
Optimizing Dynamic NeRF and 3DGS
with No Video Synchronization

Seoha Kim1⋆ , Jeongmin Bae1⋆ , Youngsik Yun1 , Hyunseung Son1 ,
Hahyun Lee2 , Gun Bang2 , and Youngjung Uh1

1 Yonsei University, Seoul 03722, Korea
{jaymin.bae, hailey07, bbangsik, ghfod0917, yj.uh}@yonsei.ac.kr

2 Electronics and Telecommunications Research Institute, Daejeon 34129, Korea
{hanilee, gbang}@etri.re.kr

(c) Baseline + Ours(b) Baseline(a) Example multi-view videos at the same frame

Training

...

Camera 11 Camera 12 Camera 13

...

Fig. 1: Teaser. (a) The commonly used Plenoptic Video Dataset in 4D scene recon-
struction contains an unsynchronized video. (b) If we include this view in the training
set, the baseline fails to reconstruct the motion on the unsynchronized view. (c) In the
same settings, ours significantly improves the performance.

Abstract. Recent advancements in 4D scene reconstruction using dy-
namic NeRF and 3DGS have demonstrated the ability to represent dy-
namic scenes from multi-view videos. However, they fail to reconstruct
the dynamic scenes and struggle to fit even the training views in unsyn-
chronized settings. It happens because they employ a single latent em-
bedding for a frame, while the multi-view images at the same frame were
actually captured at different moments. To address this limitation, we
introduce time offsets for individual unsynchronized videos and jointly
optimize the offsets with the field. By design, our method is applica-
ble for various baselines, even regardless of the types of radiance fields.
We conduct experiments on the common Plenoptic Video Dataset and
a newly built Unsynchronized Dynamic Blender Dataset to verify the
performance of our method.
Code will be available: https://github.com/seoha-kim/Sync-4DRF

Keywords: Dynamic scene reconstruction · Neural radiance field · Gaus-
sian splatting

⋆ Authors contributed equally to this work.

https://orcid.org/0009-0006-7456-701X
https://orcid.org/0009-0009-3376-2275
https://orcid.org/0000-0003-4398-7856
https://orcid.org/0009-0009-1239-0492
https://orcid.org/0000-0001-7043-7564
https://orcid.org/0000-0003-4355-599X
https://orcid.org/0000-0001-8173-3334
https://github.com/seoha-kim/Sync-4DRF


2 S. Kim et al.

(a) Ideal situation (b) Previous models (c) Ours

Cam 1

E
m

be
dd

in
g

Cam 3

Learnable offset

Timeline

Scene state ~

Dynamic scene

t

t

t t

Synchronized setting Unsynchronized settingMulti-view cameras

Cam 2

t

t

t

t

t

Cam 1

Cam 3
(unsync)

Cam 2

E
m

be
dd

in
g

E
m

be
dd

in
g

Fig. 2: Problem statement. (a) Ideally, all multi-view images at a frame capture
the same moment of a scene. Each frame is represented by a temporal embedding.
(b) However, if some frames are not synchronized, previous methods suffer from the
discrepancy between the latent embedding of the frame and the actual status of the
scene. (c) Our method assigns correct temporal latent embeddings to videos by intro-
ducing learnable time offsets δ for individual cameras. The offsets calibrate the time
embeddings by shifting them along the time axis.

1 Introduction

Neural radiance fields (NeRF) [27] aims to synthesize novel views given its lim-
ited number of views. Since NeRF is a function that receives 3D coordinates
with viewing directions and produces color and density, adding time as input
inherently generalizes it to design dynamic NeRFs for multi-view videos. Recent
works have improved efficiency [6, 8, 19, 35, 36] and streamability [1, 18, 32] of
dynamic NeRFs.

On the other hand, the newly emerging 3D Gaussian Splatting (3DGS) [13]
offers the benefit of real-time rendering by utilizing a GPU-friendly rasterizer for
Gaussian primitives. Given its nature as a continuous volumetric radiance field,
recent works [39,41] have adopted the approach of establishing a canonical 3DGS
and then deforming it to match individual frames, similar to the approach used
in deformable NeRFs [30]. However, regardless of the types of radiance fields, it
is a common rule that multi-view datasets need to be synchronized.

Our research is motivated by the inaccurate video synchronization in a widely
used multi-view dynamic dataset [19]. Although typical synchronization ap-
proaches such as timecode systems or audio peaks usually work, these processes
have limitations: they require an additional device, cannot be applied in noisy
environments, or can be inaccurate.

Figure 1a shows that the rightmost video (red box) is severely ahead of
others in the temporal axis. Previous dynamic radiance fields show high-fidelity
reconstruction by manually omitting the unsynchronized video, but otherwise,
they fail to reconstruct this video in the out-of-sync training view (Figure 1b). If
we perturb the synchronization of the multi-view videos on purpose, all methods
fail to reconstruct movements and produce severe artifacts and ghost effects.



Sync-4DRF 3

2.1 Problem statement - Background

2

Camera 7 Camera 20Camera 19Camera 6

Fig. 3: Temporal discrepancies at the
same frame.

