
Rethinking KV Cache Pruning with Channel Interdependence for Efficient
Long-Context Inference

Anonymous ACL submission

Abstract001

Managing the extensive Key-Value (KV) cache002
is critical for efficient long-context processing003
in Large Language Models (LLMs). Conven-004
tional channel pruning techniques for KV cache005
typically assess each channel in isolation, ne-006
glecting the interdependencies among channels.007
Accordingly, we introduce an Interdependence-008
Aware KV Cache Pruning (IAP) method, mov-009
ing beyond the conventional paradigm of iso-010
lated channel scoring. Specifically, we first ana-011
lyze the existence of inter-channel interactions,012
then reformulate channel selection objective013
with the channel interdependence component,014
and propose a graph-based algorithm to iden-015
tify channels for pruning. Furthermore, IAP016
mitigates the challenge of query distribution017
shifts during decoding by strategically retaining018
high-magnitude key channels. Extensive exper-019
iments on LongBench with LLaMA and Mis-020
tral models demonstrate that IAP marked im-021
provements in preserving model performance022
post-pruning compared to established baselines,023
offering a more robust approach to KV cache024
compression.025

1 Introduction026

Large Language Models (Achiam et al., 2023; Tou-027

vron et al., 2023; Jiang et al., 2023; DeepSeek-AI,028

2025) have revolutionized natural language pro-029

cessing by achieving unprecedented performance030

in tasks such as text generation, reasoning, and con-031

textual understanding. Central to their success is032

the scaling law principle, which posits that increas-033

ing model size and training data leads to emergent034

capabilities (Kaplan et al., 2020). Alongside the035

scaling of data and model parameters, recent years036

have also seen significant research efforts to en-037

hance large language models by expanding their038

context window size (Team et al., 2024).039

While the scaling law has driven significant040

improvements in model capabilities, it also sub-041

stantially escalates the computational and GPU042

memory overhead during inference, particularly in 043

scenarios requiring long-context interactions. Al- 044

though Key-Value (KV) cache techniques mitigate 045

computational redundancy by avoiding repeated 046

calculations, the linearly growing KV-cache size 047

with sequence length , attention heads and channel 048

dimensions, imposes prohibitive memory pressure. 049

This is particularly problematic in long-context 050

tasks, where the KV cache can become a bottle- 051

neck, limiting the model’s ability to process ex- 052

tended sequences efficiently. 053

To this end, researchers have conducted in-depth 054

explorations to reduce the KV cache and have 055

achieved significant progress from the following 056

three perspectives: (1) Model-level: Reducing the 057

number of attention heads in the model (Shazeer, 058

2019; Ainslie et al., 2023; Brandon et al., 2024). 059

(2) Token-level: Employing KV cache eviction 060

methods (Li et al., 2024; Zhang et al., 2023; Xiao 061

et al., 2024b). (3) Quantization: Applying different 062

quantization strategies to the key and value caches 063

respectively (Liu et al., 2024; Hooper et al., 2024). 064

In recent years, a channel-level pruning method 065

(Zhang et al., 2024a; Xu et al., 2024) has emerged, 066

which is orthogonal and compatible with the afore- 067

mentioned techniques, offering substantial promise 068

by significantly reducing the size of the KV cache 069

while preserving model performance. However, ex- 070

isting approaches evaluate channel importance in 071

isolation, neglecting the impact of inter-channel 072

interactions on model effectiveness. Moreover, 073

they overlook the distributional shift between the 074

queries within the observation window and the 075

overall query distribution, which may further de- 076

grade performance. 077

To address these issues, we propose the 078

Interdependence-Aware KV Cache Pruning (IAP) 079

method. During the pruning process, IAP reformu- 080

lates the optimization objective as a graph-theoretic 081

problem, explicitly modeling and leveraging inter- 082

channel dependencies to minimize performance 083

1

0 20 40 60 80 100 120

0

20

40

60

80

100

120
100000

0

100000

200000

300000

400000

500000

(a) Layer 1, Head 0

0 20 40 60 80 100 120

0

20

40

60

80

100

120
100000

50000

0

50000

100000

150000

(b) Layer 15, Head 0

0 20 40 60 80 100 120

0

20

40

60

80

100

120 75000

50000

25000

0

25000

50000

75000

(c) Layer 31, Head 0

Figure 1: This figure illustrates the inter-channel interaction terms., where heatmapi,j = kT
i kj × qT

i qj . We can
observe that a large number of maximum and minimum values are scattered on the off-diagonal, and as depth
increases, these values gradually cluster on the diagonal and in specific rows and columns. Input are randomly
selected samples from the Qasper dataset.

