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Abstract

Distillation is the process of condensing learnt knowledge from a large
neural network trained on large datasets to a more efficient one suitable
for deployment. Building on recent developments in the learning theory of
distillation (Boix-Adsera, 2024), we rigorously analyze a phenomenon in
which if the target class of the distillation process is algorithmically aligned
with the task at hand, in terms of a linear representation hypothesis (Elhage
et al., 2022), then the distillation process can be efficient. This gives rise to
a novel and rigorous characterization of algorithmic alignment that could
be of independent interest.

1 Introduction

An understated paradigm of modern machine learning is the incorporation of inductive biases
into the learning algorithm, either through the architecture or through the optimization
process. For example, the use of local shift-invariant kernels in convolutional neural networks
has led to one of the most important breakthroughs of computer vision in the past century,
the learning of ImageNet (Krizhevsky et al., 2012; LeCun et al., 2015; Goodfellow et al.,
2016).

In recent years, as unprecedentedly large-scale computing is made possible with modern
hardware, the absolute necessity of incorporating inductive bias into the model has been
questioned (e.g. "transformer v.s. convolution' (Bachmann et al., 2023)). It is therefore a
question of great significance whether there are inductive biases that would give tremendous
benefit to be incorporated as opposed to being learned with data.

1.1 Graph machine learning

Graph machine learning is a testbed for graph-based inductive biases that may allow for
exponential gains in learning efficiency. Informally, symmetry constraints of graph functions,
in terms of vertex permutations, induce certain sparsity structures in the function space,
making learning easier (Bietti et al., 2021; Elesedy, 2021; Tahmasebi and Jegelka, 2023).
Although this is the case in specific learning settings, in general, learning graph neural
networks and other equivariant networks are still hard in the worst case, requiring, for
example, exponentially or superpolynomially many queries in the correlation statistical
queries model of learning (Kiani et al., 2024). Understanding which settings exactly give rise
to quantitative benefits for learning is an important and active area of research.

More specifically, a graph neural network (GNN) (Gilmer et al., 2017; Kipf and Welling,
2017) is a parameterization of the space of functions on graphs, potentially of different
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sizes. A message passing neural network (MPNN) is one such example in which each node
aggregates neighboring information and processes them with a neural network to form a new
latent representation in each round. After a fixed number of rounds, the network outputs
a learnt representation for each vertex of the graph, or combines them together to form a
single representation for the whole graph, depending on the specific tasks.

1.2 Combinatorial optimization with graph ML and algorithmic alignment

One proposed area where GNNs could have strong inductive bias with the learning task is
that of using neural networks to learn combinatorial optimization. It is observed (Xu et al.,
2020) that the loop structure of an MPNN closely follows that of local graph algorithms, such
as Bellman-Ford for shortest path. As such, Xu et al. (2020) argues that the neural network
used in the aggregation operation of an MPNN only had to learn a simple function of its
inputs, and not the actual for-loop structure, thereby decreasing the sample complexity of
learning from supervised examples produced by such algorithms. Although the original paper
provided a theoretical justification for this phenomenon through PAC learning (Valiant,
1984), a tighter analysis of what constitutes such algorithmic alignment has drawn many
follow-up investigations (Dudzik and Veli¢kovi¢, 2022; Dudzik et al., 2024). Nevertheless,
the idea that the learning architecture should be built to resemble a potential algorithmic
paradigm, such as dynamic programming, is intuitive and has been the inspiration for many
neural heuristics that are widely successful in practice (Kahng et al., 2024; Nerem et al.,
2025; He and Vitercik, 2025; Gasse et al., 2019).