The aforementioned problem arises
because existing dynamic radiance
fields assume that the same frames in
multi-view videos are captured at the
same time (Figure 2a), which is not
always true. Even if the videos are as-
sumed to be synchronized, there can be a temporal mismatch within a frame
(See Figure 3).

Figure 2b illustrates the common problem—using the same temporal repre-
sentation for different states of the scene. This problem worsens as the motions
in the scene are faster, or as the deviation of time increases. We emphasize the
importance of temporal offset estimation in reconstructing dynamic scenes from
in-the-wild settings, analogous to the role of camera pose estimation in static
scene reconstruction.

To address this, we introduce time offsets for individual videos and optimize
them jointly with dynamic NeRF or 3DGS. The offset resolves the temporal
gap between the observation and the target state caused by unsynchronization
(Figure 2c). Consequently, all training videos can be accurately reconstructed as
shown in (Figure 1c). As optimizing the time offsets is equivalent to synchroniz-
ing the videos by shifting, we name our approach Sync-4DRF.

We further design a continuous function that receives time and produces
temporal representation to apply our method on dynamic radiance fields with
discrete temporal representation [35]. In the case of grid-based approaches, we
integrate time offset in bilinear interpolation from spatiotemporal grid represen-
tations [4, 8].

Finally, To show the multiple advantages of our method, we design new
benchmark datasets by randomly unsynchronizing existing widely used datasets.
Since there is no perfect synchronization in the real-world dataset, we newly build
an unsynchronized synthetic dataset for the ground truth time offsets.

2 Related Work

Dynamic NeRF and 3DGS. Dynamic NeRFs have been evolving by intro-
ducing better representation. D-NeRF models deformation field to extend the
static NeRF to dynamic domain [30]. DyNeRF achieves complex temporal repre-
sentation by implicitly assigning a latent vector to each frame [19]. NeRFPlayer
or MixVoxels improve the streamability of dynamic scenes by utilizing grid-based
NeRF [19,35]. K-Planes and HexPlane adopt planar factorization for extending
to arbitrary dimensions, enabling the representation of dynamic scenes [4, 8].

After the emergence of 3DGS [13], several studies extend 3DGS to dynamic
scene reconstruction. 4DGaussians uses multi-resolution HexPlane [4] to repre-
sent temporal deformation of 3DGS [39]. D3DGS employs an implicit function to
handle the temporal and spatial changes of the Gaussian [41]. 4DGS decomposes
4D Gaussians into 3D Gaussians conditioned on time and separate 1D marginal
Gaussians [40]. STG represents changes in 3D Gaussians over time using poly-



4 S. Kim et al.

nomial functions [20]. E-D3DGS represent deformation for each Gaussian as the
combination of per-Gaussian embeddings and temporal embeddings [2].

All the above methods assume multi-view synchronized video inputs, fail-
ing to reconstruct motion in unsynchronized views. We tackle this limitation
by introducing learnable time offsets, which can be seamlessly adapted to the
existing model. On the other hand, the methods for monocular video settings
are relatively free from the synchronization [21,29]. Hence, We do not consider a
monocular video setting. Nevertheless, we note that they rely on unnatural tele-
porting cameras as mentioned in [10] or exhibit holes, artifacts, and unnatural
geometry [23,37] compared to those in multi-view video settings.

Embedding for radiance field. Some methods extend NeRF with multiple la-
tent embeddings to represent multiple scenes or different states of a scene. NeRF-
W [25] and Block-NeRF [33] use per-image appearance embeddings for different
states of a scene to reconstruct a scene from unstructured image collections. Sim-
ilarly, WildGaussians utilizes per-Gaussian appearance embeddings [16]. ML-
NSG employs sequence latent vectors and dynamic latent vectors to capture
appearance and geometry variations [7]. LERF and Open3DRF learn language
embeddings for encoding open-vocabulary semantic meanings [14,17].

In dynamic radiance fields, D-NeRF represents dynamic scenes using per-
frame deformation embedding. Nerfies and HyperNeRF [28,29] apply both per-
frame appearance embedding and per-frame deformation embedding. 4DGS rep-
resents dynamic scenes using time-conditioned 3D Gaussians and marginal 1D
Gaussians [40]. E-D3DGS employs coarse-fine temporal embeddings to model
slow or large changes and fast or detailed changes [2].

However, per-frame latent embedding approaches cannot represent a dynamic
scene from unsynchronized multi-view videos. This is because they share a sin-
gle latent embedding for multi-view images with the same frame index, even
though these images are captured at different moments. Using our time offset,
existing dynamic radiance fields can represent dynamic scenes successfully in
unsynchronized settings.

Joint camera calibration. NeRF−−, BARF, and SCNeRF [11, 11, 22] op-
timize camera parameters and NeRF parameters jointly to eliminate the re-
quirements of known camera parameters in the static setting. RoDyNeRF [24]
optimizes dynamic NeRF jointly with camera parameters to tackle the failure
of COLMAP in highly dynamic scenes. NoPe-NeRF utilizes monocular depth
priors to constrain the estimated relative poses [3]. Similarly in Gaussian Splat-
tings, CF-3DGS optimizes camera parameters jointly with Gaussian splatting [9].
COGS progressively estimates camera poses by utilizing monocular depth and
projecting pixels into the 3D world [12]. InstantSplat refines the camera param-
eters from an off-the-shelf foundation model [5].

