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Abstract

Program of Thoughts (PoT) is an approach001
characterized by its executable intermediate002
steps, which ensure the accuracy of the logi-003
cal calculations in the reasoning process. Cur-004
rently, PoT primarily uses Python. However,005
relying solely on a single language may result006
in suboptimal solutions and overlook the poten-007
tial benefits of other programming languages.008
In this paper, we conduct comprehensive ex-009
periments on the programming languages used010
in PoT and find that no single language con-011
sistently delivers optimal performance across012
all tasks and models. The effectiveness of each013
language varies depending on the specific sce-014
narios. Inspired by this, we propose a task015
and model agnostic approach called MultiPoT,016
which harnesses strength and diversity from017
various languages. Experimental results reveal018
that it significantly outperforms Python Self-019
Consistency. Furthermore, it achieves compa-020
rable or superior performance compared to the021
best monolingual PoT in almost all tasks across022
all models. In particular, MultiPoT achieves023
more than 4.6% improvement on average on024
ChatGPT (gpt-3.5-turbo-0701).025

1 Introduction026

Program of Thoughts (PoT) aims to prompt Code027

Large Language Models (Code LLMs) to de-028

compose complex problems into successive exe-029

cutable codes (Gao et al., 2023; Chen et al., 2022).030

Through execution by an external interpreter, the031

final results are accurately obtained, decoupling the032

computational process from the LLMs. PoT signif-033

icantly reduces computation errors and improves034

reasoning performance (Wang et al., 2023a). Sub-035

sequently, benefiting from its flexibility and scala-036

bility, it is gradually applied to a broader spectrum037

of fields like image reasoning (Surís et al., 2023;038

Gupta and Kembhavi, 2023), financial QA (Koncel-039

Kedziorski et al., 2023) and robotic control (Li040

et al., 2023a). Nowadays, PoT has become a key041

from datetime import datetime, timedelta
today = datetime(2008, 3, 31)
one_year_ago = today - timedelta(days=365)

library(lubridate)
today <- ymd("2008-03-31")
one_year_ago <- today - years(1)

PoT with Python

PoT with R

Answer:04/01/2007

Answer:03/31/2007

Today is the last day of the first quarter of 2008. 
What is the date one year ago from today?

let date = new Date(2008, 2, 31);
// months are 0-indexed in JavaScript
date.setFullYear(date.getFullYear() - 1);

PoT with JavaScript

Answer:03/31/2007

❌

✅

✅

Figure 1: Comparison of PoT with different PLs.
Python’s ‘timedelta’ lacks support for year compu-
tation, leading to a leap year (2008 has 366 days) error
by subtracting 365 days. R and JavaScript directly com-
pute the year and get the correct answer.

method for enabling intelligence in agents (Yang 042

et al., 2024; Wang et al., 2024). The widespread 043

applicability highlights its significance. 044

Despite significant progress, PoT has a notable 045

limitation: to the best of our knowledge, all re- 046

search on PoT focuses on Python. However, since 047

Code LLMs are capable of multilingual genera- 048

tion,1 and most of the reasoning tasks are language- 049

independent, many other programming languages 050

(PLs) can also be applied to PoT, especially when 051

considering their unique strength and diversity. 052

From the perspective of tasks, different PLs repre- 053

sent PoT in different forms. As shown in Figure 1, 054

the representation and calculation of dates in R is 055

more concise than that in Python, which can reduce 056

1In this paper, our “multilingual” represents multiple pro-
gramming languages, not natural languages.
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the complexity when LLMs generate PoTs. From057

the perspective of models, their multilingual abil-058

ity is inconsistent. For instance, C++ of Deepseek059

Coder outperforms Python on the code generation060

task (Guo et al., 2024). It is natural to wonder061

whether this phenomenon also occurs on reasoning062

tasks. Therefore, a crucial question is raised with063

these perspectives: Is Python truly the optimal lan-064

guage for all tasks and models for PoT? Relying on065

Python may lead to a local optimum. In Figure 1,066

Python’s ‘timedelta’ does not support ‘year’, re-067

sulting in a miscalculation for the leap year. In068

contrast, R and JavaScript yield the correct answer.069

Motivated by this, we conduct comprehensive070

experiments for multilingual PoTs. Beyond Python,071

we select four PLs: three widely used general lan-072

guages (JavaScript, Java, and C++) and a niche073

but comprehensive language (R). For a comprehen-074

sive comparison, we identify five distinct sub-tasks075

within reasoning tasks: math applications (Cobbe076

et al., 2021; Patel et al., 2021; Miao et al., 2020),077

math (Hendrycks et al., 2021), tabular, date, and078

spatial (Suzgun et al., 2022). We select four back-079

bone LLMs: ChatGPT (gpt-3.5-turbo-0701) and080

three strongest Code LLMs (Starcoder (Li et al.,081

2023b), Code Llama (Roziere et al., 2023), and082

Deepseek Coder (Guo et al., 2024)). Under both083

greedy decoding and Self-Consistency (Wang et al.,084

2022) settings, we answer that “Python is not al-085

ways the optimal choice, as the best language de-086

pends on the specific task and model being used.”087

In addition to the analysis contribution, to lever-088

age the strength of multiple PLs, we further intro-089

duce a simple yet effective approach, called Mul-090

tiPoT (Multilingual Program of Thoughts). It is091

a task and model agnostic approach, which uses092

LLMs to synchronously generate PoTs with vari-093

ous PLs and subsequently integrates their results094

via a voting mechanism. The use of multiple PLs095

also provides greater diversity and reduces the096

probability of repeating the same errors compared097

to single-language sampling. Experimental results098

demonstrate that MultiPoT outperforms Python099

Self-Consistency significantly. Furthermore, Mul-100

tiPoT effectively matches or even surpasses the101

top-performing languages across nearly all tasks102

and models, and outperforms on averages. Espe-103

cially on both ChatGPT and Starcoder, MultiPoT104

performs the best on four out of five tasks, with105

only a slight underperformance on the remaining106

task, and shows an improvement of over 4.6% com-107

pared to the best monolingual PoT on average.108

Our contributions are summarized below: 109

• We conduct comprehensive experiments of 110

PoTs with different PLs across various reason- 111

ing tasks and models, revealing that the choice 112

of PL is dependent on tasks and models. 113

• We introduce a task and model agnostic ap- 114

proach called MultiPoT, which integrates mul- 115

tilingual PoTs and leverages strength and di- 116

versity across various PLs. 117

• Experimental results show that MultiPoT 118

outperforms Python Self-Consistency and 119

matches or surpasses the best language of 120

each scenario. On both the model and task 121

averages, MultiPoT enhances performance. 122

2 Related Work 123

2.1 Program of Thoughts 124

CoT is a specific form of in-context learning (Wei 125

et al., 2022; Brown et al., 2020; Chowdhery et al., 126

2023). Its demonstrations consist of intermedi- 127

ate steps imitating the human thought process. 128

It significantly enhances model’s reasoning capa- 129

bilities (Yang et al., 2023) but suffers from er- 130

rors associated with calculations (Madaan and 131

Yazdanbakhsh, 2022). CoT always uses Self- 132

Consistency (Wang et al., 2023c) to improve an- 133

swer accuracy through sampling and voting. 134

PoT (Chen et al., 2022; Gao et al., 2023) is an 135

extension of CoT to avoid incorrect calculation. 136

It represents intermediate steps as comments and 137

code and executes the entire program with an inter- 138

preter to obtain answers. PoT not only excels in rea- 139

soning tasks but has rapidly extended to practical 140

applications, including chart understanding, image 141

reasoning, financial QA and robotic control (Zhang 142

et al., 2024; Surís et al., 2023; Gupta and Kem- 143

bhavi, 2023; Koncel-Kedziorski et al., 2023; Li 144

et al., 2023a). It has become a key method for 145

agents to perform complex reasoning and tool invo- 146

cation (Yang et al., 2024; Wang et al., 2024). It is 147

important to note that all previous PoT work only 148

use Python. For the first time, we are exploring 149

PoTs that use multiple PLs. 150

2.2 Usage of Multiple PLs 151

The training datasets naturally include a variety 152

of PLs, endowing Code LLMs with the ability to 153

handle multilingual programming (Kocetkov et al., 154
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MultiPoT
Step1: construct multilingual prompts

