in Neural Information Processing Systems, 37:59597–
59620, 2024.

Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components, 2020. URL
https://arxiv.org/abs/2011.03803.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, et al. Huggingface’s transformers:
State-of-the-art natural language processing, 2020. URL https://arxiv.org/abs/1910.
03771.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, et al. Flash-llm: Enabling cost-effective
and highly-efficient large generative model inference with unstructured sparsity. arXiv preprint
arXiv:2309.10285, 2023.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
Yu Qiao, and Ping Luo. Besa: Pruning large language models with blockwise parameter-efficient
sparsity allocation. arXiv preprint arXiv:2402.16880, 2024.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, et al. Outlier weighed layerwise sparsity (owl):
A missing secret sauce for pruning llms to high sparsity, 2025. URL https://arxiv.org/
abs/2310.05175.

12

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://paramathic.github.io/stoicc-docs/
https://paramathic.github.io/stoicc-docs/
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2011.03803
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2310.05175
https://arxiv.org/abs/2310.05175


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, et al. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, 2019.

Cheng Zhang, Jeffrey TH Wong, Can Xiao, George A Constantinides, et al. Qera: an analytical
framework for quantization error reconstruction. arXiv preprint arXiv:2410.06040, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, et al. Instruction-following evalu-
ation for large language models. arXiv preprint arXiv:2311.07911, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A STOICC INTEGRATION

Triton (Tillet et al., 2019) enables developers to write efficient GPU kernels with a Python-like syn-
tax, but it natively supports only dense matrix operations and cannot handle sparsity. To accelerate
the mixed-tile format produced by PATCH, we employ the STOICC compiler (Rafii et al., 2025).
STOICC extends Triton with a sparse code-generation backend that allows tiles within a matrix to
be either dense or sparse, enabling mixed execution within a single matrix multiplication.

We rely on STOICC’s inspector to autotune both tile sizes and execution schedules (i.e., alternative
kernel execution schemes such as split-K parallelism) for the prefill and decoding stages of LLM
inference. Matrix compression and metadata generation are determined by the chosen tile size,
which must remain consistent across both stages. To address this, we first autotune the decoding
stage, which is the primary bottleneck of autoregressive generation, since it is executed once per
generated token (e.g., 128 times for 128 new tokens), unlike the single pass of prefill. The optimal
tile size identified for decoding are then fixed and reused for prefill, where we perform a second
round of autotuning over the remaining independent parameters.

In contrast, for fully 2:4 sparse matrices, compression is independent of the block size, so they can
be autotuned in the same way as dense kernels in Triton without this coupling constraint.

The pseudocode outlining this process, including the handling of dense, fully 2:4 sparse, and mixed-
sparsity modules, is provided in PseudoCode 1.

Table 7 reports the measured throughput (tokens processed per second) of LLaMA-2 7B at sparsity
levels of 45%, 35%, and 25% with a batch size of 16 on an A6000 GPU. To reduce CPU overhead
from launching Triton kernels in PyTorch, we executed generation through CUDA graphs, capturing
both the prefill and decoding stages. With sparsity ratios between 25% and 45%, our heterogeneous
approach achieves 1.18×–1.38× end-to-end acceleration over the dense baseline. We also report
timings on A100 in Table 8.

Table 7: Throughput of LLaMA-2 7B with mixed sparsity compared to the dense model. Measure-
ments taken on an A6000 GPU with batch size 16. Throughput is reported in tokens processed/sec.

Sparsity Prefill length Tokens generated Throughput (tok/s) Speedup vs. dense
0% 128 128 1023.80 1.00×
25% 128 128 1212.79 1.18×
35% 128 128 1304.46 1.27×
45% 128 128 1410.20 1.38×
0% 128 1024 435.42 1.00×
25% 128 1024 493.33 1.13×
35% 128 1024 515.39 1.18×
45% 128 1024 542.87 1.25×

1 def tune_and_convert_model(M, backend_name):

Table 8: Throughput of LLaMA-2 7B with mixed sparsity compared to the dense model. Measure-
ments taken on an A100 GPU with batch size 16. Throughput is reported in tokens processed/sec.

