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Abstract

Multi-agent frameworks can substantially boost
the reasoning power of large language models
(LLMs), but they typically incur heavy computa-
tional costs and lack convergence guarantees. To
overcome these challenges, we recast multi-LLM
coordination as an incomplete-information game
and seek a Bayesian Nash equilibrium (BNE), in
which each agent optimally responds to its proba-
bilistic beliefs about the strategies of others. We
introduce Efficient Coordination via Nash Equi-
librium (ECON), a hierarchical reinforcement-
learning paradigm that marries distributed reason-
ing with centralized final output. Under ECON,
each LLM independently selects responses that
maximize its expected reward, conditioned on its
beliefs about co-agents, without requiring costly
inter-agent exchanges. We mathematically prove
that ECON attains a markedly tighter regret bound
than non-equilibrium multi-agent schemes. Em-
pirically, ECON outperforms existing multi-LLM
approaches by 11.2% on average across six bench-
marks spanning complex reasoning and planning
tasks. Further experiments demonstrate ECON’s
ability to flexibly incorporate additional models,
confirming its scalability and paving the way to-
ward larger, more powerful multi-LLM ensem-
bles. The code is publicly available at: https:
//github.com/tmlr-group/ECON.

1. Introduction
Large Language Models (LLMs) have demonstrated excep-
tional reasoning capabilities across a wide range of tasks,
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Figure 1: Comparison of multi-agent coordination ap-
proaches. Existing MAD requires explicit message pass-
ing between LLMs, incurring high communication over-
head. ECON replaces it with belief-based coordination and
achieves BNE—a stable state where each LLM optimizes
its strategy based on beliefs about other LLMs’ behaviors.

from natural language understanding and generation to com-
plex problem-solving. Recent work has shown that orga-
nizing multiple LLMs into a multi-agent framework can
further amplify their reasoning power by enabling collabo-
rative in-context discussions without parameter updates (Du
et al., 2024; Chan et al., 2024; Liang et al., 2023; Chen et al.,
2023; Hong et al., 2023; Zhang et al., 2023b).

In particular, multi-agent debate (MAD) (Liang et al., 2023;
Du et al., 2024) leverages structured argumentation among
several LLM agents, where each participant critically evalu-
ates and refines others’ proposals to arrive at a more robust,
consensus-driven solution. MAD has been shown to outper-
form single-agent methods in various reasoning scenarios,
providing clearer justifications and reducing error rates.

However, existing multi-agent frameworks encounter three
key obstacles that limit their practical deployment. First,
extensive inter-agent communication consumes large num-
bers of tokens, driving up computational overhead (Du et al.,
2024). Second, the sheer volume of information exchanged
over multiple rounds exceeds LLMs’ context-window ca-
pacity, impeding scalability (Liu et al., 2024b). Third, with-
out well-defined coordination protocols, these systems can
underperform simpler ensembling or self-consistency meth-
ods (Liang et al., 2023). Moreover, recent work has shown
that the consensus threshold between agents can signifi-
cantly influence performance (Smit et al., 2024). Thus,
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developing a principled, scalable framework for multi-agent
coordination is necessary but remains an open challenge.

In this work, we introduce Efficient Coordination via
Nash Equilibrium (ECON), a novel framework that casts
multi-LLM interaction as an incomplete-information game.
As shown in Figure 1, conventional MAD approaches
rely on heavy, round-by-round message exchanges among
all agents, incurring substantial computational overhead.
ECON, by contrast, replaces direct communication with a
belief-based coordination mechanism: each LLM maintains
and updates probabilistic beliefs about its peers’ behaviors,
rather than sending and receiving explicit messages.

Notably, we frame coordination as the pursuit of a Bayesian
Nash Equilibrium (BNE), where each LLM chooses its opti-
mal strategy in light of its beliefs about other agents. Con-
cretely, each Execution LLM uses a belief network to con-
vert its local observations and past trajectory into a belief
state, and then produces an output that maximizes its ex-
pected reward. All agents’ belief states are merged by a
Belief Encoder into a shared, group-level representation,
which feeds into a centralized mixing network. This net-
work refines the belief-network parameters for every agent,
gradually guiding the entire ensemble toward a BNE in
which every LLM converges to a stable strategy. By sub-
stituting costly token exchanges with belief-driven coordi-
nation, ECON dramatically cuts communication overhead
while preserving and even enhancing multi-agent reasoning.

Theoretically, we begin by proving the existence of a BNE
and then bound the performance gap to an optimal strategy
via regret analysis. Specifically, ECON attains a sublinear
regret of O

(
N

√
T/1−γ

)
, where N is the number of agents,

T the number of iterations, and γ the discount factor. By
contrast, existing multi-agent frameworks lacking an equi-
librium guarantee suffer linear regret O (δmaxT/1−γ). This
tighter bound demonstrates ECON’s capacity to learn near-
optimal strategies efficiently, with far lower token and com-
putation costs than existing MAD methods. Consequently,
ECON scales effectively, addressing the scalability limita-
tion in prior research of multiagent (Wu et al., 2024; Yin
et al., 2023; Lan et al., 2024; Yuan et al., 2024a) and graph
reasoning (Zhou et al., 2023b;a; Li et al., 2024; Zhou et al.,
2024b). Attributed to the local-global Nash coordination
(central-coordinator-execution) design, ECON can ensem-
ble up to nine LLMs with only moderate resource increases.

Empirically, ECON reliably drives the multi-LLM system
toward a Bayesian Nash Equilibrium, fostering collabora-
tive reasoning and stronger consensus among agents. On
six diverse benchmarks—spanning complex reasoning and
planning tasks—ECON outperforms single-agent baselines
by an average of 10.9% and existing multi-agent methods by
11.2%, demonstrating its superior effectiveness. Moreover,
compared to a 3-round MAD protocol, ECON reduces token

usage by 21.4% on average. In scalability tests, increasing
the number of Execution LLMs from three to nine yields an
additional 18.1% performance gain, underscoring ECON’s
capacity to scale with only moderate resource overhead.

We summarize our key contributions as follows:
• We formalize Bayesian Nash Equilibrium for multi-agent

LLM systems, establishing theoretical foundations for effi-
cient coordination without direct communication (Sec. 2).

• We introduce the ECON framework to implement BNE
via belief-based coordination and overcome scalability
limits through a local–global Nash mechanism (Sec. 3).

• We empirically demonstrate that ECON outperforms both
existing single-agent and multi-agent approaches, and
validate its efficiency to scale to larger ensembles (Sec. 4).

2. Theoretical Foundation
This section formalizes BNE for multi-agent LLM systems,
establishing theoretical foundations for efficient coordina-
tion without direct communication. We model the multi-
agent setup as a DEC-POMDP in Sec. 2.1, prove BNE
existence in Sec. 2.2, then develop a convergence analysis
with performance difference lemmas and regret bounds.

2.1. Problem Definition

We consider a framework improving collaboration under
partial observability and without fine-tuning the internal pa-
rameters of any LLM. In this setting, agents cannot observe
each other’s outputs directly and rely on beliefs to coordi-
nate. We formally model this as a decentralized partially
observable Markov decision process (DEC-POMDP), de-
fined as Markov games ⟨N , S, A, O, P, Ω, R, γ⟩. Here,
N = {1, . . . , N} denotes the set of agents; S represents
the state space, including user queries and dialogue con-
text; A = A1 × · · · × AN is the joint action space, with
each Ai defining agent i’s action as a prompt embedding
ai = [Ti, pi] that controls generation behavior via tempera-
ture and repetition penalty; O is the joint observation space;
P and Ω define the state transition and observation func-
tions;R is the reward and γ is the discount factor.

Here,N includes N−1 Execution LLMs and a Coordinator
LLM to achieve belief coordination. Each Execution LLM
maintains a local history τ ti = {a1i , o1i , . . . , a

t−1
i , ot−1

i },
composed of its previous actions and observations for belief
state updates. Execution LLM receives three inputs: the
question, a format and strategy from the coordinator, and
the final aggregated output from Coordinator LLM. Our
objective is to identify a policy profile π = (π1, . . . , πN )
forming a BNE through belief coordination, each agent’s
policy πi : Hi → ∆(Ai) maps its history to an action distri-
bution based on its belief about other agents’ strategies, such
that no agent can improve its response quality unilaterally.
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2.2. BNE Existence and Convergence

To bridge our DEC-POMDP formulation with BNE analysis,
we introduce the concept of agent types. In our framework,
each agent i is associated with a type θi = τ ti , which is
precisely the agent’s local history, capturing its internal
beliefs and private observation history. Given the partial
observability in our DEC-POMDP, each agent forms beliefs
about other agents’ types based on a common prior and its
own observations. These beliefs are operationalized through
belief networks in our implementation (detailed in Sec. 3).