Self-Consistent

Step2: integrate multiple programming languages

Python Prompt Multipot.py
Multipot.java

Multipot.r
Multipot.cpp

Java Prompt
R Prompt

C++ Prompt
JavaScript Prompt Multipot.js

PoT[1-5].py

Python PoT in Demostration
penguins = [
    {"name": "Louis”,...},
    {"name": "James",...},...]
penguins_less_than_8_years = 
sum(1 for penguin in penguins if 
penguin["age"] < 8)
sorted_penguins =
sorted(penguins, key=lambda p: 
p["name"])

            C++ PoT in Demonstration 
#include <algorithm>
#include <vector>
...
struct Penguin {string name;int age;...};
...
    for (const auto& penguin : penguins)
        if (penguin.age < 8) count++;
    sort(penguins.begin(), penguins.end(), 
[](const Penguin &a, const Penguin &b) 
return a.name < b.name;

Python Prompt

Results: 
6

5 5 5 
7 

Answer: 
5 Answer: 

6

Results:
6 6 6 6

5

Built-in Content 
Sepcial Syntax 
Type Definition 
Varibale Naming

Demonstration
Question

Python PoT
Question

Figure 2: An overview of MultiPoT and Self-Consistency. MultiPoT first constructs prompts for each PL, ensuring
a consistent reasoning process while also considering the distinct coding styles. It then integrates these PLs:
generating multilingual PoTs based on the prompts, executing them to gather results, and finally voting for the
answer. In contrast to Self-Consistency’s single-language focus, MultiPoT leverages multiple PLs.

2022; Nguyen et al., 2023; Gao et al., 2020; Ni-155

jkamp et al., 2023; Chen et al., 2021). This capabil-156

ity extends code tasks like generation, optimization,157

translation, and repair to other languages beyond158

Python (Gimeno et al., 2023; Shypula et al., 2023;159

Zhang et al., 2023; Wu et al., 2023). Despite the160

progress, current multilingual research (Jin et al.,161

2023; Joshi et al., 2023; Khare et al., 2023) mainly162

focuses on code-related tasks, neglecting the po-163

tential of PLs as tools to assist in other tasks. Ad-164

ditionally, these studies often treat each language165

separately without interaction. Our study pioneers166

the use of multiple PLs in reasoning tasks and in-167

troduces a novel integrated approach, leveraging168

the collective strength and diversity of various PLs169

to enhance overall performance.170

3 Methodology171

Figure 2 provides an overview of MultiPoT and172

Self-Consistency to highlight their differences.173

Concretely, MultiPoT consists of two main steps.174

First, a dedicated prompt is designed for each PL175

to sufficiently leverage the capability of the model176

with regard to the PL (Section 3.1). Second, PoTs177

in various PL are respectively generated by prompt-178

ing the LLM with the prompts. The final answer179

is obtained by executing the PoTs and integrating180

their results via a voting mechanism (Section 3.2).181

Distinct from Self-Consistency, which relies on182

a single PL, MultiPoT integrates various PLs to183

utilize their strength and diversity. 184

3.1 Multilingual Prompts Construction 185

To instruct a LLM to generate PoT for a given ques- 186

tion, a demonstration is included in the prompt. 187

The demonstration consists of an example ques- 188

tion and PoT. To ensure fairness, demonstrations 189

of various PLs share the same example questions. 190

Based on that, to efficiently leverage the capability 191

of a LLM with regard to a PL, each PL is provided 192

with a dedicated example PoT, taking into account 193

its language-specific characteristics (Wang et al., 194

2023b). Note that language-agnostic features, such 195

as algorithms and data structures, remain the same 196

for example PoTs of all PLs, ensuring an identical 197

reasoning process. 198

Concretely, the language-specific characteris- 199

tics of each PL for constructing its dedicated ex- 200

ample PoT includes Built-in Content, Special 201

Syntax, Type Definition, and Varibale Naming. 202

Figure 2 provides some examples of the charac- 203

teristics. (1) while Python can directly employ 204

the ‘sort’ function, C++ has to load it from the 205

‘algorithm’ library. Regarding variables, Python’s 206

‘list’ is more similar to C++’s ‘vector’ than its 207

array. (2) List comprehension like ‘sum(1 for 208

penguin in penguins if penguin["age"] < 209

8)’ is a standard syntax in Python. However, a 210

straightforward for-loop is the common practice 211

in other PLs. (3) Static PLs such as C++ require 212
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to define the variable type. We carefully define213

