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Robust Multimodal Sentiment Analysis of Image-Text Pairs by
Distribution-Based Feature Recovery and Fusion

Anonymous Authors

ABSTRACT
As posts on social media increase rapidly, analyzing the sentiments
embedded in image-text pairs has become a popular research topic
in recent years. Although existing works achieve impressive ac-
complishments in simultaneously harnessing image and text in-
formation, they lack the considerations of possible low-quality
and missing modalities. In real-world applications, these issues
might frequently occur, leading to urgent needs for models ca-
pable of predicting sentiment robustly. Therefore, we propose a
Distribution-based feature Recovery and Fusion (DRF) method for
robust multimodal sentiment analysis of image-text pairs. Specifi-
cally, we maintain a feature queue for each modality to approximate
their feature distributions, through which we can simultaneously
handle low-quality and missing modalities in a unified framework.
For low-quality modalities, we reduce their contributions to the
fusion by quantitatively estimating modality qualities based on
the distributions. For missing modalities, we build inter-modal
mapping relationships supervised by samples and distributions,
thereby recovering the missing modalities from available ones. In
experiments, two disruption strategies that corrupt and discard
some modalities in samples are adopted to mimic the low-quality
and missing modalities in various real-world scenarios. Through
comprehensive experiments on three publicly available image-text
datasets, we demonstrate the universal improvements of DRF com-
pared to SOTA methods under both two strategies, validating its
effectiveness in robust multimodal sentiment analysis.

CCS CONCEPTS
• Information systems→ Sentiment analysis; Multimedia in-
formation systems; • Computing methodologies → Artificial
intelligence.

KEYWORDS
robust multimodal sentiment analysis, low-quality and missing
modality, feature distribution, modality recovery, modality fusion
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Image Queue

Text Queue

He’s angry and he will shred your knee caps off.

Leave me alone！ What a fantastic party!

Rare sighting.

Post with Low-quality Modality

Encode

Encode

Distribution-
based Recovery

Post with Missing Modality

Encode Recover

TextImage Encoded Recovered Fused

Text Feature Distribution

Image Feature Distribution

Feature Notations

Fuse

Estimate 
Contribution

(Missing Text)

(Low-quality Image)

Global Guidance

Figure 1: Brief illustration of DRF. We maintain two feature
queues to approximate the feature distributions of images
and texts. The distributions can estimate the contribution
of each modality for fusion and provide global guidance for
modality recovery, facilitating the robustness of the model
to both low-quality and missing modalities.

1 INTRODUCTION
With the rapid growth of smartphones, people are getting used to
sharing their experiences by posting on social media. In most cases,
posts contain information from various modalities. As a result,
multimodal sentiment analysis (MSA) that aims to understand the
sentiments expressed by users in multimodal content has become
a popular research topic. Due to its wide applications in social
media analysis [3], recommendation system [24], human-computer
interaction [56], and more [1, 55], it attracts substantial attention
from both academic and industrial communities [49, 52].

Image-text pairs are a typical form of posts, and analyzing their
overall sentiments is an important subfield in MSA. In existing
works, the majority seeks to fuse multimodal information by elabo-
rate fusion strategies, such as concatenations [38] and attentional
mechanisms [17, 37, 39, 41]. The others attempt to address task-
specific challenges, like the ignorance of global co-occurring char-
acteristics [43], modality heterogeneity [35], and data dependency
[42, 48]. They achieve impressive progress in fully exploiting in-
formation from both visual and textual modalities to model the
overall sentiments. However, in real-world applications, the images
and texts of posts may be corrupted or missing, leading to frequent
occurrences of low-quality and missing modalities. For instance,
images are probably pixelated or unavailable due to Not-Safe-For-
Work issues and privacy concerns [34], and texts perhaps suffer
from information loss or are unrecognizable due to rare languages

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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and unaligned encoding formats between platforms. These scenar-
ios result in severe performance degenerations of current works,
underscoring the necessity of robust MSA methods.

Handling low-quality ormissingmodalities has beenwell-studied
in related multimodal fields. In trusted multi-view classification
[10, 11], researchers assign different weights for each view by esti-
mating its uncertainty to produce reliable predictions with potential
low-quality views. In incomplete multimodal learning [18, 27, 44],
researchers recover unavailable modalities from the observed ones
[34] to enable consistent encoding of samples with arbitrary miss-
ing modalities [51]. Despite their success, applying them to handle
both issues of low-quality and missing modalities in MSA of image-
text pairs would encounter two main challenges. Firstly, the two
issues are tackled separately, with unaligned models designed based
on distinct strategies, which introduces extra difficulties and align-
ment burdens for direct combination. Secondly, the user-generated
nature of posts from social media results in frequent mismatches
between images and texts [43]. This characteristic conflicts with
the common assumption in studies on videos or medical images
[18, 27, 34], that the information of modalities from the same sample
is closely related, impeding the application of these methods.