Formally, a strategy profile {π∗
i }Ni=1 is a BNE if, for each i:

Eθ−i

[
Ui

(
π∗
i (θi), π

∗
−i(θ−i), θi, θ−i

)]
≥ Eθ−i

[
Ui

(
π′
i(θi), π

∗
−i(θ−i), θi, θ−i

)]
, ∀π′

i,

where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN ) denotes the
types of all agents except i, utility function is defined as:

Ui(π
∗
i , π

∗
−i, θi, θ−i) = E

[ ∞∑
t=0

γtrti | π∗
i , π

∗
−i, θi, θ−i

]
,

where rti = R(st, at)i is agent i’s reward from the DEC-
POMDP reward function at time t. To establish the existence
of BNE in our setting, we verify three standard conditions:
(1) each agent’s mixed strategy space is non-empty, compact,
and convex (satisfied by our bounded prompt embedding
space); (2) the payoff function Ui(θ, a) is continuous in
types and actions (ensured by continuous reward functions);
and (3) each agent’s expected payoff is quasi-concave in its
own actions for fixed θi (guaranteed by our reward design).
Theorem 2.1 (Existence of Bayesian Nash Equilibrium).
In this multi-agent LLM framework, if the above condi-
tions are satisfied, there exists a BNE strategy profile π∗ =
(π∗

1 , . . . , π
∗
N ) by Glicksberg’s Fixed Point Theorem (Ahmad

et al., 2023). A full proof is provided in Appendix B.1.

We then analyze the convergence properties of our ECON
framework via Bayesian regret. Our analysis shows that
combining belief networks with coordinated updates leads
to an efficient approach for approximating BNE, achieving
a sublinear regret bound O

(
N

√
T/1−γ

)
, in contrast to the

linear regret of existing multi-agent debate methods.

To connect our theoretical analysis with the DEC-POMDP
formulation, we define the value function and regret in terms
of our system components. For each agent i, we measure
learning efficiency using Bayesian regret over T steps:

Ri(T ) = Est,πt

[ T∑
t=1

(
V ∗
i (st)− V πt

i (st)
)]
,

where V ∗
i (s) denotes optimal value function under BNE:

V ∗
i (s) = max

πi

Eπ∗
−i

[ ∞∑
t=0

γtR(st, at)i | s0 = s, πi, π
∗
−i

]
,

and V πt
i (s) is the value under the current policy profile

πt = (πt
1, . . . , π

t
N ) at time t. The expectation accounts

for randomness in both state transitions (governed by P)
and policy choices. To analyze the total Bayesian regret
R(T ) =

∑N
i=1 Ri(T ), we impose standard assumptions

(see Appendix B.3) and propose Lemma 2.2, proven in
Appendix C.1. Using Lemma 2.2, we bound the Bayesian
regret and provide a proof sketch below, with more details
and a bound comparison with MAD in Appendices C.2–C.3.

Lemma 2.2 (Performance Difference). For joint policies
π = (πi, π−i) and π′ = (π′

i, π
′
−i), the difference in value:

V π′

i (s)− V π
i (s) =

1

1− γ
Es∼dπ′

[
Ea∼π′Qπ

i (s, a)

− Ea∼πQ
π
i (s, a)

]
,

where dπ′ is the state distribution under π′, and a =
(ai, a−i) denotes the joint action from A.

Note that the Q-function Qπ
i (s, a) appearing in this lemma

will be approximated by neural networks in our implementa-
tion, as detailed in Sec. 3. Applying this lemma to our regret
analysis yields (Jin et al., 2020; Fujimoto et al., 2018):

R(T ) =

N∑
i=1

1

1− γ
Est,πt

[ T∑
t=1

(
Ea∗

t∼π∗Qπt
i (st, a

∗
t )

− Eat∼πt
Qπt

i (st, at)
)]
,

where π∗ represents the BNE policies. By bounding the
estimation error ϵt and suboptimality δt, we show

Ea∗
t∼π∗Qπt

i (st, a
∗
t ) − Eat∼πt

Qπt
i (st, at) ≤ 2ϵt + δt,

where ϵt = O(1/
√
t) bounds the Q-function estimation

error and δt = O(1/
√
t) measures policy suboptimality.

Under standard regularity conditions, these errors can be
bounded by constants Cϵ and Cδ respectively, leading to

R(T ) ≤
N∑
i=1

1

1− γ

(
2Cϵ + Cδ

) T∑
t=1

1√
t
= O

(N√T
1− γ

)
.

3. BNE Implementation with ECON
We present ECON that satisfies the DEC-POMDP architec-
ture in this section. Our framework satisfies the assumptions
in Appendix B.3, enabling the application of Lemma 2.2 to
bound Bayesian regret. As illustrated in Figure 2, ECON
adopts a Coordinator-Executor architecture where multiple
Execution LLMs operate locally under the guidance of a
Coordinator LLM, and comprises two phases: Inference and
Optimization. Below we first introduce the core modules
that collectively implement our DEC-POMDP design, then
describe the complete training process in Algorithm 1.
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Figure 2: ECON Framework: The inference procedure (left) shows how the Coordinator LLM processes and manages
Execution LLMs’ responses. The optimization procedure (right) illustrates the parameter process of the belief network.

3.1. Inference Phase

During the inference phase of ECON, a Coordinator LLM
generates an informative strategy and a format based on the
input question. These are then disseminated to the Execu-
tion LLMs, which independently produce their respective
answers. Then Coordinator LLM aggregates these answers
to form a final output, as illustrated in the left part of Fig-
ure 2.A detailed case study demonstrating this inference
process is provided in Appendix F. To implement the theo-
retical policy πi : Hi → ∆(Ai) from DEC-POMDP formu-
lation, each Execution LLM maintains a belief network that
maps its local history to actions. The following subsections
detail how ECON collectively approximates towards BNE.

3.2. Individual Belief Network

Each Execution LLM i maintains a belief network
Bi(τ

t
i , o

t
i; θ

B
i ) that implements its policy πi by mapping

local trajectory τ ti and current observation oti ∈ Oi to a
belief state bi ∈ Rd. The belief state captures the agent’s
understanding of the environment and other agents’ behav-
iors under partial observability, enabling strategic decision-
making without direct access to others’ outputs. The belief
state bi is further used to generate the action ati ∈ Ai, rep-
resented as prompt embedding ei = [Ti, pi]. While ei is a
2-dimensional vector, we term it ”embedding” as it embeds
the agent’s strategic decisions into the prompt control space,
influencing the LLM’s generation. We define:

Ti = Tmin + (Tmax − Tmin) · σ (WT bi + bT ) ,

pi = pmin + (pmax − pmin) · σ (Wp bi + bp) .

where σ(·) is the sigmoid function. Here, Ti modulates
the temperature of token sampling, and pi sets a penalty
threshold for repetition. The belief network Bi has two
outputs: (1) the prompt embedding ei that serves as the
action in our DEC-POMDP framework, and (2) a local Q-
value Qt

i(τ
t
i , e

t
i;ϕi) that estimates the expected return from

the current belief state. The belief state bi is also passed to
the belief encoder for group-level processing.

To optimize the belief network, we apply a TD loss to update
the parameters θBi , as illustrated in the right part of Figure 2.
The belief network parameters θBi = {ϕi,WT , bT ,Wp, bp}
include Q-value function parameters ϕi and prompt embed-
ding parameters. Thus, we have:

Li
TD(θ

B
i ) = ED

[(
rti + γmax

et+1
i

Qt+1
i (τ t+1

i , et+1
i ;ϕ′

i)

− Qt
i(τ

t
i , e

t
i;ϕi)

)2
]
,

where rti = R(st, at)i is the local reward signal and ϕ′
i

denotes target network parameters (updated via soft update).
By minimizing Li

TD, Execution LLM i refines its belief state
to improve local decision making.

3.3. Belief Encoder

A shared belief encoder, fe(·; θe), aggregates the belief
states from all agents to produce a group-level representa-
tion E = fe({bi}Ni=1; θe). This encoder enables agents to
implicitly coordinate their beliefs, facilitating convergence
to BNE. We employ multi-head attention with H heads to
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capture inter-agent dependencies in belief states:

headh = Attention
(
WQ

h b, WK
h b, WV

h b
)
,

where b = [b1; . . . ;bN ] ∈ RNd concatenates {bi}Ni=1.
The final output is E = Concat(head1, . . . , headH)WO,

with {WQ
h ,WK

h ,WV
h } as learnable parameters and WO as

the output projection. The belief encoder can also be regular-
ized via Le(θe) = Ltot

TD(ϕ)+λe

∑N
i=1 Li

TD(θ
B
i ), where Ltot

TD
is the global TD objective. This encoder captures higher-
level dynamics among Execution LLMs for coherence.

3.4. Centralized Mixing Network

The Centralized Mixing Network coordinates the integrated
belief information from all Execution LLMs, facilitating
global optimization toward BNE. Specifically, each agent’s
prompt embedding {eti}Ni=1 is processed via self-attention
to capture agent-agent dependencies, yielding intermediate
embeddings {wt

i}Ni=1. We then combine {wt
i}Ni=1 with the

group-level representation Et to produce feature transfor-
mations {F t

i }Ni=1. This combination allows the network
to integrate individual strategic decisions (captured in eti)
with collective belief dynamics (captured in Et), enabling
coordinated optimization. The local Q-values {Qt

i}Ni=1 and
the transformed features {F t

i }Ni=1 are jointly fed into multi-
head attention layers to compute a global Q-value Qt

tot. This
global Q-value function accounts for local-global interac-
tions, ensuring that improvements in individual behavior
also contribute. To train the mixing network, we minimize:

Lmix(ϕ) = Ltot
TD(ϕ) + LSD + λm

N∑
i=1

∥Qt
i −Qt

tot∥2,

where Ltot
TD(ϕ) aligns Qt

tot with the global reward rtot:

Ltot
TD(ϕ) = ED

[(
rtot + γ max

{et+1
i }N

i=1

Qt+1
tot (τt+1, {et+1

i }Ni=1;ϕ
′)

− Qt
tot(τt, {eti}Ni=1;ϕ)

)2]
,

while a similarity difference loss LSD (e.g. λb

∑N
i=1(1 −

sim(F t
i , C))2) aligns agent features with the coordinator’s

final output C. ∥Qt
i −Qt

tot∥2 ensures local Q-values remain
consistent with the global estimate. Target parameters ϕ′

are updated by a soft update rule ϕ′ ← τϕ + (1 − τ)ϕ′.
As a result, the mixing network optimizes local policies to
improve the global objective, promoting stable convergence
(see Appendix B.5 for a monotonicity proof).

