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ABSTRACT

Native multimodal large language models (MLLMs) restructure a single large
language model (LLM) into a spoken language model (SLM) capable of both
speech and text generation. Compared to modular and aligned MLLMs, native
MLLMs preserve richer paralinguistic features such as emotion and prosody, and
generate speech responses directly within the backbone LLM rather than using a
separate speech decoder. This integration also results in lower response latency and
smoother interaction. However, native MLLMs suffer from catastrophic forgetting
and performance degradation because the available paired speech-text data is
insufficient to support the pretraining of MLLMs compared to the vast amount
of text data required to pretrain text LLMs. To address this issue, we propose
DeepOmni, a framework for adaptive modality expert learning based on a Mixture
of Experts (MoE) architecture. DeepOmni first adaptively distinguishes modality
experts according to their modality load within the LLM. Each modality expert
then undergoes specialized single-modality training, followed by joint multimodal
collaborative training. As a result, DeepOmni incurs only a 5.5% performance
drop compared to the original LLM, which is significantly lower than the average
performance drop of over 20% typically seen in native MLLMs (such as GLM-4-
Voice), and is on par with modular MLLMs. Meanwhile, the end-to-end dialogue
latency remains within 0.5 seconds, ensuring a seamless and intelligent speech
interaction experience.

1 INTRODUCTION

Since GPT-4o OpenAI (2024) has demonstrated the great potential of using a unified model to process
speech, recent voice interaction systems have evolved from traditional cascaded systems to end-to-end
large speech interaction models. As shown in Figure 1 a), in traditional cascaded systems input
speech is first transcribed into text by an automatic speech recognition (ASR) Radford et al. (2023);
Bai et al. (2024); Povey et al. (2011), the resulting text is then comprehended by a large language
model (LLM) Liu et al. (2024); Yang et al. (2024); GLM et al. (2024) to generate a text response,
and finally the response is synthesized into speech by a text-to-speech (TTS) Du et al. (2024); Ren
et al. (2019); Wang et al. (2025) model. However, this cascaded structure results in high latency, and
errors from each module can accumulate and propagate, leading to degraded performance. Therefore,
recent speech LLMs adopt an end-to-end approach, using a unified model to process both speech and
text simultaneously, which enhances the capabilities of speech understanding and generation. At the
same time, this approach significantly reduces interaction latency and provides a more natural and
smooth voice interaction experience.

Current speech LLMs can be divided into two main categories: modular aligned multimodal and native
multimodal Chen et al. (2025). Representatives of the former include Qwen2.5-Omni Xu et al. (2025),
Minmo Chen et al. (2025), LLaMA-Omni Fang et al. (2024), Freeze-Omni Wang et al. (2024), and
VITA-1.5 Fu et al. (2025). These models connect a speech encoder and a speech decoder to the LLM
to handle audio understanding and audio generation tasks separately, placing semantic understanding
within the LLM module. This maximally the retains LLM’s general capabilities. Furthermore, since
the LLM itself does not require retraining, much less speech-text paired pretraining data is needed.
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Representative of the latter including Mini-Omni Xie & Wu (2024), GLM-4-Voice Zeng et al. (2024),
Moshi Défossez et al. (2024), LUCY Gao et al. (2025) and Step-Audio2 Wu et al. (2025) use
large amounts of audio-text paired data to retrain the LLM into a spoken language model, enabling
simultaneous output of both audio and text tokens. Compared to modular aligned multimodal
approaches, native ones greatly reduces the latency of speech token output. More paralinguistic
information in speech, such as emotion and prosody, is retained within the SLM rather than in the
speech decoder, benefiting the full expression of paralinguistic information. However, since native
multimodal models expand the original LLM’s vocabulary and require retraining, they need a large
amount of audio-text paired pretraining data. Therefore, in real-world scenarios where audio data is
much less abundant than text data, native multimodal models are prone to catastrophic forgetting,
severely impairing the original LLM’s language capabilities.

In this paper, to alleviate the catastrophic forgetting faced by native multimodal models Zhai et al.
(2023), we propose DeepOmni, a model that applies the mixture of experts (MoE) for multimodal
learning Li et al. (2025b; 2024); Zhong et al. (2024); Shen et al. (2024) to effectively isolate modality-
specific knowledge. Since most speech dialogue data are conversational and colloquial, while text
LLMs are primarily trained on formal written text, training LLMs with colloquial speech dialogue
data can lead to less standardized written outputs, resulting in decreased language performance on
certain LLM benchmarks. Therefore, we assign different parameters within the LLM to specialize
in instruction data from different modalities, allowing modality experts to focus on single-modality
training and avoid interference between modalities. Finally, we use cross-modal instruction data to
jointly train the modality experts, enabling the model to output both speech and text simultaneously.

To minimize the damage to the original text LLM, we propose an adaptive modality expert selection
strategy, which dynamically selects modality experts based on the MoE model’s modality load on
different data. Experts with a high speech token load but a low text token load are selected as audio
experts. After several iterations of modality expert selection and training, DeepOmni achieves only
a loss of 5.5% relative in language ability, reaching the same level of performance loss as modular
multimodal models.