1.3 Contribution of this paper

The paper rigorously analyzes the advantages of employing models with high inductive bias
for the right tasks. For the purpose of the workshop, we focus on the learning paradigm
known as "learn first, distill later" in big data, where an enormous multipurpose network (or
a foundation model) is trained on an enormous dataset of the task. Later on in production,
the knowledge learnt is distilled into a more efficient models for deployment (e.g. on edge
devices). Specifically, we argue that if the source class has learnt to perfectly perform some
combinatorial optimization tasks on graphs of size n, if the target model is algorithmically
aligned with an algorithm that solves this optimization (e.g. dynamic programming), in
a certain sense that will be discussed, then the distillation from source to target can be
efficient, in a rigorous model of learning theory known as PAC-distillation (Boix-Adsera,
2024). This is the first, as far as the authors are aware, rigorous study of distillation into
graph neural network that makes use of a form of algorithmic alignment.

2 Preliminaries

In this section, we will discuss some of the tools and materials that will be used to arrive at
our results.

2.1 Notations

In general, we denote by X the input set and by ) the label set. We focus on binary
classification in this paper, so, unless otherwise stated, ) = {0,1}. For a vector in S with n
entries, we denote by S; its i-th entry. We will also write [n] := {1,2,...,n}.

In congruence with languages of computational learning theory, we follow the notations
of Boix-Adsera (2024). We will usually denote by C the concept class (class of possible
ground truths), H the hypothesis class (output range of the learning algorithm), the input
distribution D that induces a distribution over sample D, € P(X x )) for some ground
truth ¢ € C. When there are many inputs S € X™ for some n € N, we overload ¢ to apply
pointwise to each element of the vector ¢(S) := [¢(5;)]ie[n)- In the setting of distillatin, we
have a source class F and a target class H.

For graph-theoretic notation, we define G,, to be the space of all graphs on the n vertices.
To make the exposition cleaner, we assume that all graphs are labeled graphs and drop the
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subscript n if it is clear from context. Considering a Boolean input/output graph learning
model, the input is both the initial feature vector (which encodes the initialization of some
DP algorithm) and also the graph structure of (g) bits. Assuming that the dimension of
each node feature is fixed and independent of n, we let d = O(n?) denote the dimension of
the input of the models.

For machine learning theoretic notation, we say that a neural network defines a latent
representation ¢ : X — R™ defined as the concatenation of all activations in its neurons.
Some authors also defined this representation as that of the penultimate layer of a deep
network. The exact choice does not matter in this paper as long as they satisfy a structural
assumption called the linear representation hypothesis, to be discussed later.

2.2 Set-up

PAC learning In traditional PAC (Valiant, 1984), a concept class (class of possible
ground truth) is (e, d)-learnable in n samples if there is an algorithm A such that for any D
distribution over the input and any concept in ¢ € C,

SPZr)n[errorcp(.A(S7 c(S) <e>1-4. (1)
Here, the error function is the 0-1 population risk: error. p(f) := Prp[f(z) # c(x)].

PAC-distillation (Boix-Adsera, 2024) PAC-distillation is a relaxation of PAC learning in
which one assumes the accessibility of a successful model class F to train a target class H by
finding an algorithm A such that for any distribution D on X, any source f € F,

SPlr)”[errorﬁp(.A(S7 f)<e>1-0. (2)

Such an algorithm is said to (e, d) distill F — H. Note that since the algorithm has access
to the successful model f, giving a PAC distillation algorithm is easier than giving a PAC
algorithm since one can just use f to query labels and simulate PAC. The advantage of this
framework is 1) to sidestep some of the hardness results of PAC learning with relaxation
and 2) to make use of extra natural structures in the class F.

In practice, F can be thought of as pre-trained complex neural networks that have achieved
low errors on some tasks, and the target class H can be understood as function classes with
inductive bias that can more efficiently represent the ground truth, for example, invariant
neural networks such as convolutional neural nets (CNNs) or graph neural nets (GNNs).
Distillation then asks if there are efficient algorithms to find a good representation of the
ground truth in the target class.

The design of F and H should be taken with great care so that the distillation of PAC is
not trivial. For example, if 7 C H then the learning algorithm can just return the second
argument. Or, if H admits efficient approximations of functions in F, then returning the
approximation also solves the problem.

