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Abstract

Distillation is the process of condensing learnt knowledge from a large1

neural network trained on large datasets to a more efficient one suitable2

for deployment. Building on recent developments in the learning theory of3

distillation (Boix-Adsera, 2024), we rigorously analyze a phenomenon in4

which if the target class of the distillation process is algorithmically aligned5

with the task at hand, in terms of a linear representation hypothesis (Elhage6

et al., 2022), then the distillation process can be efficient. This gives rise to7

a novel and rigorous characterization of algorithmic alignment that could8

be of independent interest.9

1 Introduction10

An understated paradigm of modern machine learning is the incorporation of inductive biases11

into the learning algorithm, either through the architecture or through the optimization12

process. For example, the use of local shift-invariant kernels in convolutional neural networks13

has led to one of the most important breakthroughs of computer vision in the past century,14

the learning of ImageNet (Krizhevsky et al., 2012; LeCun et al., 2015; Goodfellow et al.,15

2016).16

In recent years, as unprecedentedly large-scale computing is made possible with modern17

hardware, the absolute necessity of incorporating inductive bias into the model has been18

questioned (e.g. "transformer v.s. convolution" (Bachmann et al., 2023)). It is therefore a19

question of great significance whether there are inductive biases that would give tremendous20

benefit to be incorporated as opposed to being learned with data.21

1.1 Graph machine learning22

Graph machine learning is a testbed for graph-based inductive biases that may allow for23

exponential gains in learning efficiency. Informally, symmetry constraints of graph functions,24

in terms of vertex permutations, induce certain sparsity structures in the function space,25

making learning easier (Bietti et al., 2021; Elesedy, 2021; Tahmasebi and Jegelka, 2023).26

Although this is the case in specific learning settings, in general, learning graph neural27

networks and other equivariant networks are still hard in the worst case, requiring, for28

example, exponentially or superpolynomially many queries in the correlation statistical29

queries model of learning (Kiani et al., 2024). Understanding which settings exactly give rise30

to quantitative benefits for learning is an important and active area of research.31

More specifically, a graph neural network (GNN) (Gilmer et al., 2017; Kipf and Welling,32

2017) is a parameterization of the space of functions on graphs, potentially of different33

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not
distribute.



sizes. A message passing neural network (MPNN) is one such example in which each node34

aggregates neighboring information and processes them with a neural network to form a new35

latent representation in each round. After a fixed number of rounds, the network outputs36

a learnt representation for each vertex of the graph, or combines them together to form a37

single representation for the whole graph, depending on the specific tasks.38

1.2 Combinatorial optimization with graph ML and algorithmic alignment39

One proposed area where GNNs could have strong inductive bias with the learning task is40

that of using neural networks to learn combinatorial optimization. It is observed (Xu et al.,41

2020) that the loop structure of an MPNN closely follows that of local graph algorithms, such42

as Bellman-Ford for shortest path. As such, Xu et al. (2020) argues that the neural network43

used in the aggregation operation of an MPNN only had to learn a simple function of its44

inputs, and not the actual for-loop structure, thereby decreasing the sample complexity of45

learning from supervised examples produced by such algorithms. Although the original paper46

provided a theoretical justification for this phenomenon through PAC learning (Valiant,47

1984), a tighter analysis of what constitutes such algorithmic alignment has drawn many48

follow-up investigations (Dudzik and Veličković, 2022; Dudzik et al., 2024). Nevertheless,49

the idea that the learning architecture should be built to resemble a potential algorithmic50

paradigm, such as dynamic programming, is intuitive and has been the inspiration for many51

neural heuristics that are widely successful in practice (Kahng et al., 2024; Nerem et al.,52

2025; He and Vitercik, 2025; Gasse et al., 2019).53

1.3 Contribution of this paper54

The paper rigorously analyzes the advantages of employing models with high inductive bias55

for the right tasks. For the purpose of the workshop, we focus on the learning paradigm56

known as "learn first, distill later" in big data, where an enormous multipurpose network (or57

a foundation model) is trained on an enormous dataset of the task. Later on in production,58

the knowledge learnt is distilled into a more efficient models for deployment (e.g. on edge59

devices). Specifically, we argue that if the source class has learnt to perfectly perform some60

combinatorial optimization tasks on graphs of size n, if the target model is algorithmically61

aligned with an algorithm that solves this optimization (e.g. dynamic programming), in62

a certain sense that will be discussed, then the distillation from source to target can be63

efficient, in a rigorous model of learning theory known as PAC-distillation (Boix-Adsera,64