3.5. Reward Design

The reward function Rdesign consists of three components,
all bounded by Rmax per Assumption B.2. The Ac-
tion Likelihood Reward rAL

i = min(Rmax, sim(ui, C))
measures final output consistency via cosine similarity

sim(ui, C) = ui·C
∥ui∥∥C∥ (Zhu et al., 2023). The Task-

Specific Reward rTS
i = min(Rmax, eval(ui, task)) evalu-

ates domain-specific performance through normalized scor-
ing (Hao et al., 2023). The Collaborative Contribution
Reward rCC

i = min(Rmax, quality(ui, {uj}j ̸=i)) assesses
each agent’s contribution to the collective solution (Xie
et al., 2024b). The total reward is computed as ri =
α1r

AL
i + α2r

TS
i + α3r

CC
i , where α1 + α2 + α3 = 1. These

weights are dynamically adjusted via gradient updates αk ←
αk − ηα · ∂Ldr/∂αk, with Ldr =

∑N
i=1(r

actual
i − rexpected

i )2.

3.6. Early Stopping

To ensure efficient optimization and convergence to stable
solutions, early stopping is implemented based on three
key criteria. First, final output stability is achieved when
the change in the coordinator’s output satisfies ∥∆C∥ =
∥Ct+1 − Ct∥ ≤ ϵC . Second, reward convergence is moni-
tored such that the average reward across agents reaches a
predefined threshold, 1

N

∑N
i=1 ri ≥ Rthreshold. Lastly, loss

convergence is ensured when the total loss stabilizes, satisfy-
ing |Lt+1

tot − Lt
tot| ≤ ϵL, where Ltot is the sum of individual

agent losses
∑N

i=1 Li, execution loss Le, and the mixing
loss Lmix. These criteria monitor the optimization process,
ensuring both strategic alignment and performance while
preventing premature termination.

Algorithm 1 Belief Network Training Algorithm

Require: Question, {ExecLLMi}Ni=1, Coordinator LLM,
thresholds {ϵC , Rth, ϵL}

Ensure: Optimized parameters {θBi }Ni=1, θe, ϕ
1: Initialize: {θBi }Ni=1, θe, ϕ
2: if not converged then
3: for each LLM i do
4: bi ← Bi(τi, oi; θ

B
i )

5: ei ← ComputeEmbedding(bi)
6: ui ← ExecLLMi(query, ei)
7: ri = α1r

AL
i + α2r

TS
i + α3r

CC
i

8: end for
9: E← fe({bi}Ni=1; θe)

10: C ← Coordinator({ui}Ni=1, E)
11: Update {θBi }Ni=1 via Li

TD; θe via Le; ϕ via Lmix

12: converged ← ∥C − Cprev∥ ≤ ϵC and Ravg ≥ Rth
and |∆Ltot| ≤ ϵL

13: end if
14: return {θBi }Ni=1, θe, ϕ

4. Experiment
In this section, we present the experiment setup in Sec. 4.1,
demonstrate the method effectiveness in Sec. 4.2, validate
the heterogeneous results in Sec. 4.3, test scale-up capability
in Sec. 4.4, and conduct ablation studies in Sec. 4.5.
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4.1. Setups

4.1.1. MODELS AND DATASETS.

We evaluate 6 released opensourced LLMs: LLaMA3.1
8B (Dubey et al., 2024), LLaMA3.1 70B, Mistral-7B (Jiang
et al., 2023), LLaMA3.1 405B, Mixtral-8x22B (Jiang
et al., 2024) and Qwen1.5 110B (Yang et al., 2024)
across 5 reasoning tasks, including 4 mathematical datasets
(GSM8K (Cobbe et al., 2021), GSM-Hard (Gao et al., 2023),
MATH (Hendrycks et al., 2021), SVAMP (Patel et al., 2021))
and one commonsense reasoning dataset (StrategyQA (Geva
et al., 2021)). Then, we evaluate GPT4 turbo) (Achiam
et al., 2023) in a very challenging planning task (Travelplan-
ner (Xie et al., 2024a)) to further validate the performance.
The details of benchmarks can be found in Appendix C.5.

4.1.2. COMPARED METHODS AND BENCHMARKS.

We compare ECON against several strong baseline types
widely adopted: (i) single-round CoT prompting, includ-
ing zero-shot and few-shot CoT (Kojima et al., 2022; Wei
et al., 2022); (ii) multi-round CoT prompting, Self Con-
sistency (SC) (Wang et al., 2023) method, where we sam-
ple answers 64 times and employ majority voting for an-
swer selection; (iii) value-guided search approaches with
learned action-value functions, including TS-LLM (Feng
et al., 2023) which leverages AlphaZero-style value net-
works for MCTS, and PPO-MCTS (Liu et al., 2024a) which
learns value models to evaluate generation quality in tree
search; (iv) multi-round self-improving approaches, using
ToT (Yao et al., 2023), RAP (Hao et al., 2023) and Re-
act (Yao et al., 2022), with BFS and MCTS for tree search,
respectively, following their original answer selection; and
(v) multi-LLM reasoning frameworks, including rStar (Qi
et al., 2024) and multi-agent debate (Du et al., 2024).

4.1.3. ECON SETUPS.

In this section, the ECON framework includes one Coor-
dinator and three Execution LLMs. The hyperparameters
for training can be found in Appendix C.6. To ensure a
fair comparison with the baseline, we use four identical
models for these LLMs. For heterogeneous results, we also
evaluate ECON with different models in Table 2. All evalu-
ations are conducted in a zero-shot setting, with a general
prompt provided in Appendix E. Notably, while we set a
50-token constraint for the coordinator’s strategy genera-
tion, considering that LLMs may not strictly follow length
instructions (Yuan et al., 2024b), who showed that 95% of
responses stay within 1.4× and 50% within 1.0× of the
specified length, we implement a 70-token hard cutoff with
regeneration mechanism to controls the token usage.

Zero-shot CoT

Few-shot CoT
SC@maj64

rStar ToT RAP
TS-LLM

PPO-MCTS
EcoNash
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80
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Figure 3: Average results of five reasoning datasets:
GSM8K,GSM-Hard, SVAMP, Strategy QA and MATH.

4.2. Main Result

Figure 3 presents the average accuracy comparison of each
method across four mathematical reasoning datasets and
one commonsense reasoning dataset. Detailed accuracy
comparisons for each dataset can be found in Appendix E.
The empirical results demonstrate that ECON outperforms
most baselines on all complex reasoning benchmarks. On
average, ECON outperforms the single-round method Zero-
shot CoT by 25.6%, Few-shot CoT by 6.3%, multi-round
CoT prompting SC by 10.9%, multi-round self-improving
approaches ToT by 11.2%, and multi-LLM reasoning frame-
works rStar by 6.4%.

Furthermore, when evaluated on the very challenging Trav-
elplanner benchmark using GPT-4-Turbo in Table 1, ECON
enhanced the final pass rates to 7.2% on the validation set
and 9.3% on the test set, while compared to 2.3% and 3.7%
achieved by a three-round multi-agent debate.

These results demonstrate that ECON effectively lever-
ages the capabilities of more powerful models and outper-
forms alternative reasoning optimization methods in com-
plex tasks. Additionally, we provide a corresponding ex-
ample for MATH, which are available in Appendix F. Note
that ECON uses fewer tokens compared to multi-round CoT
prompting SC, multi-round self-improving approaches ToT,
and MAD, meanwhile achieved performance improvements.

4.3. Model Configuration and Cost Efficiency Analysis

To evaluate the impact of both the Coordinator LLM and Ex-
ecution LLM performance on the ECON framework and find
whether heterogeneous Execution LLMs can also achieve a
BNE, we conducted two types of experiments: one pairing
a strong Coordinator LLM with weaker Execution LLMs,
and another pairing a weak Coordinator LLM with stronger
Execution LLMs. These experiments were further divided
into homogeneous and heterogeneous execution groups for
detailed analysis. To ensure a fair comparison, the Coordi-
nator LLM was consistently set to LLaMA3.1 70b across
all experiments. For the heterogeneous execution group, we
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Table 1: Empirical results on the TravelPlanner dataset, along with some leaderboard rankings, are presented.