To fill these gaps, we propose a method called Distribution-based
feature Recovery and Fusion (DRF), as shown in Fig. 1. Wemaintain
feature queues for images and texts to approximate their respective
feature distributions, which enable the model to handle low-quality
and missing modalities in a unified framework.

(1). For samples with missing modalities, we recover the missing
modalities from the available ones by supervising the recovery
process based on samples and distributions, thereby encoding them
the same as complete samples. The sample-based recovery forces
the model to convert between image and text features of the same
samples. It effectively builds local connections between modalities,
yet is prone to be misled by the mismatches of image-text pairs.
Therefore, we introduce an additional distribution-based recovery,
facilitating conversion between image and text distributions. Con-
cretely, it encourages the model to predict the mean and variance
of one distribution from another. This provides global mapping re-
lationships between modalities and eliminates the negative impacts
of the mismatches.

(2). For samples with diverse-quality modalities, we determine
the contribution of each modality to the fusion based on its cor-
relation with the distribution. Leveraging the global mapping re-
lationships learned by the modality recovery process, we use the
recovered modalities that conform to the distributions to compen-
sate for potential low-quality modalities and expand each sample
into three. Then, we quantitatively estimate the quality of each
modality with Gaussian distribution probability and assign weights
for three samples by multiplying the probabilities of its two source
modalities. Finally, we compute the overall fused feature as the
weighted sum of the three fused features. Through this process,
we can dynamically fuse modalities according to their qualities,
reducing the influences of low-quality modalities on the fusion.

To systematically assess the robustness of models, we adopt two
disruption strategies that randomly corrupt and discard modalities
from samples to mimic real-world scenarios of various degrees of
low-quality and missing modalities. By conducting extensive ex-
periments on MVSA-S, MVSA-M [25], and TumEmo [41], we prove

the effectiveness of DRF in robust MSA. The main contribution of
this paper is summarized as follows:
• We focus on robust MSA of image-text pairs for the low-quality
and missing modalities, which are prevalent concerns in real-
world scenarios. As far as we know, this is the first attempt to
explore the robustness of models in this subfield.

• We propose a novel method, DRF, to handle the low-quality
and missing modalities in a unified framework. It leverages two
feature distributions to provide global mapping relationships
between modalities for feature recovery as well as qualitative
estimations of modality quality for feature fusion.

• Experimental results under two disruption strategies on three
MSA benchmark datasets demonstrate the significant improve-
ments of DRF compared to the state-of-the-art MSA methods,
validating its superiority in robust MSA of image-text pairs.

2 RELATEDWORKS
2.1 Multimodal Sentiment Analysis
Early works on sentiment analysis focus solely on a single modality,
such as text [26, 29], image [45, 46] and speech [16, 23]. With the
rapid increase of posts in social media, MSA for image-text pairs
has garnered increasing attention in recent years. In the beginning,
researchers leverage the semantics of images and texts with sim-
ple concatenation [37] or attention [38]. Later on, more elaborate
attention-based structures are designed to enable more comprehen-
sive modality fusion. COMN [39] iteratively models the interaction
between image and text features at multiple levels. MVAN [41]
fully exploits the correlations of different views of images and texts.
CLMLF [17] leverages Transformer-Encoder [32] for token-level
alignments. More recently, the focus of researchers has shifted
toward addressing task-specific challenges. MGNNS [43] utilizes
graph neural networks to capture the global characteristics of the
dataset. MVCN [35] tackles the modality heterogeneity with sparse
attention, feature restraint, and loss calibration. UP-MPF [48] and
MultiPoint [42] devote to few-shot MSA to avoid annotation costs.
There is also a series of studies [14, 19, 40, 47] on fine-grained
MSA, aiming to detect the sentiment of a specific aspect within
the image-text pair, which though is not the primary focus of this
paper.

These methods effectively model the sentiments by relying on
complementary information from both images and texts, yet can not
properly handle the issues of low-quality and missing modalities.
Since these issues might frequently occur in real-life applications
[51], we propose DRF, a practical method capable of predicting
sentiment for image-text pairs robustly.

2.2 Robust Multimodal Learning
The issues of low-quality and missing modalities are prevalent in
all types of multimodal data, and various studies have been con-
ducted on them. For low-quality modalities, a feasible strategy is to
reduce their influences on the fusion as adopted in trusted multi-
view classification [10, 11]. Researchers estimate the uncertainty
of each view based on Dempster-Shafer Evidence Theory [5, 28]
and give less consideration to the high uncertainty views, which
correspond to the low-quality modalities in our case, during the fu-
sion. The uncertainty is also estimated according to other methods
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Figure 2: Illustration of DRF. The core of our method is the modeling of image and text feature distributions, which we
approximate using the respective feature queues. After separate encoding of each modality, we first supervise two converters
to learn inter-modal mapping relationships by sample-based and distribution-based recovery. Subsequently, we leverage the
recovered features to expand each sample into three. Utilizing the Gaussian distribution probability, we estimate the modality
qualities to decide their contributions to the fusion. Finally, we obtain the overall fused feature as the weighted sum of the
features of three expanded samples and enqueue features to the queue according to their qualities.

or theories in related studies, including Bayesian neural networks
[6, 9], ensemble-based methods [12, 15], Normal Inverse-Gamma
distribution [21] and energy score [20, 53]. For missing modalities,
data imputation methods [18] in incomplete multimodal learning
recover them from the available ones. To achieve this, some re-
searchers directly pad missing modalities with fixed values [4, 50],
some others optimize through low-rank projection [2, 22], the rest
leverage the generative capability of specific neural networks ar-
chitectures, such as autoencoder [33] and Transformer [32].