In summary, the contributions of this paper are as follows:

• We propose DeepOmni, which designates modality experts within the MoE to separate interference
between modalities and isolate modality-specific knowledge. At the same time, modalities can
collaborate to jointly output multimodal results, enabling both colloquial and formal language to
coexist within a single model.

• We introduce an adaptive modality expert selection method based on modality load, which further
reduces the damage to the original text LLM and alleviates the problem of catastrophic forgetting.

• To the best of our knowledge, this is the first native multimodal large speech interaction model
based on the MoE architecture. It opens up a new direction for mitigating catastrophic forgetting in
native multimodal speech interaction models and bridges the gap between native multimodal and
modular multimodal approaches.

2 RELATED WORK
2.1 END-TO-END SPEECH INTERACTION SYSTEM

Speech is among the most important signal in human communication, as it not only conveys semantic
content but also carries various paralinguistic information such as emotion, speech rate, intonation,
and timbre. As a result, speech interaction has become an increasingly important mode of human-
computer interaction. Traditional speech interaction systems are typically composed of a pipeline
of separately optimized ASR, LLM, and TTS modules. Such systems not only suffer from high
interaction latency, but also accumulate errors from each module, leading to a less satisfactory overall
user experience. Therefore, end-to-end solutions that use a unified model to process both speech and
text simultaneously have become the mainstream approach Ji et al. (2024a).

Some of the early attempts integrate ASR into LLM by connecting the ASR encoder directly to
the LLM via an adapter, rather than directly feeding the ASR transcript into the LLM Kong et al.
(2020); Chu et al. (2024; 2023); Das et al. (2024). This approach not only provides the LLM with
richer speech information than using pure text input, but also reduces the latency caused by ASR
recognition. However, these models still require an additional TTS module to achieve end-to-end
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Figure 1: Comparison of DeepOmni and existing voice interaction systems. Compared to modular
MLLMs, DeepOmni embeds acoustic experts into a single pre-trained LLM and integrates both
speech and language decoding within a single LLM. Through adaptive modality expert selection
and a three-stage training process for modality experts, DeepOmni effectively alleviates catastrophic
forgetting in text-based LLMs while maintaining robust voice interaction capabilities.

speech interaction. To provide rich speech information, LLaMA-Omni Fang et al. (2024) feed LLM’s
text hidden states to a non-autoregressive (NAR) Transformer based TTS module to predict discrete
speech tokens. Since speech token sequences are much longer than text sequences for the same
content, the text hidden states are upsampled and a Connectionist Temporal Classification (CTC)
loss Graves et al. (2006) is used to align the upsampled hidden states with the audio token outputs.
Meanwhile, to reduce latency for real-time speech interaction, a predefined chunk size is set to enable
the vocoder to synthesize speech in a streaming manner. Mini-Omni employs SNAC, an audio codec,
to discretize continuous acoustic signal into 7 codebooks of discrete tokens at a rate of 82Hz and
adopts a delayed decoding strategy Copet et al. (2023); Peng et al. (2024); Lyth & King (2024) to
model 7 streams of acoustic tokens to effectively reduces the number of steps of LLM decoding
during inference. Minmo Chen et al. (2025) integrates a language model with an autoregressive
CosyVoice2 decoder Du et al. (2024). The hidden states of the language model are fed into the
CosyVoice2 decoder to autoregressively predict speech tokens, which are then passed to a vocoder
for waveform synthesis.

Fully end-to-end approaches integrate the TTS module into the LLM, allowing the LLM itself to
generate both text and speech tokens, rather than relying on a separate speech decoder or TTS module
for speech synthesis. Discrete speech tokens are typically generated by neural audio codecs Défossez
et al. (2022); Ji et al. (2024b); Zhang et al. (2023) or self-supervised models Lakhotia et al. (2021);
Hsu et al. (2021); Chen et al. (2022). Currently, there are two mainstream modeling paradigm for
end-to-end speech systems. The first is interleaved audio-text modeling, as exemplified by GLM-
4-Voice Zeng et al. (2024), Baichuan-Audio Li et al. (2025a) and Spirit-LM Nguyen et al. (2025),
where audio and text tokens are interleaved within a single sequence, and the model alternately
predicts audio and text tokens. The second is parallel audio-text modeling, represented by models
such as Mini-Omni Xie & Wu (2024), Moshi Défossez et al. (2024), Slam-Omni Chen et al. (2024)
and LUCY Gao et al. (2025). In this paradigm, text and audio tokens can be generated in parallel:
while generating text tokens, multiple LM heads are used to simultaneously predict multiple audio
tokens. Compared to the interleaved approach, parallel modeling compresses speech tokens into
shorter sequences, enabling the modeling of higher-bitrate speech tokens.