Linear representation hypothesis (LRH) (Elhage et al., 2022) is the main structural
assumption on the source class F. It can be stated as follows:

Definition 1 (7-LRH). Fiz a source neural network f € F and let ¢ : X — R™ be the latent
representation of f. Let Z be a set of functions z : X — R. For any 7 > 0, we say that f
satisfies T -LRH for features Z if for all z € Z, there exists w € R™ such that ||w|| < 7 and
(w,p(x)) = z(x) for allz € X.

In essence, Z is the set of intermediate computations or high-level features of the target
class. To give a taste of the results that can be obtained from this framework, we restate a
distillation theorem.

Theorem 1 (Theorem 3.6 of (Boix-Adsera, 2024)). Let F be the set of neural networks f
that implicitly compute a decision tree T : {0,1}4 — {0,1} of depth v and size s such that f
satisfies T-LRH for features Zp := {ANDg : S is a path starting at the root of T}. Let H be
the set of decision trees with depth r and size s. Then for any e, € (0,1), there is an algorithm
that (e, 6)-distills from F to H that runs in polynomial time in d,m,1/e, s,2" log(1/8),7 and
B and takes polynomially many samples in 1/¢, s,log(d/d),log(TB) where B > max, ||¢(z)]|.
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This is a remarkable result, since learning a decision tree in the PAC framework is conjectured
to take d(") time, but PAC distillation takes only poly(d,2") time.

Algorithmic alignment In this paper, we propose that a trained neural network that
satisfies 7 -LRH for some features Z is an example of algorithmic alignment. More general
alignments, which will be defined later, can also lead to efficient distillation bounds.

3 Main results

All graphs discussed in this section are labeled and assumed to have n vertices for some
n € N.

We first give some definitions specific to our settings:

Definition 2 (Neural networks that computes graph algorithms). A neural network v :
G x X — Y computes graph algorithm A if v agrees with A on all inputs of size n. It is
efficient if it can be evaluated in polynomial time in n.

Definition 3 (Local-iteration algorithm). For any function f :{0,1}" x G x [n] — {0,1}
let AY[f] : {0,1}" x G — {0,1} be a graph input algorithm that computes:

Algorithm 1: Local-iteration algorithm A'[f]

Input: Initialization vector INIT, Graph G = (V, E)
Output: {0,1} classification

hy,o < Initialize for each v € V with INIT
for t € [T] do
forveV do
hot < f({{hut-1}}uen@), G;v) > f can select the neighbors using G
and v
return h, 7.

In the remainder of the paper, we will assume that we are given the stopping time [ a priori.
For k-local algorithms, [ = k, while for more general algorithms, [ can depend on n. Unless
otherwise stated, we focus on the former case.

We consider the following intuitive form of algorithmic alignment that was proposed in the
seminal paper of Xu et al. (2020):

Definition 4 (Local-iteration alignment). Fiz a source neural network v € F and let ¢ :
X — R™ be the latent representation of v. Let Z be a set of functions z : {0,1}" xG — {0,1}.
For any 7 > 0, we say that v satisfies T-local-iteration alignment for features Z if for all
z € Z, there exists a w € R™ with ||w|| < 7 and (w, p) = A'[z].

Finally, we define a decision tree:

Definition 5. A decision tree T : {0,1}¢ — {0,1} is a labeled rooted binary tree with leaf
labeled 0 or 1 and internal node labeled by its input variables x1 ...xq. Fach input takes a
path by evaluating the input variable to arrive at the leaf that is the output of the tree.