To unifiedly handle both issues in MSA of image-text pairs, we
leverage the image and text feature distributions. On the one hand,
the distributions can provide quantitative estimations of modality
qualities through the probability density function. On the other
hand, they can also guide the learning of global mapping rela-
tionships between modalities, eliminating the negative impacts of
image-text pair mismatches.

3 METHOD
3.1 Task Formulation
We focus on the sentiment classification of image-text pairs with
possible low-quality and missing modalities. We first give a def-
inition of the regular MSA. Given a set of samples {(𝑥𝑖 , 𝑦𝑖 ) |𝑖 ∈
{1, 2, · · · , 𝑁 }}, where 𝑥𝑖 denotes the image-text pair (𝑣𝑖 , 𝑡𝑖 ), 𝑦𝑖 is
its sentiment label from a total of 𝑆 categories, and 𝑁 is the total

number of samples, the model needs to build a mapping between
image-text pairs 𝒙 and sentiment labels 𝒚.

To simulate the occurrences of low-quality and missing modali-
ties in real-world applications, we randomly corrupt and discard
modalities from samples. We denote the discarding operation of
image-text pair (𝑣𝑖 , 𝑡𝑖 ) as 𝜆𝑣𝑖 , 𝜆

𝑡
𝑖
∈ {0, 1}. Take image 𝑣𝑖 as an exam-

ple: 𝜆𝑣
𝑖
= 0 represents that it is discarded, in other words, missing,

and 𝜆𝑣
𝑖
= 1 represents the other way. For the corruption operation

aimed at simulating low-quality modalities, we consider it invisible
to the model because it is also difficult to accurately pre-determine
modality quality in practice. Thus, the overall definition of 𝑥𝑖 in
robust MSA is (𝑣𝑖 , 𝑡𝑖 , 𝜆𝑣𝑖 , 𝜆

𝑡
𝑖
).

3.2 Feature Distribution Modeling
The pipeline of DRF is shown in Fig. 2. For convenience, we pretend
both the image and text are not discarded while presenting our
method and reflect the influences of 𝜆𝑣

𝑖
, 𝜆𝑡

𝑖
by the computations.

After receiving the image-text pair 𝑥𝑖 = (𝑣𝑖 , 𝑡𝑖 , 𝜆𝑣𝑖 , 𝜆
𝑡
𝑖
) of an input

sample (𝑥𝑖 , 𝑦𝑖 ), we first encode 𝑣𝑖 into image feature 𝑓 𝑣
𝑖
∈ R𝑑𝑣 , and

𝑡𝑖 into text feature 𝑓 𝑡
𝑖
∈ R𝑑𝑡 . 𝑑𝑣, 𝑑𝑡 are the feature dimensions of

the image and text.
In our framework, the core of unified modeling of low-quality

and missing modalities is the feature distribution of each modal-
ity. To acquire these distributions, limited features from a single
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mini-batch are insufficient. Inspired by self-supervised learning
[13, 36], we maintain a feature queue for each modality to record
features across multiple mini-batches. The feature queue of im-
age is denoted by 𝑄𝑣 = {𝑓 𝑣

𝑗
| 𝑗 ∈ 𝑞𝑣} and it of text is denoted by

𝑄𝑡 = {𝑓 𝑡
𝑗
| 𝑗 ∈ 𝑞𝑡 }, with the queue size set to 𝐿 for both of them. By

adopting a sufficiently large queue size, we can approximate the
feature distributions of all samples by those from feature queues.
Specifically, we approximate the mean 𝜇𝑣 and standard deviation
𝜎𝑣 of the image feature distribution by:

𝜇𝑣 =
1
𝐿

∑︁
𝑗∈𝑞𝑣

𝑓 𝑣𝑗 , (1)

𝜎𝑣 =

√︄
1
𝐿

∑︁
𝑗∈𝑞𝑣

| |𝑓 𝑣
𝑗
− 𝜇𝑣 | |22 . (2)

The mean 𝜇𝑡 and standard deviation 𝜎𝑡 of the text feature distribu-
tion are approximated similarly.