Modular Speech Language Models Modular large speech models are primarily built on an
architecture where a LLM is directly connected to an audio encoder and decoder through adapters.
Examples include Qwen2.5-Omni Xu et al. (2025), Minmo Chen et al. (2025), LLaMA-Omni Fang
et al. (2024), and Freeze-Omni Wang et al. (2024), as shown in Fig. 1 b). In this structure, the LLM
is only responsible for textual decoding, while speech decoding is handled by the audio decoder. As
a result, the language capabilities of the LLM are largely preserved. Additionally, Minmo employs
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Low-Rank Adaptation (LoRA) Hu et al. (2022) for fine-tuning the LLM, while Freeze-Omni further
freezes the LLM to prevent any degradation of its language abilities. However, such modular speech-
language models face several challenges. For instance, the transmission of speech information relies
entirely on the audio decoder, with the LLM only responsible for conveying textual content. This
means that the expression of paralinguistic information in speech is completely dependent on the
speech decoder, resulting in underutilization of the LLM. Furthermore, there are additional issues
such as low deployment efficiency. In modular speech language models paradigm, the LLM is trained
to model only text distribution, or formally P (Tout|Tin ∪ Sin), and the audio decoder is trained to
model P (Sout|Tout).

Native Speech Language Models Native speech language models reconstruct the LLM into an
SLM, enabling the LLM to output both text and speech tokens simultaneously, as shown in Fig. 1 c).
Currently, most mainstream native multimodal approaches such as Mini-Omni Xie & Wu (2024),
Moshi Défossez et al. (2024), GLM-4-Voice Zeng et al. (2024), and LUCY Gao et al. (2025) have the
LLM handle both text and speech decoding. This approach offers low latency, easy deployment, and
allows a unified model to process both audio and text decoding, which better aligns with end-to-end
requirements. However, without large-scale speech-text paired data, retraining the LLM in this way
can lead to catastrophic forgetting and performance degradation. In native speech language models
paradigm, the LLM is trained to model P (Tout ∪ Sout|Tin ∪ Sin) . Clearly in the native paradigm,
the speech-text joint distribution space for the LLM to learn is more complex than text distribution. It
is also for this reason in modular paradigm the LLM does not need to be restructed to a SLM and its
language capacity is largely preserved.

2.2 MULTIMODAL MIXTURE-OF-EXPERTS

Multimodal Mixture-of-Experts refers to using a MoE model to learn multimodal knowledge. BEiT-
3 Wang et al. (2023), VLMo Bao et al. (2022), and Uni-MoE Li et al. (2025b) employ specific
modality expert groups to capture modality-specific information. MoExtend Zhong et al. (2024)
further expands modality experts horizontally on top of existing LLMs to capture additional modality
information. CuMo Li et al. (2024) extends dense models into multimodal LLMs by co-upcycling
the MLP, while MoME Shen et al. (2024) uses multiple feature encoders as modality expert groups
to encode multi-dimensional features. VL-MoE Shen et al. (2023) and MoE-LLaVa Lin et al. (2024a)
introduce mixture-of-experts (MoE) to improve training and deployment. MoMa Lin et al. (2024b)
pretrains MLLMs with multimodal mixture-of-experts and collaborates with sparse components to
enhance the efficiency of training from scratch with trillions of mixed-modality tokens. Inspired
by these works, we introduce multimodal mixture-of-experts (speech experts and text experts) into
end-to-end large speech interaction models for native MLLM pretraining. At the same time, we use
the modality load of each expert to adaptively select modality experts, a method called Adaptive
Modality-Specific MoE, to address the catastrophic forgetting problem aforementioned.

3 METHODS

3.1 ARCHITECTURE

The overall architecture of the model is shown in Fig. 2, which mainly consists of an Audio Encoder,
a connector, an MoE backbone, and a streaming codec. Let XA

i and XT
i denote the audio input and

text input of the i-th sample, respectively, and Y A
i and Y T

i denote the audio output and text output of
the i-th sample, respectively. The model’s text and speech responses are represented as Y T ∈ V and
Y A ∈ U , where V and U denote the text vocabulary and the speech codec vocabulary, respectively.
The embeddings of speech HA

i and text HT
i are combined and used as the overall feature Hi input to

the model. The loss L of the model over N samples can be defined as:

L = −
N∑
i=1

Ti∑
t=1

logP (Y T
i,t, Y

A
i,t|Y T

i,<t, Y
A
i,<t, Hi), (1)

where Ti denotes the maximum number of tokens of the output text Y T
i and the output speech Y A

i of
the i-th sample.

Audio Encoder and Adapter We use Whisper-medium Radford et al. (2023) as the audio encoder,
which consists of 24 Transformer blocks with a hidden size of 4096 and 16 attention heads. It includes
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multiple convolutional downsampling layers that downsample the speech features by a factor of 4.
We use an 80-dimensional log Mel-filterbank with a 25ms window length computed every 10ms as
the input to the audio encoder. A MLP-based audio adapter is used to align the audio modality with
the backbone language model and further downsample the speech features. Finally, for the input XA

i ,
we obtain the hidden state HA

i = Adapter(Encoder(XA
i )).

Figure 2: The DeepOmni model architecture.

Table 1: Performance of Text to Speech on Seed-
TTS. Lower values are better. The metric for Chi-
nese is character error rate (CER), and the metric
for English is word error rate (WER).