Although several methods in static scene reconstruction have jointly learned
the camera parameters, none address the problem of inaccurate synchroniza-
tion across multi-view videos. Traditional approaches for synchronization utilize



Sync-4DRF 5

timecode systems [19] or audio peaks recorded simultaneously with videos [31].
Consequently, these methods require additional devices, and they may not pro-
duce accurate results or cannot be applied to videos with significant noise. While
Sync-NeRF [15] has demonstrated its effectiveness in dynamic NeRFs, training
dynamic 3DGS from unsynchronized videos remains unexplored. We observe
that dynamic 3DGS also suffer from quality degradation in these settings, and
the proposed time offsets work robustly for Gaussian representations as well.

3 Method

In this section, we explain the joint optimization of per-camera time offsets along
with dynamic NeRFs (Section 3.1) and dynamic gaussians (Section 3.2). Subse-
quently, we describe an implicit function-based approach for models with per-
frame temporal embeddings (Section 3.3) and an interpolation-based approach
for grid-based models (Section 3.4).

3.1 Sync-NeRF

NeRF learns to map a given 3D coordinates x ∈ R3 and viewing direction d ∈ R3

to RGB color c ∈ R3 and volume density σ ∈ R. To represent a dynamic scene
with NeRF, it is common to modify NeRF as a time-dependent function by
adding a time input t ∈ R:

FΘ : (x,d, t) → (c, σ), (1)

where Θ parameterizes F . Dynamic NeRFs typically employ the video frame in-
dex as t. Then the model is trained to reconstruct multi-view videos by rendering
each frame.

However when the multi-view videos are not synchronized, a single frame
index may capture different moments of the scene across the different videos.
As a result, the ground truth RGB images captured from different viewpoints
at frame t do not match each other, leading to suboptimal reconstruction of
dynamic parts.

To this end, we introduce a learnable time offset δk for each of the K training
cameras: t+ δk. It allows the temporal axis of each video to be freely translated,
rectifying potential temporal discrepancies across multi-view videos. The time-
dependent function FΘ in Eq. 1 changes accordingly:

FΘ : (x,d, t+ δk) → (c, σ). (2)

We design the time offsets to be continuous rather than discrete frame indices.
Further details are deferred to Section 3.3 and 3.4. The time offsets are jointly
optimized with NeRF parameters by minimizing MSE between the ground truth
RGB pixel C and volume-rendered RGB pixel Ĉ:

LRGB =
∑
k,r,t

∥∥∥Ĉ(r, t+ δk)−Ck(r, t)
∥∥∥2
2
, (3)



6 S. Kim et al.

Outlier (Camera 13)

Iteration

Fr
am
e

45

44

43

Fig. 4: Learning curve of time
offsets. We show camera offsets in
coffee_martini scene along the training
iterations. Our method successfully finds
the offset of the outlier camera.

Frame 0 Frame 30

Frame 0 Frame 75

Camera 13

Camera 14

...

(a) Unsynchronized (c) Synchronized by offset

...

Frame 45

Frame 0

...

(b) Learned offset

Fig. 5: Synchronization with time off-
sets. Given unsynchronized videos, our
method finds the time offsets, which is
equivalent to automatically synchronizing
the videos.

where k, r, t are the camera index, center ray, and time of each pixel in
the training frames, respectively. To calculate Ĉ, we use the same numerical
quadrature to approximate volume rendering integral as [26,27]. The time offsets
resolve the disagreement across multi-view supervisions and significantly improve
the reconstruction quality, especially on the dynamic parts.

Figure 4 is an exemplar plot of the learned time offsets over training iterations
by Sinc-MixVoxels on coffee_martini scene. This scene has an unsynchronized
view as shown in Figure 1a. The time offsets are initialized as zero and converge
to the visually correct offset.

For rendering a video from a novel view, we can customize the time offset
δtest. Our method allows us to optimize δtest with the frozen trained model such
that the potential time offset of the test view can be resolved. To fully exploit
the advantage of our method, we optimize the test-time offset for the test view
when we report the test view performance.

3.2 Sync-Gaussians

A recent scene representation, 3DGS, is capable of real-time rendering thanks
to a well-tailored GPU-based rasterizer, achieving state-of-the-art visual quality.
3DGS reconstructs the 3D scene by optimizing the set of 3D Gaussians via a
differentiable rasterizer. Each 3D Gaussian is characterized by a center xi, and
a covariance Σ defined by rotation Ri and scale Si:

Gi(x) = e−
1
2 (x−xi)

TΣ−1
i (x−xi), where Σi = RiSiS

T
i R

T
i . (4)

To project 3D Gaussian into 2D image space, the 2D covariance Σ′ is calculated
as follows [43]:

Σ′ = JWΣWTJT , (5)

where J is the Jacobian of the affine approximation of the projective transfor-
mation and W is the world-to-camera transformation.