3.1 Concept class, source class and target class

Our concept class (the collection of possible ground truths) will be:
Csr = {A[T]| T is a decision tree with depth s size r} (3)

To define the source class, we first need to give the set of features that is supposedly linearly
represented by our source functions. This is done analogously to (Boix-Adsera, 2024): given
a decision tree T', the root-prefix path conjunctions form 7”s features:

!
Zh = {/\pz | p; is a literal (x; or —x; for some j) s.t. (p1,...,p) is a path from root}
i=1
(4)
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6 return argmaxpval(T, ©) where T"is over decision trees with Z C {/\, cgpi | 5 € S}

Given these features for decision trees, the features for local-iteration algorithms are:

Zy = {AT[b] | be 24} (5)
We postulate that such loops over prefix path conjunctions are simply representable by the
neural network’s latent representation.

The source class (the collection of neural networks that have successfully learnt some graph
algorithms) will be:
Fq, = {neural networks implicitly computing A[T] for some decision tree T

that also satisfied 7-local-iteration alignment for features Zr}

And finally, the target class is the same as the concept class. In practice, this is a subset
of graph neural networks, and the distillation process can be understood as distilling from
learnt neural networks to graph neural networks.

3.2 GNNs are more efficient than decision trees

In the following, we state a simple fact that makes for a good exercise:

Lemma 1. There exists a simple decision tree T : {0,1}"™ x {0, 1}(3) — {0,1} that can be
evaluated in polynomial time in n such that while A[T) can be evaluated in polyonomial time,
it cannot be represented by decision trees of polynomial size.

Proof sketch. Consider the 2-reachability DP. In other words, given the adjacency matrix
of a graph on n > 2 vertices, is there a path of length at most 2 that connects the vertex
labeled 1 and n? The full proof is in the Appendix. O

This fact means that without the for loop structure, one cannot just convert the concept
class C; , into the class of efficient decision trees. This forms a type of algorithmic mismatch
which would be resolved in the next part, using graph neural networks.

3.3 GNNs can be distilled from learnt and aligned neural networks efficiently

We are now ready to state the main theorem.
Theorem 2. For any ¢,0 € (0,1), there is an algorithm that (e, §)-distills from F7,. to Cs,,

and runs in polynomial time in n,m,1/e, s, 2”'l,log(1/5)77‘7 B and takes a polynomial sample
in 1/e€,s,log(d/d),log(TB) from D where B = max, ||¢(x)]|.

The proof follows from (Boix-Adsera, 2024) and uses Algorithm 2, which first builds a set
of conjunctions that is a superset of all root-prefix conjunctions in the true tree and then
stitches these conjunctions together efficiently using a DP.

Algorithm 2: GNN distillation algorithm

Input: Neural network v, representation ¢, random samples from D, depth bound
R € N, error parameters €, > 0.

Output: GNN that computes A'[T)]

Sp < {0} for i =1 € [R] do
Pi1 {S €S;_1 st LINEARPROBE(AZ[/\meSpi],¢7B7T72*i1*3, m) = true}
Si + Usep,, U1 {8 Uz, S Uz}

S+ UL, S

—1)] £ ¢/s, for each S’ € S

In Algorithm 2,
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1. The LINEARPROBE(g, ¢, B, 7, €,0, D) subroutine comes from Lemma 3.7 of (Boix-
Adsera, 2024) that runs in polynomial time and draws polynomially many samples to
return true w.p. > 1—4 if there is a w € R™ with ||w|| < 7 and E,.[((w, ¢) —g)?] < 2
and return false w.p. > 1 — ¢ if for all such w, the expectation is at least 2e.

2. The maximization over decision trees in the final step is done with a DP (Guijarro
et al., 1999; Mehta and Raghavan, 2002) and the function val is chosen such that
maximizing it corresponds to maximizing the 0-1 risk.

We defer the correctness proof Theorem 2 to the Appendix.

4 Conclusion and discussion

In this workshop paper, we extend the work of Boix-Adsera (2024) in PAC-distillation to
characterize learning models that have built-in algorithmic alignment properties, such as
GNNs for dynamic programming. We showed that while there are some DP algorithms
whose inner function is a small decision tree, the whole DP itself cannot be represented by
an efficient decision tree — a case of misalignment. On the other hand, the local iteration
structure of a GNN with decision tree aggregation allows for efficient distillation from a
large, learnt neural network that exhibits a certain kind of linear representability.