‘int’ and ‘double’ variables to ensure computa-214

tional accuracy and enhance flexibility by defining215

‘struct’. (4) We keep the naming styles of each216

PL. For instance, Python uses Snake Case, whereas217

Java favors Camel Case (‘secondPenguin’). Ap-218

pendix A.5 shows the demonstrations. The above219

examples present the variations in example PoTs220

across different PLs. To accurately assess the221

model’s capability in a specific PL, it is crucial222

to carefully consider its characteristics during the223

process of constructing.224

Based on identical reasoning process, we suc-225

cessfully craft demonstrations of each PL exhibit-226

ing its characteristics. By adding the question after227

the demonstration, we get the prompt for each PL.228

3.2 Integration229

While Self-Consistency enhances performance by230

sampling to explore more reasoning paths, it can231

lead to repeated errors across different samples. In232

contrast, MultiPoT constructs multilingual prompts233

and generates PoTs in multiple PLs, significantly234

increasing the diversity of results.235

Specifically, after constructing prompts for each236

PL, models generate corresponding PoTs, while237

tracking cumulative probabilities. These probabili-238

ties indicate the model’s confidence in each answer,239

with higher probabilities denoting greater confi-240

dence. PoTs are then executed and results are col-241

lected. The final answer is determined by voting on242

these results. In cases of tied votes, answers with243

higher cumulative probabilities are favored. The244

integration of multiple PLs introduces more poten-245

tial correct answers and reduces the probability of246

the same errors in candidate results.247

4 Experiment Setup248

4.1 Programming Languages249

When selecting PLs to compare with Python, we250

focus on diversity. JavaScript is the most popu-251

lar language on GitHub (GitHub, 2023) and has252

less overlap in application with Python, particu-253

larly in the ML/AI domains. R is a flexible and254

powerful language like Python but has much less255

data in pre-training data. The three PLs above are256

dynamic languages that do not require explicit vari-257

able type definitions. To incorporate the diversity258

of language types, we select the two most com-259

mon static languages, Java and C++. The latter260

is closer to low-level programming and has fewer261

extension packages. We do not include C due to 262

its high similarity with C++. These five languages 263

offer a diverse range of application scenarios, data 264

volumes, and language types compared to Python. 265

4.2 Tasks 266

We select representative and discriminating tasks. 267

We initially select four tasks from Gao et al. (2023): 268

Math Application (Appl.), Date, Tabular and 269

Spatial, and add the task Math. Appl. contains 270

elementary-level mathematical application prob- 271

lems (GSM8K, SVAMP, Asdiv (Cobbe et al., 2021; 272

Patel et al., 2021; Miao et al., 2020)). Date, Tabu- 273

lar, and Spatial are extracted from BBH-Hard (Suz- 274

gun et al., 2022) (Date Understanding, Penguins 275

in a Table, Reasoning about Coloured Objects). 276

These tasks assess understanding and reasoning 277

about temporal sequences, structured text, and spa- 278

tial positioning respectively. Math, consisting of 279

the transformed MATH (Hendrycks et al., 2021) 280

dataset. The difference between Math and Appl. 281

lies in the level of difficulty. Math is more chal- 282

lenging and directly describes the math question 283

without scenarios. The five tasks are distinct and 284

representative of the evaluation of reasoning ca- 285

pabilities. They are language-agnostic, meaning 286

that they can be performed in any PL, effectively 287

demonstrating the model’s reasoning ability across 288

different languages. The additional details of the 289

tasks are in the Appendix A.1. 290

4.3 Backbone LLMs 291

As the previously used code-davinci family is no 292

longer accessible, we select four backbone LLMs, 293

including the three strongest Code LLMs: Star- 294

coder (15B), Code Llama (34B), and Deepseek 295

Coder (33B). We select the base versions. The 296

experiments of the Python version are discussed 297

in Section 6.2, and the results are consistent with 298

our conclusions and methodology. ChatGPT is 299

also utilized as a representative of code-capable 300

NL LLMs, invoking through the API of gpt-3.5- 301

turbo-0701. By choosing these backbone LLMs 302

with different sizes and characteristics, we can ob- 303

tain more realistic and credible results. 304

4.4 Inference Details 305

We combine Chen et al. (2022) and Gao et al. 306

(2023)’s prompt templates for few-shot inference. 307

We fix the questions from the previous work and 308

write code in the respective PLs. The number of 309

questions in each task is shown in Appendix A.1. 310
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(a) Starcoder (b) Code Llama (c) Deepseek Coder

Python R C++ Java JavaScript

Date Date Date

Tabular Math Tabular TabularMath Math

Spatial Appl. Spatial SpatialAppl. Appl.

AVG AVG AVG

Figure 3: The greedy decoding performance of three models across five tasks in five different PLs. AVG denotes the
average performance of a PL across all tasks. Each language performance is expressed as a ratio to the highest-
performing language for that specific task. The center of the circle represents 50%. Detailed numerical data are
provided in the Table 9 in Appendix A.2.

Language Code LLMs ChatGPT

Appl. Math Date Tabular Spatial AVG Appl. Math Date Tabular Spatial AVG

Python 58.51 23.62 42.37 83.00 73.87 56.27 80.75 39.74 46.61 94.63 91.70 70.69
R 57.04 22.61 47.70 85.46 71.20 56.80 79.37 34.86 55.01 89.93 92.85 70.40
C++ 60.80 22.61 32.79 86.35 75.87 55.68 79.46 39.90 47.70 91.95 86.65 69.13
Java 60.11 23.75 43.81 87.92 75.82 58.28 80.63 42.65 51.22 87.92 86.70 69.82
JavaScript 60.14 24.35 42.82 83.89 71.58 56.56 81.25 36.07 55.01 92.62 90.15 71.02

Table 1: The performance of Code LLMs and ChatGPT for greedy decoding for five languages on five tasks. Code
LLMs are the average results for Starcoder, Code Llama, and Deepseek Coder. AVG means the average performance
of the language on five tasks. Bold denotes the highest performance on the task.

When sampling for Self-Consistency, we follow311

Chen et al. (2022) and set t = 0.4, top_p = 1. For312

a fair comparison with MultiPoT which integrates313

five languages, we set k = 5.314

5 Results315

In this section, we first discover that Python is not316

the best language for all tasks and all models from317

the results of greedy decoding. There is no such318

perfect language. The performance of each PL319

varies greatly depending on the task and model320

(Section 5.1). After Self-Consistency, the perfor-321

mance discrepancy still exists. Finally, by inte-322

grating multiple languages, MultiPoT significantly323

outperforms Python. Furthermore, its performance324

matches or exceeds the best monolingual PoTs in325

almost all scenarios and achieves improvement on326

task and model averages (Section 5.2).327

5.1 Comparison among PLs328

Python is not the optimal language choice. Fig-329

ure 3 shows the performance gap between each lan-330

guage and the best-performing language on each331

task of the three Code LLMs. It illustrates that 332

Python does not achieve the best performance on 333

any of the tasks for any of the Code LLMs. On 334

Deepseek Coder, Python is even the worst on av- 335

erage. Table 1 shows the greedy decoding results 336

of ChatGPT. Although Python performs best on 337

Tabular, it falls short by 2.9% and 8.4% compared 338

to the best PL on Math and Date respectively. The 339

preference for Python among humans may be due 340

to its simple syntax and high readability, but it is a 341

subjective bias that PoT only needs it. Relying on 342

Python leads to a suboptimal outcome. 343

However, it is important to note that there is no 344

one-size-fits-all language. The gap between PLs is 345

significant when considering each task and model. 346

The performance of each PL is task-dependent. 347

AVG performance does not fully capture the dispar- 348

ity among languages. Java and JavaScript perfor- 349

mances of Starcoder differ by only 0.41% on AVG, 350

but by 6.71% on Tabular. While the difference 351

between the best and worst PLs of ChatGPT on 352

AVG is less than 2% in Table 1, there are four tasks 353

whose gap among languages exceeds 6%. Different 354
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ChatGPT Starcoder

Appl. Math Date Table Spatial AVG Appl. Math Date Table Spatial AVG

Python 82.31 45.76 47.70 94.63 93.60 72.80 47.04 19.69 34.96 79.19 70.00 50.18
R 80.95 40.61 58.81 93.29 94.60 73.65 44.21 17.74 37.13 77.85 65.90 48.57
C++ 81.40 43.77 49.05 93.29 88.45 71.19 47.34 16.74 18.70 82.55 70.95 47.26
Java 81.79 45.33 53.39 92.62 88.80 72.39 47.97 16.76 35.23 78.52 69.50 49.60
JavaScript 82.58 40.64 56.10 96.64 93.30 73.85 48.40 19.15 36.31 80.54 72.95 51.47

MultiPoT 84.33 49.92 58.54 98.66 95.30 77.35 49.67 20.41 40.38 87.25 71.55 53.85

Code Llama Deepseek Coder

Python 68.63 27.95 50.68 92.62 77.55 63.48 70.65 37.64 44.72 93.96 89.80 67.35
R 66.80 26.65 58.27 93.29 79.05 64.81 69.22 33.59 53.12 93.29 92.60 68.36
C++ 71.33 24.99 43.36 93.29 80.45 62.68 72.32 33.94 39.57 95.30 93.40 66.91
Java 70.10 27.93 56.91 93.96 81.80 66.14 72.10 35.35 55.56 93.96 88.75 69.14
JavaScript 68.97 26.16 50.41 87.25 80.35 62.63 71.89 35.60 52.57 93.29 86.10 67.89

MultiPoT 71.17 27.97 58.54 93.96 79.60 66.24 72.32 37.55 54.47 95.30 91.70 70.27

Table 2: Self-Consistency and MultiPoT results of four LLMs on five tasks and AVG.