Sync-4DRF 7

(a) Implicit function-based approach (b) Grid-based approach

Fig. 6: Continuous temporal embedding. (a) We present an implicit function-
based approach for the methods utilizing per-frame temporal embeddings. We add time
offset δk of camera k to time input t. Tθ is the implicit function for mapping calibrated
time into temporal embedding z. (b) We query the embedding at the calibrated time
tk on grid-based models. Bilinear interpolation naturally allows continuous temporal
embedding.

Each Gaussian has the following learnable parameters: position x ∈ R3,
rotation factor r ∈ R4, scaling factor s ∈ R3, spherical harmonic (SH) coefficients
Y , and opacity σ ∈ R+. The rendered pixel color Ĉ is calculated by α-blending
from N ordered Gaussians G overlapping the pixel:

Ĉ =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), where αi = σiGi(x), (6)

and the color ci is computed using SH coefficients and viewing direction.
To extend 3DGS into 4D scene reconstruction, several works [2,39,41] intro-

duce a deformation function DΘ to predict the deformation of 3D Gaussians for
a given timestamp t. The deformation function can be implemented either as an
implicit function [41] or as a grid-based representation [39], similar to dynamic
NeRF.

As explained in the previous section, by using the calibrated time t + δk as
the input for the deformation function, we can predict the rectified variation of
Gaussian parameters:

DΘ : (G, t+ δk) → (∆x, ∆r, ∆s, ∆Y,∆σ). (7)

After obtaining the set of deformed Gaussians, we can render the scene at
time tk in the same way as 3DGS. The parameters of the Gaussians, the defor-
mation function, and the time offsets for each camera are optimized through a
loss function consisting of L1 and D-SSIM terms: LRGB = (1−λ)L1+λLD-SSIM.

3.3 Implicit function for temporal embedding

Various dynamic radiance fields [19, 29, 35] explicitly learn latent embeddings
of individual frames to represent the temporal variations of dynamic scenes.
These latent embeddings do not represent the moments between frames, nor is
their interpolation guaranteed to produce smooth dynamics. Furthermore, the



8 S. Kim et al.

number of embeddings also increases as the video becomes longer, requiring more
memory usage.

Instead of optimizing hundreds of individual embedding vectors for all frames,
we train an implicit neural representation Tθ that produces the temporal embed-
ding z(t) for an arbitrary time input t (Figure 6a). First, we encode a normalized
time input t using a set of sinusoidal functions:

γ(t, L) =
[
sin(20πt), · · · , sin(2L−1πt), cos(2L−1πt)

]T
. (8)

Similar to previous observations [27, 34], where inputs encoded with high-
frequency functions lead to a better fit for high-frequency variations in data,
this mapping assists Tθ in capturing the movement of the scene. Thus, Eq. 2 is
modified as follows:

FΘ : (x,d, z(tk)) → (c, σ), where z(t) = Tθ(γ(t, L)), (9)

where tk is the time input shifted by the per-camera time offset used in Eq.
2. To capture the rapid motions, we set L = 10 in all experiments. We select
MixVoxels as a baseline for using per-frame temporal latents and compare it
with our Sync-MixVoxels in Section 4.

3.4 Grid-based approaches with time offset

Grid-based dynamic radiance fields [2, 8, 39] calculate latent vectors from the
feature grid to feed the latents to the time-dependent function FΘ. Specifically,
for a given 4D coordinates (x, t), the latent representation f(x, t) is obtained by
linearly interpolating feature vectors assigned to each vertex of the grid to which
the coordinates belong.

We use camera-specific time tk instead of the original time t. In grid-based
models, Eq. 2 is modified as follows:

FΘ : (f(x, tk),d) → (c, σ), where f(x, t) = Grid(x, t), (10)

and Grid(·) denotes the interpolation of grid vectors surrounding given coor-
dinates. Figure 6b illustrates how our method modifies the sampling in the grid
by δk. We select K-Planes and 4DGaussians as a baseline for using grid-based
representation and compare it with our Sync-K-Planes and Sync-4DGaussians.

4 Experiments

In this section, we validate the effectiveness of our method. Section 4.1 describes
the datasets and evaluation metrics. Section 4.2 shows that our method signifi-
cantly improves the baselines regarding the shape of moving objects and overall
reconstruction. Section 4.3 validates the accuracy of the found time offsets. Sec-
tion 4.4 demonstrates the robustness of our method against different levels of
unsynchronization including synchronized settings.



Sync-4DRF 9

D
ea
r

B
ox

Fo
x

Fig. 7: Snapshots of Unsynchronized Dynamic Blender Dataset.

4.1 Experiment settings

Unsynchronized datasets. The Plenoptic Video Dataset [19] contains six
challenging real-world scenes with varying degrees of dynamics. Its multi-view
videos are roughly synchronized except coffee_martini scene. To simulate an
in-the-wild unsynchronized capturing environment, we modify this dataset to
be unsynchronized by randomly translating along the temporal axis. The time
offsets are sampled from a normal distribution with zero mean and a standard
deviation of 5, and then rounded to be integers.