Model Seed-TTS
test-zh↓ test-en↓ test-hard↓

Seed-TTS 1.12 2.25 7.59
CosyVoice 3.63 4.29 11.75
CosyVoice2 1.45 2.57 6.83

GLM-4-Voice 2.91 2.10 -
VITA-1.5 8.44 2.63 -

DeepOmni(topk=10) 1.87 7.34 7.53
DeepOmni(topk=1) 1.68 6.28 7.34

+DPO 1.41 3.25 7.29

Mixture-of-Experts Backbone The backbone model is DeepSeek-V2-Lite Liu et al. (2024), as
shown in Fig. 2. Each MoE layer is adaptively divided into modality expert groups for specialized
training and learning of the corresponding modality. Specifically, the text expert group is responsible
for generating written text such as mathematical code, while the speech expert group is responsible for
generating spoken language such as emotional speech response. In addition, there is a shared modality
expert group for learning common knowledge across both modalities such as daily conversations.
The weights among modality expert groups are allocated through modality routing, as follows:

P (hl)i =
ef(hl)i∑M
j ef(hl)i,j

, (2)

MoE(hl) =

T∑
i=1

P (hl)i · e(hl)i, (3)

where hl denotes the averaged feature input of speech and text at the l-th layer, T represents the total
length of the sequence after concatenating speech and text, and M denotes the total number of speech
and text experts combined, respectively. f(x) = W · x is the linear modality router to produce expert
assignment probabilities and W ∈ Rh×d. h is the last dimension of hidden states and d is the total
number of experts.

Audio-Text Modeling Following parallel modeling paradigm Défossez et al. (2024); Xie & Wu
(2024); Chen et al. (2024); Gao et al. (2025), we use different heads to process hidden states,
generating both text and audio tokens Chen et al. (2024); Défossez et al. (2024) in one decoding
step. Since the input to the LLM is the average of the text and audio representations instead of
native text representations, maintaining the original capabilities of the LLM can be challenging. To
enhance models’ text ability, we apply batch parallel decoding Xie & Wu (2024); Gao et al. (2025),
Batch-parallel decoding expands a single input to a batch size of two: the first sample generates
text-only response and the second sample generates both text and speech response. The generated
text tokens from the first sample are of better quality than those from the second and are used to
substitute the latter in the second sample.

Audio Codec Decoder We use SNAC codec Siuzdak et al. (2024) to encode the output speech into
discrete tokens using 7 codebooks, which have a total token rate of 82 Hz. Combining speech and text
tokens results in eight layers of labels, so we use eight LM heads to simultaneously predict one text
token and seven audio token at each decoding step. We follow the delay pattern of MusicGen (Copet
et al., 2024) for better generation quality, applying k token delay to k-th layer of audio tokens.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive Modality Expert Partitioning
Require: • Multimodal dataset with audio input: DA = {(xA

i , y
A,T
i )}ni=1

• Multimodal dataset with text input: DT = {(xT
j , y

A,T
j )}mj=1

• Pre-trained MoE-LLM πθ after modality alignment
Ensure: Specialized expert allocation strategy {EA

l ,E
T
l }Ll=1 {L is the total number of layers.}

1: Initialize: k ← # audio experts, M ← # total experts, C ← # activated experts
2: Phase 1: Expert Selection Statistics
3: Extract hidden states: hA

l = πθ(DA), hT
l = πθ(DT ) {Layer-wise representations}

4: Compute token counts: TA = |DA|, TT = |DT |
5: Initialize counting matrices: EA

l ← 0M , ET
l ← 0M {Per-layer expert counters}

6: for (modality,hl) in {(A,hA
l ), (T,h

T
l )} do

7: for i← 1 to Tmodality do
8: Emodality

l,i ← top-k
(
MoE(hmodality

l )i, C
)
{MoE using equation 3}

9: for j ← 1 to len(Emodality
l,i ) do

10: Emodality
l [Emodality

l,i [j]] += 1 {Aggregate selections}
11: end for
12: end for
13: end for
14: Phase 2: Modality Token Load Ratio Computation
15: for modality ∈ {A, T} do
16: for j ← 1 to M do

17: ρmodality
l,j ←

E
modality
l,j

C·Tmodality {Token load ratio ρ ∈ [0, 1]}
18: end for
19: end for
20: Phase 3: Partitioning Modality Experts Based on Modality Token Load
21: for j ← 1 to M do
22: Audio Expertsl ← top-k(ρAl,j ∗ (1− ρTl,j), k)

23: Text Expertsl ← top-k(ρTl,j ∗ (1− ρAl,j),M − k)
24: end for
25: return πθ(Audio Expertsl,Text Expertsl)

3.2 ADAPTIVE MODALITY-SPECIFIC MIXTURE-OF-EXPERTS

The adaptive modality expert selection strategy is primarily designed for an original textual LLM,
dynamically distinguishing between audio experts and text experts based on modality load. The goal
is to ensure minimal impairment to the language capabilities of the original LLM. Specifically, as
shown in Algorithm 1, an initial MoE model that has undergone stage 1 modality alignment training
is used. For unimodal input data, the token load rates of all experts for both modalities are calculated.
According to Algorithm 1, those experts with low text token load but high audio token load are
selected as audio experts, while the others are designated as text experts. This adaptive selection
approach fully utilizes the text experts with low load in the original MoE LLM, while also ensuring
that the selected experts are suitable for processing the audio modality. In this way, the strategy
minimizes the impact on the original LLM while fitting the audio modality as much as possible.
3.3 TRAINING STRATEGY FOR MODALITY EXPERTS

In order to fully leverage the capabilities of both text and audio experts, it is necessary to conduct
specialization training for the designated modality experts, enabling each group of modality experts to
excel at processing inputs from their respective modalities. Finally, to handle multimodal information
inputs simultaneously, cross-modal instruction data is used for joint training of the modality experts.
The specific training process is illustrated in Figure 3.