languages are suitable for different tasks. Table 1355

indicates that, except for C++, all PLs excel in at356

least one task on ChatGPT. Moreover, on ChatGPT,357

except for JavaScript, each language also ranks as358

the least effective in at least one task. A language359

that performs exceptionally well in one task might360

underperform in another. For instance, R demon-361

strates superior performance on Date for both Code362

LLMs and ChatGPT, yet it is the least effective on363

Appl. and Math.364

The performance of each PL is model-365

dependent. Code LLMs and ChatGPT differ sig-366

nificantly. The results of three Code LLMs are367

averaged and compared with ChatGPT in Table 1.368

It shows that C++, JavaScript, and Java, excel369

on Appl., Math, and Spatial respectively on Code370

LLMs, but rank second-to-last on ChatGPT. Even371

within Code LLMs, disparities between models are372

evident. Figure 3 shows that Code Llama has a373

clear preference for Java, which keeps the top two374

ranks across all tasks, yet is not observed on the375

remaining models. On Deepseek Coder, C++ leads376

on average, whereas it ranks last on the other mod-377

els. R ranks second on Spatial on Deepseek Coder,378

but the worst on the other two Code LLMs.379

These variations demonstrate that different PLs380

exhibit unique strengths and diversity due to381

complex factors such as task suitability and model382

preference. A further error analysis of the experi-383

mental results is shown in Appendix A.3.384

5.2 Comparision between Self-Consistency385

and MultiPoT386

Self-Consistency does not eliminate perfor-387

mance disparities between PLs, despite it signifi-388

cantly improving the performance. Table 2 presents 389

the Self-Consistency results. The inherent strength 390

of different languages persist. The optimal PL on 391

each scenario is generally consistent with greedy 392

decoding results, except Python emerges as the su- 393

perior language on Math on all model. A single 394

language offers limited diversity. When faced with 395

tasks outside its strength, monolingual samples of- 396

ten make the same mistakes repeatedly, resulting 397

in incorrect answers being chosen through voting. 398

Different from Self-Consistency relying on a 399

single PL, MutliPoT integrates multiple PLs. It 400

not only leverages the distinct strength of each 401

PL, but also utilizes their greater diversity to 402

reduce the probability of repeating the same errors. 403

MultiPoT significantly outperforms Python 404

on almost all scenarios. It enhances performance 405

in tasks or models where Python is weak. Across 406

the four models, MultiPoT improves upon Python’s 407

performance on Date by at least 15%, and in aver- 408

age (AVG) performance by 4.33% to 7.32%. Fur- 409

thermore, MultiPoT also capitalizes on Python’s 410

strength. On Math, where Python excels, MultiPoT 411

also achieves the best results, except in Deepseek 412

Coder, where it slightly trails Python but remains 413

significantly ahead of other languages. 414

MultiPoT achieves comparable or superior 415

performance to the best monolingual results 416

across all tasks and models. It is task-agnostic. 417

It surpasses Self-Consistency on four tasks, rank- 418

ing second on the remaining task, regardless of 419

whether on Code LLMs average (Table 10) or Chat- 420

GPT. MultiPoT is also model-agnostic. It is the top 421

performer across all LLMs on Tabular. On AVG, 422
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Figure 4: The reasoning ability, code generation ability,
and percentage in pre-training data for different lan-
guages. Generation lacks data for R. The horizontal
coordinates of each model are ranked according to the
rise in reasoning performance (excluding R).

MultiPoT outperforms the best monolingual result423

on all four models. Particularly on ChatGPT and424

Starcoder, it exhibits an improvement of over 4.6%.425

The performance of PLs depends on the task426

and model. Analyzing the interplay of PL, task,427

and model in practical applications is challenging.428

Therefore, MultiPoT is a great choice which has429

consistently high performance across scenarios.430

6 Discussion431

6.1 Reasoning Ability of Different Languages432

In Section 5.1, we note that the ranking of the av-433

erage performance of PL varies on each model.434

The language distribution in the pre-training data435

of Starcoder and Deepseek Coder offers insights436

into whether data amount impacts reasoning capa-437

bilities. Moreover, we are interested in examining438

whether code generation and reasoning of multilin-439

gual ability are aligned. The difference between the440

two tasks is elucidated in Appendix A.4. To assess441

code generation ability, we utilize the results of442

each model on the Multilingual HumanEval bench-443

mark, focusing on the four available languages,444

excluding R due to a lack of evaluation dataset.445

Data distribution influences but does not com-446

pletely determine reasoning ability. Figure 4447

shows the relative relationships among reasoning448

performance of C++, Python, and Java are consis-449

tent with data distribution on Starcoder. However,450

R demonstrates unexpectedly strong performance,451

which has an extremely low percentage in both452

StarC. C. Llama Deep.C. GPT

Python 61.03 73.23 75.80 77.62
R 58.86 75.11 76.02 79.00
C++ 59.75 72.82 75.80 77.82
Java 61.32 75.62 78.06 78.08
JavaScript 62.60 74.15 76.62 77.65

MultiPoT 64.52 75.71 78.41 83.94

Table 3: The average coverage rate on five tasks of Self-
Consistency and MultiPoT on each model.

Stability Metric Starcoder Deepseek Coder

Default 53.85 70.27
Length Short 53.36 69.99
Length Long 53.16 69.76
Random 53.71 69.99
Data Amount Little 53.18 70.20
Data Amount Large 53.55 69.43

∆ 0.69 0.84

Table 4: The performance of MultiPoT with different
sorting methods. Length Short/Long represents the as-
cending/descending order according to the length of
PoTs, respectively. ∆ denotes the range of change.

models. C++ has less data amount than Java on 453

Deepseek Coder, but better reasoning performance. 454

This suggests that there are other factors affecting 455

performance besides data distribution. 456

Code generation abilities do not always align 457

with reasoning abilities. We compare the four 458

languages excluding R in Figure 4. On ChatGPT, 459

the reasoning and code generation abilities of C++, 460

Java, and Python align perfectly. However, an oppo- 461

site trend is observed in Deepseek Coder’s Python, 462

JavaScript, and Java, where the two abilities di- 463

verge significantly. It highlights the necessity of 464

testing the reasoning abilities of different PLs. 465

6.2 MultiPoT Analysis 466

MutliPoT has the highest coverage rate. Unlike 467

the voting mechanism which requires a majority for 468

the correct answer, the coverage rate only needs the 469

answer to appear in results. Table 3 demonstrates 470

coverage rates on all four models and MultiPoT 471

achieves the highest. The monolingual sampling 472

covers less than the multilingual attempts, high- 473

lighting that the strength of different PLs exists. 474

MultiPoT effectively utilizes the strength of differ- 475

ent PLs and has the highest upper bound. 476

MutliPoT has stable performance. When re- 477

sults are tied, the top-ranked result is selected. Dif- 478

ferent sorting methods reflect the stability. Table 4 479

shows the performance fluctuation. MultiPoT is 480
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Model Method Appl. Math Date Table Spatial AVG

Base Python 68.63 27.95 50.68 92.62 77.55 63.48
MultiPoT 71.17 27.95 58.54 93.96 79.60 66.24

Python Python 69.54 28.46 48.24 91.28 74.65 62.43
MultiPoT 70.67 27.46 55.83 92.62 76.70 64.65

Table 5: The performance of Python Self-Consistency and MultiPoT on Code Llama Base and Code Llama Python.

1 2 3 4 5
(a) Starcoder

44
46
48
50
52
54

Pe
rf

or
m

an
ce

s(
%

)

1 2 3 4 5
(b) Deepseek Coder

64

66

68

70

Data Amount Little -> Large
Data Amount Large -> Little

The Number of Languages

Figure 5: The impact of the number of integrating PLs.
We test the different order of adding languages.