Although the Plenoptic Video Dataset is synchronized, we cannot prepare
ground truth offsets because the synchronization is not perfect. As a solution,
we create an Unsynchronized Dynamic Blender Dataset as the following process.
We start from free public Blender assets with motion, namely box, fox, and deer.
These assets are rendered on similar camera setups. Subsequently, we translate
the rendered videos according to random time offsets drawn from the afore-
mentioned normal distribution. Then we have access to the ground truth time
offsets because renderings of 3D videos are perfectly synchronized. All videos are
10 seconds long and captured in 14 fixed frontal-facing multi-view cameras at
a frame rate of 30 FPS following the Plenoptic Video Dataset. Example frames
are shown in Figure 7. The dataset is publicly available.

Baselines. We employ MixVoxels, K-Planes with hybrid encoder, and 4DGaus-
sians as our baselines and adopt our method upon them, namely, Sync-MixVoxels,
Sync-K-Planes, and Sync-4DGaussians. They are the latest among the methods
with per-frame temporal latent and grid-based temporal representation.

Evaluation metrics. We evaluate the rendering quality in test views using
the following quantitative metrics. To quantify the pixel color error, we report
PSNR (peak signal-to-noise ratio) between rendered video and the ground truth.
To consider perceived similarity, we report SSIM [38]. To measure higher-level
perceptual similarity, we report LPIPS [42] using VGG and AlexNet. Higher



10 S. Kim et al.

co
ok

_s
pi

na
ch

cu
t_

ro
as

te
d_

be
ef

fl
am

e_
st

ea
k

fl
am

e_
sa

lm
on

+ Ours4DGaussians+ OursK-Planes+ OursMixVoxels

Fig. 8: Cropped renderings on Unsynchronized Plenoptic Video Dataset.

values for PSNR and SSIM, and lower values for LPIPS indicate better visual
quality. Last but not least, the mean absolute error (MAE) of the found time
offsets are measured in seconds.

4.2 Rendering quality

Unsynchronized Plenoptic Video Dataset. Figure 8 compares ours with
the baselines on the Unsynchronized Plenoptic Video Dataset. All the base-
lines produce severe artifacts on dynamic parts and suffer worse on scenes with
larger motion. Opposed to the reported performance of K-Planes outperforming
MixVoxels on synchronized dataset, K-Planes suffers more on dynamic parts in
unsynchronized setting: the hand and the torch are rendered in multiple places
in K-Planes.

Above all, our method successfully corrects artifacts in all baselines. Addi-
tionally, in Figure 9, we visually demonstrate the performance of our method on
dynamic regions. Each column in an image represents the rendered rays on the
fixed vertical line at a time. Horizontally concatenating columns of all frames



Sync-4DRF 11

(b) MixVoxels (c) MixVoxels + Ours(a) Ground truth

cook_spinach

flame_salmon

Fig. 9: Spatiotemporal images. Each column in the image represents the rendered
pixels on the fixed vertical line at a moment. The fixed vertical line with 150 pixels is
shown in the leftmost image patch. We render all frames in the video, producing 270
pixel wide spatiotemporal images. Our results are much clearer than the baseline.

model metric PSNR SSIM LPIPSalex LPIPSvgg

MixVoxels 29.96 0.9059 0.1669 0.2648
Sync-MixVoxels 30.53 0.9101 0.1570 0.2575

K-Planes 29.16 0.9120 0.1278 0.2222
Sync-K-Planes 30.44 0.9243 0.1064 0.1989

4DGaussians 29.86 0.9269 0.0683 0.1468
Sync-4DGaussians 30.51 0.9312 0.0616 0.1412

Table 1: Average performance on Unsynchronized Plenoptic Video Dataset.
Our method improves all the baselines, even achieving performance similar to synchro-
nized setting in Table 5.

from the test view constructs a spatiotemporal image as a whole. Compared to
the baseline, our method exhibits significantly clearer spatialtemporal images
(Figure 9b-c).

Table 1 reports quantitative metrics on the test views of the unsynchronized
Plenoptic Video Dataset. Our method improves the baselines in all cases nearly
to the performance on synchronized setting (Section 4.4). The above values are
the result after optimizing the time offset in the test view.

Unsynchronized Dynamic Blender Dataset. Figure 10 compares the base-
lines and ours on fox and box scene from Unsynchronized Dynamic Blender
Dataset. While all baselines struggle on the motion and object boundaries, our
approaches show clear results of fox and box.

Table 2 reports quantitative metrics in the test view of the Unsynchronized
Dynamic Blender Dataset. Our method improves the baselines in all cases.



12 S. Kim et al.

bo
x

fo
x

+ Ours4DGaussians+ OursK-Planes+ OursMixVoxels

Fig. 10: Qualitative results on Unsynchronized Dynamic Blender Dataset

model metric PSNR SSIM LPIPSalex LPIPSvgg

MixVoxels 31.06 0.9753 0.0237 0.0339
Sync-MixVoxels 37.11 0.9841 0.0120 0.0226

K-Planes 32.66 0.9771 0.0175 0.0244
Sync-K-Planes 39.40 0.9863 0.0066 0.0131

4DGaussians 34.80 0.9820 0.0123 0.0178
Sync-4DGaussians 40.64 0.9884 0.0052 0.0106

Table 2: Average performance on Unsynchronized Dynamic Blender
Dataset. Our method improves all the baselines.