2024). This is the first, as far as the authors are aware, rigorous study of distillation into65

graph neural network that makes use of a form of algorithmic alignment.66

2 Preliminaries67

In this section, we will discuss some of the tools and materials that will be used to arrive at68

our results.69

2.1 Notations70

In general, we denote by X the input set and by Y the label set. We focus on binary71

classification in this paper, so, unless otherwise stated, Y = {0, 1}. For a vector in S with n72

entries, we denote by Si its i-th entry. We will also write [n] := {1, 2, . . . , n}.73

In congruence with languages of computational learning theory, we follow the notations74

of Boix-Adsera (2024). We will usually denote by C the concept class (class of possible75

ground truths), H the hypothesis class (output range of the learning algorithm), the input76

distribution D that induces a distribution over sample Dc ∈ P(X × Y) for some ground77

truth c ∈ C. When there are many inputs S ∈ Xn for some n ∈ N, we overload c to apply78

pointwise to each element of the vector c(S) := [c(Si)]i∈[n]. In the setting of distillatin, we79

have a source class F and a target class H.80

For graph-theoretic notation, we define Gn to be the space of all graphs on the n vertices.81

To make the exposition cleaner, we assume that all graphs are labeled graphs and drop the82
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subscript n if it is clear from context. Considering a Boolean input/output graph learning83

model, the input is both the initial feature vector (which encodes the initialization of some84

DP algorithm) and also the graph structure of
(

n
2
)

bits. Assuming that the dimension of85

each node feature is fixed and independent of n, we let d = O(n2) denote the dimension of86

the input of the models.87

For machine learning theoretic notation, we say that a neural network defines a latent88

representation φ : X → Rm defined as the concatenation of all activations in its neurons.89

Some authors also defined this representation as that of the penultimate layer of a deep90

network. The exact choice does not matter in this paper as long as they satisfy a structural91

assumption called the linear representation hypothesis, to be discussed later.92

2.2 Set-up93

PAC learning In traditional PAC (Valiant, 1984), a concept class (class of possible94

ground truth) is (ϵ, δ)-learnable in n samples if there is an algorithm A such that for any D95

distribution over the input and any concept in c ∈ C,96

Pr
S∼Dn

[errorc,D(A(S, c(S)) ≤ ϵ] ≥ 1− δ. (1)

Here, the error function is the 0-1 population risk: errorc,D(f) := PrD[f(x) ̸= c(x)].97

PAC-distillation (Boix-Adsera, 2024) PAC-distillation is a relaxation of PAC learning in98

which one assumes the accessibility of a successful model class F to train a target class H by99

finding an algorithm A such that for any distribution D on X , any source f ∈ F ,100

Pr
S∼Dn

[errorf,D(A(S, f) ≤ ϵ] ≥ 1− δ. (2)

Such an algorithm is said to (ϵ, δ) distill F → H. Note that since the algorithm has access101

to the successful model f , giving a PAC distillation algorithm is easier than giving a PAC102

algorithm since one can just use f to query labels and simulate PAC. The advantage of this103

framework is 1) to sidestep some of the hardness results of PAC learning with relaxation104

and 2) to make use of extra natural structures in the class F .105

In practice, F can be thought of as pre-trained complex neural networks that have achieved106

low errors on some tasks, and the target class H can be understood as function classes with107

inductive bias that can more efficiently represent the ground truth, for example, invariant108

neural networks such as convolutional neural nets (CNNs) or graph neural nets (GNNs).109

Distillation then asks if there are efficient algorithms to find a good representation of the110

ground truth in the target class.111

The design of F and H should be taken with great care so that the distillation of PAC is112

not trivial. For example, if F ⊆ H then the learning algorithm can just return the second113

argument. Or, if H admits efficient approximations of functions in F , then returning the114

approximation also solves the problem.115

Linear representation hypothesis (LRH) (Elhage et al., 2022) is the main structural116

assumption on the source class F . It can be stated as follows:117

Definition 1 (τ -LRH). Fix a source neural network f ∈ F and let φ : X → Rm be the latent118

representation of f . Let Z be a set of functions z : X → R. For any τ > 0, we say that f119

satisfies τ -LRH for features Z if for all z ∈ Z, there exists w ∈ Rm such that ∥w∥ ≤ τ and120