Modality Aligment During the modality alignment stage, audio ASR data is used to align the
semantic spaces of speech and text. In this stage, the main focus is on training the Adapter that
connects the Audio Encoder and the LLM. Through modality alignment training, it is ensured that
speech can be understood by the LLM in the same way as the meaning expressed by text. The specific
approach is to use a cross-entropy loss to align the audio and text modalities. Because the audio
sequence for the same content is significantly longer than the text, in addition to downsampling the
audio, we also use text padding tokens to align their lengths.
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Unimodal Expert Specialization Training The main purpose of unimodal specialization training
is to enable modality experts to focus more on their own modality domains, so that they can fully
utilize their expertise when collaborating with other multimodal experts. Since audio, like text,
covers a wide range of domains, there are also multiple audio experts, each responsible for learning
specialized knowledge in different areas, such as pitch, prosody, dialect, speech rate, and emotion. As
shown in step 2 of Algorithm 1, audio and text experts are specialized and trained on their respective
modalities. Since only unimodal specialization learning is required, the router is kept frozen to
prevent it from becoming biased toward a single modality. During the specialization of audio experts,
the router weight scores corresponding to text experts are set to zero. The remaining router weight
scores are then normalized and redistributed among the audio experts. The same process is applied
when specializing the text experts.

Joint Training of Modality Experts Multimodal joint training is mainly designed to enable the
model to jointly train unimodal experts so that they can collaboratively process multimodal input
information. As shown in Stage 3 of Figure 3, this stage uses cross-modal outputs from both
modalities to jointly train the audio and text experts. Since all experts participate in training at this
stage, the router is also unfrozen and trained, allowing it to better learn how to handle modality
routing when processing multimodal joint inputs.
3.4 AUDIO GENERATION WITH REINFORCEMENT LEARNING
To broaden the coverage of speakers and domains, it is inevitable that the pre-training data contains
label noise and pronunciation errors, which can lead to hallucinations in the model. We observed
that the quality of generated response audio is not consistent under different sampling parameters.
To ensure more stable quality in response audio generation, we introduce a reinforcement learning
stage to improve the stability of speech generation. Specifically, we use the text from the Lib-
riSpeech Panayotov et al. (2015) set and have the model paraphrase it to obtain response audio and
corresponding text. The response audio is then transcribed into recognized text using Whisper-large,
and the word error rate (WER) is calculated as the reward score. All samples are ranked according
to their WER, and triplet preference data (x, yAw , y

A
l ) ∼ D is constructed for direct preference

optimization (DPO) Rafailov et al. (2023) training as follows:

LDPO(Pθ;Pref ) = −E(x,yA
w ,yA

l )∼D[logσ(βlog
Pθ(y

A
w |x))

Pref (yAw |x))
− βlog

Pθ(y
A
l |x))

Pref (yAl |x))
], (4)

where θ is the policy model and ref is the reference model. x denotes the text input of the audio to
be synthesized, yAw denotes a good speech sequence, and yAl denotes a bad speech sequence.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 EXPERIMENT SETTINGS

Models The overall architecture of the DeepOmni model is shown in Figure 2. We use the pre-
trained DeepSeek-V2-Lite as the initial MoE-based LLM backbone, Whisper-medium as the audio

Figure 3: The training process consists of three stages: stage 1 is for modality alignment, stage 2 is
for training single modality experts, and stage 3 is for joint training of the modality experts.
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Table 2: Performance on Spoken Question Answering

Model #A-Param LLaMA Question Web Question TriviaQA Avg
S→ T S→ S S→ T S→ S S→ T S→ S S→ T S→ S

Modular MLLMs
Minmo Chen et al. (2025) 7B 78.9 64.1 55.0 39.9 48.3 37.5 60.7 47.2

Step-Audio Huang et al. (2025) 130B 81.0 - 75.1 - 58.0 - 71.4 -
Freeze-Omni Wang et al. (2024) 7B 72.0 - 44.7 - 53.9 - 56.9 -

Native MLLMs
Moshi Défossez et al. (2024) 7B 62.3 21.0 26.6 9.2 22.8 7.3 37.2 12.5

GLM-4-Voice Zeng et al. (2024) 9B 64.7 50.7 32.2 15.9 39.1 26.5 45.3 31.0
LUCY Gao et al. (2025) 7B 59.6 51.0 26.6 18.2 23.2 18.2 36.5 29.1