4.3 Time offset accuracy

We demonstrate that the time offsets found by our method are highly accurate.
Table 3 reports mean absolute error (MAE) of the optimized time offsets between
the ground truth on the Unsynchronized Dynamic Blender Dataset. The average
error is approximately 0.01 seconds, which corresponds to less than one-third of
a frame. MAE (seconds)

Sync-MixVoxels 0.0154
Sync-K-Planes 0.0156

Sync-4DGaussians 0.0068

Table 3: MAE between predicted offsets and ground truth offsets. Our
method accurately finds time offsets achieving MAE of approximately 0.01 seconds.

4.4 Versatility to various scenarios

Various unsynchronization lengths. We evaluate the performance in the
test view under different lengths of unsynchronization, namely 1.5× and 2× long
offsets. Table 4 shows that our method consistently improves the performance of
the baselines. We note that the unsynchronization deteriorates K-Planes more
than MixVoxels even though K-Planes outperform MixVoxels on synchronized
datasets. Nevertheless, our method successfully reflects their ranking in synchro-
nized setting to unsynchronized setting.



Sync-4DRF 13

1.5× 2.0×

model
scene cook

spinach
flame

salmon fox cook
spinach

flame
salmon fox

MixVoxels 30.21 27.27 31.10 30.48 27.66 29.81
Sync-MixVoxels 31.44 28.59 36.15 31.50 28.74 35.58

K-Planes 29.93 26.11 31.85 29.13 26.01 29.71
Sync-K-Planes 31.71 28.67 40.31 31.85 28.22 40.36

4DGaussians 31.15 27.73 33.78 30.73 27.53 31.31
Sync-4DGaussians 31.77 28.58 36.73 31.64 28.09 38.80

Table 4: Average PSNR with varaious unsynchonization lengths. Our method
is robust to different lengths of unsynchronization.

model metric PSNR SSIM LPIPSalex LPIPSvgg

MixVoxels 30.39 0.9100 0.1577 0.2586
Sync-MixVoxels 30.41 0.9104 0.1559 0.2564

K-Planes 30.40 0.9257 0.1044 0.1980
Sync-K-Planes 30.56 0.9246 0.1059 0.1998

4DGaussians 30.15 0.9275 0.0657 0.1596
Sync-4DGaussians 30.47 0.9271 0.0660 0.1598

Table 5: Average performance on Synchronized Plenoptic Video Dataset.
Our method enhances performance on synchronized setting by resolving the small
temporal gaps.

Synchronization setting. We verify that our method improves the baselines
even on synchronized settings. Although the gaps between the baselines and ours
are smaller than the unsynchronized setting, this improvement implies that the
dataset assumed to be synchronized is not perfectly synchronized and even tiny
offsets less than a frame are correctly found by our method.

5 Ablation and tuning

5.1 Optimizing test view offset

To fully exploit the advantages of camera-specific time offset, we optimize the test
view time offset δtest to evaluate our models. We optimize the time offset for 200
on Sync-MixVoxels and 1K iterations on Sync-K-Planes and Sync-4DGaussians,
and then perform the evaluation. We train only the time offset while freezing the
entire network. Table 6 shows that optimizing the time offset in the test view
improves performance slightly.

5.2 Sinusoidal function for temporal embedding

For our implicit function-based approach, we encode normalized time input using
a set of sinusoidal functions to better represent the movement of the scene. Table
7 show the results of Sync-MixVoxels on flame_salmon scene for different Ls.



14 S. Kim et al.

average PSNR SSIM LPIPSalex LPIPSvgg

Sync-MixVoxels 30.53 0.9101 0.1570 0.2575
⌞w/o δtest 30.29 0.9091 0.1574 0.2579

Sync-K-Planes 30.44 0.9243 0.1064 0.1989
⌞w/o δtest 30.25 0.9235 0.1067 0.1992

Sync-4DGaussians 30.51 0.9312 0.0616 0.1412
⌞w/o δtest 30.33 0.9300 0.0619 0.1416

Table 6: Comparison with test view offset optimization on Unsynchronized
Plenoptic Video Dataset. Test view offset optimization enables more accurate eval-
uation and improves our quantitative results.

L for time PSNR SSIM LPIPSalex LPIPSvgg

0 22.26 0.8411 0.2336 0.3001
5 28.80 0.8784 0.2006 0.2741
10 (default) 28.85 0.8793 0.2022 0.2740

Table 7: Comparision of different Ls for sinusoidal functions on flame_salmon
scene. Using a high L value provides better dynamic region quality, so we set L = 10
as the default value.

With L=0, the model fails to represent dynamic scenes, and L=5 has a lower
quality of dynamic regions than L=10, so we set L=10 as the default.