Validation (#180) Test (#1,000)

Delivery
Rate

Commonsense
Pass Rate

Hard Constraint
Pass Rate

Final
Pass Rate

Delivery
Rate

Commonsense
Pass Rate

Hard Constraint
Pass Rate

Final
Pass Rate

Micro Macro Micro Macro Micro Macro Micro Macro
Greedy Search 100 74.4 0 60.8 37.8 0 100 72.0 0 52.4 31.8 0

Two-stage
Mixtral-8x7B-MoE 49.4 30.0 0 1.2 0.6 0 51.2 32.2 0.2 0.7 0.4 0
Gemini Pro 28.9 18.9 0 0.5 0.6 0 39.1 24.9 0 0.6 0.1 0
GPT-3.5-Turbo 86.7 54.0 0 0 0 0 91.8 57.9 0 0.5 0.6 0
GPT-4-Turbo 89.4 61.1 2.8 15.2 10.6 0.6 93.1 63.3 2.0 10.5 5.5 0.6
Debate (GPT-4) @3round 95.2 67.3 6.7 22.7 13.1 2.3 97.8 72.4 11.3 17.4 12.1 3.7
ECON (GPT-4) 100 71.4 15.6 32.1 25.7 7.2 100 82.1 26.6 32.4 17.6 9.3

Sole-planning
DirectGPT-3.5-Turbo 100 60.2 4.4 11.0 2.8 0 100 59.5 2.7 9.5 4.4 0.6
CoTGPT-3.5-Turbo 100 66.3 3.3 11.9 5.0 0 100 64.4 2.3 9.8 3.8 0.4
ReActGPT-3.5-Turbo 82.2 47.6 3.9 11.4 6.7 0.6 81.6 45.9 2.5 10.7 3.1 0.7
ReflexionGPT-3.5-Turbo 93.9 53.8 2.8 11.0 2.8 0 92.1 52.1 2.2 9.9 3.8 0.6
DirectMixtral-8x7B-MoE 100 68.1 5.0 3.3 1.1 0 99.3 67.0 3.7 3.9 1.6 0.7
DirectGemini Pro 93.9 65.0 8.3 9.3 4.4 0.6 93.7 64.7 7.9 10.6 4.7 2.1
DirectGPT-4-Turbo 100 80.4 17.2 47.1 22.2 4.4 100 80.6 15.2 44.3 23.1 4.4
Debate (GPT-4) 97.7 78.9 15.6 43.3 20.6 6.7 98.2 79.5 18.8 41.7 22.9 7.1
ECON (GPT-4) 100 83.3 22.2 51.7 27.8 12.9 100 84.2 23.5 49.8 28.7 15.2

Table 2: Performance of different configurations.

Method GSM-Hard MATH

Baselines
ECON 51.43 81.47
LLaMA 3.1 7B (Few-shot CoT) 42.23 62.71

ECON Configurations
Homo. (3× LLaMA3.1 8B) 48.71 67.70
Homo. (3× LLaMA3.1 405B) 61.29 89.24
Hetero. (LLaMA3.1 8B, LLaMA3 8B, Mixtral 7B) 45.24 74.24
Hetero. (Mixtral 8×22B, Qwen1.5 110B, LLaMA3.1 405B) 55.73 85.46

used the following configurations: LLaMA 3.1 8b, LLaMA
3 8b, and Mixtral 7b, as well as another configuration con-
sisting of Mixtral 8×22b, Qwen1.5 110b, and LLaMA3.1
405b. For the homogeneous execution group, two configu-
rations were tested: one with three weak models (LLaMA
3.1 8b), and another with three strong models LLaMA 3.1
405b. Experimental results indicate that stronger Execution
LLMs improve performance by providing higher-quality
answers and achieving BNE more efficiently. Additionally,
heterogeneous model perform worse than homogeneous
models due to increased challenges in reaching BNE, but
still outperform baseline Few-shot CoT .

To assess the cost efficiency of the ECON framework, Ta-
ble 3 presents the average token usage of ECON, Multi-
Agent Debate, RAP, and SC across the MATH, GSM8K,
and GSM-Hard datasets for three models: LLaMA 3.1 70B,
Mixtral 8x7B, and Mixtral 8x22B. The results demonstrate
that ECON reduces token consumption by an average of
21.4% compared to Multi-Agent Debate (3 rounds). No-
tably, when the Coordinator LLM provides detailed strate-
gies with answer(as shown in the token consumption data in
Table 3), token usage increases an average of 112% higher
as the full strategy processing.

We would like to point out that ECON does not eliminate
inter-agent communication entirely, but rather adopts an
incomplete-information perspective that minimizes com-
munication. ECON’s optimization objective focuses on
achieving consensus among Execution LLMs, consensus
achieved as the result of implicit communication. We make
an additional experiment to demonstrate incorporating direct
complete interaction into ECON (which makes it become a
complete information formation). The performance improve
1.1% while the token consumption increase 42.4% .

4.4. Scale Up Result

We analyzed the impact of varying the number of agents fur-
ther to validate ECON across a broader range of LLMs. We
conducted three sets of experiments on the MATH, GSM-
Hard, SVAMP, and StrategyQA datasets, aiming to address
three key questions: (1) To what extent can weaker LLMs be
enhanced? (examined on LLaMA 3.1 8B), (2) Can stronger
LLMs be further improved? (using LLaMA 3.1 70B), and
(3) Should the number of Coordinator LLMs be increased
along with the number of Execution LLMs? Starting from
three Execution LLMs (as in the main results), we gradu-
ally increased the number of agents to nine. We used the
few-shot CoT as the baseline (in grey line) as Figure 4. The
results suggest that beyond four Execution LLMs, perfor-
mance improvements were minimal, and in some cases, per-
formance even declined. We attribute this to the challenge
faced by the Coordinator LLM in managing an excessive
number of Execution LLMs, making it difficult to achieve
coordination by information from additional agents.

Instead of simply increasing the number of Execution LLMs,
we enhance scalability by forming a global Nash Equilib-
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Figure 4: Scaling up our framework with a single coordinator while increasing the number of Execution LLMs in 5 datasets.
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Figure 5: Scaling up by increasing the number of coordinators in proportion to the number of Execution LLMs in 5 datasets.

rium through local Nash equilibria by introducing additional
coordinators. This setup ensures that each Coordinator
handles a reasonable amount of data. Specifically, each
Coordinator manages up to 4 Execution LLMs, forming
outputs and guiding them toward local Nash equilibria. Fur-
thermore, a central LLM was introduced to coordinate the
multiple coordinators, facilitating the transition from local
Nash equilibria to a global Nash Equilibrium (details in Ap-
pendix 2). We observed significant improvements across all
benchmarks, both for weaker models (LLaMA 3.1 8B) and
stronger models (LLaMA 3.1 70B). Compared to a system
with 3 Execution LLMs and one coordinator, the scaled-up
system with 9 Execution LLMs, 3 coordinators, and a cen-
tral LLM achieved 18.1% improvement in Figure 5, which
has potential to further scale up.

4.5. Ablation Study

In the additional experiments, heterogeneous Execution
LLMs experienced a slight performance decline. An in-
tuitive explanation for this observation is that implement-
ing BNE is more challenging for heterogeneous Execution
LLMs. To verify the actual performance differences of the
ECON framework before and after achieving BNE, we con-
ducted experiments on three math reasoning benchmarks:
GSM8K, GSM-Hard, and MATH. Results in Table 5 demon-
strate that our framework achieved an average performance
improvement of 14% after implementing BNE.

Additionally, we performed ablation studies on various sub-
modules, including the reward design and the setting where

the Coordinator LLM provides a strategy without giving a
direct answer, to ensure the validity of our architecture. All
experiments were conducted with LLaMA 3.1 70B, tested
on the MATH benchmark. Specifically, R1 refers to the
action likelihood reward, R2 to the task-specific reward, and
R3 to the self-evaluation reward. S1 represents the setting
where the coordinator does not provide any strategy, while
S2 represents the setting where the coordinator provides
detailed strategy, S3 represents ECON as our baseline.

Theoretically, the design of our mixing network optimizes
local policies to improve the global objective, Monotonicity
proofs are demonstrated in Appendix A.5. We make addi-
tional ablation experiments to validate this by removing the
concatenation and removing the belief encoder in Table 6.

5. Related Work
Prompting Large Language Models to Reason. Large
language models are significantly more capable of complex
reasoning with the advancement of prompt techniques (Wei
et al., 2022; Kojima et al., 2022; Zhou et al., 2022; Fu et al.,
2022; Zhang et al., 2023c; Wang et al., 2023; Li et al., 2023;
Chia et al., 2023; Cao et al., 2024; Zhou et al., 2024a; Wang
et al., 2025; Zhou et al., 2025). Wei et al. (2022) introduced
Chain-of-Thought (CoT) prompting, which presents step-
by-step reasoning examples within the prompt. This enables
the model to engage in explicit reasoning, enhancing its
ability to follow the logical progression that leads to the
correct answer. Various extensions of CoT have been devel-
oped to improve reasoning performance further. Zero-shot
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Table 3: Average token usage and performance comparison in the MATH, GSM8K, and GSM-Hard.