To encourage the compactness of each distribution and the sepa-
ration between distributions, we devise a distribution constraint
that brings image and text features closer to the means of their
respective feature distributions and away from the means of the
other:

L𝑑𝑖𝑠 = 𝜆𝑣𝑖 · 𝑒𝑥𝑝 ( | |𝑓 𝑣𝑖 − 𝜇𝑣 | |2 − ||𝑓 𝑣𝑖 − 𝜇𝑡 | |2)
+ 𝜆𝑡𝑖 · 𝑒𝑥𝑝 ( | |𝑓

𝑡
𝑖 − 𝜇𝑡 | |2 − ||𝑓 𝑡𝑖 − 𝜇𝑣 | |2)

(3)

3.3 Modality Recovery
To handle missing modalities, we build mapping relationships be-
tween image and text through two modality converters, which
are essentially two-layer MLPs. For the image-to-text converter,
denoted by 𝑪𝑣→𝑡 (·), an intuitive idea is encouraging it to recover
the text feature 𝑓 𝑡

𝑖
from the image feature 𝑓 𝑣

𝑖
. We call this task

sample-based recovery and its loss is given by:

L𝑠
𝑣→𝑡 = 𝜆𝑣𝑖 𝜆

𝑡
𝑖 · | |𝑪𝑣→𝑡 (𝑓 𝑣𝑖 ) − 𝑓 𝑡𝑖 | |2 . (4)

Its effectiveness is built upon the alignment between information
of image 𝑣𝑖 and text 𝑡𝑖 . However, due to the mismatches between
images and texts from social media posts [43], such alignment can
not be guaranteed for all samples, leading to occasionally negative
impacts on the converter. To alleviate these, we devise a distribution-
based recovery task that provides mapping guidance from a global
perspective. Specifically, we supervise the converter to recover
the mean 𝜇𝑡 and standard deviation 𝜎𝑡 of 𝑄𝑡 from 𝑄𝑣 . The mean
𝜇𝑣→𝑡 and standard deviation 𝜎𝑣→𝑡 of the converted distribution
are computed as:

𝜇𝑣→𝑡 =
1
𝐿

∑︁
𝑗∈𝑞𝑣

𝑪𝑣→𝑡 (𝑓 𝑣𝑗 ), (5)

𝜎𝑣→𝑡 =

√︄
1
𝐿

∑︁
𝑗∈𝑞𝑣

| |𝑪𝑣→𝑡 (𝑓 𝑣𝑗 ) − 𝜇𝑣→𝑡 | |22 . (6)

Then, the loss of distribution-based recovery is given by:

L𝑑
𝑣→𝑡 = | |𝜇𝑣→𝑡 − 𝜇𝑡 | |2 + |𝜎𝑣→𝑡 − 𝜎𝑡 |. (7)

The sample-based and distribution-based recovery tasks are also
applied to the text-to-image converter 𝐶𝑡→𝑣 (·) with symmetric
computations. Thereby, the combined loss of both converters is:

L𝑟𝑒𝑐 = L𝑠
𝑣→𝑡 + L𝑑

𝑣→𝑡 + L𝑠
𝑡→𝑣 + L𝑑

𝑡→𝑣 . (8)

Image Feature Distribution Gaussian Distribution

0.03

0.86

0.25

0.94

0.96
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Figure 3: Examples of estimating image quality based on the
feature distribution.

3.4 Modality Quality Estimation
To handle samples with potentially low-quality modalities, we per-
form multimodal fusion based on the quality of each modality
estimated by the feature distributions. Firstly, we expand the image-
text pair into three, by treating its image 𝑣𝑖 and text 𝑡𝑖 as inde-
pendent samples with missing modalities. Through the modality
recovery process, we obtain the recovered image feature 𝑪𝑡→𝑣 (𝑓 𝑡𝑖 ),
denoted by 𝑓 𝑡→𝑣

𝑖
and the recovered text feature 𝑪𝑣→𝑡 (𝑓 𝑣𝑖 ), denoted

by 𝑓 𝑣→𝑡
𝑖

. Thus, the image and text features of the original sample
are (𝑓 𝑣

𝑖
, 𝑓 𝑡
𝑖
), those of the image are (𝑓 𝑣

𝑖
, 𝑓 𝑣→𝑡
𝑖

), and those of the
text are (𝑓 𝑡→𝑣

𝑖
, 𝑓 𝑡
𝑖
).

Subsequently, we estimate the quality of each modality accord-
ing to its correlation with the respective feature distribution. We
consider those unimodal features that conform to the feature distri-
bution to come from high-quality modalities, while the others to
come from low-quality modalities. We adopt the Gaussian distri-
bution to provide quantitative estimations. Its probability density
function given feature 𝑓 , mean 𝜇 and standard deviation 𝜎 is:

𝑝 (𝑓 , 𝜇, 𝜎) = 1
√
2𝜋𝜎

𝑒𝑥𝑝 (−
||𝑓 − 𝜇 | |22

2𝜎2
) . (9)

We compute the contributions of 𝑓 𝑣
𝑖
and 𝑓 𝑡→𝑣

𝑖
to the fusion as the

probabilities of them belonging to the image feature distribution:

𝑝𝑣𝑖 = 𝑝 (𝑓 𝑣𝑖 , 𝜇𝑣, 𝜎𝑣), 𝑝𝑡→𝑣
𝑖 = 𝑝 (𝑓 𝑡→𝑣

𝑖 , 𝜇𝑣, 𝜎𝑣), (10)

and the contributions of 𝑓 𝑡
𝑖
and 𝑓 𝑣→𝑡

𝑖
to the fusion as the probabili-

ties of them belonging to the text feature distribution:

𝑝𝑡𝑖 = 𝑝 (𝑓 𝑡𝑖 , 𝜇𝑡 , 𝜎𝑡 ), 𝑝𝑣→𝑡
𝑖 = 𝑝 (𝑓 𝑣→𝑡

𝑖 , 𝜇𝑡 , 𝜎𝑡 ) . (11)

A few examples are demonstrated in Fig. 3 for illustration. Then,
we fuse the image and text features of each sample by feeding
them into a shared three-layer MLP 𝑭 𝑣+𝑡 (·) after concatenation
and obtain the overall fused feature𝑀𝑖 by the weighted sum.

𝑀𝑖 = 𝜆𝑣𝑖 𝜆
𝑡
𝑖 · (𝑝

𝑣
𝑖 𝑝

𝑡
𝑖 ) · 𝑭 𝑣+𝑡 ( [𝑓

𝑣
𝑖 , 𝑓

𝑡
𝑖 ])

+ 𝜆𝑣𝑖 · (𝑝𝑣𝑖 𝑝
𝑣→𝑡
𝑖 ) · 𝑭 𝑣+𝑡 ( [𝑓 𝑣𝑖 , 𝑓

𝑣→𝑡
𝑖 ])

+ 𝜆𝑡𝑖 · (𝑝
𝑡→𝑣
𝑖 𝑝𝑡𝑖 ) · 𝑭 𝑣+𝑡 ( [𝑓

𝑡→𝑣
𝑖 , 𝑓 𝑡𝑖 ]) .

(12)

Through this process, we explicitly reduce the contributions of
low-quality modalities to the fusion, enabling reliable fusion for
potential low-quality modalities.

During training, the parameters of encoders are gradually chang-
ing, resulting in smooth shifting of the feature distributions. To
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Table 1: Model performances under modality-fixed disruption. We report the ACC/F1 scores of models under C, D, and C+D
settings on MVSA-S, MVSA-M, and TumEmo. The highest result is highlighted in bold.

Disrupted
Method

MVSA-S MVSA-M TumEmo
Modality C D C+D C D C+D C D C+D

Image

HSAN [37] 70.5/69.7 69.8/69.6 70.0/69.5 67.5/65.6 66.2/64.1 66.6/64.3 63.5/63.3 62.5/62.4 62.9/62.8
MVAN [41] 67.7/67.4 66.5/66.0 66.3/66.2 66.9/64.8 66.0/63.7 66.4/64.2 60.7/60.6 60.1/60.0 60.4/60.4
MGNNS [43] 71.9/71.8 71.6/70.9 71.6/71.3 69.4/66.3 68.6/65.7 69.1/66.2 65.2/65.1 63.8/63.6 64.1/64.0
CLMLF [17] 69.4/69.0 67.7/67.8 68.4/68.1 67.0/65.3 66.4/64.3 66.7/65.0 62.4/62.3 61.8/61.5 62.2/62.1
MVCN [35] 70.3/69.9 69.3/69.2 69.9/69.4 68.1/66.0 67.3/64.9 67.6/65.3 63.7/63.6 62.9/62.9 63.3/63.3
DRF (Ours) 74.5/74.4 73.4/73.1 73.8/73.6 71.0/68.2 70.0/67.5 70.3/67.9 68.4/68.2 67.2/67.2 67.9/67.7

Text

HSAN [37] 64.9/64.3 64.1/63.3 64.6/64.2 64.4/61.6 62.9/60.7 63.6/61.4 48.8/48.5 47.5/47.4 48.2/48.0
MVAN [41] 63.0/62.3 62.4/62.2 62.8/62.5 64.1/60.9 62.9/60.0 63.5/61.7 45.3/45.2 44.4/44.0 44.8/44.7
MGNNS [43] 66.1/65.6 64.7/64.5 65.5/65.2 64.8/62.5 63.5/61.8 64.1/62.3 52.6/52.7 50.4/50.4 51.5/51.3
CLMLF [17] 64.3/63.6 63.1/62.8 63.7/63.4 63.8/61.2 62.5/60.4 63.3/60.7 48.1/48.0 46.9/46.7 47.0/46.9
MVCN [35] 65.3/65.0 64.6/64.5 65.0/64.7 64.4/62.1 63.3/61.4 63.8/61.9 50.5/50.3 49.2/49.2 49.8/49.7
DRF (Ours) 69.4/69.4 68.1/68.0 68.5/68.3 67.9/66.5 67.2/64.8 67.3/66.2 61.6/61.4 59.2/59.1 60.9/61.0

Table 2: Statistics of datasets.