Sparsity Prefill length Tokens generated Throughput (tok/s) Speedup vs. dense
0% 128 128 1876.24 1.00×
25% 128 128 2002.02 1.07×
35% 128 128 2088.98 1.11×
45% 128 128 2180.88 1.16×
0% 128 1024 812.55 1.00×
25% 128 1024 864.66 1.06×
35% 128 1024 885.90 1.09×
45% 128 1024 907.12 1.12×

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2 // backend_name ∈ {"STOICC", "cuSPARSELt"}
3 2_4_backend = select_2_4_backend(backend_name)
4

5 // create all configs & schedules to tune over
6 base_configs = STOICC.create_configs()
7 inspector = Inspector()
8

9 for each module in M:
10 s = get_sparsity_ratio(module.weight)
11

12 // Keep dense Torch (cuBLAS) module
13 if s == 0:
14 continue
15

16 // Use STOICC or cuSPARSELt for fully 2:4
17 elif s == 0.5:
18 c = 2_4_backend.compress(module.weight)
19 new_module = 2_4_backend.create_module(c)
20 replace(module, new_module)
21 continue
22

23 else:
24 decoding_input = Tensor(BS, module.weight.shape[1])
25 prefill_input = Tensor(BS * SL, module.weight.shape[1])
26

27 // Tune on decoding input first
28 inspector.set_configs(base_configs)
29 best_cfg_dec = inspector.inspect(
30 decoding_input,
31 module.weight,
32 isASparse=False)
33 BN = best_cfg_dec["BLOCK_N"]
34 BK = best_cfg_dec["BLOCK_K"]
35

36 // Tune on prefill using decoding tile sizes
37 prefill_cfg = STOICC.create_configs(BLOCK_N=BN, BLOCK_K=BK)
38 inspector.set_configs(prefill_cfg)
39 best_cfg_pre = inspector.inspect(
40 prefill_input,
41 module.weight,
42 isASparse=False)
43

44 c = inspector.compress(module.weight, BN, BK)
45 mixed_module = MixedModule(c, best_cfg_dec, best_cfg_pre)
46 replace(module, mixed_module)
47

48 return M

PseudoCode 1: Tuning and Converting Model Weights to Mixed Format.

B PER TASK RESULTS

This appendix provides detailed per-task accuracy results for the models evaluated in Section 5, cov-
ering eight zero-shot downstream tasks: MMLU, PIQA, ARC-Easy, ARC-Challenge, Winogrande,
OpenbookQA, RACE, and Hellaswag. The results are presented for each model at various sparsity
levels and pruning methods, including our proposed PATCHJoint and PATCHTile variants, along-
side baseline methods such as Magnitude, Wanda, SparseGPT, Thanos, ProxSparse, and MaskLLM.
These tables complement the average accuracy and perplexity results reported in Tables 1 and 2 of
the main paper, offering a granular view of model performance across individual tasks.

For smaller models (Qwen-2.5 0.5B, LLaMA-3.2 1B, and Gemma-3 1B), we report results using
the PATCHJoint variant, which jointly optimizes dense tile locations and sparsity patterns within
sparse tiles. For larger models (LLaMA-2 7B and LLaMA-3.1 8B), we report results using the

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

memory-efficient PATCHTile variant, which optimizes dense tile selections with a fixed 2:4 sparsity
mask. The per-task accuracies highlight the effectiveness of our approaches in maintaining robust
performance across diverse tasks, even at high sparsity levels, compared to baseline methods.

The following tables detail the per-task accuracies for each model:

• Qwen-2.5 0.5B: Table 9 presents the per-task accuracies for the PATCHJoint variant and
baselines at 0% and 50% sparsity, with PATCHJoint evaluated at 25%, 35%, and 45% spar-
sity.

• LLaMA-2 7B: Table 10 shows the per-task accuracies for the PATCHTile variant and base-
lines, with PATCHTile evaluated at 25%, 35%, and 45% sparsity.

• LLaMA-3.1 8B: Table 11 provides the per-task accuracies for the PATCHTile variant and
baselines, with PATCHTile at 25%, 35%, and 45% sparsity.