loss. In addition, we design a strategy to directly084

identify and preserve important channels, effec-085

tively mitigating the negative impact of query dis-086

tribution shift. Extensive experiments on LLaMA-087

3-8B (Touvron et al., 2023) and Mistral-7B (Jiang088

et al., 2023) demonstrate consistent improvements089

across a range of evaluation metrics.090

2 Related Work091

While numerous studies have explored methods092

for reducing the KV cache, this subsection briefly093

reviews token-level and channel-level pruning tech-094

niques, as well as KV cache quantization.095

Token-level: These methods retain the KV096

cache for more important tokens while discard-097

ing those of less important ones. Some of these098

methods operate only during the model’s prefill-099

ing stage, while others are applied during both100

prefilling and decoding stages. StreamingLLM101

(Xiao et al., 2024b) retains initial tokens as atten-102

tion sinks and uses a sliding window for recent103

tokens. H2O (Zhang et al., 2023) preserves tokens104

that have historically accumulated high attention105

scores, as well as recent tokens. SnapKV (Li et al.,106

2024) applies a one-dimensional convolution to to-107

ken attention scores, considering the importance of108

both the token itself and its neighbors. PyramidKV109

(Cai et al., 2024) dynamically adjusts the KV cache110

size for different layers, allocating more cache to111

lower layers and less to higher layers. CAKE (Qin112

et al., 2025) assesses layer-specific preferences by113

considering attention dynamics in both spatial and114

temporal dimensions, allocates rational cache size115

for layers accordingly, and manages memory con-116

straints in a cascading manner. SCOPE (Wu et al.,117

2024) observes that different tasks require varying118

degrees of compression during the prefilling and 119

decoding stages. It dynamically allocates different 120

KV cache sizes for the two stages and separately 121

perform KV cache optimization during the prefill 122

and decoding phases. 123

Channel-level: LoRC (Zhang et al., 2024a) iden- 124

tifies the low-rank characteristics of KV cache ma- 125

trices. They propose a low-rank approximation of 126

KV weight matrices, allowing for plug-in integra- 127

tion with existing transformer-based LLMs without 128

model retraining. THINK (Xu et al., 2024) discov- 129

ered a highly imbalanced distribution across the 130

channels of the key cache. Thus, they designed an 131

algorithm that depends on query values to prune 132

less important channels. 133

KV Cache Quantization: To alleviate the mem- 134

ory bottleneck during inference, several studies 135

have explored quantizing the key and value caches 136

into low-bit representations. SmoothQuant (Xiao 137

et al., 2023) demonstrates that the KV cache can 138

be quantized to 8-bit precision with negligible per- 139

formance loss, offering a practical trade-off be- 140

tween efficiency and accuracy. Building on this, 141

Q-Hitter (Zhang et al., 2024b) proposes a selection 142

mechanism leveraging accumulated attention im- 143

portance and token-level quantization sensitivity to 144

identify critical tokens that require higher precision 145

to preserve model generalization. KIVI (Liu et al., 146

2024) highlights the asymmetric roles of key and 147

value caches in attention computation, applying 148

per-channel quantization to key representations to 149

maintain attention selectivity, and per-token quanti- 150

zation to value representations to preserve content 151

fidelity. 152

The Interdependence-Aware KV Cache Pruning 153

approach introduced in our paper works alongside 154

2

Method Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PRe PCount Lcc RB-P

LLaMA-3-8B-Instruct, KV-size 256

SnapKV
+Think (0.5) 23.03 18.80 34.35 40.89 30.30 20.61 20.10 21.92 22.10 56.00 89.57 39.31 69.50 5.93 59.87 58.38 38.17
+IAP (0.5) 24.20 19.15 34.99 40.63 30.82 20.75 20.02 22.07 21.94 56.50 89.71 39.41 68.75 5.62 59.97 57.86 38.27
+THINK (0.6) 24.03 17.20 36.31 40.06 30.90 19.37 19.55 21.75 21.39 49.50 89.19 37.72 69.50 5.89 57.31 57.95 37.35
+IAP (0.6) 23.30 17.09 36.64 40.31 30.61 20.20 19.50 21.91 20.82 46.50 89.05 38.34 68.67 5.89 58.33 56.86 37.13

LLaMA-3-8B-Instruct, KV-size 512

SnapKV
+Think (0.5) 24.61 25.54 36.97 41.51 32.39 20.83 21.37 22.70 23.79 69.00 90.31 39.85 69.50 5.84 61.37 59.22 40.30
+IAP (0.5) 25.06 25.84 37.82 42.19 32.25 20.77 21.48 22.50 23.69 69.50 90.39 40.52 69.83 5.79 61.84 58.52 40.50
+THINK (0.6) 24.84 23.49 37.48 40.42 33.15 19.43 20.66 22.10 22.73 59.00 90.37 37.31 69.50 6.39 59.62 58.72 39.07
+IAP (0.6) 25.12 22.12 39.73 40.28 32.09 20.00 21.07 21.81 22.63 59.00 90.12 38.40 69.50 6.04 59.37 58.83 39.13

LLaMA-3-8B-Instruct, KV-size 1024

SnapKV
+Think (0.5) 25.26 27.06 39.58 42.74 32.39 20.1 23.41 22.75 25.00 71.50 90.43 40.74 69.25 5.38 62.38 59.84 41.11
+IAP (0.5) 25.36 28.59 38.56 42.95 32.40 20.31 23.27 22.73 25.24 71.50 90.43 40.51 69.00 5.49 61.83 59.62 41.11
+THINK (0.6) 24.40 27.47 38.03 42.10 31.50 20.50 21.72 22.52 23.71 69.50 90.12 38.57 69.50 6.26 58.92 59.49 40.27
+IAP (0.6) 25.13 26.36 37.78 42.05 31.84 20.91 22.19 22.67 23.91 70.00 89.87 39.18 68.92 5.81 60.01 59.17 40.36
H2O
+THINK (0.5) 25.27 20.57 37.47 40.91 31.27 18.79 22.43 22.38 24.65 46.50 90.39 40.59 69.25 5.09 61.56 58.42 38.47
+IAP (0.5) 25.48 23.15 36.85 41.42 31.11 18.98 22.06 22.56 24.84 45.50 90.28 40.93 69.33 5.45 61.39 58.25 38.60
+THINK (0.6) 24.26 17.37 37.03 38.51 29.93 19.99 21.23 22.22 23.43 44.5 90.16 39.29 69.50 5.84 58.23 58.84 37.52
+IAP (0.6) 24.30 19.14 36.79 40.18 29.71 19.02 21.24 22.13 23.01 41.50 89.89 38.57 69.25 5.46 58.59 57.68 37.28

LLaMA-3-8B-Instruct, KV-size 2048

SnapKV
+Think (0.5) 24.84 30.26 39.21 43.22 33.29 21.04 24.93 23.09 26.04 73.00 90.37 41.21 69.25 5.49 62.13 59.72 41.69
+IAP (0.5) 24.87 30.27 39.47 43.59 33.22 21.51 25.29 22.92 26.15 73.50 90.37 40.59 69.08 5.54 61.93 59.89 41.76
+THINK (0.6) 24.64 28.57 40.54 41.17 31.07 21.51 23.32 23.04 24.94 72.00 90.36 38.67 69.50 6.07 59.32 59.28 40.87
+IAP (0.6) 25.31 28.63 38.80 42.13 31.40 21.21 23.69 23.24 24.75 72.50 89.86 38.69 69.25 5.50 59.97 59.50 40.90
H2O
+THINK (0.5) 25.01 25.59 38.79 42.27 31.26 20.46 23.71 23.34 25.64 53.00 90.37 41.29 69.50 5.20 61.70 59.16 39.77
+IAP (0.5) 25.77 25.73 39.74 43.41 30.44 20.62 23.84 23.24 25.88 53.00 90.37 41.19 69.50 5.32 61.52 59.02 39.91
+THINK (0.6) 24.43 22.09 38.73 40.53 29.64 20.71 22.20 22.64 24.56 49.50 90.41 39.77 69.20 5.76 59.24 59.23 38.66
+IAP (0.6) 24.42 22.99 39.55 41.23 30.37 20.65 22.17 22.55 24.47 49.00 89.61 39.12 69.50 5.83 60.06 58.25 38.73