Dataset Total Train Val Test

MVSA-S [25] 4511 3608 451 452
MVSA-M [25] 17024 13618 1703 1703
TumEmo [41] 195265 156217 19524 19524

track it, we need to progressively update the feature queues with
the features from the latest encoders. Meanwhile, we hope to retain
the capability of the feature distributions to distinguish modalities
of different qualities. To satisfy both requirements, we update the
queues with the encoded features of the current sample that exhibit
correlations with their respective feature distributions. Specifically,
take image 𝑣𝑖 as an example, we enqueue 𝑝𝑣

𝑖
to 𝑄𝑣 if its probability

of belonging to the image feature distribution is larger than the
mean of the probabilities of features in 𝑄𝑣 :

𝑝𝑣𝑖 >
1
𝐿

∑︁
𝑗∈𝑞𝑣

𝑝 (𝑓 𝑣𝑗 , 𝜇𝑣, 𝜎𝑣) . (13)

The update strategy for the text feature queue 𝑄𝑡 is similar.

3.5 Classification and Optimization
For sentiment prediction, we feed the overall fused feature𝑀𝑖 into
a fully connected layer followed by a softmax layer:

𝑌𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑀𝑖 + 𝑏), (14)

where𝑊,𝑏 are trainable parameters of the fully connected layer, 𝑌𝑖
is the predicted probabilities of 𝑆 sentiment categories. We denote
the predicted probability for 𝑘-th category as 𝑦𝑘

𝑖
, and constrain the

classification by a cross-entropy loss:

L𝑐𝑙𝑠 = −
𝑆∑︁

𝑘=1
𝑦𝑖𝑙𝑜𝑔(𝑦𝑘𝑖 ). (15)

To this end, the joint optimization objective for all parameters is:

L = L𝑑𝑖𝑠 + L𝑟𝑒𝑐 + L𝑐𝑙𝑠 . (16)

4 EXPERIMENT
4.1 Dataset Preparations
We carry out experiments on three publicly available MSA datasets.
The statistics of them are presented in Table 2.MVSA-S andMVSA-
M [25] are two Twitter datasets annotated by sentiment polarities:
{positive, neutral, negative}. We pre-process their samples following
Xu and Mao [38]. TumEmo [41] is a Tumblr dataset annotated
according to the emotions of tags. It has 7 emotion categories: {angry,
bored, calm, fear, happy, love, sad}. We follow the pre-processing of
Yang et al. [41] for a fair comparison. We report the accuracy score
(ACC) and F1 score (F1) for all three datasets.

To evaluate the robustness of models to low-quality and missing
modalities, we simulate these cases by performing two kinds of
disruptions on samples. To simulate low-quality modalities, we
corrupt images by randomly masking 40-80% of pixels, and texts
by replacing 40-80% of words with [MASK] tokens. To simulate
missing modalities, we discard modalities from samples. By refer-
ring to related fields [27, 34, 54], we incorporate two disruption
strategies for a systematical evaluation: modality-fixed disruption
and modality-random disruption. In modality-fixed disruption,

Modality-fixed Disruption

Training Inference

Current modality is undisrupted 
in all samples.

Modality-random Disruption

Training Inferencedr

0.2

0.4

0.6

0.8

1.0

Image         Text          Image        Text

Current modality is disrupted 
in part of samples.

Current modality is disrupted 
in all samples.

Image        Text          Image         Text

Figure 4: Illustration of modality-fixed disruption and
modality-random disruption strategies.
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Figure 5: Model performances under modality-random disruption. We report ACC scores of models under C, D, and C+D
settings on MVSA-S, MVSA-M, and TumEmo.

we do not interfere with the training process and disrupt a fixed
modality for all samples during inference. Inmodality-random
disruption, we disrupt a random modality for a pre-defined ratio
of samples in both training and inference. At least one modality
in each sample is guaranteed to be undisrupted, and reliable for
the sentiment prediction. We use the disruption ratio (𝒅𝒓 ) to rep-
resent the ratio of samples disrupted and conduct experiments
for 𝒅𝒓 ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. We illustrate the two strategies in
Fig. 4. For each strategy, we investigate three settings: only cor-
rupts modalities (C), corresponding to only introducing low-quality
modalities; only discards modalities (D), corresponding to only in-
troducing missing modalities; and corrupts and discards modalities
half-to-half (C+D), corresponding to introducing both low-quality
and missing modalities.

4.2 Implementation Details
For the image encoder, we adopt Vision Transformer [8] with a
patch size of 16, and resize images to 224 × 224. The obtained
image features are 𝑑𝑣 = 768 dimensions. For text, we adopt Bert
[7] to obtain text features with the same 𝑑𝑡 = 768 dimensions.
These settings are consistent with the recent SOTA method MVCN

[35] for a fair comparison. We set the mini-batch size to 16 and
queue size 𝐿 to 512. We train the model for 30 epochs with AdamW
optimizer. The initial learning rate is set to 2e-5 for image and text
encoders and 2e-4 for the rest of the parameters. The learning rates
are decayed to 1e-6 in the cosine schedule.