Type Starcoder ChatGPT

All Dynamic 50.41 74.92
Dynamic + Static 51.87 75.77

Table 6: The impact of different language type combina-
tions on MultiPoT. All Dynamic indicates that the three
languages are all dynamic, and Dynamic+Static indi-
cates a combination of dynamic and static languages.

less than 1% across various sorting criteria, in-481

cluding PoT length, randomness, or data amount482

from pre-training, compared to the default cumula-483

tive probability sorting. This indicates that Multi-484

PoT consistently selects the correct answer directly,485

with few instances of ties with incorrect answers.486

This also suggests a lower probability of different487

PoTs making the same errors.488

More PLs are better. We investigate the im-489

pact of the number of PLs on MultiPoT. On both490

Starcoder and Deepseek Coder, we incrementally491

add languages in both ascending and descending492

order of data amount in Figure 8. The results show493

that MultiPoT’s performance improves with more494

PLs, regardless of the order. This suggests that495

MultiPoT is highly scalable and performance can496

be further enhanced by incorporating more PLs.497

More language types are better. Python, R,498

and JavaScript are dynamic languages, while C++499

and Java are static. To investigate whether a di-500

verse set of language types enhances MultiPoT’s501

performance, we focus on three PLs. On Starcoder 502

and ChatGPT, JavaScript emerges as the highest- 503

performing dynamic language, surpassing Java, 504

which leads between the static languages. Con- 505

sequently, we integrate JavaScript, Python, and 506

R as All Dynamic and combine Java, Python, 507

and R to represent Dynamic + Static. The re- 508

sults in Table 6 indicate that replacing the higher- 509

performing JavaScript with the lower-performing 510

Java improves performance. This suggests that 511

more language types can provide more diversity to 512

MultiPoT, thereby further enhancing performance. 513

MultiPoT also works on Python model. Our 514

prior experiments with Code LLMs utilize the Base 515

version. However, Code LLMs also have a Python- 516

specific version trained with additional Python cor- 517

pora. Evaluating MultiPoT on this Python ver- 518

sion, as shown in Table 5, we find that Python 519

Self-Consistency improves on Appl. and Math 520

but declines on the other tasks compared to the 521

Base model. Moreover, MultiPoT still outperforms 522

Python Self-Consistency on all tasks except Math, 523

highlighting the adaptability of MultiPoT. Notably, 524

MultiPoT’s performance on the Python model is 525

lower across all tasks than on the Base model. This 526

suggests that extensive training on monolingual cor- 527

pora might diminish the Base model’s multilingual 528

abilities on reasoning tasks. 529

7 Conclusion 530

Regarding the reliance on Python in PoT, we con- 531

ducted extensive experiments across various mod- 532

els and tasks using multiple PLs. Our findings 533

show that Python is not always the best choice; the 534

optimal language depends on the specific task and 535

model. Building on this insight, we introduce Mul- 536

tiPoT, a simple yet effective multilingual integrated 537

method that leverages the strengths and diversity of 538

different PLs. MultiPoT significantly outperforms 539

Python and achieves matches or exceeds perfor- 540

mance to the best monolingual outcomes in nearly 541

all scenarios. With its high stability, MultiPoT of- 542

fers a promising avenue for future research. 543
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Limitations544

Our study is comprehensive, but has certain limita-545

tions that we plan to address in future research. Due546

to computational resource constraints, we confine547

our experiments to a select number of commonly548

used programming languages (PLs). While these549

PLs are representative, they do not encompass the550

entire spectrum of languages used in programming.551

Future research could investigate the advantages552

of incorporating a broader range of programming553

languages. This may reveal further insights and554

improve the relevance of our findings.555

Ethical Considerations556

Our research utilizes publicly available models and557

datasets with proper citations and adheres to the558

usage guidelines of ChatGPT, minimizing the risk559

of generating toxic content due to the widely-used,560

non-toxic nature of our datasets and prompts.561
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A Appendix800

A.1 Tasks801

Subset #Original #Filtered

Algebra 1,187 1,068
Counting & Probability 474 474
Geometry 479 466
Intermediate Algebra 903 721
Number Theory 540 528
Prealgebra 871 842
Precalculus 546 370

SUM 5,000 4,469

Table 7: After filtering, the statistics of MATH dataset.

Appl. comprises the GSM8K (Cobbe et al.,802

2021), SVAMP (Patel et al., 2021), and As-803

div (Miao et al., 2020) datasets. These datasets804

contain elementary-level math problems set in spe-805

cific application scenarios, focusing on mathemati-806

cal abstraction and modeling skills, with relatively807

low difficulty. Since they are the same type of ques-808

tions, we merge them in one task. Math, consisting809

of the transformed MATH (Hendrycks et al., 2021)810

dataset, whose the answers to the problems are811

expressed using LaTeX. It’s too hard to construct812

prompts in other languages that meet all the require-813

ments, we select those that can be calculated to a814

single number, excluding problems with interval815

or formula-based answers. The filtered results is816

shown in Table 7.817

Task #Data #Shots

Appl. 4,415 3
Math 4,469 3
Date 369 6
Tabular 149 3
Spatial 2,000 3

Table 8: Summarization of selected reasoning tasks.

Here are the details of our selected tasks, includ-818

ing the number of questions in each task (#Data)819

and the number of shots in demonstrations.820

A.2 Additional Data821

Table 9 is the raw data of Figure 3, shows the822

greedy decoding results of each PL of each Code823

LLMs. Table 10 shows that on the average perfor-824

mance of three Code LLMs, MultiPoT surpasses all825

Self-Consistency on four tasks, and is only lower826

slightly than C++ on Spatial.827

A.3 Error Analyse 828

We further classify incorrect results into Wrong An- 829

swer (WA) and Runtime Error (RE), representing 830

cases where the program runs but produces incor- 831

rect answers and where the program encounters 832

errors during execution, respectively. Tables 11 to 833

Table 14 show the results for the four models. 834

It is evident that there are significant differences 835

in the proportion of runtime errors (RE) across dif- 836

ferent languages and models for each task. Even 837

languages with similar performance exhibit differ- 838

ent distributions of errors. For instance, on Appl. 839

of Deepseek Coder, the accuracy difference be- 840

tween Java and JavaScript is less than 0.1%, yet 841

JavaScript has an RE rate of 2.06%, while Java’s 842

is only 0.63%. It indicates that the types of errors 843

vary significantly among languages. 844

A further categorisation of the types of RE is 845

conducted. We classify all REs into eight error 846

types. Redeclaration represents duplicate naming 847

of variables. Division by Zero represents the de- 848

nominator in the division is zero. Illegal Output 849

represents the answer can not be parsed or con- 850

verted correctly. Time Limit Error represents the 851

program runs out of time and sometimes it is due to 852

stack space overflow. Compile Error often means 853

there are some syntax error in the program. Unde- 854

fined Identifier includes Undefined Variables and 855

Undefined Functions, which means the variables 856

or functions are not defined before they are used. 857

Variable Type Error indicates that the types of 858

variables are mismatched when they are involved 859

in some operations, for example addition or divi- 860

sion. Table 15 shows the proportion of different 861

RE types for Deepseek Coder across five tasks and 862

five languages. Table 16 presents the proportion of 863

various RE types for four LLMs on Appl. across all 864

languages. Deepseek Coder and the Appl. task are 865

selected because the languages have the most simi- 866

lar performance on them. The results demonstrate 867

that even in scenarios where languages exhibit sim- 868

ilar performance, the proportions of RE differ sig- 869

nificantly among languages. For instance, the RE 870

rate on ChatGPT’s Appl. of R and C++ differs by 871

only 0.02%, yet Illegal Output account for 82.46% 872

of C++ errors, in comparison to only 24.71% for 873

R. Given that each prompt is accurate, the differing 874

error distributions are attributable to the intrinsic 875

characteristics of the languages, thereby demon- 876

strating their diversity and the non-repetitive nature 877

of their errors. 878
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Appl. Math Date Tabular Spatial AVG

Starcoder

Python 43.06 15.78 32.79 74.50 63.55 45.94
R 40.63 14.63 34.96 77.85 52.60 44.13
C++ 44.21 14.43 18.43 77.18 61.90 43.23
Java 43.87 14.39 31.98 81.21 60.40 46.37
JavaScript 45.64 17.30 32.79 74.50 63.65 46.78

Code Llama

Python 65.14 23.09 51.76 89.26 74.60 60.77
R 63.44 23.58 57.99 89.93 71.35 61.26
C++ 68.79 22.76 39.57 88.59 74.90 58.92
Java 67.38 24.84 55.28 91.28 82.55 64.27
JavaScript 65.84 23.45 46.07 85.91 76.90 59.63

Deepseek Coder

Python 67.34 32.00 42.55 85.23 84.45 62.31
R 67.04 29.60 50.14 88.59 89.65 65.00
C++ 69.40 30.63 40.38 93.29 90.80 64.90
Java 69.08 32.02 44.17 91.28 84.50 64.21
JavaScript 68.95 32.29 49.59 91.28 74.20 63.26

Table 9: The greedy decoding results of each PL of each Code LLMs. The detailed numerical data for Figure 3.