Although this marks the first work in this direction, there is much room for improvement
with this workshop version of the paper. For brevity of exposition, we adapt the analysis of
(Boix-Adsera, 2024) as is and naively, under the assumption that the outer loop of the DP
has a constant number of iterations and that the size of the innermost decision tree is small.
A more complicated and nuanced analysis greatly reduces these requirements.

Finally, the purpose of this workshop paper is to introduce the distillation pipeline, which
has shown great promise in rigorously studying algorithmic alignment. Besides a more
detailed analysis, future directions include the statistical learning theory questions of sample
complexity under distillation or the study of pretrained large language models, whose
finetuning might be thought of as a form of distillation.
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A Appendix: Omitted proofs

A.1 Proof for Lemma 1

Proof. Consider the combinatorial problem of deciding, for a labeled graph, whether the
first and last vertex is connected with a path of length at most 2, or 2-reachability.

The classic dynamic programming (DP) algorithm for this problem runs in time O(n) (Tarjan,
1971).

However, any decision tree that correctly solves this problem on all labeled graphs of size n
must have exponential size. To see this, we bound the number of leaves of a correct tree
(which in turn bounds the order of its size since a decision tree is binary).

Consider the subset of graphs on the n vertices labeled by [n] where the only possible edges
are (1,n) and (1,v), (v,n) for all v € V\{1,n}. There are 22(»~2+1 such graphs. Among
them, graphs that fail to have a path of size at most 2 between 1 and n does not have the
(1,n) edge and for each other v, have one of the 3 configurations out of 4 possible choices of
presence/absence of the pair (1,v), (v,n). This counts to (3/4)"~2/2 fraction of the total
number of graphs.

Now, each 0-leaf (leaf that outputs 0 for the DT) of a correct DT on these inputs fixes a
certain presence/absence of some edges on the path from the DT’s root to it. Once certain
variables are fixed, all other variables are free to range between 0 and 1 and the output of
the DT is still 0. This means that (1,n) must always be included in the fixed variables, and
so is at least one in each pair (1,v), (v,n). Thus, each 0-leaf accounts for at most a fraction
of 27("=1 of the total number of graphs.

Therefore, the number of leaves must be at least (3/4)"~2/2/2~("~1) which is exponential
in n. O

A.2 Proof for Theorem 2

We first set up additional notation, in line with the setup in (Boix-Adsera, 2024).

Recall that the input space is X = {0,1}¢. Some bits of the input are from the initial
feature vector, while other bits are used to encode the graph structure. Literals are of the
form z; or —x; for some i € [d]. A clause S consists of literals pi,...,ps| and we define
ANDg(x) := /\pesp. S is a non-degenerate k-clause if |S| = k and each variable appears at

most once in S (otherwise, ANDg will always be false).

Recall that given a decision tree T', we defined Z/. as the collection of all ANDg functions
where S range over all paths that start at the root (root-prefix paths), including the trivial
path of length 0 that always evaluates to 1; and Zr as the collection of all A/[ANDg]
functions.

We will show that with probability at least 1 — /2,

1. For any root-prefix paths S in the true tree where |S| < R, S € S
2. [8;] < poly(2°0), 7, B, d)

The first statement follows from Lemma 3.7 of (Boix-Adsera, 2024) because it is guaranteed
that all root-prefix paths S of length at most R of the true tree have their A'{[ANDg] checked
with the LINEARPROBE subroutine and thus accepted into S with high probability. Assume
to the contrary that there is a path (p1,...,ps) that was not checked by LINEARPROBE, this
means that the prefix (pq, ..., ps—1) was also not checked or was checked but failed. The latter
is not possible because we assumed that the source class satisfies 7-local-iteration-alignment,
so the prefix was simply not checked. Inductively, this means that ) > Sy is not checked,
which is impossible and hence a contradiction.