• LLaMA-3.2 1B: Table 12 reports the per-task accuracies for the PATCHJoint variant and
baselines, with PATCHJoint at 25%, 35%, and 45% sparsity.

• Gemma-3 1B: Table 13 details the per-task accuracies for the PATCHJoint variant and
baselines, with PATCHJoint at 25%, 35%, and 45% sparsity.

These results enable a deeper analysis of the task-specific performance trends, demonstrating the
flexibility and robustness of PATCHJoint and PATCHTile in achieving high accuracy across diverse
tasks while maintaining hardware-friendly sparsity patterns.

Table 9: Model quality (task accuracy across eight zero-shot tasks, reported in %) for Qwen-2.5 0.5B
with different pruning methods. PATCHJoint optimizes dense tile locations and sparsity patterns,
enabling a flexible sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 47.71 70.24 64.48 29.52 56.20 24.20 35.02 40.63 46.00

50% Magnitude 2:4 23.00 54.24 31.23 19.20 49.96 13.60 23.44 26.59 30.16
Wanda 2:4 24.43 58.71 43.18 17.75 51.62 12.20 26.32 29.58 32.97
SparseGPT 2:4 22.93 60.77 46.60 20.82 52.88 14.00 29.57 30.93 34.81
Thanos 2:4 22.97 60.17 45.37 19.20 53.59 15.20 31.00 31.31 34.85
ProxSparse 2:4 23.00 57.34 40.53 18.26 48.62 14.00 25.65 29.02 32.05
MaskLLM 2:4 25.11 67.03 56.57 23.98 52.57 20.20 33.30 35.90 39.33

45% PATCHJoint Dense/2:4 Tiles 27.39 68.44 59.13 25.77 53.67 19.80 32.15 35.99 40.29
35% PATCHJoint Dense/2:4 Tiles 29.04 68.88 60.40 26.37 55.09 20.40 32.44 36.58 41.15
25% PATCHJoint Dense/2:4 Tiles 30.89 69.15 62.79 29.10 55.33 20.00 34.16 37.71 42.39

Table 10: Model quality (task accuracy across eight zero-shot tasks, reported in %) for LLaMA-2
7B with different pruning methods. PATCHTile optimizes tile-based sparsity, enabling a flexible
sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 41.82 78.07 76.35 43.52 69.06 31.40 39.52 57.13 54.61

50% Magnitude 2:4 25.82 70.02 61.78 30.12 61.01 21.80 31.48 45.45 43.44
Wanda 2:4 25.80 71.00 63.80 30.29 61.09 25.20 35.50 41.75 44.30
SparseGPT 2:4 26.17 70.73 63.80 30.63 65.04 24.00 37.13 43.18 45.09
Thanos 2:4 25.27 70.78 63.43 30.97 64.56 23.80 36.46 43.11 44.80
ProxSparse 2:4 26.77 71.60 65.70 33.02 62.90 24.20 35.31 47.84 45.92
MaskLLM 2:4 27.65 74.76 69.44 35.58 65.04 26.80 38.56 51.15 48.62

45% PATCHTile Dense/2:4 Tiles 27.28 75.41 70.16 35.84 65.27 27.60 38.76 51.61 48.99
35% PATCHTile Dense/2:4 Tiles 29.93 76.71 70.88 36.95 65.67 28.20 39.33 52.96 50.08
25% PATCHTile Dense/2:4 Tiles 32.33 76.99 72.81 38.57 68.27 29.80 39.52 54.34 51.58

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Model quality (task accuracy across eight zero-shot tasks, reported in %) for LLaMA-3.1
8B with different pruning methods. PATCHTile optimizes tile-based sparsity, enabling a flexible
sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 63.57 80.09 81.44 51.37 73.48 33.40 39.14 60.02 60.31

50% Magnitude 2:4 23.06 63.82 45.33 25.94 53.91 15.20 26.70 33.49 35.93
Wanda 2:4 27.85 68.88 58.33 26.71 60.93 19.00 33.78 38.70 41.77
SparseGPT 2:4 31.82 70.46 63.85 31.74 64.56 21.60 37.22 42.99 45.53
Thanos 2:4 34.23 70.40 63.13 31.40 63.61 23.20 37.03 42.75 45.72
ProxSparse 2:4 29.89 71.71 62.63 33.28 58.56 23.80 35.22 46.03 45.14
MaskLLM 2:4 42.47 77.04 73.15 40.19 68.43 28.80 38.28 54.04 52.80