4.3 Compared Methods
We compare DRF with a series of SOTA MSA methods to compre-
hensively validate its effectiveness in robust sentiment classification
of image-text pairs. We present brief introductions for the com-
pared methods below. For methods incapable of receiving input
with missing modalities, we pad images with blank pixels and texts
with [MASK] tokens.

HSAN [37] employs image captions to extract image features
and concatenates them with text features for sentiment prediction.
We reproduce it by replacing its text encoder with a more advanced
BERT [7].

MVAN [41] separately encodes the object and scene features in
images, and interactively models their dependencies with the text
features through a memory network.
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Table 3: Ablation study of components under modality-fixed disruption on MVSA-S and TumEmo. Sample-based recovery and
distribution-based recovery are the two kinds of supervision on the modality converters introduced in Section 3.3. Gaussian
distribution probability is adopted to estimate the quality of modalities. Image-text expansion is the process of expanding
each sample into three. They are from Section 3.4. Distribution constraint encourages the compactness in feature distributions
and separation between feature distributions, computed by Eq. (3). Experiments for separate components are conducted
independently.

Disrupted
Method

MVSA-S TumEmo
Modality C D C+D C D C+D

Image

DRF 74.5/74.4 73.4/73.1 73.8/73.6 68.4/68.2 67.2/67.2 67.9/67.7
w/o Sample-based Recovery 73.7/73.4 72.1/72.0 72.6/72.1 68.1/67.9 66.0/65.9 67.0/67.0
w/o Distribution-based Recovery 73.2/72.5 71.5/71.2 72.2/71.6 67.7/67.6 65.5/65.6 66.7/66.6
w/o Gaussian Distribution Probability 71.9/71.7 72.7/72.3 72.3/72.1 65.0/64.7 66.6/66.7 65.8/65.8
w/o Image-text Pair Expansion 72.4/72.2 68.3/67.1 71.0/70.6 66.6/66.5 62.8/62.7 64.6/64.4
w/o Distribution Constraint 74.0/73.8 72.5/72.0 73.5/73.2 67.9/67.9 66.3/66.2 67.1/67.1

Text

DRF 69.4/69.4 68.1/68.0 68.5/68.3 61.6/61.4 59.2/59.1 60.9/61.0
w/o Sample-based Recovery 68.5/68.3 66.7/66.4 67.5/66.8 60.2/60.0 57.8/57.7 58.9/58.8
w/o Distribution-based Recovery 68.5/68.4 65.8/65.2 67.0/66.9 60.4/60.4 57.5/57.6 59.0/58.8
w/o Gaussian Distribution Probability 67.1/66.7 67.5/67.5 67.3/67.0 58.8/58.7 58.4/58.4 58.6/58.6
w/o Image-text Pair Expansion 67.7/67.2 65.0/64.8 66.2/65.9 59.3/59.2 53.1/53.0 56.2/56.3
w/o Distribution Constraint 68.7/68.5 67.2/67.0 67.9/67.6 61.3/61.2 58.2/58.3 59.5/59.5

Table 4: Model performances without disruption. We report
ACC/F1 scores ofmodels onMVSA-S, MVSA-M, and TumEmo.
The highest result is highlighted in bold, and the second-
highest result is underlined.

Method MVSA-S MVSA-M TumEmo

HSAN [37] 69.9/66.9 68.0/67.8 63.1/54.0
MVAN [41] 73.0/73.0 72.4/72.3 66.5/63.4
MGNNS [43] 73.8/72.7 72.5/69.3 66.7/66.7
CLMLF [17] 75.3/73.5 71.1/68.6 68.1/68.0
MVCN [35] 76.1/74.6 72.1/70.0 68.4/68.4
DRF (Ours) 76.5/75.9 72.2/70.4 69.6/69.6

MGNNS [43] first introduces graph neural network into MSA,
which captures the global co-occurrence characteristics in texts
and images, enabling global-aware modality fusion.

CLMLF [17] fuses modalities based on Transformer-Encoder
[32] to facilitate token-level alignments between modalities. It also
proposes two contrastive learning tasks aiding in learning common
sentiment features.

MVCN [35] tackles the modality heterogeneity from three views:
(1). it proposes a sparse attention mechanism to filter out redun-
dant visual features; (2). it restrains representations to calibrate the
feature shift; (3) it alleviates the uncertainty in annotations through
an adaptive loss calibration.

4.4 Comparision with the State-Of-The-Art
4.4.1 Modality-fixed Disruption. The comparison under the
strategy of modality-fixed disruption is displayed in Table 1. DRF

consistently achieves the highest results across all cases. It indicates
that compared with current methods, DRF is more robust to both
low-quality and missing modalities through explicit modeling of
modality qualities and building inter-modal mapping relationships.
The advantages of DRF under the disruption of texts are more
significant. We conjecture that other methods depend more on
texts than images due to the higher information density of texts
[30]. Subsequently, the corruption and discarding of texts results
in severe degeneration of their performances. In contrast, DRF
alleviates those influences by flexibly adjusting the contribution of
texts and recovering the absent text features.