The second statement follows from Lemma 3.8 in (Boix-Adsera, 2024) applied to a collection
of k!-clauses. This reduction is possible because unrolling the for loops of A![ANDg] gives
a conjunction of size k”. This can be seen by writing the ANDg as a multilinear boolean
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polynomial and noticing that the loop over vertices in V is done in parallel, while degrees
are only added in the outermost loop over T' runs. This is a very rough treatment of the
feature set, since in fact most of the k!-clauses are degenerate due to unrolling. A more
careful analysis would bring down the final complexity even more, but for the purpose of the
extended abstract, we opt to present this weaker result and delay the strongest bounds to
the full paper.

Finally, it is left to show that the dynamic programming algorithm in the final step is correct
in stitching up the innermost decision tree.

For a fixed candidate decision tree T, define T[T as the decision tree equivalence of A[T]
created by unrolling A[T].

Denote by Leaves(7[T]) the set of all leaf clauses of T[T) and T[T](S) the output at
S € Leaves(T[T]). Note that if Leaves(T) € S then Leaves(T[T]) € S'. Define vg =
E,[ANDg(x)(2v(z) — 1)] for some S € S'. Thus,

val(T,v) := > vs(2TT)(S) — 1) (6)

SeLeaves(T[T])

=E, Y. ANDg(x)2v(x) - 1)TITI(S) - 1)| - (7)

S€Leaves(T[T))

Because for each input z, there is a unique path through T[T], there is a unique S €
Leaves(7 1)) such that ANDg(z) = 1 and for the remaining S, ANDg(z) = 0. Furthermore,
when ANDg(x) = 1, T[T)(S) = T[T)(x) = A'[T](x). Therefore:

val(T,v) = QI;r[Al [T)(z) = v(z)] — 1. (8)

Therefore, maximizing val over T is equivalent to maximizing the 0-1 risk of A'[T].

In our algorithm, we use Hoeffding inequality to approximate val with random sampling. Note
that this step requires approximating | S|’ entries of v naively and runs in time poly(|S|’, dI, m)
where m = poly(1/e,log(|S|'/§)) is the number of draws to obtain the Hoeffding bound.
When choosing R = r, the size of the true innermost decision tree, the number of leaves of
T[T is of order 20(™) based on the previous bound on |S|. Finally, we can run the dynamic
program that computes for each S € S, and each tree size s’ = 0..s, the best subtree of size
s’ rooted at the end of the clause S.

10
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?

Answer: [Yes]

Justification: The paper is about proving a distillation results for graph learning
architecture under some algorithmic alignment assumption.

Guidelines:

e The answer NA means that the abstract and introduction do not include the
claims made in the paper.

o The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?

Answer: [Yes|

Justification: The discussion part of the paper highlights limitations and future
directions.

Guidelines:

e The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their
paper.

e The paper should point out any strong assumptions and how robust the results
are to violations of these assumptions (e.g., independence assumptions, noiseless
settings, model well-specification, asymptotic approximations only holding
locally). The authors should reflect on how these assumptions might be violated
in practice and what the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
system might not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algo-
rithms and how they scale with dataset size.

o If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The
authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?

Answer: [Yes]

Justification: Sketch proofs are provided with enough details so as to not repeat
existing works extensively.

Guidelines:

e The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

e All assumptions should be clearly stated or referenced in the statement of any
theorems.

e The proofs can either appear in the main paper or the supplemental material,
but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

o Inversely, any informal proof provided in the core of the paper should be
complemented by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data are
provided or not)?

Answer:[NA]
Justification: There are no experiments in this paper.
Guidelines:

e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be
perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model. In
general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model),
releasing of a model checkpoint, or other means that are appropriate to the
research performed.

e While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should
describe the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a
way to reproduce the model (e.g., with an open-source dataset or instructions
for how to construct the dataset).