Table 1: Comparison of our method against THINK on the LongBench dataset using LLaMA-3-8B as the base
model. Experiments were conducted with SnapKV and H2O as distinct preceding token-level methods, for KV
cache sizes of 256, 512, 1024, and 2048, and pruning ratios λ of 0.5 and 0.6. The best results are highlighted in
bold.

existing token-level pruning and quantization meth-155

ods, enabling their combination to further reduce156

memory requirements while maintaining model157

performance. Unlike previous channel-level prun-158

ing techniques, our work emphasizes the critical159

nature of inter-channel interactions in KV cache160

pruning and develops a graph-based algorithm to161

strategically identify channels for pruning.162

3 Method163

In this section, we provide a detailed description164

of our proposed method. We begin by establishing165

the notation that will be used throughout.166

Let Wq,Wk,Wv ∈ Rd×d denote the weight167

matrices for query, key, and value projections in168

the attention module. Let Xp ∈ RLp×d repre-169

sent the token matrix for input prompts, where170

Lp is the prompt length. The key cache and171

query matrix for the entire prompt sequence are172

Kp = XpWk,Qp = XpWq ∈ RLp×d . Adding173

the superscript obs indicates the last Lobs rows of174

these matrices, which is referred to as the observa-175

tion window, such as Xobs
p ,Kobs

p ,Qobs
p ∈ RLobs×d.176

3.1 Preliminary 177

Previous research (Xu et al., 2024; Liu et al., 2024; 178

Xiao et al., 2024a) has found that in the Key cache, 179

only a subset of channels have large values, while 180

others have smaller values. This implies that these 181

significant channels have a more substantial impact 182

compared to others, suggesting that channel prun- 183

ing of the key cache can save memory space. At 184

the -th generation step, we obtain token xt. The 185

query and key vectors for this token are then com- 186

puted as qt = Wqx
t and kt = Wkx

t, respectively. 187

Subsequently, the key cache Kt is formed by con- 188

catenating kt with the previous cache Kt−1. The 189

channels to be pruned can then be found by opti- 190

mizing the following equation: 191

min
S

∥∥∥qtKtT − qt(KtS)T
∥∥∥
F

s.t. Trace(S) = ⌊(1− λ)d⌋
S = diag(s1, . . . , sD), sj ∈ {0, 1}

(1) 192

where λ is the channel pruning ratio, and S is a 193

column selection matrix where diagonal elements 194

of 1 correspond to the channels to be retained. 195

To actually reduce memory utilization, the cor- 196

responding S in each generation step should be the 197

3

0 20 40 60 80 100 120
Channel

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5
M

ea
n

Mean
Std

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
d

(a) Layer 0, Head 0

0 20 40 60 80 100 120
Channel

10

8

6

4

2

0

2

4

M
ea

n

Mean
Std

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

St
d

(b) Layer 15, Head 0

0 20 40 60 80 100 120
Channel

2

0

2

4

6

8

M
ea

n

Mean
Std

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

St
d

(c) Layer 31, Head 0

Figure 2: This figure displays the mean (blue) and standard deviation (red) for each channel of the query vectors
within the observation window across different layers. It can be seen that many channels have a mean close to 0, but
the standard deviation is large, indicating that the variation in that channel is unstable. This makes it difficult to
substitute for the overall query values by only using the query vectors within the observation window.

same; otherwise, we would still need to store the198

complete Key cache for subsequent steps. Addi-199

tionally, this structured pruning can achieve com-200

putational acceleration. This means that S should201

be computed at an earlier stage and this fixed S202

should be used in subsequent processes.203

SnapKV confirmed that during the LLM decod-204

ing process, the attention pattern of newly gener-205

ated tokens on the prompts is very similar to the206

observation window Qobs
p . Therefore, THINK re-207

formulated the optimization problem as:208

min
S

∥∥∥Qobs
p KT

p −Qobs
p SKT

p

∥∥∥
F

s.t Trace(S) = ⌊(1− λ)d⌋
S = diag(s1, . . . , sD), sj ∈ {0, 1}

(2)209

Thus, THINK obtains S during the prefilling210

stage. The smaller the observation window, the211

more computational savings can be achieved. To212

solve this optimization problem, THINK scores213

each channel. The score for channel j is scorej =214

∥Qobs
p [:, j]Kobs

p [:, j]T ∥F , and the channels with the215

highest scores are retained.216

3.2 Methodology217

The optimization equation Eq.(2) can actually be a218

special case of CR decomposition (Drineas et al.,219

2006): assume W can be decomposed into the220

form W1W2, and Sk is a column selection matrix221

that selects k columns, approximating the original222

equation as W ≈W1SkS
T
kW2. Eq.(2) signifies223

performing a CR decomposition on W = Qobs
p KT

p .224

This is achieved by selecting k columns of Qobs
p225

and k rows of KT
p using Sk, where k = ⌊(1 −226

λd)⌋. Furthermore, Sk is a square matrix, and227

consequently, SkS
T
k = Sk.228

Let A = {i|si = 1}, B = {i|si = 0}, with 229

A ∩ B = ∅, represent the index sets of retained 230

and discarded channels, respectively. Let qi,ki de- 231

note the i-th columns of Qobs
p and Kp, respectively. 232

Then we can obtain(See Appendix A): 233∥∥∥Qobs
p KT

p −Qobs
p SKT

p

∥∥∥2
F

=
∑
i∈B

∑
j∈B

kT
i kj × qT

i qj
(3) 234

Considering a single i in set B, the error it intro- 235

duces is: 236

∆i =
∑
j∈B

kT
i kj × qT

i qj

=
∑

j∈B−i

kT
i kj × qT

i qj + ∥qik
T
i ∥2F

(4) 237

Here, the first term describes the impact of in- 238

teractions between channels and the second term 239

describes the impact of the individual channel itself 240

on the error (which is the scoring method consid- 241

ered in THINK). If ki and qi were random vectors, 242

the dot product of these random vectors in high- 243

dimensional space tends towards 0, indicating al- 244

most no interaction between channels (Van Handel, 245

2014). However, ki and ki are generated by large 246

models, so the channels cannot be completely ran- 247

dom. Secondly, since the ki vector only intercepts 248

tokens in the observation window, its length is not 249

large and does not fall into the high-dimensional 250

category. 251

As shown in Fig. 1, there are still many regions 252

with extremely large or small values, indicating that 253

inter-channel interactions are non-negligible and 254

play a significant role in performance degradation. 255

4

01

(a) LLaMA-8b, KV size 512, λ=0.5 (b) LLaMA-8b, KV size 512, λ=0.6

(c) Mistral-7b, KV size 512, λ=0.5 (d) Mistral-7b, KV size 512, λ=0.6

Figure 3: This figure shows the performance of our method relative to THINK, in optimizing equation Eq.(2).
Different colored curves represent different input samples(20 samples in total). The x-axis represents the depth of
the decode layer, and the y-axis represents how much smaller our method’s reconstructed matrix error compared to
THINK. LLaMA’s test samples were randomly selected from the NrtvQA dataset, while Mistral’s test samples were
from the Qasper dataset.