⟨w, φ(x)⟩ = z(x) for all x ∈ X .121

In essence, Z is the set of intermediate computations or high-level features of the target122

class. To give a taste of the results that can be obtained from this framework, we restate a123

distillation theorem.124

Theorem 1 (Theorem 3.6 of (Boix-Adsera, 2024)). Let F be the set of neural networks f125

that implicitly compute a decision tree T : {0, 1}d → {0, 1} of depth r and size s such that f126

satisfies τ -LRH for features ZT := {ANDS : S is a path starting at the root of T}. Let H be127

the set of decision trees with depth r and size s. Then for any ϵ, δ ∈ (0, 1), there is an algorithm128

that (ϵ, δ)-distills from F to H that runs in polynomial time in d, m, 1/ϵ, s, 2r, log(1/δ), τ and129

B and takes polynomially many samples in 1/ϵ, s, log(d/δ), log(τB) where B ≥ maxx ∥φ(x)∥.130
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This is a remarkable result, since learning a decision tree in the PAC framework is conjectured131

to take dΩ(r) time, but PAC distillation takes only poly(d, 2r) time.132

Algorithmic alignment In this paper, we propose that a trained neural network that133

satisfies τ -LRH for some features Z is an example of algorithmic alignment. More general134

alignments, which will be defined later, can also lead to efficient distillation bounds.135

3 Main results136

All graphs discussed in this section are labeled and assumed to have n vertices for some137

n ∈ N.138

We first give some definitions specific to our settings:139

Definition 2 (Neural networks that computes graph algorithms). A neural network ν :140

G × X → Y computes graph algorithm A if ν agrees with A on all inputs of size n. It is141

efficient if it can be evaluated in polynomial time in n.142

Definition 3 (Local-iteration algorithm). For any function f : {0, 1}n × G × [n]→ {0, 1}143

let Al[f ] : {0, 1}n × G → {0, 1} be a graph input algorithm that computes:144

Algorithm 1: Local-iteration algorithm Al[f ]
Input: Initialization vector Init, Graph G = (V, E)
Output: {0, 1} classification

1 hv,0 ← Initialize for each v ∈ V with Init
2 for t ∈ [T ] do
3 for v ∈ V do
4 hv,t ← f({{hu,t−1}}u∈N(v), G, v) ▷ f can select the neighbors using G

and v
5 return hn,T .

In the remainder of the paper, we will assume that we are given the stopping time l a priori.145

For k-local algorithms, l = k, while for more general algorithms, l can depend on n. Unless146

otherwise stated, we focus on the former case.147

We consider the following intuitive form of algorithmic alignment that was proposed in the148

seminal paper of Xu et al. (2020):149

Definition 4 (Local-iteration alignment). Fix a source neural network ν ∈ F and let φ :150

X → Rm be the latent representation of ν. Let Z be a set of functions z : {0, 1}n×G → {0, 1}.151

For any τ > 0, we say that ν satisfies τ -local-iteration alignment for features Z if for all152

z ∈ Z, there exists a w ∈ Rm with ∥w∥ ≤ τ and ⟨w, φ⟩ = Al[z].153

Finally, we define a decision tree:154

Definition 5. A decision tree T : {0, 1}d → {0, 1} is a labeled rooted binary tree with leaf155

labeled 0 or 1 and internal node labeled by its input variables x1 . . . xd. Each input takes a156

path by evaluating the input variable to arrive at the leaf that is the output of the tree.157

3.1 Concept class, source class and target class158

Our concept class (the collection of possible ground truths) will be:159

Cs,r = {A[T ] | T is a decision tree with depth s size r} (3)

To define the source class, we first need to give the set of features that is supposedly linearly160

represented by our source functions. This is done analogously to (Boix-Adsera, 2024): given161

a decision tree T , the root-prefix path conjunctions form T ’s features:162

Z ′
T :=

{
l∧

i=1
pi | pi is a literal (xj or ¬xj for some j) s.t. (p1, . . . , pl) is a path from root

}
(4)

4



Given these features for decision trees, the features for local-iteration algorithms are:163

ZT :=
{

AT [b] | b ∈ Z ′
T

}
(5)