MoExtend Zhong et al. (2024) 2.4B 54.0 45.3 20.8 16.9 18.5 17.2 31.1 26.5
DeepOmni 2.4B 65.0 59.7 34.4 23.1 41.2 27.5 46.9 36.8

encoder, and an MLP-based adapter to connect the audio encoder and the LLM. DeepOmni contains
a total of 66 experts, including 6 audio experts, 58 text experts, and 2 shared experts. A sparse routing
mechanism is adopted, where each token is processed by 6 experts. The model consists of 27 layers
in total: the first layer is a dense layer, followed by 26 MoE layers. Each MoE layer has a hidden
size of 1408, and the self-attention layers use flash-attention Dao (2023) with 16 attention heads. In
stage 1, the learning rate is set to 2e-5. Since the original LLM has not undergone any pre-training on
audio modalities, the learning rate is set to 1e-4 in stage 2.1 to accelerate convergence, 2e-5 in stage
2.2, and 5e-5 in stage 3. We use the AdamW Loshchilov & Hutter (2017) optimizer with β1= 0.9 and
β2 = 0.95. The final evaluation is conducted on LLM benchmarks, SQA, ASR, and TTS tasks.

Datasets In stage 1, WenetSpeech Zhang et al. (2022) is used for modality alignment. In stage
2.1, AudioQA-1M Gao et al. (2025) is used for specialized training of audio experts. In stage 2.2,
databricks-dolly-15k Dolly (2023), MathInstruct Yue et al. (2023) (262K) and camel-ai-math Li
et al. (2023) (50K) are used for specialized training of text experts. In stage 3, AudioQA-1M is
used for joint training of modality experts. For the RL stage, we sampled 28K text entries from
LibriSpeech Panayotov et al. (2015) to construct the audio preference pair dataset.

4.2 EVALUATIONS

Evaluation on Text to Text The text evaluation is mainly conducted to assess the retention of
language capabilities in the models, and all evaluations are performed using opencompass1. As shown
in Table 3, modular MLLMs cause minimal damage to the language abilities of the original text
LLMs, primarily because the LLM is only responsible for generating text tokens. However, native
MLLMs significantly impair the language capabilities of the original text LLMs, with an average
relative loss of over 20% compared to their backbone LLMs. The DeepOmni model effectively
alleviates the catastrophic forgetting problem of native MLLMs through modality isolation and joint
modality training, achieving an average relative loss at the same level as modular MLLMs.

Evaluation on Speech to Text The evaluation of speech-to-text is divided into two tasks: Spoken
QA and ASR. As shown in the S → T column of Table 2, thanks to the preservation of the original
LLM’s language capabilities by modular MLLMs, these models generally achieve leading perfor-
mance. In contrast, native MLLMs cause significant degradation to the original LLM, resulting in
increased hallucinations and thus lower scores. However, DeepOmni effectively mitigates the damage
caused by native multimodality to the LLM, preserving the language capabilities of the LLM to
the greatest extent. As a result, DeepOmni leads among native MLLMs. The ASR capabilities of
the models are shown in Table 4, where DeepOmni, with a relatively small number of parameters,
achieves performance comparable to other models with much larger parameter sizes.

Evaluation on Text to Speech As shown in Table 1, the last three rows present the results for
DeepOmni, where ”topk” denotes the sampling parameter for audio tokens. Since the speech dialogue
data used by DeepOmni contains a relatively high proportion of Chinese, the model performs better
on Chinese tasks but is somewhat lacking in English. After optimizing audio generation during
response with DPO, the model may already perform well on simple tasks, as DPO increases the
probability of the correct audio appearing in pass@1, thereby making high-quality audio generation
more stable. However, for more difficult tasks (test-hard), the supervised fine-tuning (SFT) model

1https://opencompass.org.cn/
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Table 3: Performance of Text to Text on LLM benchmark, ∗ indicates that the average metric is
calculated only on those test sets for which Qwen2.5-Omni has values. HS, WG, HEval denotes
Hellaswag, Winogrande, HumanEval, respectively. “#AP” denotes number of activated parameters.

Model #AP General Reasoning Math Coding Avg Drop↓CEval CMMLU MMLU BBH ARC c GPQA HS WG MATH GSM8K HEval MBPP

Modular MLLMs
Qwen2-7B 7B 81.62 80.79 70.76 64.72 85.42 34.30 79.15 66.93 52.90 82.87 79.17 67.60 70.52 N/A
VITA-1.5 7B 77.11 76.85 73.43 66.01 70.17 23.23 79.45 65.90 36.90 71.95 75.00 58.20 64.52 -8.51

Qwen2.5-7B 7B 78.74 78.85 74.19 70.06 88.14 36.40 82.40 68.43 75.50 91.60 84.80 79.20 73.62∗ N/A
Qwen2.5-Omni 7B - - 71.00 - - 30.08 - - 71.50 88.70 78.70 73.20 68.86 -6.47

Native MLLMs
GLM-4 9B 74.48 72.78 69.93 69.82 92.20 21.21 84.60 76.80 37.52 75.89 75.00 61.20 64.08 N/A