6 Conclusion

Our work is the first attempt to train dynamic radiance fields on unsynchronized
multi-view videos. We have shown that the existing dynamic NeRF and 3DGS
deteriorate when the videos are not synchronized. As its reason lies in previ-
ous method using a single temporal latent embedding for a multi-view frame,
we introduce time offsets for individual views such that the videos can be syn-
chronized by the offsets. We jointly optimize the offsets with radiance field with
typical reconstruction loss. Our method, Sync-4DRF, is versatile to the types of
fields, dynamic NeRF or 3DGS.

Discussion Implicit function for temporal embeddings requires an additional
training time and memory for training the function. Nevertheless, in the inference
phase, the temporal embeddings can be pre-computed for all frames leading
to negligible overhead. Meanwhile, our method applied to grid-based temporal
embedding does not introduce additional computational complexity.

Rendering Training # Params
MixVoxels 2.3 min 1.9 hrs 130.7 M

Sync-MixVoxels 2.5 min 2.5 hrs 131.8 M
K-Planes 15.0 min 1.9 hrs 27.0 M

Sync-K-Planes 15.2 min 2.0 hrs 27.0 M
4DGaussians 12.2 sec 47.9 min 12.9 M

Sync-4DGaussians 13.2 sec 45.8 min 13.7 M

Table 8: Computational cost in the flame_salmon scene.



Sync-4DRF 15

Acknowledgements

This work is supported by the Institute for Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment(MSIT) (No. 2017-0-00072, Development of Audio/Video Coding and Light
Field Media Fundamental Technologies for Ultra Realistic Tera-media)

References

1. Attal, B., Huang, J.B., Richardt, C., Zollhoefer, M., Kopf, J., O’Toole, M., Kim, C.:
Hyperreel: High-fidelity 6-dof video with ray-conditioned sampling. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
16610–16620 (2023) 2

2. Bae, J., Kim, S., Yun, Y., Lee, H., Bang, G., Uh, Y.: Per-gaussian embedding-
based deformation for deformable 3d gaussian splatting. In: European Conference
on Computer Vision (ECCV) (2024) 4, 7, 8

3. Bian, W., Wang, Z., Li, K., Bian, J.W., Prisacariu, V.A.: Nope-nerf: Optimising
neural radiance field with no pose prior. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 4160–4169 (June
2023) 4

4. Cao, A., Johnson, J.: Hexplane: A fast representation for dynamic scenes. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 130–141 (2023) 3

5. Fan, Z., Cong, W., Wen, K., Wang, K., Zhang, J., Ding, X., Xu, D., Ivanovic, B.,
Pavone, M., Pavlakos, G., Wang, Z., Wang, Y.: Instantsplat: Unbounded sparse-
view pose-free gaussian splatting in 40 seconds (2024) 4

6. Fang, J., Yi, T., Wang, X., Xie, L., Zhang, X., Liu, W., Nießner, M., Tian, Q.:
Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia
2022 Conference Papers (2022) 2

7. Fischer, T., Porzi, L., Bulò, S.R., Pollefeys, M., Kontschieder, P.: Multi-level neural
scene graphs for dynamic urban environments (2024), https://arxiv.org/abs/
2404.00168 4

8. Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes:
Explicit radiance fields in space, time, and appearance. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12479–
12488 (2023) 2, 3, 8

9. Fu, Y., Liu, S., Kulkarni, A., Kautz, J., Efros, A.A., Wang, X.: Colmap-free 3d
gaussian splatting. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 20796–20805 (June 2024) 4

10. Gao, H., Li, R., Tulsiani, S., Russell, B., Kanazawa, A.: Monocular dynamic view
synthesis: A reality check. In: NeurIPS (2022) 4

11. Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating
neural radiance fields. In: Proceedings of the Int. Conf. on Computer Vision (ICCV)
(2021) 4

12. Jiang, K., Fu, Y., Varma T, M., Belhe, Y., Wang, X., Su, H., Ramamoorthi, R.: A
construct-optimize approach to sparse view synthesis without camera pose. SIG-
GRAPH (2024) 4

13. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (July
2023), https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/ 2, 3

https://arxiv.org/abs/2404.00168
https://arxiv.org/abs/2404.00168
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


16 S. Kim et al.

14. Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: Lerf: Language em-
bedded radiance fields. In: International Conference on Computer Vision (ICCV)
(2023) 4

15. Kim, S., Bae, J., Yun, Y., Lee, H., Bang, G., Uh, Y.: Sync-nerf: Generalizing
dynamic nerfs to unsynchronized videos. Proceedings of the AAAI Conference on
Artificial Intelligence 38, 2777–2785 (03 2024). https://doi.org/10.1609/aaai.
v38i3.28057 5

16. Kulhanek, J., Peng, S., Kukelova, Z., Pollefeys, M., Sattler, T.: Wildgaussians: 3d
gaussian splatting in the wild (2024), https://arxiv.org/abs/2407.08447 4

17. Lee, H., Yun, Y., Bae, J., Kim, S., Uh, Y.: Rethinking open-vocabulary segmen-
tation of radiance fields in 3d space (2024), https://arxiv.org/abs/2408.07416
4

18. Li, L., Shen, Z., Wang, Z., Shen, L., Tan, P.: Streaming radiance fields for 3d video
synthesis. Advances in Neural Information Processing Systems 35 (2022) 2