We postulate that such loops over prefix path conjunctions are simply representable by the164

neural network’s latent representation.165

The source class (the collection of neural networks that have successfully learnt some graph166

algorithms) will be:167

Fτ
s,r = {neural networks implicitly computing A[T ] for some decision tree T

that also satisfied τ -local-iteration alignment for features ZT }

And finally, the target class is the same as the concept class. In practice, this is a subset168

of graph neural networks, and the distillation process can be understood as distilling from169

learnt neural networks to graph neural networks.170

3.2 GNNs are more efficient than decision trees171

In the following, we state a simple fact that makes for a good exercise:172

Lemma 1. There exists a simple decision tree T : {0, 1}n × {0, 1}(
n
2) → {0, 1} that can be173

evaluated in polynomial time in n such that while A[T ] can be evaluated in polyonomial time,174

it cannot be represented by decision trees of polynomial size.175

Proof sketch. Consider the 2-reachability DP. In other words, given the adjacency matrix176

of a graph on n ≥ 2 vertices, is there a path of length at most 2 that connects the vertex177

labeled 1 and n? The full proof is in the Appendix.178

This fact means that without the for loop structure, one cannot just convert the concept179

class Cs,r into the class of efficient decision trees. This forms a type of algorithmic mismatch180

which would be resolved in the next part, using graph neural networks.181

3.3 GNNs can be distilled from learnt and aligned neural networks efficiently182

We are now ready to state the main theorem.183

Theorem 2. For any ϵ, δ ∈ (0, 1), there is an algorithm that (ϵ, δ)-distills from Fτ
s,r to Cs,r184

and runs in polynomial time in n, m, 1/ϵ, s, 2rl

, log(1/δ), τ, B and takes a polynomial sample185

in 1/ϵ, s, log(d/δ), log(τB) from D where B = maxx ∥φ(x)∥.186

The proof follows from (Boix-Adsera, 2024) and uses Algorithm 2, which first builds a set187

of conjunctions that is a superset of all root-prefix conjunctions in the true tree and then188

stitches these conjunctions together efficiently using a DP.189

Algorithm 2: GNN distillation algorithm
Input: Neural network ν, representation φ, random samples from D, depth bound

R ∈ N, error parameters ϵ, δ > 0.
Output: GNN that computes Al[T̂ ]

1 S0 ← {∅} for i = 1 ∈ [R] do
2 Pi−1 ←

{
S ∈ Si−1 s.t LinearProbe(Al[

∧
pi∈S pi], φ, B, τ, 2−il−3, δ

2|Si−1|R ) = true
}

3 Si ←
⋃

S∈Pi1

⋃d
j=1{S ∪ xl, S ∪ ¬xl}

4 S ←
⋃R

j=1 Sj

5 v̂S′ ← Ex[
∧

pi∈S′ pi(x)(2ν(x)− 1)]± ϵ/s, for each S′ ∈ Sl

6 return argmaxT val(T, v̂) where T is over decision trees with Z ′
T ⊆ {

∧
pi∈S pi | S ∈ S}

In Algorithm 2,190
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1. The LinearProbe(g, φ, B, τ, ϵ, δ,D) subroutine comes from Lemma 3.7 of (Boix-191

Adsera, 2024) that runs in polynomial time and draws polynomially many samples to192

return true w.p. ≥ 1−δ if there is a w ∈ Rm with ∥w∥ ≤ τ and Ex[(⟨w, φ⟩−g)2] ≤ 2193

and return false w.p. ≥ 1− δ if for all such w, the expectation is at least 2ϵ.194

2. The maximization over decision trees in the final step is done with a DP (Guijarro195

et al., 1999; Mehta and Raghavan, 2002) and the function val is chosen such that196

maximizing it corresponds to maximizing the 0-1 risk.197

We defer the correctness proof Theorem 2 to the Appendix.198

4 Conclusion and discussion199

In this workshop paper, we extend the work of Boix-Adsera (2024) in PAC-distillation to200

characterize learning models that have built-in algorithmic alignment properties, such as201

GNNs for dynamic programming. We showed that while there are some DP algorithms202

whose inner function is a small decision tree, the whole DP itself cannot be represented by203

an efficient decision tree – a case of misalignment. On the other hand, the local iteration204

structure of a GNN with decision tree aggregation allows for efficient distillation from a205

large, learnt neural network that exhibits a certain kind of linear representability.206

Although this marks the first work in this direction, there is much room for improvement207

with this workshop version of the paper. For brevity of exposition, we adapt the analysis of208