GLM-4-Voice 9B 39.64 54.76 52.48 29.02 63.05 25.76 40.85 47.20 3.80 32.37 26.61 12.60 35.68 -44.32

Qwen2-0.5B 0.5B 54.71 47.59 42.99 27.94 44.41 1.01 31.70 49.88 11.48 35.94 28.66 20.20 33.04 N/A
Mini-Omni 0.5B 32.53 28.64 34.25 20.13 32.18 0.67 25.93 36.62 8.67 30.48 21.79 18.63 24.21 -26.73

Qwen2-7B 7B 81.62 80.79 70.76 64.72 85.42 34.30 79.15 66.93 52.90 82.87 79.17 67.60 70.52 N/A
LUCY 7B 53.38 52.76 59.43 47.48 78.31 14.14 76.30 58.88 24.24 68.92 46.34 36.40 51.38 -27.14

DeepseekV2-Lite 2.4B 58.60 62.06 57.56 49.20 75.25 23.74 67.90 61.40 18.98 59.67 57.32 45.00 53.06 N/A
DeepOmni 2.4B 58.45 59.05 54.63 48.27 68.98 20.71 63.25 59.59 17.68 55.40 54.67 41.33 50.17 -5.45

Table 4: Performance of Speech to Text on ASR. The metric for Chinese is CER, and for English
WER. Lower values are better.

Model #A-Params WenetSpeech AIShell LibriSpeech
test-net test-meeting test test-clean test-other

Qwen2-Audio-base Chu et al. (2024) 7B 7.64 8.40 1.52 1.74 4.04
Baichuan-Audio-base Li et al. (2025a) 7B 10.13 13.28 1.93 3.02 6.04

VITA Fu et al. (2025) 7B 12.15 16.53 - 8.14 18.41
Step-Audio-chat Huang et al. (2025) 130B 9.47 10.83 2.14 3.19 10.67

Qwen2.5-Omni Xu et al. (2025) 7B 6.04 7.71 1.13 2.37 4.21
GLM-4-Voice Zeng et al. (2024) 9B - - 3.02 2.10 4.90

DeepOmni 2.4B 8.98 10.67 2.42 3.25 8.21

itself may not generate the correct result within the entire search space, so applying DPO brings little
to no benefit.

Evaluation on Speech to Speech The evaluation of speech-to-speech is shown in the S → S column
of Table 2. MoExtend refers to the results obtained by extending the original Deepseek-V2-Lite
model with additional experts, adding six audio experts. However, since expanding the number of
experts alters the distribution of the router, the performance is relatively suboptimal. DeepOmni, on
the other hand, adopts an adaptive modality expert selection strategy, preserving the original router’s
allocation to experts. This allows the audio experts to specialize while retaining the capabilities of
the original text experts, thus achieving better performance among native MLLMs.

Latency We deployed DeepOmni on a web server and measured end-to-end latency in half-duplex
mode, where users manually control the timing of their speech input, without involving a Voice
Activity Detection (VAD) module. The reported numbers are averaged over more than 10 samples.
With a good network connection, the end-to-end latency of the entire system in half-duplex mode is
0.4362 seconds. The time cost for generating the first audio chunk is 0.3417 seconds. By subtracting
the first chunk cost from the total latency, we estimate the network transmission cost to be 0.1062
seconds. The time cost for decoding a single token is 0.0205 seconds. All time measurements were
conducted on a GPU with 80GB of memory.

5 CONCLUSION

To address the catastrophic forgetting problem caused by the scarcity of paired data, we propose
DeepOmni, a MoE framework for adaptive modality expert learning. DeepOmni first adaptively
distinguishes modality experts according to their modality load within the LLM. Each modality
expert then undergoes specialized single-modality training, followed by joint multimodal collaborative
training. As a result, DeepOmni incurs a performance loss lower than peer native MLLMs and on par
with modular ones. Meanwhile, the end-to-end dialogue latency remains within 0.5 seconds, ensuring
a seamless and intelligent speech interaction experience. To the best of our knowledge, this is the
first MoE-based native multimodal large speech interaction model, which opens up a new direction
for mitigating catastrophic forgetting in native multimodal speech interaction models and bridges the
gap between native multimodal and modular multimodal approaches.
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6 REPRODUCIBILITY STATEMENT

We have released all reproducible code in the supplementary materials and anonymized it. The
details of the training data used and the hyperparameters are provided in Appendices A.1 and B,
respectively.
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A APPENDIX

A.1 DATASET DETAILS

As shown in Table 5, we provide the data and quantities used for training at each stage. Stage 1’s
training data consists of speech-text pairs, which are used to align the semantic spaces of the speech
and text modalities. AudioQA-1M contains conversational instruction data, with both input and
output encompassing two modalities, aimed at fine-tuning the model to enhance its speech dialogue
capabilities. Stage 2.2 utilizes pure text data to maintain the language proficiency of the text expert.
During the RL stage, data from Librispeech is used to construct DPO preference pair data for speech
generation.