45% PATCHTile Dense/2:4 Tiles 47.32 77.96 73.61 41.89 68.03 29.00 36.56 54.44 53.60
35% PATCHTile Dense/2:4 Tiles 51.15 77.97 76.14 42.41 69.46 31.40 38.18 55.54 55.28
25% PATCHTile Dense/2:4 Tiles 52.95 77.75 77.57 44.62 70.56 31.80 39.90 56.69 56.48

Table 12: Model quality (task accuracy across eight zero-shot tasks, reported in %) for LLaMA-3.2
1B with different pruning methods. PATCHJoint optimizes dense tile locations and sparsity patterns,
enabling a flexible sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 37.57 74.54 65.53 31.32 60.62 26.40 37.89 47.76 47.70

50% Magnitude 2:4 23.31 53.81 27.74 18.94 51.38 11.80 24.02 26.26 29.66
Wanda 2:4 22.90 58.11 37.08 19.20 49.09 13.20 25.17 28.11 31.61
SparseGPT 2:4 22.93 61.43 45.03 22.35 54.93 15.80 29.86 32.08 35.55
Thanos 2:4 23.12 62.40 44.91 21.76 54.30 16.00 31.10 32.09 35.71
ProxSparse 2:4 22.96 60.83 39.44 20.31 51.54 16.80 25.17 31.37 33.55
MaskLLM 2:4 26.28 69.10 57.41 25.85 55.48 21.40 32.82 39.94 41.04

45% PATCHJoint Dense/2:4 Tiles 23.81 70.89 60.77 27.22 56.27 22.80 34.07 40.78 42.08
35% PATCHJoint Dense/2:4 Tiles 25.13 71.32 60.27 29.18 57.06 22.00 34.64 42.17 42.72
25% PATCHJoint Dense/2:4 Tiles 28.59 71.44 61.57 28.67 58.25 23.20 35.22 43.52 43.81

Table 13: Model quality (accuracy across eight zero-shot tasks) for Gemma-3 1B with different
pruning methods. PATCHJoint optimizes dense tile locations and sparsity patterns, enabling a flexi-
ble sparsity-quality tradeoff.

Sparsity Method Pattern MMLU PIQA ARC-E ARC-C WinoG. OBQA RACE HellaS. Avg

0% Dense - 24.95 75.03 71.84 34.90 58.64 28.60 34.83 47.26 47.01

50% Magnitude 2:4 23.08 59.79 37.29 17.66 50.59 14.00 22.87 27.97 31.66
Wanda 2:4 23.96 59.52 48.02 18.34 51.22 14.20 27.85 30.18 34.16
SparseGPT 2:4 23.62 62.79 49.83 19.03 51.54 15.20 30.62 31.99 35.58
Thanos 2:4 23.44 62.24 48.86 18.34 50.12 15.60 30.81 31.28 35.09
ProxSparse 2:4 23.10 64.25 50.72 21.59 53.43 18.00 29.09 32.86 36.63
MaskLLM 2:4 25.03 69.91 60.27 27.65 56.27 21.20 34.55 39.84 41.84

45% PATCHJoint Dense/2:4 Tiles 23.54 71.65 63.97 27.47 57.30 23.60 33.49 41.39 42.80
35% PATCHJoint Dense/2:4 Tiles 25.38 72.31 63.80 27.39 56.67 24.00 34.74 42.07 43.30
25% PATCHJoint Dense/2:4 Tiles 25.45 71.87 66.16 30.55 57.85 22.80 34.55 43.33 44.07

C TILE TRANSFER LEARNING

We also test whether initializing tile logits with priors from one-shot pruning methods improves
performance, as done in MaskLLM (Fang et al., 2024). In our case, the initialization is derived
from one-shot pruning with unstructured sparsity. We initialize tiles that retain more nonzeros after
unstructured pruning with positive logits (favoring dense assignment), while the remaining tiles
receive negative logits, controlled by a strength parameter. The number of tiles initialized as dense
is selected such that the overall layer-wise sparsity target is satisfied. As shown in Table 14, the

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

choice of prior has little impact on final performance: all priors yield nearly identical perplexity, with
random initialization often performing best. This is likely because the global sparsity target enables
dynamic reallocation of sparsity across layers during training, overriding the effect of any fixed
initialization. For consistency with prior work, we adopt SparseGPT initialization in all experiments.