(Boix-Adsera, 2024) as is and naively, under the assumption that the outer loop of the DP209

has a constant number of iterations and that the size of the innermost decision tree is small.210

A more complicated and nuanced analysis greatly reduces these requirements.211

Finally, the purpose of this workshop paper is to introduce the distillation pipeline, which212

has shown great promise in rigorously studying algorithmic alignment. Besides a more213

detailed analysis, future directions include the statistical learning theory questions of sample214

complexity under distillation or the study of pretrained large language models, whose215

finetuning might be thought of as a form of distillation.216
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A Appendix: Omitted proofs296

A.1 Proof for Lemma 1297

Proof. Consider the combinatorial problem of deciding, for a labeled graph, whether the298

first and last vertex is connected with a path of length at most 2, or 2-reachability.299

The classic dynamic programming (DP) algorithm for this problem runs in time O(n) (Tarjan,300

1971).301

However, any decision tree that correctly solves this problem on all labeled graphs of size n302

must have exponential size. To see this, we bound the number of leaves of a correct tree303

(which in turn bounds the order of its size since a decision tree is binary).304

Consider the subset of graphs on the n vertices labeled by [n] where the only possible edges305

are (1, n) and (1, v), (v, n) for all v ∈ V \{1, n}. There are 22(n−2)+1 such graphs. Among306

them, graphs that fail to have a path of size at most 2 between 1 and n does not have the307

(1, n) edge and for each other v, have one of the 3 configurations out of 4 possible choices of308

presence/absence of the pair (1, v), (v, n). This counts to (3/4)n−2/2 fraction of the total309

number of graphs.310

Now, each 0-leaf (leaf that outputs 0 for the DT) of a correct DT on these inputs fixes a311

certain presence/absence of some edges on the path from the DT’s root to it. Once certain312

variables are fixed, all other variables are free to range between 0 and 1 and the output of313

the DT is still 0. This means that (1, n) must always be included in the fixed variables, and314

so is at least one in each pair (1, v), (v, n). Thus, each 0-leaf accounts for at most a fraction315

of 2−(n−1) of the total number of graphs.316

Therefore, the number of leaves must be at least (3/4)n−2/2/2−(n−1), which is exponential317

in n.318

A.2 Proof for Theorem 2319

We first set up additional notation, in line with the setup in (Boix-Adsera, 2024).320

Recall that the input space is X = {0, 1}d. Some bits of the input are from the initial321

feature vector, while other bits are used to encode the graph structure. Literals are of the322

form xi or ¬xi for some i ∈ [d]. A clause S consists of literals p1, . . . , p|S| and we define323

ANDS(x) :=
∧

p∈S p. S is a non-degenerate k-clause if |S| = k and each variable appears at324

most once in S (otherwise, ANDS will always be false).325

Recall that given a decision tree T , we defined Z ′
T as the collection of all ANDS functions326

where S range over all paths that start at the root (root-prefix paths), including the trivial327

path of length 0 that always evaluates to 1; and ZT as the collection of all Al[ANDS ]328

functions.329

We will show that with probability at least 1− δ/2,330

1. For any root-prefix paths S in the true tree where |S| ≤ R, S ∈ S331

2. |Si| ≤ poly(2Θ(il), τ, B, d)332

The first statement follows from Lemma 3.7 of (Boix-Adsera, 2024) because it is guaranteed333

that all root-prefix paths S of length at most R of the true tree have their Al[ANDS ] checked334

with the LinearProbe subroutine and thus accepted into S with high probability. Assume335

to the contrary that there is a path (p1, . . . , ps) that was not checked by LinearProbe, this336

means that the prefix (p1, . . . , ps−1) was also not checked or was checked but failed. The latter337

is not possible because we assumed that the source class satisfies τ -local-iteration-alignment,338

so the prefix was simply not checked. Inductively, this means that ∅ ∋ S0 is not checked,339

which is impossible and hence a contradiction.340

The second statement follows from Lemma 3.8 in (Boix-Adsera, 2024) applied to a collection341

of kl-clauses. This reduction is possible because unrolling the for loops of Al[ANDS ] gives342

a conjunction of size kT . This can be seen by writing the ANDS as a multilinear boolean343
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polynomial and noticing that the loop over vertices in V is done in parallel, while degrees344

are only added in the outermost loop over T runs. This is a very rough treatment of the345

feature set, since in fact most of the kl-clauses are degenerate due to unrolling. A more346

careful analysis would bring down the final complexity even more, but for the purpose of the347

extended abstract, we opt to present this weaker result and delay the strongest bounds to348

the full paper.349

Finally, it is left to show that the dynamic programming algorithm in the final step is correct350

in stitching up the innermost decision tree.351

For a fixed candidate decision tree T̃ , define T [T̃ ] as the decision tree equivalence of A[T ]352

created by unrolling A[T ].353

Denote by Leaves(T [T̃ ]) the set of all leaf clauses of T [T̃ ] and T [T̃ ](S) the output at354