Furthermore, we observe that as the model depth256

increases, these extreme values tend to concentrate257

along the diagonal or in specific rows and columns,258

suggesting that channel correlations diminish pro-259

gressively in deeper layers.260

This optimization problem can be equivalently261

transformed into a graph problem: a complete undi-262

rected graph G = (V,E) with d vertices, |V | = d.263

Each node has its own weight wi
v = ∥qik

T
i ∥2F ,264

∀i ∈ V , and each edge also has a weight we
(i,j) =265

2×kT
i kj×qT

i qj , ∀(i, j) ∈ E. The problem is how266

to select a subgraph G′ with λd nodes from G such267

that the sum of weights of G′ is minimized. Ulti-268

mately, the nodes in G′ correspond to the channels269

that need to be pruned.270

We designed a greedy algorithm (Algorithm271

1) for this problem that considers edge weights.272

This algorithm initializes the scores of all chan-273

nels (Score) using the inherent weights of the274

nodes. In each selection process, the node j with275

the minimum score is selected and added to the276

discard set Drop, and Score is updated using the277

edge weights between this node and the remaining278

nodes. 279

Algorithm 1 Search Algorithm Considering Inter-
Channel Interactions
Require: Inputs Qp,Kp ∈ RLp×d, Prun ratio λ,

Observation size Lobs, Recent size Lr.
Ensure: Drop: Set of pruned channel indices.

1: Initiate Score ← ∅, Drop ← ∅,
drop_num = ⌊λd⌋

2: for i from 0 to d− 1 do
3: qi = Qp[-Lobs:,i], ki = Kp[:Lp − Lr,i]
4: Score = Score ∪ {(i, ∥qik

T
i ∥2F)}

5: end for
6: for i from 1 to drop_num do
7: j, sj ← Get_Min_Score(Score).
8: Score← Score \ {(j, sj)}.
9: Drop← Drop ∪ {j}

10: for every (k, sk) in Score do
11: sk ← sk + 2× kT

k kj × qT
k qj .

12: end for
13: end for
14: return Drop

5

Method Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PRe PCount Lcc RB-P

Mistral-7B-Instruct-v0.2, KV-size 256

SnapKV
+Think (0.5) 21.73 23.90 47.66 37.66 22.15 15.58 21.77 23.20 22.62 59.00 85.67 40.94 83.95 2.43 54.63 50.77 38.35
+IAP (0.5) 22.84 23.50 47.23 37.79 21.96 16.58 21.60 22.70 22.96 59.00 85.60 41.02 83.28 3.06 54.17 51.23 38.41
H2O
+THINK (0.5) 22.39 23.38 42.04 29.44 21.17 12.94 22.08 23.07 22.77 40.00 83.86 40.81 83.40 3.22 52.44 49.87 35.81
+IAP (0.5) 21.63 22.92 43.04 29.82 22.23 13.47 22.42 23.02 22.93 40.50 83.88 41.11 81.28 3.09 52.05 49.91 35.83

Mistral-7B-Instruct-v0.2, KV-size 512

SnapKV
+Think (0.5) 24.51 28.54 48.76 38.30 24.30 17.10 23.31 24.07 24.42 66.00 85.85 41.94 86.07 3.02 56.20 53.24 40.35
+IAP (0.5) 24.41 27.81 49.93 38.57 23.71 17.29 23.58 23.56 24.37 66.50 85.90 41.91 87.36 3.00 56.19 53.37 40.47
H2O
+THINK (0.5) 22.99 25.73 44.43 31.85 23.35 13.90 23.52 22.77 24.09 41.50 85.55 41.42 83.45 2.84 54.65 50.90 37.06
+IAP (0.5) 22.81 24.85 43.97 30.99 23.37 14.58 23.36 22.97 24.13 41.00 85.38 41.82 84.32 3.06 54.55 50.66 36.99

Mistral-7B-Instruct-v0.2, KV-size 1024

SnapKV
+Think (0.5) 25.68 29.97 49.36 40.64 24.98 19.49 25.62 23.92 26.12 69.5 86.67 42.26 85.39 2.89 57.26 53.58 41.46
+IAP (0.5) 25.77 30.16 49.71 40.80 24.92 19.40 25.19 23.93 25.83 69.50 86.40 42.15 85.68 2.81 57.35 53.79 41.46
H2O
+THINK (0.5) 24.15 28.25 46.66 35.52 24.10 14.63 24.88 23.26 25.72 45.00 86.16 43.09 83.7 3.41 55.90 52.74 38.57
+IAP (0.5) 23.88 27.95 46.10 35.60 24.10 15.18 24.76 23.31 25.65 44.50 86.64 42.91 84.20 3.07 56.21 52.20 38.52

Table 2: Comparison of our method against THINK on the LongBench dataset using Mistral-7B-Instruct as the base
model. Experiments were conducted with SnapKV and H2O as distinct preceding token-level methods, for KV
cache sizes of 256, 512 and 1024, and pruning ratios λ of 0.5. The best results are highlighted in bold.