Table 14: Perplexity (↓) under different tile prior initializations. All priors
yield nearly identical performance, suggesting that the global sparsity target
allows dynamic reallocation of sparsity during training, overriding the influ-
ence of fixed initialization.

Sparsity (0.5B) Nothing SparseGPT Wanda Magnitude Random

45% 14.80 14.57 14.50 14.48 14.51
35% 13.97 13.84 13.87 13.85 13.79
25% 13.47 13.47 13.37 13.44 13.33

D IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We train all masks using the HuggingFace Trainer API (Wolf et al., 2020) for 2000 steps with a
global batch size of 256 and a sequence length of 4096, resulting in 2B tokens processed from the
SlimPajama corpus (Soboleva et al., 2023).

Training is accelerated via data parallelism across a single node with 4 H100 GPUs. In this
setup, PATCHJoint requires 4.5 and 6 GPU hours on the 0.5B and 1B models, respectively, while
PATCHTile requires 21 and 24 GPU hours on the 7B and 8B models.

The hyperparameters for PATCHJoint and PATCHTile are summarized in Table 15, tuned on Qwen-
2.5-0.5B. For the 2:4 mask parameters, we follow the configuration from MaskLLM (Fang et al.,
2024).

Table 15: Hyper-parameters used for PATCHJoint and PATCHTile across sparsity ratios. All hyper
parameters were tuned on Qwen-2.5-0.5B.

Sparsity Method Optimizer Logits Init Gumbel Scaling Gumbel Prior(Strength) Sparse Reg. Weight Reg.

25% PATCHJoint Adam(0.001) N (0, 0.014) 25 → 350 2 → 0.05 SparseGPT(3) 7 10
35% PATCHJoint Adam(0.001) N (0, 0.014) 25 → 350 2 → 0.05 SparseGPT(3) 7 10
45% PATCHJoint Adam(0.001) N (0, 0.014) 25 → 350 4 → 0.05 SparseGPT(3) 7 10

25% PATCHTile Adam(0.0001) N (0, 0.014) 100 → 500 2 → 0.05 SparseGPT(3) 3 0.1
35% PATCHTile Adam(0.0001) N (0, 0.014) 100 → 500 2 → 0.05 SparseGPT(3) 3 0.1
45% PATCHTile Adam(0.0001) N (0, 0.014) 100 → 500 2 → 0.05 SparseGPT(3) 3 0.1

E ADDITIONAL LAYER-WISE SPARSITY DISTRIBUTIONS

In this appendix, we provide the sparsity distributions for the Gemma-3-1B (Figure 4) and Llama-
3.2-1B (Figure 5) models, as referenced in the main text. Similar to the Qwen-2.5 0.5B model,
the patterns observed here indicate that MLP layers (up, gate, and down matrices) are pruned more
aggressively, absorbing the majority of sparsity. In contrast, the self-attention layers are treated as
more critical, with key and value matrices remaining largely dense or unpruned, while the query
matrix experiences the highest pruning within the attention submodule, and the output matrix shows
moderate pruning under higher global sparsity targets. This consistent behavior across models un-
derscores the redundancy in MLP components and the sensitivity of attention mechanisms.

F RELATED WORK

F.1 PRUNING METHODS

Pruning is one of the most widely studied approaches for compressing deep neural networks, with
the goal of removing redundant parameters while preserving accuracy. Classical pruning methods
can be broadly categorized into local (layer-wise) and global (end-to-end) strategies.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 3 6 9 1215182124

0.00

0.25

0.50
S
p
a
rs

it
y

R
a
ti

o

Query Matrix

0 3 6 9 1215182124

Key Matrix

0 3 6 9 1215182124

Block Index

0.00

0.25

0.50

S
p
a
rs

it
y

R
a
ti

o

Value Matrix

0 3 6 9 1215182124

Block Index

Output Matrix

0 3 6 9 1215182124

Up Matrix

0 3 6 9 1215182124

Gate Matrix

0 3 6 9 1215182124

Block Index

Down Matrix

Global Sparsity

45

35

25

Self-Attention Matrices MLP Matrices

Figure 4: Sparsity distribution across Attention and MLP layers under varying global sparsity bud-
gets in Gemma-3 1B.