S ∈ Leaves(T [T̃ ]). Note that if Leaves(T̃ ) ∈ S then Leaves(T [T̃ ]) ∈ Sl. Define vS =355

Ex[ANDS(x)(2ν(x)− 1)] for some S ∈ Sl. Thus,356

val(T̃ , v) :=
∑

S∈Leaves(T [T̃ ])

vS(2T [T̃ ](S)− 1) (6)

= Ex

 ∑
S∈Leaves(T [T̃ ])

ANDS(x)(2ν(x)− 1)(2T [T̃ ](S)− 1)

 . (7)

Because for each input x, there is a unique path through T [T̃ ], there is a unique S ∈357

Leaves(T [T̃ ]) such that ANDS(x) = 1 and for the remaining S, ANDS(x) = 0. Furthermore,358

when ANDS(x) = 1, T [T̃ ](S) = T [T̃ ](x) = Al[T̃ ](x). Therefore:359

val(T̃ , v) = 2 Pr
x

[Al[T̃ ](x) = ν(x)]− 1. (8)

Therefore, maximizing val over T̃ is equivalent to maximizing the 0-1 risk of Al[T̃ ].360

In our algorithm, we use Hoeffding inequality to approximate val with random sampling. Note361

that this step requires approximating |S|l entries of v naively and runs in time poly(|S|l, dl, m)362

where m = poly(1/ϵ, log(|S|l/δ)) is the number of draws to obtain the Hoeffding bound.363

When choosing R = r, the size of the true innermost decision tree, the number of leaves of364

T [T ] is of order 2O(lrl) based on the previous bound on |S|. Finally, we can run the dynamic365

program that computes for each S ∈ S, and each tree size s′ = 0..s, the best subtree of size366

s′ rooted at the end of the clause S.367
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settings, model well-specification, asymptotic approximations only holding398
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in practice and what the implications would be.400

• The authors should reflect on the scope of the claims made, e.g., if the approach401
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• If applicable, the authors should discuss possible limitations of their approach411

to address problems of privacy and fairness.412
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favor of transparency play an important role in developing norms that preserve417

the integrity of the community. Reviewers will be specifically instructed to not418

penalize honesty concerning limitations.419
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Answer: [Yes]423
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• All the theorems, formulas, and proofs in the paper should be numbered and428

cross-referenced.429

• All assumptions should be clearly stated or referenced in the statement of any430

theorems.431

• The proofs can either appear in the main paper or the supplemental material,432

but if they appear in the supplemental material, the authors are encouraged to433
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• Inversely, any informal proof provided in the core of the paper should be435

complemented by formal proofs provided in appendix or supplemental material.436
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4. Experimental result reproducibility438
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provided or not)?442

Answer:[NA]443
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steps taken to make their results reproducible or verifiable.451
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(c) If the contribution is a new model (e.g., a large language model), then there469

should either be a way to access this model for reproducing the results or a470
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possible for other researchers to have some path to reproducing or verifying477
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5. Open access to data and code479
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supplemental material?482

Answer: [NA]483

Justification: There are no data or code in this paper.484
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• While we encourage the release of code and data, we understand that this might489

not be possible, so “No” is an acceptable answer. Papers cannot be rejected490
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a new open-source benchmark).492

• The instructions should contain the exact command and environment needed493

to run to reproduce the results. See the NeurIPS code and data submis-494
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• The authors should provide instructions on data access and preparation, in-497

cluding how to access the raw data, preprocessed data, intermediate data, and498

generated data, etc.499

• The authors should provide scripts to reproduce all experimental results for500

the new proposed method and baselines. If only a subset of experiments are501

reproducible, they should state which ones are omitted from the script and why.502