3.3 Protecting Salient Channels280

The method proposed in the preceding sections is281

entirely based on Eq.(2), which utilizes Qobs
p for282

optimization. However, the issue is that during the283

decoding stage, the distribution of new qt may dif-284

fer significantly from the q in Qobs
p . As shown in285

Fig. 2, in many channels of the query vector, the286

standard deviation is very large, even much larger287

than the mean. This implies that optimizing Equa-288

tion 2 does not necessarily yield a good solution289

for Eq.(1).290

Inspired by studies such as LLM.int8()291

(Dettmers et al., 2022) and AWQ (Lin et al., 2024),292

we directly retain channels in Kp that have a large293

norm, excluding them from the pruning process. If294

these large-norm channels are prematurely elimi-295

nated due to small interaction terms, it could lead296

to a significant reconstruction loss for future, newly297

appearing qt. Therefore, it is necessary to preserve298

them.299

We mark channels that exceed the mean plus300

one standard deviation as important channels. The301

proportion of these channels, p ∈ (0, 1), can be302

very large or very small. Thus, it should be con-303

strained by two thresholds 0 < a < b < 1, and304

we take premain = min(max(p, a), b) as the final305

limit. Under the premise of having the same obser-306

vation window, the larger the kv size, the smaller307

the proportion Qobs
p occupies in the total. A smaller308

sample size implies greater bias, so both thresholds309

a and b should be increased with long observation310

window size.311

4 Experiments 312

4.1 Settings 313

Benchmark Datasets. We evaluate our method 314

on the LongBench (Bai et al., 2024) dataset and 315

compare it with state-of-the-art KV cache compres- 316

sion techniques. The LongBench dataset is widely 317

used for testing KV cache compression techniques 318

and is designed to assess a model’s comprehension 319

capabilities in long-context scenarios. It comprises 320

17 sub-datasets across 6 different tasks, covering 321

single-document QA, multi-document QA, sum- 322

marization, few-shot learning, synthetic tasks, and 323

code completion. These datasets all feature very 324

long prompts, posing challenges for large models 325

to condense and extract key information. 326

Baseline. We use LLaMA-3-8B-Instruct and 327

Mistral-7B-Instruct-v0.2 as our base test mod- 328

els, and select THINK as the baseline approach 329

for experiments. THINK proposed an effective 330

method for channel-wise KV cache reduction. Both 331

THINK and IAP require the use of token-level com- 332

pression methods to reduce prompt tokens before- 333

hand. Here, we choose the token-level compression 334

methods H2O and SnapKV: the former is designed 335

to reduce memory usage by dynamically balanc- 336

ing recent tokens with Heavy Hitter (H2) tokens, 337

while the latter introduces an automated compres- 338

sion mechanism that selects clustered, important 339

KV positions for each attention head, optimizing 340

the KV cache without sacrificing performance. We 341

conduct experiments using NVIDIA RTX 3090. 342

Implementation Details. LLaMA-3-8B-Instruct 343

6

Method Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PRe PCount Lcc RB-P

KIVI(4/4) 19.52 19.45 32.96 29.96 26.86 10.10 24.10 20.73 25.63 63.00 84.13 41.34 9.00 4.50 58.89 53.21 32.72
+IAP(0.4) 19.33 18.33 31.79 29.46 27.12 9.60 23.86 20.63 26.19 63.00 83.51 41.31 7.00 4.00 58.34 51.76 32.20
+IAP(0.5) 19.29 18.30 30.65 28.56 24.02 9.08 23.95 20.50 25.64 63.00 83.12 41.83 5.50 3.50 57.48 48.53 31.43

Table 3: Performance evaluation of combining IAP with KIVI. 4/4 indicates that both the key and value are quantized
using 4 bits. IAP(0.4) indicates using the IAP method with a pruning rate of 0.4.

Recent Size Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PRe PCount Lcc RB-P

KV-size 1024, λ = 0.5

32 25.64 27.71 40.05 42.63 32.91 20.27 23.42 22.45 25.50 71.50 90.43 40.21 69.50 5.18 62.27 59.56 41.20
64 26.00 27.00 39.03 42.87 31.79 19.58 23.63 22.38 25.39 71.50 90.43 40.23 68.92 5.83 61.90 60.36 41.05

KV-size 2048, λ = 0.5

32 25.05 29.83 38.92 43.56 33.01 21.1 24.87 23.31 26.60 73.50 90.37 40.79 69.08 5.75 61.47 58.65 41.61
64 24.66 30.44 39.53 43.41 32.74 21.30 25.04 22.89 26.32 72.50 90.37 40.84 69.50 6.01 62.01 58.89 41.65

Table 4: Performance comparison of key cache pruning with varying recent-sizes(without protecting salient weights).
We evaluated the performance for various Recent Sizes when the KV cache size was set to 1024 and 2048.