Appl. Math Date Table Spatial

Python 62.11 28.43 43.45 88.59 79.12
R 60.08 25.99 49.50 88.14 79.18
C++ 63.66 25.23 33.88 90.38 81.60
Java 63.39 26.68 49.23 88.81 80.02
JavaScript 63.09 26.97 46.43 87.02 79.80

MultiPoT 64.39 28.64 51.13 92.17 80.95

Table 10: The average performance of three Code LLMs for Self-Consistency and MultiPoT in each task.

A.4 Difference Between Code Generation and879

PoT880

Figure 4 illustrates that performance in code gen-881

eration does not fully align with that in reasoning882

tasks.883

Although both tasks involve generating code to884

solve problems, their objectives differ. The code885

generation task assesses the LLM’s ability to assist886

development in an engineering environment, cov-887

ering real-world engineering issues. For example,888

consider the following problems: ’Given a positive889

floating point number, return its decimal part’ and890

’Given a list of integers, return a tuple containing891

the sum and product of all the integers in the list.’892

Although these problems require some reasoning,893

the focus is primarily on language comprehension894

and engineering skills.895

In contrast, reasoning tasks aim to test the LLM’s896

logical reasoning abilities. The generated code acts897

as a carrier of logic and facilitates the use of tools,898

such as more precise calculations, dictionaries for899

storing and retrieving attribute information, or cal-900

endars to aid in date reasoning. Reasoning tasks901

focus on a subset of a programming language’s902

capabilities, rather than its entire spectrum in engi-903

neering practice.904

Therefore, although there is some overlap be- 905

tween code generation and reasoning tasks, they 906

are not entirely the same. This is why there is 907

only partial consistency between the two tasks in 908

Figure 4 and highlights the necessity of testing dif- 909

ferent programming languages in reasoning tasks.. 910
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Appl. Math Date Tabular Spatial

AC WA RE AC WA RE AC WA RE AC WA RE AC WA RE

Python 67.34 30.06 2.60 32.00 48.00 20.00 42.55 57.18 0.27 85.23 6.04 8.72 84.45 12.65 2.90
R 67.04 31.51 1.45 29.60 53.79 16.60 50.14 43.63 6.23 88.59 8.05 3.36 89.65 6.65 3.70
C++ 69.40 30.15 0.45 30.63 61.74 7.63 40.38 59.62 0.00 93.29 6.71 0.00 90.80 8.95 0.25
Java 69.08 30.28 0.63 32.02 60.80 7.18 44.17 47.15 8.67 91.28 7.38 1.34 84.50 14.65 0.85
JavaScript 68.95 28.99 2.06 32.29 55.36 12.35 49.59 49.86 0.54 91.28 7.38 1.34 74.20 19.45 6.35

Table 11: The execution result of programs generated from Deepseek Coder for five languages on five tasks. AC
represents Accept, which means the program can generate a correct answer. Wrong means the answer is not right.
RE represents Runtime Error, which means the program does not execute normally.

Appl. Math Date Tabular Spatial

AC WA RE AC WA RE AC WA RE AC WA RE AC WA RE

Python 43.06 53.70 3.24 15.78 60.66 23.56 32.79 63.41 3.79 74.50 14.09 11.41 63.55 29.65 6.80
R 40.63 57.94 1.43 14.63 66.08 19.29 34.96 55.83 9.21 77.85 19.46 2.68 52.60 28.65 18.75
C++ 44.21 54.74 1.04 14.43 71.81 13.76 18.43 81.57 0.00 77.18 18.12 4.70 61.90 37.75 0.35
Java 43.87 54.65 1.47 14.39 74.71 10.90 31.98 61.52 6.50 81.21 17.45 1.34 60.40 31.80 7.80
JavaScript 45.64 52.21 2.15 17.30 66.68 16.02 32.79 67.21 0.00 74.50 24.16 1.34 63.65 30.10 6.25

Table 12: The execution result of programs generated from Starcoder.

Appl. Math Date Tabular Spatial

AC WA RE AC WA RE AC WA RE AC WA RE AC WA RE

Python 65.14 32.14 2.72 23.09 57.04 19.87 51.76 48.24 0.00 89.26 8.72 2.01 73.60 18.85 7.55
R 63.44 34.47 2.08 23.58 61.42 14.99 57.99 41.73 0.27 89.93 9.40 0.67 71.35 24.00 4.65
C++ 68.79 30.87 0.34 22.76 71.69 5.55 39.57 59.89 0.54 88.59 10.74 0.67 74.90 23.80 1.30
Java 67.38 32.07 0.54 24.84 68.20 6.96 55.28 38.75 5.96 91.28 6.71 2.01 82.55 17.05 0.40
JavaScript 65.84 32.41 1.74 23.45 67.69 8.86 46.07 53.39 0.54 85.91 12.75 1.34 76.90 21.50 1.60

Table 13: The execution result of programs generated from Code Llama.

Appl. Math Date Tabular Spatial

AC WA RE AC WA RE AC WA RE AC WA RE AC WA RE

Python 80.75 15.61 3.65 39.74 22.76 37.50 46.61 52.85 0.54 94.63 4.70 0.67 91.70 8.00 0.30
R 79.37 16.78 3.85 34.86 25.53 39.61 55.01 42.82 2.17 89.93 7.38 2.68 92.85 5.75 1.40
C++ 79.46 16.67 3.87 39.90 39.94 20.16 47.70 50.95 1.36 91.95 4.03 4.03 86.65 12.20 1.15
Java 80.63 16.44 2.92 42.65 41.96 15.39 51.22 40.92 7.86 87.92 6.71 5.37 86.30 11.00 2.70
JavaScript 81.25 15.24 3.51 36.07 24.23 39.70 55.01 44.17 0.81 92.62 4.70 2.68 90.15 9.70 0.15

Table 14: The execution result of programs generated from ChatGPT.
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Task Language Redecl
aration

Division
by Zero

Illegal
Output

Time Limit
Error

Compile
Error

Undefined
Identifier

Variable
Type Error

Other
Error

Appl.