12



473
474
475
476
477
478

479

480
481
482

483

484

485

487
488

489
490
491
492

493
494

496
497

499
500

502

503
504

505
506

507

508
509
510

511

512

513

514

515
516

517
518

519

520
521

522

523

524

(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [NA]
Justification: There are no data or code in this paper.
Guidelines:

e The answer NA means that paper does not include experiments requiring code.

o Please see the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

o While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

e The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submis-
sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.

e The authors should provide instructions on data access and preparation, in-
cluding how to access the raw data, preprocessed data, intermediate data, and
generated data, etc.

e The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

o Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?

Answer: [NA]
Justification: There are no experiments in this paper.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level
of detail that is necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as
supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer: [NA]
Justification: There are no experiments in this paper.

Guidelines:
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8.

10.

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

o The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

o The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

o The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard
error of the mean.

o It is OK to report 1-sigma error bars, but one should state it. The authors
should preferably report a 2-sigma error bar than state that they have a 96%
ClI, if the hypothesis of Normality of errors is not verified.

e For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

e If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?

Answer: [NA]
Justification: There are no experiments in this paper.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal
cluster, or cloud provider, including relevant memory and storage.

e The paper should provide the amount of compute required for each of the
individual experimental runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more
compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code
of Ethics.

e If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

o The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?

Answer: [NA]
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11.

12.

Justification: The paper is a mathematical and theoretical study in the theory of
computation and does not carry extra societal impacts that are worth highlighting.

Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no
societal impact or why the paper does not address societal impact.

o Examples of negative societal impacts include potential malicious or unintended
uses (e.g., disinformation, generating fake profiles, surveillance), fairness consid-
erations (e.g., deployment of technologies that could make decisions that unfairly
impact specific groups), privacy considerations, and security considerations.

e The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

e The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition
to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a

system learns from feedback over time, improving the efficiency and accessibility
of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?

Answer: [NA]
Justification: No such risk
Guidelines:
e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

o Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

o We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and
make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?

Answer: [Yes]
Justification: All original papers are properly cited.
Guidelines:

e The answer NA means that the paper does not use existing assets.
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13.

14.

15.

e The authors should cite the original paper that produced the code package or
dataset.

e The authors should state which version of the asset is used and, if possible,
include a URL.

o The name of the license (e.g., CC-BY 4.0) should be included for each asset.

o For scraped data from a particular source (e.g., website), the copyright and
terms of service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in
the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

o For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?

Answer: [NA]
Justification: No new assets
Guidelines:

e The answer NA means that the paper does not release new assets.

 Researchers should communicate the details of the dataset/code/model as part
of their submissions via structured templates. This includes details about
training, license, limitations, etc.

e The paper should discuss whether and how consent was obtained from people
whose asset is used.

o At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

e Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

Institutional review board (IRB) approvals or equivalent for research
with human subjects

Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?

Answer: [NA]
Justification: No such risks
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681 Guidelines:

682 e The answer NA means that the paper does not involve crowdsourcing nor
683 research with human subjects.

684 o Depending on the country in which research is conducted, IRB approval (or
685 equivalent) may be required for any human subjects research. If you obtained
686 IRB approval, you should clearly state this in the paper.

687 e We recognize that the procedures for this may vary significantly between insti-
688 tutions and locations, and we expect authors to adhere to the NeurIPS Code of
689 Ethics and the guidelines for their institution.

690 e For initial submissions, do not include any information that would break
601 anonymity (if applicable), such as the institution conducting the review.

692 16. Declaration of LLM usage

603 Question: Does the paper describe the usage of LLMs if it is an important, original,
694 or non-standard component of the core methods in this research? Note that if
695 the LLM is used only for writing, editing, or formatting purposes and does not
696 impact the core methodology, scientific rigorousness, or originality of the research,
607 declaration is not required.

698 Answer: [NA]

699 Justification: LLM are used only for editing

700 Guidelines:

701 o The answer NA means that the core method development in this research does
702 not involve LLMs as any important, original, or non-standard components.

703 o Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
704 for what should or should not be described.
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