and Mistral-7B-Instruct-v0.2 are directly obtained344

from HuggingFace (Wolf et al., 2020). For345

SnapKV, we set the kernel size to 7 and the win-346

dow size to 32, and used max pooling as the347

pooling method. Additionally, we chose not to348

prune the most recent tokens and newly gener-349

ated keys, as these tokens have a significant im-350

pact on performance. Given their small number,351

they do not affect the compression rate. Due to352

the presence of these unpruned tokens, we per-353

formed an alignment operation on Eq.(2), adjusting354

Kp to Kp[: −recent_size] to ignore these tokens,355

thereby excluding them from compression. This356

adjustment ensures that the performance-critical to-357

kens are preserved, maintaining the integrity of the358

model’s output while still achieving a satisfactory359

compression ratio.360

4.2 Results361

Reconstruction Error Comparison: In Fig. 3,362

we compare the solution quality of our proposed363

method IAP and THINK on Eq. (2) using recon-364

struction error as the evaluation metric. We ran-365

domly sampled several examples from the Qasper366

dataset for this comparison. It can be observed367

that in the shallow layers of large language mod-368

els, our method significantly outperforms THINK369

in terms of reconstruction error, highlighting the370

critical importance of inter-channel interactions371

in KV cache compression. In deeper layers, our372

method still achieves lower reconstruction errors373

than THINK, though the improvements are less pro-374

nounced. This trend is consistent across different375

model choices and various settings of λ.376

These observations align with the results shown377

in Fig. 1, where we hypothesize that channel inter-378

dependence is stronger in shallower layers, leading 379

to greater gains when taken into account. In con- 380

trast, while interdependence still exists in deeper 381

layers, it is relatively weaker, hence the reduced 382

benefit. Overall, Fig. 1 confirms the presence of 383

inter-channel dependencies, validating the motiva- 384

tion behind this work, and Fig. 3 demonstrates 385

that incorporating inter-channel interactions can 386

effectively reduce reconstruction error, thereby ver- 387

ifying the effectiveness of our proposed method. 388

Results on LongBench: Tab. 1 and Tab. 2 389

present comparative experimental results for IAP 390

and THINK on the LongBench dataset, using the 391

LLaMA-3-8B and Mistral-7B models, respectively. 392

SnapKV and H2O were employed as distinct pre- 393

ceding token-level pruning methods. 394

When LLaMA-3-8B was the base model, IAP 395

demonstrated superior performance over THINK, 396

irrespective of the preceding token-level prun- 397

ing method applied. IAP achieved higher aver- 398

age scores in most experimental settings and also 399

scored higher on a majority of sub-tasks. For in- 400

stance, with a KV cache size of 512 and λ=0.5, IAP 401

outperformed THINK on 11 out of 16 sub-tasks, 402

and its average score of 40.50 surpassed THINK’s 403

40.30. 404

With Mistral-7B as the base model, IAP consis- 405

tently achieved higher average scores than THINK 406

across various experimental setups when SnapKV 407

was used as the preceding pruning method. For 408

example, with a KV cache size of 256 and λ=0.5, 409

IAP’s average score of 38.41 exceeded THINK’s 410

38.35. However, when H2O was the preceding 411

pruning method, the performance difference be- 412

tween IAP and THINK became marginal. For in- 413

7

[a,b] Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg
NrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PRe PCount Lcc RB-P

KV-size 512, λ = 0.6

[0, 0] 25.12 22.12 39.73 40.28 32.09 20.0 21.07 21.81 22.63 59.0 90.12 38.4 69.5 6.04 59.37 58.83 39.13
[3, 7] 25.18 23.28 38.12 40.14 31.71 20.33 20.71 22.28 22.67 59.0 90.37 38.6 69.5 5.92 58.99 58.4 39.08

KV-size 1024, λ = 0.6

[0, 0] 25.15 25.32 39.08 41.48 31.19 20.33 22.24 22.89 23.87 69.0 89.91 38.11 69.17 6.03 59.82 59.09 40.17
[3, 7] 25.13 26.36 37.78 42.05 31.84 20.91 22.19 22.67 23.91 70.0 89.87 39.18 68.92 5.81 60.01 59.17 40.36

KV-size 2048, λ = 0.6

[0, 0] 24.51 27.75 39.97 42.25 32.8 20.55 23.21 22.99 24.73 72.5 90.36 38.04 68.54 5.75 58.84 58.08 40.68
[3, 7] 25.31 28.63 38.8 42.13 31.4 21.21 23.69 23.24 24.75 72.5 89.86 38.69 69.25 5.5 59.97 59.5 40.90

Table 5: Performance comparison of key cache pruning with varying [a,b]. We tested the results for KV cache sizes
of 512, 1024, and 2048, where the hyperparameter pair [a, b] was set to [0, 0] and [3, 7].

stance, at a KV cache size of 256 and λ=0.5, IAP’s414

average score (35.83) was only 0.02 points higher415

than THINK’s (35.81). Conversely, with a KV416

cache size of 1024, IAP’s average score was 0.05417

points lower than THINK’s. A possible reason418

for this discrepancy is that SnapKV selects tokens419

using 1D convolution and pooling, while H2O con-420

siders each token individually. Consequently, the421

tokens selected by H2O exhibit greater diversity,422

potentially leading to a larger deviation between423

the keys in the observation window and the overall424

key distribution.425

4.3 Compatibility with Quantization Methods426

Quantizing the KV cache into lower-precision for-427

mats is also a crucial approach to reducing memory428

overhead. In this subsection, we explore whether429

the proposed Interdependence-Aware KV Cache430

Pruning (IAP) can be effectively integrated with ex-431

isting quantization techniques such as KIVI, achiev-432

ing significant memory savings while maintaining433

model accuracy. Such compatibility would further434

extend the practical applicability of our method.435

As shown in Tab. 3, we integrate IAP with KIVI436

and report the performance. Specifically, we take437

KIVI with 4-bit quantization for both keys and438

values as the baseline, and combine it with IAP439

using pruning ratios of 0.4 and 0.5. Under these440

settings, we achieve a 20% to 25% reduction in441

KV cache size, with only slight degradation in the442

average performance.443

Interestingly, on the MultiNews Summarization444

task, IAP not only reduces memory usage but445

also brings a slight improvement in performance:446

IAP(0.4) achieves a score of 26.19, outperforming447

the KIVI baseline score of 25.63.448

4.4 Ablation Study449

Impact of Varying Windows Sizes: Tab. 4 il-450

lustrates the model’s performance across a range451

of window sizes. It is recognized that increasing 452

the window size can produce an effect compara- 453

ble to that of explicitly protecting important chan- 454

nels. Consequently, to isolate the distinct impact 455

of window size modifications, this analysis was 456

conducted without the concurrent application of 457

important channel protection strategies. The re- 458

sults presented indicate that for a KV cache size of 459

1024, simply expanding the window size does not 460

yield a discernible improvement in performance. 461

In contrast, when the KV cache size is increased 462

to 2048, a slight performance enhancement is ob- 463

served with larger window sizes. 464

Influence of [a, b] Parameter Configuration on 465

Performance. Tab. 5 details the impact of different 466

[a,b] parameter pair configurations on model per- 467

formance across varying KV cache sizes. The re- 468

sults clearly demonstrate a dependency between the 469

optimal [a,b] settings and the available KV cache 470

size. Specifically, for larger KV cache configura- 471

tions, such as those with sizes of 1024 and 2048, 472

a distinct trend emerges: employing larger values 473

within the [a,b] pair yields noticeable performance 474

enhancements. Conversely, this trend inverts when 475

operating with smaller KV cache sizes. 476

5 Conclusion 477

This paper proposes a channel-level pruning 478

method for the KV cache, viewing the channel 479

selection task as a CR decomposition problem. We 480

further analyze how inter-channel interactions con- 481

tribute to performance degradation and reformulate 482

the optimization as a graph-based theory problem 483

that explicitly models these dependencies. More- 484

over, we observe instability in the query matrix 485

within the observation window and mitigate this 486

issue by retaining key channels deemed important. 487

Extensive experiments on the LongBench dataset 488

show that our method achieves substantial perfor- 489

mance improvements over existing approaches. 490

8

6 Limitations491

Choice of Hyperparameters: For different KV-492

sizes, our method requires selecting specific values493

for [a, b] to enhance performance. In this paper, we494

empirically set different values of [a, b] for each KV495

size, which lacks flexibility. However, designing an496

adaptive approach to automatically determine the497

optimal [a, b] pair for varying KV sizes remains an498

open and worthwhile direction for future research.499

FlashAttention Support: In our method, the key500

cache consists of two parts with different numbers501

of key-value channels: a pruned part and an un-502

pruned part, with the former being predominant.503

However, FlashAttention does not support process-504

ing such key matrices. During computation, we505

still need to convert the key cache back to its origi-506

nal shape before calling FlashAttention. Although507

this remains a common limitation of current KV508

cache pruning methods, developing pruning strate-509

gies that integrate more effectively with accelera-510

tion techniques such as FlashAttention represents a511

promising avenue for future research.512

References513

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama514
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,515
Diogo Almeida, Janko Altenschmidt, Sam Altman,516
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-517
cal report. arXiv preprint arXiv:2303.08774.518