Python - - 61.74 2.61 9.57 23.48 2.61 -
R - - 32.81 4.69 39.06 23.44 - -
C++ 60.00 - 15.00 10.00 5.00 5.00 - 5.00
Java 46.43 7.14 - 3.57 14.29 3.57 25.00 -
JavaScript 5.49 - 84.62 2.20 2.20 5.49 - -

Math

Python - 2.57 19.91 31.21 4.70 31.1 7.61 2.91
R - - 20.22 10.65 10.24 38.27 1.35 19.27
C++ 2.93 - 17.60 28.15 21.11 7.04 4.40 18.77
Java 1.25 3.12 16.20 28.97 16.51 8.72 3.12 22.12
JavaScript 1.09 - 23.01 22.64 6.34 32.43 - 14.49

Date

Python - - - - - 100 - -
R - - - 95.65 4.35 - - -
C++ - - - - - - - -
Java - - - - 3.12 56.25 - 40.62
JavaScript 50.00 - - - - 50.00 - -

Tabular

Python - - - - 84.62 - 7.69 7.69
R - - - - - - 20.00 80.00
C++ - - - - - - - -
Java - - - - 50.00 - - 50.00
JavaScript - - - - - 100 - -

Spatial

Python - - - - 1.72 1.72 96.55 -
R - - - - - - 22.97 77.03
C++ - - 20.00 - 80.00 - - -
Java - - - - 5.88 - 17.65 76.47
JavaScript - - - - 0.79 96.85 - 2.36

Table 15: Runtime Error concrete analysis for five languages on five tasks of Deepseek Coder.

Model Language Redecl
aration

Division
by Zero

Illegal
Output

Time Limit
Error

Compile
Error

Undefined
Identifier

Variable
Type Error

Other
Error

Starcoder

Python - - 69.93 1.40 3.50 17.48 1.40 -
R - - 38.10 1.59 23.81 34.92 1.59 -
C++ 28.26 - 8.70 17.39 17.39 8.70 - 19.57
Java 6.15 3.08 3.08 3.08 24.62 3.08 56.92 -
JavaScript 29.47 - 53.68 3.16 2.11 9.47 - 2.11

Code Llama

Python - - 49.17 1.67 6.67 39.17 1.67 1.67
R - - 36.96 3.26 4.35 51.09 1.09 3.26
C++ 13.33 - 6.67 6.67 20.00 33.33 - 20.00
Java 8.33 - 4.17 - 12.50 8.33 58.33 8.33
JavaScript 9.09 - 68.83 1.30 2.60 14.29 - 3.90

Deepseek Coder

Python - - 61.74 2.61 9.57 23.48 2.61 -
R - - 32.81 4.69 39.06 23.44 - -
C++ 60.00 - 15.00 10.00 5.00 5.00 - 5.00
Java 46.43 7.14 - 3.57 14.29 3.57 25.00 -
JavaScript 5.49 - 84.62 2.20 2.20 5.49 - -

ChatGPT

Python - - 51.55 0.62 10.56 35.40 1.24 0.62
R - - 24.71 0.59 23.53 43.53 1.18 1.76
C++ - 0.58 82.46 4.68 - 8.19 - 4.09
Java 0.78 2.33 67.44 2.33 1.55 9.3 13.95 2.33
JavaScript 2.58 - 50.32 1.29 0.65 36.13 - 9.03

Table 16: Runtime Error concrete analysis for five languages on Appl. of four LLMs.
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A.5 Prompts911

Here are our multilingual prompts. We show912

prompts of Tabular(3-shots) as an example and913

prompts for other tasks are in the released code.914
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the Python program to solve the problem. The reasoning progress is clearly shown in the program.

# Define the table of penguins with their attributes
penguins = [
  {"name": "Louis", "age": 7, "height": 50, "weight": 11},
  {"name": "Bernard", "age": 5, "height": 80, "weight": 13},
  {"name": "Vincent", "age": 9, "height": 60, "weight": 11},
  {"name": "Gwen", "age": 8, "height": 70, "weight": 15},
  {"name": "James", "age": 12, "height": 90, "weight": 12}
]

# Count the number of penguins that are less than 8 years old
penguins_less_than_8_years = sum(1 for penguin in penguins if penguin["age"] < 8)

ans = penguins_less_than_8_years

Figure 6: Python Prompt of the first question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the Python program to solve the problem. The reasoning progress is clearly shown in the program.

# Define the data for the penguins
penguins = [
  {"name": "Louis", "age": 7, "height": 50, "weight": 11},
  {"name": "Bernard", "age": 5, "height": 80, "weight": 13},
  {"name": "Vincent", "age": 9, "height": 60, "weight": 11},
  {"name": "Gwen", "age": 8, "height": 70, "weight": 15}
]

# Find the youngest penguin
youngest_penguin = min(penguins, key=lambda p: p["age"])
ans = youngest_penguin["name"]

Figure 7: Python Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the Python program to solve the problem. The reasoning progress is clearly shown in the program.

# Creating a list of dictionaries to represent each penguin and their attributes
penguins = [
  {"name": "Louis", "age": 7, "height": 50, "weight": 11},
  {"name": "Bernard", "age": 5, "height": 80, "weight": 13},
  {"name": "Vincent", "age": 9, "height": 60, "weight": 11},
  {"name": "Gwen", "age": 8, "height": 70, "weight": 15}
]

# Sorting the list of penguins by their names in alphabetical order
sorted_penguins = sorted(penguins, key=lambda p: p["name"])

# Extracting the name of the second penguin in the sorted list
ans = sorted_penguins[1]["name"]

Figure 8: Python Prompt of the third question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the C++ program to solve the problem. The reasoning progress is clearly shown in the program.

#include <iostream>
#include <vector>

using namespace std;

// Define a structure for storing penguin data
struct Penguin {
  string name;
  int age;
  int height;
  int weight;
};

int main() {
  // Create a vector of Penguin structures
  vector<Penguin> penguins = {
    {"Louis", 7, 50, 11},
    {"Bernard", 5, 80, 13},
    {"Vincent", 9, 60, 11},
    {"Gwen", 8, 70, 15},
    {"James", 12, 90, 12}
  };

  // Count penguins less than 8 years old
  int count = 0;
  for (const auto& penguin : penguins) {
    if (penguin.age < 8) {
      count++;
    }
  }
  int ans = count;
  // Print the result
  cout << ans << endl;

  return 0;
}

Figure 9: C++ Prompt of the first question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the C++ program to solve the problem. The reasoning progress is clearly shown in the program.

#include <iostream>
#include <string>
#include <vector>

using namespace std;

struct Penguin {
  string name;
 int age;
 int height;
 int weight;
};

int main() {
  // Create a list of penguins
  vector<Penguin> penguins = {
    {"Louis", 7, 50, 11},
    {"Bernard", 5, 80, 13},
    {"Vincent", 9, 60, 11},
    {"Gwen", 8, 70, 15}
  };

  // Initialize variables to track the youngest penguin
  Penguin youngest = penguins[0];

  // Iterate through the list to find the youngest penguin
 for (const Penguin& penguin : penguins) {
   if (penguin.age < youngest.age) {
      youngest = penguin;
    }
  }

  string ans = youngest.name;
  // Output the name of the youngest penguin
  cout << ans << endl;

 return 0;
}

Figure 10: C++ Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the C++ program to solve the problem. The reasoning progress is clearly shown in the program.