0 2 4 6 8 101214

0.00

0.25

0.50

S
p
a
rs

it
y

R
a
ti

o

Query Matrix

0 2 4 6 8 101214

Key Matrix

0 2 4 6 8 101214

Block Index

0.00

0.25

0.50

S
p
a
rs

it
y

R
a
ti

o

Value Matrix

0 2 4 6 8 101214

Block Index

Output Matrix

0 2 4 6 8 101214

Up Matrix

0 2 4 6 8 101214

Gate Matrix

0 2 4 6 8 101214

Block Index

Down Matrix

Global Sparsity

45

35

25

Self-Attention Matrices MLP Matrices

Figure 5: Sparsity distribution across Attention and MLP layers under varying global sparsity bud-
gets in LLaMA-3.2 1B.

Local pruning. Local approaches prune each layer independently, typically by minimizing recon-
struction error within that layer. A seminal example is Optimal Brain Surgeon (OBS) (Hassibi et al.,
1993; Frantar & Alistarh, 2022), which leverages second-order information to identify and remove
weights while updating the remaining parameters to compensate for loss. While highly principled,
the quadratic cost of computing and inverting the Hessian makes OBS infeasible for large models.

Recent work adapts these ideas to LLM-scale pruning. SparseGPT (Frantar & Alistarh, 2023) for-
mulates layer-wise pruning as a sparse regression problem, enabling efficient approximations of
OBS that scale to billion-parameter models. Thanos (Ilin & Richtarik, 2025) further improves accu-
racy by employing multi-column approximations to reduce error accumulation. Wanda (Sun et al.,
2023), on the other hand, discards explicit weight updates and instead uses a simple magnitude-

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

activation criterion with calibration data, yielding competitive quality with extremely fast runtimes.
Despite their efficiency, local methods often suffer from limited capacity to recover accuracy since
pruning decisions ignore cross-layer dependencies.

Global pruning. Global approaches aim to jointly optimize pruning decisions across layers, typ-
ically leading to better overall trade-offs. Optimal Brain Damage (OBD) (LeCun et al., 1989) is an
early global method that estimates weight saliency using the diagonal Hessian. Extensions such as
WoodFisher (Singh & Alistarh, 2020) approximate the Hessian via Kronecker factorizations, mak-
ing computation more tractable but still challenging for modern LLMs (Mozaffari et al., 2023).

More recent approaches bypass costly second-order computations. MaskLLM (Fang et al., 2024)
formulates pruning as a binary classification task (keep vs. prune) and solves it using standard opti-
mizers such as AdamW (Loshchilov, 2017), achieving strong results even under hardware-friendly
structured sparsity (e.g., 2:4). ProxSparse (Liu et al., 2025) instead adopts a proximal regularization
framework, reducing the overhead of MaskLLM while trading off some pruning accuracy. These
works highlight the tension between pruning quality and efficiency: global methods often achieve
higher accuracy but remain more computationally expensive than simple one-shot local pruning.

F.2 COMPLEMENTARY COMPRESSION TECHNIQUES

Beyond pruning, several orthogonal compression techniques are widely used and can be combined
with sparsity for additional gains. Quantization reduces the bit precision of parameters and activa-
tions, e.g., from 32-bit floating point to 8- or 4-bit integers, thereby reducing memory footprint and
accelerating inference (Gholami et al., 2022; Rokh et al., 2023).

Low-rank adaptation methods decompose weight matrices into smaller factors, effectively reducing
parameter counts while maintaining expressivity. Recent approaches such as LQ-LoRA (Guo et al.,
2023), SLiM (Mozaffari et al., 2025a), and SLoPe (Mozaffari et al., 2025b) demonstrate that low-
rank structures can be used both for efficient fine-tuning and for direct model compression.