Joshua Ainslie, James Lee-Thorp, Michiel De Jong,519
Yury Zemlyanskiy, Federico Lebrón, and Sumit Sang-520
hai. 2023. Gqa: Training generalized multi-query521
transformer models from multi-head checkpoints.522
arXiv preprint arXiv:2305.13245.523

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,524
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao525
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,526
and Juanzi Li. 2024. Longbench: A bilingual, mul-527
titask benchmark for long context understanding.528
Preprint, arXiv:2308.14508.529

William Brandon, Mayank Mishra, Aniruddha530
Nrusimha, Rameswar Panda, and Jonathan Ragan-531
Kelley. 2024. Reducing transformer key-value532
cache size with cross-layer attention. In The Thirty-533
eighth Annual Conference on Neural Information534
Processing Systems.535

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu,536
Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,537
Baobao Chang, Junjie Hu, and 1 others. 2024. Pyra-538
midkv: Dynamic kv cache compression based on539
pyramidal information funneling. arXiv preprint540
arXiv:2406.02069.541

DeepSeek-AI. 2025. Deepseek-v3 technical report. 542
Preprint, arXiv:2412.19437. 543

Tim Dettmers, Mike Lewis, Younes Belkada, and 544
Luke Zettlemoyer. 2022. Llm.int8(): 8-bit matrix 545
multiplication for transformers at scale. Preprint, 546
arXiv:2208.07339. 547

Petros Drineas, Ravi Kannan, and Michael W Mahoney. 548
2006. Fast monte carlo algorithms for matrices i: 549
Approximating matrix multiplication. SIAM Journal 550
on Computing, 36(1):132–157. 551

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 552
Michael W Mahoney, Sophia Shao, Kurt Keutzer, and 553
Amir Gholami. 2024. Kvquant: Towards 10 million 554
context length llm inference with kv cache quanti- 555
zation. Advances in Neural Information Processing 556
Systems, 37:1270–1303. 557

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 558
sch, Chris Bamford, Devendra Singh Chaplot, Diego 559
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 560
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 561
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 562
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 563
and William El Sayed. 2023. Mistral 7b. Preprint, 564
arXiv:2310.06825. 565

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 566
Brown, Benjamin Chess, Rewon Child, Scott Gray, 567
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 568
Scaling laws for neural language models. arXiv 569
preprint arXiv:2001.08361. 570

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat 571
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, 572
Patrick Lewis, and Deming Chen. 2024. Snapkv: 573
Llm knows what you are looking for before gener- 574
ation. Advances in Neural Information Processing 575
Systems, 37:22947–22970. 576

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, 577
Wei-Ming Chen, Wei-Chen Wang, Guangxuan 578
Xiao, Xingyu Dang, Chuang Gan, and Song Han. 579
2024. Awq: Activation-aware weight quantization 580
for llm compression and acceleration. Preprint, 581
arXiv:2306.00978. 582

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, 583
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, 584
and Xia Hu. 2024. Kivi: A tuning-free asymmet- 585
ric 2bit quantization for kv cache. arXiv preprint 586
arXiv:2402.02750. 587

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan 588
Fan, Ke Cheng, Weiyao Lin, and Jianguo Li. 2025. 589
Cake: Cascading and adaptive kv cache eviction with 590
layer preferences. arXiv preprint arXiv:2503.12491. 591

Noam Shazeer. 2019. Fast transformer decod- 592
ing: One write-head is all you need. Preprint, 593
arXiv:1911.02150. 594

9

https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan595
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,596
Damien Vincent, Zhufeng Pan, Shibo Wang, and 1597
others. 2024. Gemini 1.5: Unlocking multimodal598
understanding across millions of tokens of context.599
arXiv preprint arXiv:2403.05530.600

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier601
Martinet, Marie-Anne Lachaux, Timothée Lacroix,602
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal603
Azhar, and 1 others. 2023. Llama: Open and effi-604
cient foundation language models. arXiv preprint605
arXiv:2302.13971.606

Ramon Van Handel. 2014. Probability in high dimen-607
sion. Lecture Notes (Princeton University), 2(3):2–3.608

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien609
Chaumond, Clement Delangue, Anthony Moi, Pier-610
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,611
Joe Davison, Sam Shleifer, Patrick von Platen, Clara612
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le613
Scao, Sylvain Gugger, and 3 others. 2020. Hugging-614
face’s transformers: State-of-the-art natural language615
processing. Preprint, arXiv:1910.03771.616

Jialong Wu, Zhenglin Wang, Linhai Zhang, Yilong Lai,617
Yulan He, and Deyu Zhou. 2024. Scope: Optimizing618
key-value cache compression in long-context genera-619
tion. arXiv preprint arXiv:2412.13649.620

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,621
Julien Demouth, and Song Han. 2023. Smoothquant:622
Accurate and efficient post-training quantization for623
large language models. In International Conference624
on Machine Learning, pages 38087–38099. PMLR.625

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao626
Wu, Julien Demouth, and Song Han. 2024a.627
Smoothquant: Accurate and efficient post-training628
quantization for large language models. Preprint,629
arXiv:2211.10438.630

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song631
Han, and Mike Lewis. 2024b. Efficient streaming632
language models with attention sinks. In The Twelfth633
International Conference on Learning Representa-634
tions.635

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang,636
Xudong Lu, Aojun Zhou, Amrita Saha, Caiming637
Xiong, and Doyen Sahoo. 2024. Think: Thinner638
key cache by query-driven pruning. arXiv preprint639
arXiv:2407.21018.640

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang641
Wang, Hao Cheng, Chao Zhang, and Yelong Shen.642
2024a. Lorc: Low-rank compression for llms kv643
cache with a progressive compression strategy. arXiv644
preprint arXiv:2410.03111.645