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct Penguin {
  string name;
 int age;
 int height;
 int weight;
};

int main() {
  // Creating a list of penguins
  vector<Penguin> penguins = {
    {"Louis", 7, 50, 11},
    {"Bernard", 5, 80, 13},
    {"Vincent", 9, 60, 11},
    {"Gwen", 8, 70, 15}
  };

  // Sorting the penguins by name using a simpler lambda function
 sort(penguins.begin(), penguins.end(), [](const Penguin &a, const Penguin &b) {
   return a.name < b.name;
  });

  // Displaying the name of the second penguin after sorting
  string ans = penguins[1].name;
  cout << ans << endl;

 return 0;
}

Figure 11: C++ Prompt of the third question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the Java program to solve the problem. The reasoning progress is clearly shown in the program.

import java.util.ArrayList;
import java.util.List;

public class PenguinAgeCounter {
 public static void main(String[] args) {
   List<Penguin> penguins = new ArrayList<>();

   // Add penguins to the list
   penguins.add(new Penguin("Louis", 7, 50, 11));
   penguins.add(new Penguin("Bernard", 5, 80, 13));
   penguins.add(new Penguin("Vincent", 9, 60, 11));
   penguins.add(new Penguin("Gwen", 8, 70, 15));
   penguins.add(new Penguin("James", 12, 90, 12));

   // Count the number of penguins less than 8 years old
   int count = 0;
   for (Penguin penguin : penguins) {
     if (penguin.age < 8) {
        count++;
      }
    }
   int ans = count;
   System.out.println(ans);
  }
}

class Penguin {
 String name;
 int age;
 int height; // in cm
 int weight; // in kg

 public Penguin(String name, int age, int height, int weight) {
   this.name = name;
   this.age = age;
   this.height = height;
   this.weight = weight;
  }
}

Figure 12: Java Prompt of the first question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the Java program to solve the problem. The reasoning progress is clearly shown in the program.

import java.util.ArrayList;
import java.util.List;

public class PenguinAgeFinder {
 public static void main(String[] args) {
   // Create a list of Penguin objects
   List<Penguin> penguins = new ArrayList<>();
   penguins.add(new Penguin("Louis", 7, 50, 11));
   penguins.add(new Penguin("Bernard", 5, 80, 13));
   penguins.add(new Penguin("Vincent", 9, 60, 11));
   penguins.add(new Penguin("Gwen", 8, 70, 15));

   // Call the method to find the youngest penguin
   Penguin youngest = findYoungestPenguin(penguins);

   // Print the name of the youngest penguin
   String ans = youngest.name;
   System.out.println(ans);
  }

 // Method to find the youngest penguin
 public static Penguin findYoungestPenguin(List<Penguin> penguins) {
   Penguin youngest = penguins.get(0);
   for (Penguin penguin : penguins) {
     if (penguin.age < youngest.age) {
        youngest = penguin;
      }
    }
   return youngest;
  }
}

// Define the Penguin class with relevant attributes
class Penguin {
 String name;
 int age;
 int height; // in cm
 int weight; // in kg

 // Constructor to initialize a Penguin object
 Penguin(String name, int age, int height, int weight) {
   this.name = name;
   this.age = age;
   this.height = height;
   this.weight = weight;
  }
}

Figure 13: Java Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the Java program to solve the problem. The reasoning progress is clearly shown in the program.

import java.util.*;

public class Main {
 public static void main(String[] args) {
   // Step 2: Create Penguin objects
   Penguin louis = new Penguin("Louis", 7, 50, 11);
   Penguin bernard = new Penguin("Bernard", 5, 80, 13);
   Penguin vincent = new Penguin("Vincent", 9, 60, 11);
   Penguin gwen = new Penguin("Gwen", 8, 70, 15);

   // Step 3: Add Penguins to a list
   List<Penguin> penguins = new ArrayList<>();
   penguins.add(louis);
   penguins.add(bernard);
   penguins.add(vincent);
   penguins.add(gwen);

   // Step 4: Sort the list by name
   Collections.sort(penguins, Comparator.comparing(Penguin::getName));

   // Step 5: Find and print the name of the second penguin
   Penguin secondPenguin = penguins.get(1); // Lists are zero-indexed
   String ans = secondPenguin.getName();
   System.out.println(ans);
  }
}

// Step 1: Define the Penguin class
class Penguin {
 private String name;
 private int age;
 private int height; // in cm
 private int weight; // in kg

 // Constructor
 public Penguin(String name, int age, int height, int weight) {
   this.name = name;
   this.age = age;
   this.height = height;
   this.weight = weight;
  }

 // Getters
 public String getName() {
   return name;
  }
}

Figure 14: Java Prompt of the third question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the Javascript program to solve the problem. The reasoning progress is clearly shown in the program.

// Step 1: Create an array of penguin objects
let penguins = [
  { name: "Louis", age: 7, height: 50, weight: 11 },
  { name: "Bernard", age: 5, height: 80, weight: 13 },
  { name: "Vincent", age: 9, height: 60, weight: 11 },
  { name: "Gwen", age: 8, height: 70, weight: 15 }
];

// Step 2: Add James to the array
penguins.push({ name: "James", age: 12, height: 90, weight: 12 });

// Step 3: Initialize a counter
let count = 0;

// Step 4: Iterate over the array
for (let penguin of penguins) {
 // Step 5: Check if the penguin's age is less than 8
 if (penguin.age < 8) {
   count++;
  }
}

let ans = count;

Figure 15: JavaScript Prompt of the first question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the Javascript program to solve the problem. The reasoning progress is clearly shown in the program.

// Step 1: Create an array of penguins
const penguins = [
  { name: "Louis", age: 7, height: 50, weight: 11 },
  { name: "Bernard", age: 5, height: 80, weight: 13 },
  { name: "Vincent", age: 9, height: 60, weight: 11 },
  { name: "Gwen", age: 8, height: 70, weight: 15 }
];

// Step 2: Find the youngest penguin
let youngest = penguins[0];

for (let i = 1; i < penguins.length; i++) {
 if (penguins[i].age < youngest.age) {
   youngest = penguins[i];
  }
}

ans = youngest.name;

Figure 16: JavaScript Prompt of the second question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the Javascript program to solve the problem. The reasoning progress is clearly shown in the program.

// Define the array of penguins
let penguins = [
  { name: "Louis", age: 7, height: 50, weight: 11 },
  { name: "Bernard", age: 5, height: 80, weight: 13 },
  { name: "Vincent", age: 9, height: 60, weight: 11 },
  { name: "Gwen", age: 8, height: 70, weight: 15 }
];

// Sort the penguins array by the name property
penguins.sort((a, b) => {
 if (a.name < b.name) {
   return -1;
  }
 if (a.name > b.name) {
   return 1;
  }
 return 0;
});

// The name of the second penguin after sorting
let ans = penguins[1].name;

Figure 17: JavaScript Prompt of the third question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
We now add a penguin to the table:
James, 12, 90, 12
How many penguins are less than 8 years old?

Use the R program to solve the problem. The reasoning progress is clearly shown in the program.

# Create the data frame
penguins <- data.frame(
name = c("Louis", "Bernard", "Vincent", "Gwen", "James"),
age = c(7, 5, 9, 8, 12),
height = c(50, 80, 60, 70, 90),
weight = c(11, 13, 11, 15, 12)

)

# Filter and count the penguins younger than 8 years
num_penguins_younger_than_8 <- nrow(subset(penguins, age < 8))

ans = num_penguins_younger_than_8

Figure 18: R Prompt of the first question.
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Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
Which is the youngest penguin?

Use the R program to solve the problem. The reasoning progress is clearly shown in the program.

# Create a data frame representing the penguins
penguins <- data.frame(
name = c("Louis", "Bernard", "Vincent", "Gwen"),
age = c(7, 5, 9, 8),
height_cm = c(50, 80, 60, 70),
weight_kg = c(11, 13, 11, 15)

)

# Find the youngest penguin by locating the minimum age
youngest_index <- which.min(penguins$age)

ans = penguins$name[youngest_index]

Figure 19: R Prompt of the second question.

Question: Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm.
What is the name of the second penguin sorted by alphabetic order?

Use the R program to solve the problem. The reasoning progress is clearly shown in the program.

# Create a data frame with the penguins' information
penguins <- data.frame(
name = c("Louis", "Bernard", "Vincent", "Gwen"),
age = c(7, 5, 9, 8),
height = c(50, 80, 60, 70),
weight = c(11, 13, 11, 15)

)

# Sort the data frame by the 'name' column
sorted_penguins <- penguins[order(penguins$name),]

# Extract the name of the second penguin in the sorted list
ans <- sorted_penguins$name[2]

Figure 20: R Prompt of the third question.
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