Table 5: List of datasets used for each training stage.
Stage Dataset Size

1 WenetSpeech 10Kh

2.1 AudioQA-1M 1000K

2.2

MathInstruct 262K
camel ai math 50K

databricks dolly 15k 15K

3

AudioQA-1M 1000K
MathInstruct 262K

camel ai math 50K
databricks dolly 15k 15K

RL LibriSpeech-DPO 28K

B EXPERIMENTAL SETUP DETAILS

Table 6 outlines the main hyperparameters used during each stage of training. All ablation studies
were conducted using a total batch size of 128, with learning rates of 1e-4, 2e-5, and 5e-5.

Table 6: Hyperparameters used in each stage training on DeepOmni.
Hyperparameter Stage 1 Stage 2.1 Stage 2.2 Stage 3 Stage RL

Learning rate 2e-5 1e-4 2e-5 5e-5 2e-5
LR schedule Cosine Cosine Cosine Cosine Cosine

Batchsize per GPU 16 8 8 8 8
Zero Zero2 Zero2-offload Zero2 Zero2-offload Zero3

Optimizer AdamW AdamW AdamW AdamW AdamW

B.1 ABLATION STUDY

B.1.1 AUDIO EXPERTS NUMBER

We conducted ablation experiments with varying numbers of audio experts, as shown in Table 7.
The results demonstrate that as the number of audio experts increases, the language ability tends to
be compromised, whereas the speech dialogue capability is enhanced. However, once the number
of audio experts surpasses 24, both speech dialogue and language abilities begin to decline. This
suggests that at this point, too many resources are allocated to audio experts at the expense of the
text experts of the original text LLM, leading to a decrease in language ability. Moreover, the speech
dialogue capability also falls after reaching a bottleneck concerning language ability.
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Table 7: Ablation study on the impact of the number of audio experts on the capabilities of the two
modalities.

Experts Num LLaMA Question Web Question TriviaQA Avg
T → T S → S T → T S → S T → T S → S T → T S → S

6 69.0 59.7 46.6 23.1 58.2 27.5 57.9 36.8
12 61.0 60.0 39.2 26.7 49.7 29.1 50.0 38.6
18 59.0 59.0 32.1 28.3 42.6 33.7 44.6 40.3
24 48.0 48.0 23.7 22.9 31.9 30.2 34.5 33.7

Figure 4: The modality load of the experts in the first layers.

Figure 5: The modality load of the experts in the middle layers.

Figure 6: The modality load of the experts in the last layers.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Performance on Spoken Question Answering

Model LLaMA Question Web Question TriviaQA Avg
S → T S → S S → T S → S S → T S → S S → T S → S

PureMoE 48.3 40.7 20.9 15.7 21.5 17.6 30.2 24.7
LoRA-PureMoE 50.4 37.6 22.3 13.8 23.1 14.1 31.9 21.8

Random Modality-Specific(1) 40.3 32.7 17.3 10.9 18.9 14.5 25.5 19.4
Random Modality-Specific(2) 54.3 45.7 25.9 19.8 26.3 20.1 35.5 28.5
Random Modality-Specific(3) 52.1 47.0 23.3 17.6 29.8 23.4 35.1 29.3
Adaptive Modality-Specific 65.0 59.7 34.4 23.1 41.2 27.5 46.9 36.8

B.1.2 THE MODALITY LOAD OF DIFFERENT LAYER EXPERTS

The expert loads at different layers are shown in Figures 4, 5, and 6, corresponding to the modality
loads of the first, middle, and last MoE layers, respectively. We can see that the modality loads differ
substantially across layers, indicating that the indices of the audio experts vary from layer to layer.
Moreover, the modality token loads at each layer also reveal the specialization of the modality-specific
experts.

B.1.3 MODALITY-SPECIFIC MOE

As shown in Table 8, we compared two settings: PureMoE without specifying modality experts and
Random Modality-Specific MoE with randomly assigned experts. We found that if modality experts
are not set, the model can only rely on self-learning the modality boundaries. During the early stages
of training, the model does not clearly understand these boundaries, and the inclusion of audio data
may significantly harm important text experts, leading to poorer final performance. The random
assignment of modality experts was attempted three times, but results were inconsistent. If suitable
experts were chosen as audio experts, the performance could be quite good, as seen in the second and
third instances. However, if some crucial text experts were chosen as audio experts, the initial LLM
suffers substantial damage, resulting in noticeable performance degradation. LoRA-PureMoE builds
on PureMoE by applying LoRA-based fine-tuning to the LLM component. Although this mitigates
the degradation of the LLM’s text capabilities, the speech modality learning remains insufficient.
Using an adaptive modality assignment method effectively selects which experts are suitable as audio
experts and text experts, achieving better performance.

B.2 BROADER IMPACT

DeepOmni leverages pre-trained LLMs, which are inherently subject to the limitations of LLMs.
These limitations include the potential to generate inaccurate information or biased outputs. To
address these issues, we enhanced the model’s speech interaction capabilities using AudioQA and
performed speech-language instruction tuning on high-quality datasets. Despite these improvements,
we recommend exercising caution and conducting thorough safety and fairness evaluations before
deploying the DeepOmni model in any downstream applications.

C THE USE OF LARGE LANGUAGE MODELS

We used LLMs for grammar correction and proofreading.
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