• At submission time, to preserve anonymity, the authors should release503

anonymized versions (if applicable).504

• Providing as much information as possible in supplemental material (appended505

to the paper) is recommended, but including URLs to data and code is permitted.506

6. Experimental setting/details507

Question: Does the paper specify all the training and test details (e.g., data splits,508

hyperparameters, how they were chosen, type of optimizer, etc.) necessary to509

understand the results?510
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• The full details can be provided either with the code, in appendix, or as517

supplemental material.518

7. Experiment statistical significance519
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appropriate information about the statistical significance of the experiments?521
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• The answer NA means that the paper does not include experiments.525
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confidence intervals, or statistical significance tests, at least for the experiments527
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• The assumptions made should be given (e.g., Normally distributed errors).534

• It should be clear whether the error bar is the standard deviation or the standard535

error of the mean.536

• It is OK to report 1-sigma error bars, but one should state it. The authors537

should preferably report a 2-sigma error bar than state that they have a 96%538

CI, if the hypothesis of Normality of errors is not verified.539

• For asymmetric distributions, the authors should be careful not to show in540

tables or figures symmetric error bars that would yield results that are out of541

range (e.g. negative error rates).542

• If error bars are reported in tables or plots, The authors should explain in the543

text how they were calculated and reference the corresponding figures or tables544

in the text.545

8. Experiments compute resources546

Question: For each experiment, does the paper provide sufficient information on the547

computer resources (type of compute workers, memory, time of execution) needed548

to reproduce the experiments?549

Answer: [NA]550

Justification: There are no experiments in this paper.551

Guidelines:552

• The answer NA means that the paper does not include experiments.553

• The paper should indicate the type of compute workers CPU or GPU, internal554

cluster, or cloud provider, including relevant memory and storage.555

• The paper should provide the amount of compute required for each of the556

individual experimental runs as well as estimate the total compute.557

• The paper should disclose whether the full research project required more558

compute than the experiments reported in the paper (e.g., preliminary or failed559

experiments that didn’t make it into the paper).560

9. Code of ethics561

Question: Does the research conducted in the paper conform, in every respect, with562

the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?563

Answer: [Yes]564

Justification: Yes565
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• The answer NA means that the authors have not reviewed the NeurIPS Code567

of Ethics.568

• If the authors answer No, they should explain the special circumstances that569

require a deviation from the Code of Ethics.570

• The authors should make sure to preserve anonymity (e.g., if there is a special571

consideration due to laws or regulations in their jurisdiction).572

10. Broader impacts573

Question: Does the paper discuss both potential positive societal impacts and574

negative societal impacts of the work performed?575

Answer: [NA]576
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Justification: The paper is a mathematical and theoretical study in the theory of577

computation and does not carry extra societal impacts that are worth highlighting.578

Guidelines:579

• The answer NA means that there is no societal impact of the work performed.580

• If the authors answer NA or No, they should explain why their work has no581
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impact specific groups), privacy considerations, and security considerations.586

• The conference expects that many papers will be foundational research and587

not tied to particular applications, let alone deployments. However, if there588

is a direct path to any negative applications, the authors should point it out.589

For example, it is legitimate to point out that an improvement in the quality590

of generative models could be used to generate deepfakes for disinformation.591
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to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a601

system learns from feedback over time, improving the efficiency and accessibility602
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11. Safeguards604
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responsible release of data or models that have a high risk for misuse (e.g., pretrained606

language models, image generators, or scraped datasets)?607

Answer: [NA]608

Justification: No such risk609
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• Released models that have a high risk for misuse or dual-use should be released612
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Justification: No new assets648

Guidelines:649
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whose asset is used.655

• At submission time, remember to anonymize your assets (if applicable). You656

can either create an anonymized URL or include an anonymized zip file.657

14. Crowdsourcing and research with human subjects658

Question: For crowdsourcing experiments and research with human subjects, does659
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if applicable, as well as details about compensation (if any)?661

Answer: [NA]662

Justification: No crowdsourcing nor research with human subjects.663
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research with human subjects.666
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Board (IRB) approvals (or an equivalent approval/review based on the requirements677

of your country or institution) were obtained?678

Answer: [NA]679

Justification: No such risks680
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Ethics and the guidelines for their institution.689
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anonymity (if applicable), such as the institution conducting the review.691

16. Declaration of LLM usage692
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the LLM is used only for writing, editing, or formatting purposes and does not695
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