Dataset Inference Strategy
LLaMA3.1 70B Mixtral 8x7b Mixtral 8x22b

Token Usage Performance Token Usage Performance Token Usage Performance

MATH

Multi-Agent Debate (3 rounds) 2154.87 71.58 1462.12 31.28 5345.56 67.41
RAP 2653.27 68.71 1737.73 33.99 6668.55 62.53
ECON (with detailed strategy) 3270.06 72.38 2150.23 26.18 8054.03 68.23
Self Consistency (64 rounds) 11917.00 67.39 8066.21 31.58 29616.13 62.21
ECON 1629.79 81.47 1128.23 35.02 4270.86 72.29

GSM8K

Multi-Agent Debate (3 rounds) 1391.57 86.32 1463.40 70.19 5714.05 81.95
RAP 1907.86 81.33 1248.66 72.03 6517.77 76.97
ECON (with detailed strategy) 2772.24 85.17 1188.13 65.37 9341.60 81.46
Self Consistency (64 rounds) 9574.25 89.56 6601.34 71.08 24671.91 86.24
ECON 1131.65 92.70 1284.98 76.97 4715.31 88.20

GSM-Hard

Multi-Agent Debate (3 rounds) 3030.73 41.98 1478.14 20.04 9250.78 45.21
RAP 1768.72 38.97 1036.11 22.47 6464.52 42.79
ECON (with detailed strategy) 3662.64 44.12 2239.07 18.52 11464.98 41.04
Self Consistency (64 rounds) 16724.69 39.76 11668.19 22.47 74544.25 44.19
ECON 1518.76 51.43 1271.53 25.76 7101.62 47.58

Table 4: Comparison between Token Consumption and Effi-
ciency of ECON w/o complete information in LLaMA 3.1.

Dataset & Model Complete Info Consumption

GSM8K - LLaMA 3.1 8B 81.4 80.3 (+35.6%)
GSM8K - LLaMA 3.1 70B 96.1 96.7 (+42.7%)
GSM-Hard - LLaMA 3.1 8B 30.2 29.9 (+62.3%)
GSM-Hard - LLaMA 3.1 70B 53.6 51.4 (+40.9%)
MATH - LLaMA 3.1 8B 59.6 60.4 (+33.8%)
MATH - LLaMA 3.1 70B 83.1 81.5 (+39.4%)

Table 5: Ablation on different reward and strategy settings.
Reward Strategy

R1 R2 R3 ECON S1 S2 S3 ECON

✓ × ✓ 77.55 ✓ × × 71.35
✓ × × 74.32 × ✓ × 72.31
✓ ✓ × 76.21 × × ✓ 81.47

Random 62.71

Table 6: Ablation Study on Concatenate and Belief Encoder.
Dataset & Model No Concatenate No belief encoder

GSM8K - LLaMA 3.1 8B 85.9 (-1.8) 84.1 (-3.4)
GSM8K - LLaMA 3.1 70B 93.6 (-3.1) 91.1 (-5.6)
GSM-Hard - LLaMA 3.1 8B 24.9 (-5.0) 21.7 (-8.2)
GSM-Hard - LLaMA 3.1 70B 47.2 (-4.2) 42.6 (-8.8)
MATH - LLaMA 3.1 8B 55.6 (-4.8) 52.3 (-7.1)
MATH - LLaMA 3.1 70B 77.0 (-4.4) 75.3 (-6.2)

CoT (Kojima et al., 2022) eliminates the need for manually
constructing exemplars, prompting models with phrases like
”Let’s think step by step” to encourage reasoning. Wang et al.
(2023) proposed self-consistency (SC) sampling, where mul-
tiple reasoning paths are sampled, and the final answer is
determined by majority voting. To enable LLMs to engage
in deliberate decision-making, Tree of Thoughts (ToT) (Yao
et al., 2023) generates multiple potential answers at each
reasoning step, building a tree of possible solutions.

Multi-agent Debate for Large Language Models Reason-
ing. Various multi-agent debate strategies (Du et al., 2024;

Chan et al., 2024; Liang et al., 2023; Chen et al., 2023; Smit
et al., 2024; Zhang et al., 2023a; Pham et al., 2023; Li et al.,
2023) have been developed to strengthen the reasoning abil-
ity of LLMs. Du et al. (2024) introduced an approach where
multiple instances of LLMs propose their individual rea-
soning processes, engaging in multiple rounds of debate
to reach a consensus on the final answer. This method not
only significantly enhances reasoning performance across a
variety of tasks but also reduces the occurrence of hallucina-
tions. Some studies (Chan et al., 2024; Liang et al., 2023)
incorporate role-playing into multi-agent debate strategies
using role-specific prompts, foster divergent thinking and en-
hance the reasoning capabilities of LLMs. However, current
multi-agent debate strategies face high computational costs
and lack theoretical guarantees for convergence. In this
work, we introduce an incomplete information perspective
to enhance the scalability of multiple LLMs to ensure inde-
pendent reasoning by each Execution LLM, while ensure
convergence through rigorous theoretical analysis.

6. Conclusion
In this work, we introduce ECON, a novel collaborative rea-
soning framework in multi-LLM systems. ECON constructs
a hierarchical coordination mechanism, enabling multiple
Execution LLMs to engage in distributed reasoning guided
by a Coordinator LLM. The hierarchical coordination mech-
anism allows each Execution LLM to operate independently
with its own belief network, receiving only the question
and strategy from the Coordinator LLM. This enables multi-
ple Execution LLMs to engage in distributed reasoning to
achieve BNE. Experimental results across six benchmarks
demonstrate ECON outperforms single-agent approaches
by 10.9% in average, confirming the robustness and effi-
ciency of our framework. Moreover, ECON demonstrate
great potential of scalability while maintain reasonable cost.
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A. Notations
This section summarizes the key notations used throughout the appendix and the main paper where applicable.

Notation Description

General Game Theory and Reinforcement Learning

N Number of agents.
i Index for an agent, i ∈ {1, . . . , N}.
πi Strategy or policy for agent i.
π−i Strategies of all agents other than i.
π∗ Bayesian Nash Equilibrium (BNE) strategy profile.
Πi Set of all admissible strategies for agent i.
ai Action taken by agent i.
a−i Actions taken by all agents other than i.
a = (ai, a−i) Joint action profile.
Ai Action space for agent i.
s, s State of the environment.
Ui(·) Payoff or utility function for agent i.
BRi(π−i) Best response correspondence for agent i to π−i.
ri Reward received by agent i.
Rmax Uniform upper bound for rewards.
γ Discount factor for future rewards, 0 ≤ γ < 1.
Li(θi) Loss function for agent i (e.g., TD loss), parameterized by θi.
Qi(s, ai; θi) Q-value function for agent i for state s and action ai, parameterized by θi.
Q∗

i (s, ai) Optimal Q-value function.
θi Parameters of agent i’s network (e.g., Q-network, belief network). Also used to

denote agent type in BNE proof.
θBi Parameters of agent i’s belief network.
θe Parameters of the coordinator’s belief aggregation function.
θ−i Parameters of the target Q-network for agent i.
ηt, η0, η, η

′, ηglobal, ηα Learning rates.
Di Replay buffer or data distribution for agent i.
Dt Historical data up to time t.
V π
i (s) or Vt(Oi) Value function for agent i under policy π (or at time t for observation Oi).

V ∗
i (s) Optimal value function for agent i.
Bt or Bt Bellman operator at time t.
B∗ True Bellman optimality operator.
Ri(T ) Regret for agent i over T time steps.
R(T ) Total regret for all agents over T time steps.
T Total number of time steps or episodes.
ϵ Small positive constant (e.g., exploration rate, error margin, convergence threshold).
DKL(·∥·) Kullback-Leibler divergence.
E[·] Expectation operator.
∇ Gradient operator.

MA-LLM Framework Specifics (ECON)

Θi Type space for agent i (in BNE proof).
Oi Observation for agent i, typically Oi = [et, es,bi]

⊤.
et Task encoding / global observation.
es Coordinator’s strategy (embedding).
bi Belief state (embedding) for agent i.
ei Prompt embedding generated by agent i (considered as its action in some contexts).

Continued on next page
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Table 7 – continued from previous page
Notation Description

Bi(τi, Oi; θ
B
i ) Belief network function for agent i.

τi Historical trajectory or local information for agent i.
fe({bi}Ni=1; θe) Coordinator’s belief aggregation function.
E Aggregated group information/embedding from coordinator.
C,Ck Coordinator’s final output (embedding).
Ppost(E | ·) Posterior distribution over group information determined by the coordinator.
PLLM(E | ·) Belief distribution over group information maintained by an Execution LLM.
Ht Belief entropy at time t.
I(X;Y | Z) Conditional mutual information between random variables X and Y given Z.
ξ(ei,E) A function related to coordination, depending on ei and E.
η Game regularity constant (distinct from learning rate).
κ Concentrability constant.
ui Output (e.g., text, solution) generated by Execution LLM i.
K Number of clusters in the hierarchical scaling-up framework.
Coordglobal Global Coordinator LLM.
Coordk Local Coordinator LLM for cluster k.
S Global strategy (embedding) from Coordglobal.
sk Local strategy (embedding) for cluster k from Coordk.
Ck Cluster of Execution LLMs (also used for local output from Coordk, context

dependent).
ϵC , ϵL Convergence thresholds for final output and losses respectively.
Rthreshold Reward threshold for early stopping in scaling-up framework.
rAL
i Action Likelihood Reward.
rTS
i Task-Specific Reward.
rCC
i Collaborative Contribution Reward.
α1, α2, α3 Weights for combining reward components.
Qtot Total Q-value from the mixing network.
hl Hidden state of layer l in the mixing network.
W l, bl Weights and biases for layer l of the mixing network.
ϕl(·) Non-decreasing activation function for layer l of the mixing network.
dkπ State distribution at step k induced by policy π.
Ti, pi Temperature and nucleus sampling (top-p) parameters for LLM i.
Ldr Loss for dynamic reward weight adjustment.