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya646
Kailkhura, Beidi Chen, and Atlas Wang. 2024b. Q-647
hitter: A better token oracle for efficient llm inference648
via sparse-quantized kv cache. Proceedings of Ma-649
chine Learning and Systems, 6:381–394.650

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 651
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 652
dong Tian, Christopher Ré, Clark Barrett, and 1 oth- 653
ers. 2023. H2o: Heavy-hitter oracle for efficient 654
generative inference of large language models. Ad- 655
vances in Neural Information Processing Systems, 656
36:34661–34710. 657

A Proof of Equation 3 658

First, we present a lemma: the Frobenius norm of
a matrix A ∈ Rm×n is equal to the square root of
the trace of its Gram matrix:

∥A∥F ≜

 n∑
j=1

m∑
i=1

|aij |2
 1

2

=
[
Trace

(
ATA

)] 1
2

For Eq.(2), let A = {i | si = 1} and B = 659

{i | si = 0}, where A ∩ B = ∅, representing the 660

index sets of the retained and discarded channels, 661

respectively. Let qi and ki denote the i-th columns 662

of Qobs
p and Kp. Then, we have: 663

∥Qobs
p KT

p −Qobs
p SKT

p ∥2F =

∥∥∥∥∥∑
i∈B

qik
T
i

∥∥∥∥∥
2

= Trace

(∑
i∈B

qik
T
i

)(∑
i∈B

qik
T
i

)T


= Trace

∑
i∈B

∑
j∈B

qik
T
i kjq

T
j


=
∑
i∈B

∑
j∈B

Trace(qik
T
i kjq

T
j)

=
∑
i∈B

∑
j∈B

kT
i kjTrace(qiq

T
j)

=
∑
i∈B

∑
j∈B

kT
i kj × qT

i qj

Therefore, the reconstruction error can be ex- 664

pressed as the sum of the dot products of the key 665

vectors and query vectors corresponding to any pair 666

{i, j} in the set B. 667

B Comparisons of Generation Speed 668

We evaluated three key metrics: Time To First To- 669

ken (TTFT), Time Per Output Token (TPOT), and 670

memory usage, with detailed results presented in 671

Tab. 6. These experiments were conducted on 672

an NVIDIA L20 GPU using the NrtvQA dataset 673

and a batch size of 15. On average, each batch 674

10

https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF

0 20 40 60 80 100 120

0

20

40

60

80

100

120

50000

0

50000

100000

150000

200000

250000

(a) LLaMA, Layer 1, Head 0

0 20 40 60 80 100 120

0

20

40

60

80

100

120
50000

25000

0

25000

50000

75000

100000

125000

(b) LLaMA, Layer 15, Head 0

0 20 40 60 80 100 120

0

20

40

60

80

100

120

40000

20000

0

20000

40000

(c) LLaMA, Layer 31, Head 0

0 20 40 60 80 100 120

0

20

40

60

80

100

120 100000

0

100000

200000

300000

(d) Mistral, Layer 1, Head 0

0 20 40 60 80 100 120

0

20

40

60

80

100

120

40000

20000

0

20000

40000

60000

80000

(e) Mistral, Layer 15, Head 0

0 20 40 60 80 100 120

0

20

40

60

80

100

120

20000

0

20000

40000

60000

(f) Mistral, Layer 31, Head 0

Figure 4: These figures illustrate inter-channel interaction terms, where heatmapi,j = kT
i kj × qT

i qj . For the
LLaMA model, the NrtvQA dataset was employed, and for the Mistral model, the Qasper dataset was employed.

Method KIVI(4/4) +IAP(0.5) +IAP(0.6)

Memory (GB) 44.9 38.9 38.2
TTFT (s) 10.4 12.2 12.4
TPOT (ms/token) 10.3 10.9 11.0

Table 6: Comparisons of TTFT (Time To First Token),
TPOT (Time Per Output Token) and memory usage on
LLaMA-2-7B.

KV size
Method

SnapKV H2O

256 [0,0] –
512 [0,0] –
1024 [3,7] [3,7]
2048 [3,7] [3,7]

Table 7: Selection of [a, b] pairs for LLaMA-3-8B

involved 61,455 input tokens and 1,920 output to-675

kens. Our method, IAP, achieved significant GPU676

memory reductions: 15.53% at a 0.5 pruning ra-677

tio and 17.28% at a 0.6 pruning ratio. While IAP678

yielded these memory savings, TTFT experienced679

a slight increase, an effect attributed to the com-680

putational overhead of managing pruned channels681

during the prefilling phase. Conversely, TPOT re-682

mained largely unaffected after applying IAP. This683

KV size
Method

SnapKV H2O

256 [3,7] [0,0]
512 [5,10] [0,0]
1024 [5,10] [5,10]

Table 8: Selection of [a, b] pairs for Mistral-7B

stability is primarily due to FlashAttention’s cur- 684

rent limitations in supporting mixed-dimensionality 685

computation, as detailed further in Section 6. 686

C Selection of [a, b] Pairs in Experiments 687

To mitigate query distribution shifts during decod- 688

ing, IAP preserves salient channels in the key. The 689

specific [a, b] parameter pairs that IAP employs 690

for this strategy in experiments with LLaMA-3-8B 691

and Mistral-7B models are detailed in Tab. 7 and 692

8. This configuration adheres to the principle, dis- 693

cussed in Section 3.3, that larger KV cache sizes 694

generally necessitate correspondingly larger [a,b] 695

pairs. 696

D More Visualization Examples 697

In this section, we present heatmap visualizations 698

for the LLaMA-3-8B and Mistral-7B models on 699

11

additional datasets. Fig. 4a,4b,4c illustrates these700

visualizations for LLaMA-3-8B using the NrtvQA701

dataset, while Fig.4d,4e,4f depicts them for Mistral-702

7B on the Qasper dataset. As can be observed,703

the heatmap patterns are consistent with those de-704

scribed in Sec. 3.2.705

12

	Introduction
	Related Work
	Method
	Preliminary
	Methodology
	Protecting Salient Channels

	Experiments
	Settings
	Results
	Compatibility with Quantization Methods
	Ablation Study

	Conclusion
	Limitations
	Proof of Equation 3
	Comparisons of Generation Speed
	Selection of [a, b] Pairs in Experiments
	More Visualization Examples