Finally, knowledge distillation (Gou et al., 2021) transfers knowledge from a large teacher model to
a smaller student, yielding compact models that retain much of the teacher’s performance. These
methods are complementary to pruning, and hybrid frameworks that integrate sparsity, quantization,
and low-rank factorization represent a promising direction for achieving high compression ratios
without sacrificing accuracy.

G COMPARISON WITH UNSTRUCTURED SPARSITY

In this section, we compare the quality of the models pruned with PATCH against other unstructured
sparsity methods. Table 16 summarizes the average accuracy of the models across eight downstream
tasks and the model perplexity on WikiText2 dataset. The results indicate that while unstructured
sparsity consistently outperforms the hybrid sparsity, the gap between the two is not significant,
showing that PATCH is helping bridging the gap between unstructured sparsity and semi-structured
sparsity.

H LANGUAGE MODEL USAGE IN PAPER

We used language models to enhance the readability of the manuscript, correct grammatical and
typographical errors, and ensure conformity with the ICLR author guidelines. Beyond their appli-
cation in benchmark evaluations and experimental procedures, language models were not employed
in any other aspect of this study.

I REPRODUCIBILITY STATEMENT

To support reproducibility, we release a repository linked in the abstract footnote that contains our
implementation, training scripts, and evaluation pipeline. The paper outlines the method in § 3 and
provides a thorough experimental description in § 5. Appendix D discusses the hyperparameter val-

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 16: Model quality (average accuracy across eight zero-shot tasks and perplexity on WikiText2
dataset) for PATCH, Wanda, and SparseGPT. For models with less than or equal to 1B parame-
ters, PATCHJoint optimizes both dense tile locations and sparsity patterns, while for larger models
PATCHTile optimizes only dense tile locations with frozen sparsity patterns, both using Dense/2:4
Tiles pattern allowing continuous sparsity ratios and flexible tradeoffs between sparsity and model
quality. Wanda and SparseGPT are unstructured pruning methods.

Sparsity Method Pattern Qwen-2.5 0.5B LLaMA-3.2 1B Gemma-3 1B LLaMA-2 7B LLaMA-3.1 8B

Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓) Acc (% ↑) PPL (↓)
45% PATCH Dense/2:4 Tiles 40.29 14.57 42.08 12.23 42.80 11.96 48.99 6.55 53.60 8.20
45% Wanda Unstructured 41.45 18.81 40.76 16.56 42.87 25.38 52.72 6.36 55.67 8.24
45% SparseGPT Unstructured 42.31 17.65 42.66 15.01 43.52 22.26 52.77 6.46 56.70 8.21

35% PATCH Dense/2:4 Tiles 41.15 13.84 42.72 11.67 43.30 11.48 50.08 6.18 55.28 7.89
35% Wanda Unstructured 43.46 15.04 44.60 11.95 45.50 16.98 54.37 5.87 58.68 7.02
35% SparseGPT Unstructured 44.66 14.79 45.62 11.68 45.45 16.92 54.18 5.92 58.81 7.07

25% PATCH Dense/2:4 Tiles 42.39 13.47 43.81 11.00 44.07 11.17 51.58 5.86 56.48 7.34
25% Wanda Unstructured 45.70 13.70 46.50 10.46 46.56 15.14 54.60 5.65 59.80 6.54
25% SparseGPT Unstructured 45.28 13.63 46.52 10.42 46.37 15.05 54.71 5.68 59.52 6.55

ues in our work and additional information about our implementation. These materials collectively
allow others to replicate our experiments and validate the claims made in the paper.

21


	Introduction
	Preliminaries
	Patch
	Efficient deployment of PATCH
	Experiments
	Model Quality Results
	Understanding the components of PATCH
	Combination with other compression methods
	Speedup and memory savings

	Conclusion
	STOICC Integration
	Per task results
	Tile Transfer Learning
	Implementation details and hyperparameters
	Additional layer-wise sparsity distributions
	Related work
	Pruning methods
	Complementary compression techniques

	Comparison with unstructured sparsity
	Language model usage in paper
	Reproducibility statement