4.4.2 Modality-randomDisruption. The results under different
disruption rates of modality-random disruption are demonstrated
in Fig. 5. As the disruption rate increases from 0.2 to 1.0, the ac-
curacy of DRF is much more stable than other methods. Under
the setting of both corruption and disruption (C+D), the accuracy
of previous MSA methods drops 6.72%-9.53% on MVSA-S, 5.00%-
6.97% on MVSA-M, 12.78%-18.11% on TumEmo, indicating that the
modules they devise based on prior knowledge are less effective
under disruptions. For instance, MGNNS might be misled by the fre-
quent occurrences of [MASK] tokens and bland pixels, and MVCN
might suffer from inaccurate sentimental centroids caused by the
disrupted modalities. Under the same setting, the accuracy of DRF
only drops 4.48% on MVSA-S, 2.52% on MVSA-M, and 6.50% on
TumEmo. These results suggest that the sample and distribution-
based recovery and quality-aware fusion facilitate the robustness
of DRF to low-quality and missing modalities during both training
and inference phases.

4.4.3 Without Disruption. The comparison in the regular MSA
task without disruption is reported in Table 4. DRF still achieves
competitive performances against other methods. We attribute this
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Ground Truth: Image Text Recovered: Image Text

Figure 6: Visualization of image and text features on the MVSA-S test set under different disruption rates of modality-random
disruption. Features are projected to 2D space by t-SNE [31].

to two reasons. Firstly, image-text pairs naturally contain modalities
of different qualities. Explicitly quantifying those qualities is bene-
ficial for the reliable fusion of modalities. Secondly, DRF learns the
mapping relationships between modalities based on samples and
distributions, which promotes more comprehensive information
interactions between modalities.

4.5 Abalition Study
To validate the effectiveness of each key component in our method,
we conduct ablation experiments under modality-fixed disruption
in Table 3. From the results, we can derive the following conclusions.
Firstly, both the sample-based recovery and distribution-based re-
covery bring performance improvements to the model, indicating
that they are conducive for modality converters to learn local and
global mapping relationships between modalities. Secondly, the
Gaussian distribution probability and image-text pair expansion
significantly facilitate the robustness of the model to low-quality
modalities. It emphasizes the effectiveness of explicitly estimating
modality qualities and feature fusion based on qualities. Thirdly, the
image-text pair expansion also promotes the capability of the model
to recover missing modalities under modality-fixed disruption. We
conjecture that it introduces the sentiment prediction for recovered
samples into the training process, which benefits the similar process
during inference. Fourthly, the distribution constraint results in
performance gains under both low-quality and missing modalities,
verifying the benefits of tightening each distribution and separating
different distributions. Finally, combining those components leads
to the best performance, proving that they complement each other.

4.6 Qualitative Analysis
4.6.1 Feature Recovery Visualization. To intuitively present
the efficacy of two recovery tasks in Section 3.3, we visualize the
image and text features recovered by DRF under modality-random
disruption with disruption rate increases from 0.2 to 1.0. We project
the samples of the MVSA-S test set into 2D space by t-SNE [31] and
display them in Fig. 6. Under low disruption rates, the recovered
features closely adhere to the ground truth features. It demonstrates
that DRF learns accurate mapping relationships between modalities
based on the local guidance of sample-based recovery and global
guidance of distribution-based recovery. As the disruption rate in-
creases, the sample-based recovery gradually becomes unavailable,
yet DRF can still recover features with distributions similar to the
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Figure 7: The estimated modality qualities of undisrupted
samples (above) and corrupted samples (below).

ground truth features. It proves the effectiveness of distribution-
based recovery and emphasizes its necessity under high disruption
rates.

4.6.2 Modality Quality Visualization. In Fig. 7, we display the
estimated modality qualities of four samples, including two undis-
rupted and two corrupted. For the undisrupted samples, DRF assigns
relatively high qualities for all four modalities, with the black-white
image receiving the lowest estimated quality. For the corrupted sam-
ples, DRF correctly assigns relatively low qualities for the corrupted
modalities. These results validate the effectiveness of estimating
modality quality based on the distributions.

5 CONCLUSION
In this paper, we focus on robust multimodal sentiment analysis
of image-text pairs with possible low-quality and missing modali-
ties. These issues are prevalent in real-life applications yet under-
explored by previous studies in this subfield. We propose a method
called DRF to handle these issues in a unified framework. It approx-
imates the feature distributions by feature queues and leverages
them to simultaneously provide global guidance for feature re-
covery as well as quality estimation of each modality for feature
fusion. Through comprehensive experiments, we demonstrate the
effectiveness and robustness of the proposed DRF.
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