Proof Specifics (Regret Bounds, Convergence)

E1(t), E2(t) Error terms in Q-value decomposition (related to Q-function estimation error).
∆(t) Policy suboptimality term in Q-value decomposition.
ϵt(s, a) Q-function estimation error |Qt(s, a)−Q∗(s, a)| at time t.
C1, C2, C Generic constants appearing in convergence rate and regret bounds.
ζt or ξt Martingale difference noise term in stochastic approximation proofs.
σ2 Bound on the variance of the noise term ζt.
P Policy space (assumed convex and compact in some proofs).
J(π) Policy objective function (e.g., expected discounted return of policy π).
L Lipschitz constant (e.g., for policy gradient).
D(P) Diameter of the policy space P .
δmin Lower bound on persistent policy suboptimality in competitive (debate) settings.
vi Value of the game for agent i (in zero-sum games).
H(πi) Entropy of policy πi.
hmin Minimum entropy required for policies in competitive settings to avoid exploitation.
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B. Theoretical Proof
B.1. Proof of Theorem 2.1

Proof. We aim to prove the existence of a Bayesian Nash Equilibrium (BNE) in our multi-agent LLM framework under the
specified conditions. The proof proceeds by verifying the conditions of Glicksberg’s Fixed Point Theorem, which guarantees
the existence of a fixed point in continuous games with infinite-dimensional strategy spaces.

Step 1: Define the Best Response Correspondence

For each agent i, define the best response correspondence BRi as:

BRi(π−i) = {πi ∈ Πi | πi maximizes Ui (θi, πi, π−i)} ,

where Πi is the set of all admissible strategies for agent i, and π−i denotes the strategies of all other agents.

Step 2: Verify the Conditions of Glicksberg’s Fixed Point Theorem

To apply Glicksberg’s Fixed Point Theorem, we need to verify the following conditions for each agent i:

1. Strategy Space Compactness and Convexity:

• The strategy space Πi is non-empty, convex, and compact in the topology of pointwise convergence.

2. Continuity of Payoff Functions:

• The payoff function Ui(θi, πi, π−i) is continuous in (πi, π−i) for each fixed θi.

3. Quasi-Concavity of Payoff Functions:

• The payoff function Ui(θi, πi, π−i) is quasi-concave in πi for each fixed θi and π−i.

Verification:

1. Strategy Space Compactness and Convexity:

The strategy space Πi consists of all measurable functions mapping types θi to actions ai in Ai. Since Θi and Ai

are compact metric spaces, and strategies are measurable functions from one compact space to another, the space of
such functions Πi can be endowed with the topology of pointwise convergence, making it compact by Tychonoff’s
Theorem. Convexity follows because the set of mixed (probabilistic) strategies is convex, and any convex combination
of measurable functions is measurable.

2. Continuity of Payoff Functions:

For fixed θi, the payoff function Ui(θi, πi, π−i) depends continuously on πi and π−i due to the continuity of Ui in
actions and types. Specifically, since Ui is continuous in a = (ai, a−i) and the strategies πi, π−i map continuously
from types to actions, the composition Ui(θi, πi(θi), π−i(θ−i)) is continuous in (πi, π−i).

3. Quasi-Concavity of Payoff Functions:

For each θi and π−i, the function πi 7→ Ui(θi, πi, π−i) is quasi-concave because Ui is quasi-concave in ai and the
strategies are linear in the space of mixed strategies. Therefore, any convex combination of strategies does not decrease
the utility, satisfying quasi-concavity.

Step 3: Establish Upper Hemicontinuity and Non-Empty, Convex-Valuedness of Best Response Correspondences

We need to show that BRi(π−i) is upper hemicontinuous with non-empty, convex values.

1. Non-Empty, Convex Values:

For each π−i, since Πi is compact and convex, and Ui is continuous and quasi-concave in πi, the Weierstrass Theorem
ensures that the maximum exists; hence, BRi(π−i) is non-empty. Convexity follows from the quasi-concavity of Ui in
πi, implying that any convex combination of best responses is also a best response.
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2. Upper Hemicontinuity:

Upper hemicontinuity of BRi means that for any net πα
−i → π−i, and any πi ∈ BRi(π−i), there exists a net

πα
i ∈ BRi(π

α
−i) such that πα

i → πi. This property holds because the payoff function Ui is continuous in (πi, π−i),
and the strategy spaces are compact.

Step 4: Application of Glicksberg’s Fixed Point Theorem

Having verified all the conditions, we can apply Glicksberg’s Fixed Point Theorem, which states that if each player’s strategy
set is compact and convex, and their payoff functions are continuous and quasi-concave in their own strategies, then the
game has at least one Nash Equilibrium in mixed strategies.

Step 5: Conclusion

Therefore, there exists a strategy profile π∗ = (π∗
1 , π

∗
2 , . . . , π

∗
N ) such that for each agent i,

π∗
i ∈ BRi(π

∗
−i),

meaning that no agent can unilaterally deviate to improve their expected payoff, given their beliefs about other agents’ types
and strategies. This strategy profile constitutes a Bayesian Nash Equilibrium in our multi-agent LLM framework.

B.2. Proof of Convergence to BNE

Proof. We aim to show that, by minimizing the TD loss for each agent’s Q-network, the agents’ strategies converge to a
Bayesian Nash Equilibrium (BNE).

Assumptions:

1. The Q-networks Qi(s, ai; θi) are parameterized by prompt embeddings θi, and the mapping from θi to Qi is continu-
ously differentiable.

2. The exploration strategy ensures sufficient coverage of the state-action space (e.g., ϵ-greedy with decaying ϵ).

3. The loss function Li(θi) is convex or has Lipschitz continuous gradients with respect to θi.

4. The gradient ∇θiLi(θi) is Lipschitz continuous.

5. The learning rate ηt is chosen such that it satisfies the Robbins-Monro conditions:
∑∞

t=1 ηt =∞ and
∑∞

t=1 η
2
t <∞.

Step 1: Defining the TD Loss Function The TD loss function for agent i is:

Li(θi) = E(s,ai,ri,s′)∼Di

[(
ri + γmax

a′
i

Qi(s
′, a′i; θ

−
i )−Qi(s, ai; θi)

)2
]
,

This loss measures the discrepancy between the predicted Q-value and the target Q-value based on the reward and the
estimated optimal future Q-value.

Step 2: Gradient Descent Update Agent i updates its Q-network parameters according to:

θt+1
i = θti − ηt · ∇θiLi(θ

t
i).

The gradient of the loss function with respect to the parameters is:

∇θiLi(θ
t
i) = E(s,ai,ri,s′)∼Di

[
2

(
ri + γmax

a′
i

Qi(s
′, a′i; θ

−
i )−Qi(s, ai; θ

t
i)

)
· (−∇θiQi(s, ai; θ

t
i))

]
.

Step 3: Convergence of Gradient Descent with TD Loss Under the assumptions that Li(θi) has Lipschitz continuous
gradients and the learning rate ηt satisfies the Robbins-Monro conditions, stochastic gradient descent converges to a
stationary point θ∗i of Li(θi):

lim
t→∞

θti = θ∗i .
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At convergence, the gradient vanishes:
∇θiLi(θ

∗
i ) = 0,

which implies:

E(s,ai,ri,s′)∼Di

[(
ri + γmax

a′
i

Qi(s
′, a′i; θ

−
i )−Qi(s, ai; θ

∗
i )

)
· ∇θiQi(s, ai; θ

∗
i )

]
= 0.

Assuming that the Q-network parameterization is such that the above condition holds only when:

Qi(s, ai; θ
∗
i ) = ri + γmax

a′
i

Qi(s
′, a′i; θ

−
i ),

the Q-network accurately estimates the expected cumulative rewards, aligning the agent’s policy with the optimal response
to other agents’ strategies.

Step 4: Characterizing the Stationary Point At the stationary point θ∗i , the Q-network satisfies the Bellman optimality
condition:

Qi(s, ai; θ
∗
i ) = ri + γmax

a′
i

Qi(s
′, a′i; θ

−
i ).

This condition ensures that the agent’s policy πi(ai | s; θ∗i ) is a best response to the current policies of other agents, as it
maximizes the expected cumulative reward.

Step 5: Establishing Bayesian Nash Equilibrium Since each agent’s policy is a best response to the policies of others, the
set of policies {π∗

i } constitutes a Bayesian Nash Equilibrium. Each agent maximizes its expected utility given its beliefs
about other agents’ types and strategies, fulfilling the definition of BNE.

B.3. Assumptions

Our theoretical analysis relies on four key assumptions that are both common in multi-agent systems (Zhang et al., 2021;
Liu et al., 2022) and specifically relevant to our MA-LLM framework.

Definition B.1 (System Components). In our MA-LLM framework:

• Each agent i’s observation Oi = [et, es,bi]
⊤, where et encodes the task, es represents the coordinator’s strategy, and

bi is the belief state

• Each agent’s action is its prompt embedding ei generated by belief network Bi(τi, Oi; θ
B
i )

• The coordinator aggregates beliefs through fe({bi}Ni=1; θe) into group information E

Assumption B.2 (Bounded Rewards). The rewards from coordinator final output are uniformly bounded: |ri(Oi, ei,E)| ≤
Rmax, for all Oi, ei,E, i.