19. Li, T., Slavcheva, M., Zollhoefer, M., Green, S., Lassner, C., Kim, C., Schmidt,
T., Lovegrove, S., Goesele, M., Newcombe, R., et al.: Neural 3d video synthesis
from multi-view video. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2022) 2, 3, 5, 7, 9

20. Li, Z., Chen, Z., Li, Z., Xu, Y.: Spacetime gaussian feature splatting for real-time
dynamic view synthesis. arXiv preprint arXiv:2312.16812 (2023) 4

21. Li, Z., Wang, Q., Cole, F., Tucker, R., Snavely, N.: Dynibar: Neural dynamic image-
based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2023) 4

22. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: Barf: Bundle-adjusting neural radi-
ance fields. In: IEEE International Conference on Computer Vision (ICCV) (2021)
4

23. Liu, Q., Liu, Y., Wang, J., Lv, X., Wang, P., Wang, W., Hou, J.: Modgs: Dynamic
gaussian splatting from causually-captured monocular videos (2024), https://
arxiv.org/abs/2406.00434 4

24. Liu, Y.L., Gao, C., Meuleman, A., Tseng, H.Y., Saraf, A., Kim, C., Chuang, Y.Y.,
Kopf, J., Huang, J.B.: Robust dynamic radiance fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023) 4

25. Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A.,
Duckworth, D.: NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections. In: CVPR (2021) 4

26. Max, N.: Optical models for direct volume rendering. IEEE Transactions on Visu-
alization and Computer Graphics 1(2), 99–108 (1995) 6

27. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021) 2, 6, 8

28. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable neural radiance fields. ICCV (2021) 4

29. Park, K., Sinha, U., Hedman, P., Barron, J.T., Bouaziz, S., Goldman, D.B., Martin-
Brualla, R., Seitz, S.M.: Hypernerf: A higher-dimensional representation for topo-
logically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021) 4,
7

30. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural ra-
diance fields for dynamic scenes. arXiv preprint arXiv:2011.13961 (2020) 2, 3

31. Shrstha, P., Barbieri, M., Weda, H.: Synchronization of multi-camera video record-
ings based on audio. In: Proceedings of the 15th ACM international conference on
Multimedia. pp. 545–548 (2007) 5

https://doi.org/10.1609/aaai.v38i3.28057
https://doi.org/10.1609/aaai.v38i3.28057
https://doi.org/10.1609/aaai.v38i3.28057
https://doi.org/10.1609/aaai.v38i3.28057
https://arxiv.org/abs/2407.08447
https://arxiv.org/abs/2408.07416
https://arxiv.org/abs/2406.00434
https://arxiv.org/abs/2406.00434


Sync-4DRF 17

32. Song, L., Chen, A., Li, Z., Chen, Z., Chen, L., Yuan, J., Xu, Y., Geiger, A.: Nerf-
player: A streamable dynamic scene representation with decomposed neural radi-
ance fields. IEEE Transactions on Visualization and Computer Graphics 29(5),
2732–2742 (2023) 2

33. Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Bar-
ron, J.T., Kretzschmar, H.: Block-nerf: Scalable large scene neural view synthesis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 8248–8258 (June 2022) 4

34. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Sing-
hal, U., Ramamoorthi, R., Barron, J., Ng, R.: Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Infor-
mation Processing Systems 33, 7537–7547 (2020) 8

35. Wang, F., Tan, S., Li, X., Tian, Z., Liu, H.: Mixed neural voxels for fast multi-view
video synthesis. arXiv preprint arXiv:2212.00190 (2022) 2, 3, 7

36. Wang, L., Zhang, J., Liu, X., Zhao, F., Zhang, Y., Zhang, Y., Wu, M., Yu, J., Xu, L.:
Fourier plenoctrees for dynamic radiance field rendering in real-time. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 13524–13534 (June 2022) 2

37. Wang, Q., Ye, V., Gao, H., Austin, J., Li, Z., Kanazawa, A.: Shape of motion: 4d
reconstruction from a single video (2024), https://arxiv.org/abs/2407.13764 4

38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing
13(4), 600–612 (2004) 9

39. Wu, G., Yi, T., Fang, J., Xie, L., Zhang, X., Wei, W., Liu, W., Tian, Q., Xinggang,
W.: 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528 (2023) 2, 3, 7, 8

40. Yang, Z., Yang, H., Pan, Z., Zhang, L.: Real-time photorealistic dynamic scene rep-
resentation and rendering with 4d gaussian splatting. In: International Conference
on Learning Representations (ICLR) (2024) 3, 4

41. Yang, Z., Gao, X., Zhou, W., Jiao, S., Zhang, Y., Jin, X.: Deformable 3d gaus-
sians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101 (2023) 2, 3, 7

42. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018) 9

43. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splatting. In: Proceedings
of the 28th annual conference on Computer graphics and interactive techniques.
pp. 371–378 (2001) 6

https://arxiv.org/abs/2407.13764

	Optimizing Dynamic NeRF and 3DGS  with No Video Synchronization