This assumption is standard in reinforcement learning (Sutton & Barto, 2018) and critical since it ensures numerical stability
in the learning process of LLMs, preventing reward explosion that could lead to unstable training.

Definition B.3 (Historical Data and Posterior). Given historical data Dt = {(Ok
i , e

k
i , C

k)}tk=1:

• Ppost(E | Dt, Oi, ei) is the posterior distribution over group information determined by the coordinator

• PLLM(E | Dt, Oi, ei) is the belief distribution maintained by each Execution LLM

Assumption B.4 (Approximate Posterior Alignment). Execution LLMs aim to align with the posterior distributions
determined by the Coordinator LLM within an acceptable error margin ϵ > 0:

DKL
(
PLLM(E | Dt, Oi, ei)

∥∥Ppost(E | Dt, Oi, ei)
)
≤ ϵ,

where DKL denotes the Kullback-Leibler divergence.
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This approximate alignment acknowledges that perfect alignment is impractical but strives for a close approximation:

• The Coordinator LLM acts as a centralized distributor of strategic guidance.

• Execution LLMs maintain belief alignment through prompt (detailed in Section 2).

• Monotonic guarantee in ECON mixing optimization network B.5.

• Such alignment has been shown in (Foerster et al., 2018; Jaques et al., 2019) to enhance coordination.

Definition B.5 (Belief Entropy). For a given time t, the belief entropy Ht is defined as the Shannon entropy of the aggregated
belief embeddings:

Ht = −
N∑
i=1

Ebi∼Bi [bi logbi],

where Bi represents the belief network of agent i.
Assumption B.6 (Game Regularity). There exists η > 0 such that for any t1 < t2, if Ht1 −Ht2 ≤ log 2, then

I(θBi ; ξ(ei,E) | Dt1) ≤ 4η · I(θBi ; ξ(ei,E) | Dt2),

for all agents i, where θBi are the belief network parameters.

This information-theoretic assumption serves multiple purposes in our framework:

• It ensures the stability of belief updates between LLMs over time by bounding the entropy difference of belief states.

• The mutual information term I(θBi ; ξ(ei,E)) quantifies how much an LLM’s belief network parameters affect its
coordination through prompt embeddings.

• The bound 4η controls the rate at which LLMs can adapt their belief states based on observed interactions and
coordinator guidance.

Definition B.7 (Value Function and Bellman Operator). For each Execution LLM i:

• The value function Vt(Oi) = E[
∑∞

k=0 γ
krt+k|Ot

i = Oi] estimates the expected cumulative rewards.

• The optimal prompt embeddings e∗ti maximize the Q-function Qi(Oi, ei; θ
B
i ) at time t.

• The Bellman operator Bt transforms one value function to another: (BtV )(Oi) = maxei
E[ri + γV (O′

i)|Oi, ei].

Assumption B.8 (Concentrability). There exists κ <∞ such that

E

[
T∑

t=1

N∑
i=1

((Bt −B∗)Vt)
2
(Ot

i , e
∗t
i ,E∗t)

]
≤ κ2T,

where B∗ is the true Bellman operator.

This assumption is fundamental to our theoretical guarantees:

• It ensures that the value function estimates by each LLM converge to their true values at an appropriate rate.

• The constant κ bounds the cumulative estimation error across all LLMs, critical for establishing our regret bounds.

• In our MA-LLM system, this translates to the stability of response quality improvements during training.

Collective Impact: Together, these assumptions enable us to:

• Establish the existence of BNE in our MA-LLM system (Theorem 1)

• Derive meaningful regret bounds for the learning process (Lemma 1)

• Guarantee the convergence of our iterative training procedure (Proposition 1)
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B.4. Scaling Up the System

While ECON effectively handles moderate-scale scenarios, large-scale multi-LLM systems require additional structure to
maintain efficiency and theoretical guarantees. To that end, we employ a hierarchical design in which Execution LLMs are
organized into clusters, each governed by a Local Coordinator LLM, and a Global Coordinator LLM oversees the entire set
of clusters. Each local cluster establishes a local Nash equilibrium, which is then integrated into a global equilibrium.

Algorithm 2 Scaling-Up Framework for ECON

Require: Global Coordinator Coordglobal, Local Coordinators {Coordk}Kk=1, thresholds {ϵC , Rth, ϵL}
Ensure: Hierarchical Nash Equilibrium across K clusters

1: Initialize: cluster embeddings {Ek}Kk=1, belief networks {Bi(θ
B
i )}, prompt embeddings {ei}

2: while not converged do
3: ▷ Inference Phase - Hierarchical execution without updates
4: S← Coordglobal(et) ▷ Global strategy generation
5: for each cluster k = 1 to K in parallel do
6: Ok ← [et,S,Ek] ▷ Combine global info with cluster state
7: sk ← Coordk(Ok) ▷ Local strategy refinement
8: for each Execution LLM i ∈ Ck in parallel do
9: bi ← Bi(τi, oi; θ

B
i ) ▷ Compute belief state

10: ei ← ComputeEmbedding(bi) ▷ Generate prompt embedding
11: Oi ← [et, sk,bi] ▷ Local observation
12: ui ← ExecLLMi(query, ei) ▷ Generate output
13: ri ← α1r

AL
i + α2r

TS
i + α3r

CC
i ▷ Local reward

14: Store (τi, ei, ri, ui) in cluster buffer
15: end for
16: ck ← Coordk({ui}i∈Ck

) ▷ Aggregate cluster output
17: end for
18: C ← Coordglobal({ck}Kk=1) ▷ Global final output
19: ▷ Optimization Phase - Update parameters for hierarchical BNE
20: for each cluster k = 1 to K do
21: Rk ← Rglobal(sim(ck, C)) ▷ Global reward for cluster
22: Update Coordk parameters using Rk ▷ Improve cluster coordination
23: Update cluster embedding Ek via belief encoder
24: for each LLM i ∈ Ck do
25: Update θBi via Li

TD ▷ Update individual belief network
26: end for
27: end for
28: Update global mixing network ϕ via Lmix

29: ▷ Convergence Check
30: converged← ∥Ct+1 − Ct∥ ≤ ϵC and 1

K

∑K
k=1 Rk ≥ Rth and |∆Ltot| ≤ ϵL

31: end while
32: return Hierarchical Nash Equilibrium with optimized {θBi }, {Ek}, ϕ

B.4.1. DETAILED EXPLANATION

The hierarchical scaling framework operates through a structured two-phase process designed to maintain both efficiency
and theoretical guarantees at scale. In the inference phase, the system executes hierarchically from global strategy generation
down to individual LLM outputs without any parameter updates, ensuring stable execution. Subsequently, the optimization
phase updates parameters in a bottom-up manner to achieve hierarchical BNE, where each cluster reaches local equilibrium
while contributing to global coordination. This separation of concerns allows the system to handle large-scale multi-LLM
deployments while preserving the convergence properties established in the base ECON framework.

Initialization.
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• Clustering. Partition Execution LLMs into K clusters {C1, C2, . . . , CK}, e.g., by task similarity.

• Local Coordinators. Each cluster Ck uses a Local Coordinator LLM Coordk to manage within-cluster interactions.

• Global Coordinator. A Global Coordinator LLM Coordglobal aligns all clusters by forming a global final output C.

• Parameters. Initialize belief networks {Bi(θ
B
i )}, prompt embeddings {ei}, and cluster embeddings {Ek}.

Inference Phase. During inference, the system executes hierarchically without updating any parameters:

• The Global Coordinator generates a high-level strategy S from the global observation et.

• Each Local Coordinator Coordk refines S into a local strategy sk based on cluster state Ek.

• Execution LLMs compute belief states bi and generate outputs ui using their current parameters.

• Local Coordinators aggregate within-cluster outputs to produce cluster outputs {ck}.

• The Global Coordinator aggregates cluster outputs to form the global final output C.

Optimization Phase. After inference, the system updates parameters hierarchically to achieve BNE:

• Each cluster receives a global reward Rk = Rglobal(sim(ck, C)) measuring alignment with C.

• Local Coordinators update their parameters based on Rk to improve global consistency.

• Individual belief networks Bi(θ
B
i ) are updated via TD loss Li

TD.

• Cluster embeddings Ek are updated via the belief encoder.

• The global mixing network updates via Lmix to coordinate across clusters.

Convergence. The system converges to a hierarchical Nash equilibrium when: (1) the global output stabilizes (∥Ct+1 −
Ct∥ ≤ ϵC), (2) the average global reward exceeds Rth, and (3) the total loss converges (|∆Ltot| ≤ ϵL). This hierarchical
approach maintains ECON’s theoretical guarantees while enabling efficient parallelization across clusters.

B.5. Proof of Mixing Network Monotonicity

Proposition B.9 (Monotonicity of Mixing Network). The mixing network Qtot is monotonic in each individual Q-value Qi,
ensuring that improvements in Qi lead to improvements in Qtot.

Proof. The mixing network is designed using positive weights and non-decreasing activation functions. Specifically, let the
mixing network be composed of layers where each layer l computes:

hl = ϕl(W lhl−1 + bl),

where:

• h0 = [Q1, Q2, . . . , QN ]⊤

• W l has non-negative entries.

• ϕl is a non-decreasing activation function (e.g., ReLU).
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We proceed by induction to show that each component of hl is a non-decreasing function of Qi.

Base Case: At layer l = 0, h0
i = Qi, so ∂h0

i

∂Qj
= δij ≥ 0.

Inductive Step: Assume ∂hl−1
k

∂Qi
≥ 0 for all k. Then, for each component hl

j :

hl
j = ϕl

(∑
k

W l
jkh

l−1
k + blj

)
,

Since W l
jk ≥ 0 and ϕl is non-decreasing:

∂hl
j

∂Qi
= ϕ′l

(∑
k

W l
jkh

l−1
k + blj

)∑
k

W l
jk

∂hl−1
k

∂Qi
≥ 0.

because ϕ′l ≥ 0 and ∂hl−1
k

∂Qi
≥ 0 by the inductive hypothesis. Therefore, ∂Qtot

∂Qi
≥ 0, ensuring monotonicity.

This monotonicity property is crucial as it ensures that improvements in individual agent performances contribute positively
to the overall system performance, aligning local and global objectives within ECON.

C. Detailed Proofs
C.1. Proof of Lemma 2.2

Proof. Consider the value functions under policies π′ and π:

V π′

i (s) = Eπ′

[ ∞∑
k=0

γkri(sk, ak) | s0 = s

]
, V π

i (s) = Eπ

[ ∞∑
k=0

γkri(sk, ak) | s0 = s

]
.

Their difference is:

V π′

i (s)− V π
i (s) = Eπ′

[ ∞∑
k=0

γkri(sk, ak)

]
− Eπ

[ ∞∑
k=0

γkri(sk, ak)

]

=

∞∑
k=0

γk
(
Esk∼dk

π′
[ri(sk, ak)]− Esk∼dk

π
[ri(sk, ak)]

)
.

Assuming the difference in state distributions is negligible (justified under Assumption B.8), we focus on action differences.
Using the Q-function definition:

Qπ
i (s, ai, a−i) = ri(s, ai, a−i) + γEs′∼P [V π

i (s′)] ,

we can write:

V π′

i (s)− V π
i (s) =

∞∑
k=0

γkEsk∼dk
π′
[Qπ

i (sk, a
′
k)− V π

i (sk)] .

Since V π
i (sk) = Eak∼π(sk) [Q

π
i (sk, ak)], we have:

V π′

i (s)− V π
i (s) =

∞∑
k=0

γkEsk∼dk
π′

[
Ea′

k∼π′(sk)

[
Qπ

i (sk, a
′
k)− Eak∼π(sk) [Q

π
i (sk, ak)]

]]
.

Switching the order of expectations and summing over k, we get:

V π′

i (s)− V π
i (s) =

1

1− γ
Es∼dπ′

[
Qπ

i (s, a
′
i, a

′
−i)−Qπ

i (s, ai, a−i)
]
.

22



From Debate to Equilibrium: Belief-Driven Multi-Agent LLM Reasoning via Bayesian Nash Equilibrium

C.2. Bounding the Bayesian Regret

We provide a rigorous proof of the O(N
√
T/(1− γ)) regret bound through stochastic approximation theory and convex

optimization analysis.

C.2.1. PROBLEM SETUP AND REGRET DEFINITION

Starting from the regret definition for agent i over T steps:

Ri(T ) = Est,πt

[
T∑

t=1

(V ∗
i (st)− V πt

i (st))

]
,

where the expectation is over the randomness in state transitions and policies.

Applying Lemma 2.2:

V ∗
i (st)− V πt

i (st) =
1

1− γ
Ea∗t

i ,a∗t
−i,a

t
i,a

t
−i

[
Qπt

i (st, a
∗t
i , a∗t−i)−Qπt

i (st, a
t
i, a

t
−i)
]
.

C.2.2. Q-VALUE DECOMPOSITION

We decompose the Q-value difference into three components:

Qπt
i (st, a

∗t
i , a∗t−i)−Qπt

i (st, a
t
i, a

t
−i)

=
(
Qπt

i (st, a
∗t
i , a∗t−i)−Q∗

i (st, a
∗t
i , a∗t−i)

)︸ ︷︷ ︸
Error Term 1: E1(t)

+
(
Q∗

i (st, a
∗t
i , a∗t−i)−Q∗

i (st, a
t
i, a

t
−i)
)︸ ︷︷ ︸

Policy Suboptimality: ∆(t)

+
(
Q∗

i (st, a
t
i, a

t
−i)−Qπt

i (st, a
t
i, a

t
−i)
)︸ ︷︷ ︸

Error Term 2: E2(t)

.

C.2.3. Q-FUNCTION CONVERGENCE ANALYSIS

Consider the Q-learning update rule with learning rate ηt = η0/
√
t:

Qt+1(s, a) = Qt(s, a) + ηt

[
r(s, a) + γmax

a′
Qt(s

′, a′)−Qt(s, a)
]
.

Define the estimation error ϵt(s, a) = |Qt(s, a)−Q∗(s, a)|.
Lemma C.1 (Q-function Convergence Rate). Under the following conditions:

(i) Learning rate schedule ηt = η0/
√
t with η0 > 0

(ii) Bounded rewards: |r(s, a)| ≤ Rmax for all (s, a)

(iii) Standard stochastic approximation conditions (Robbins-Monro)

The Q-function estimation error satisfies:

E[ϵt(s, a)] ≤
C1√
t
,

where C1 = O
(

Rmax

(1−γ)
√
η0

)
.

Proof. Following the stochastic approximation framework of Borkar (2009), we analyze the error recursion:

ϵt+1(s, a) ≤ (1− ηt)ϵt(s, a) + ηtγmax
a′

ϵt(s
′, a′) + ηtξt,
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where ξt is the noise term with E[ξt|Ft] = 0.

Taking expectations and using the contraction property:

E[ϵt+1] ≤ (1− ηt(1− γ))E[ϵt] + η2t σ
2,

where σ2 bounds the variance of the noise.

With ηt = η0/
√
t, solving this recursion yields:

E[ϵt] ≤
C1√
t
,

where the constant C1 depends on the initial error, discount factor, and noise variance.

C.2.4. POLICY CONVERGENCE ANALYSIS

For the policy update, we consider gradient-based methods in the convex policy space:

πt+1 = ΠP [πt + ηt∇πJ(πt)] ,

where ΠP is the projection onto the policy space P .
Lemma C.2 (Policy Suboptimality Bound). Under the following conditions:

(i) Convex and compact policy space P

(ii) L-Lipschitz continuous policy gradient: ∥∇J(π)−∇J(π′)∥ ≤ L∥π − π′∥

(iii) Learning rate schedule ηt = η0/
√
t

The policy suboptimality satisfies:

E
[
max
a∗

Q∗(s, a∗)−Q∗(s, at)
]
≤ C2√

t
,

where C2 = O
(

LD(P)√
η0

)
and D(P) is the diameter of P .

Proof. Following the online convex optimization framework of Hazan (2016), the regret of gradient descent with learning
rate ηt = η0/

√
t satisfies:

t∑
τ=1

[J(π∗)− J(πτ )] ≤
D2(P)
2η0

√
t+

η0L
2
√
t

2
.

Dividing by t and taking the limit:

J(π∗)− J(πt) ≤
1

t

t∑
τ=1

[J(π∗)− J(πτ )] ≤
C2√
t
.

Since J(π) = Es∼dπ [V π(s)] and by the performance difference lemma, this translates to the Q-value suboptimality
bound.

C.2.5. COMBINING ERROR TERMS

From Lemmas C.1 and C.2, we have:

• |E1(t)| ≤ ϵt ≤ C1/
√
t

• |E2(t)| ≤ ϵt ≤ C1/
√
t

• ∆(t) ≤ C2/
√
t

Therefore:
Qπt

i (st, a
∗t
i , a∗t−i)−Qπt

i (st, a
t
i, a

t
−i) ≤

2C1 + C2√
t

:=
C√
t
.
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C.2.6. FINAL REGRET BOUND

Substituting back into the regret expression:

R(T ) =

N∑
i=1

Ri(T )

≤
N∑
i=1

1

1− γ

T∑
t=1

E
[
Qπt

i (st, a
∗t
i , a∗t−i)−Qπt

i (st, a
t
i, a

t
−i)
]

≤
N∑
i=1

1

1− γ

T∑
t=1

C√
t

=
NC

1− γ

T∑
t=1

1√
t
.

Lemma C.3 (Harmonic Sum Bound). For the harmonic sum with exponent 1/2:

T∑
t=1

1√
t
≤
∫ T+1

1

1√
x
dx = 2

√
T + 1− 2 ≤ 2

√
T .

Therefore, the total regret satisfies:

R(T ) ≤ 2NC
√
T

1− γ
= O

(
N
√
T

1− γ

)
.

This completes the rigorous proof of the sublinear convergence rate, explicitly showing how the learning rate schedule
ηt = η0/

√
t ensures the O(t−1/2) convergence of both Q-function estimation errors and policy suboptimality, leading to the

final O(N
√
T/(1− γ)) regret bound.

C.3. Comparison with Multi-Agent Debate

We now analyze the regret bound in multi-agent debate settings to contrast with our cooperative framework. The key
difference lies in the persistence of policy suboptimality due to the competitive nature of debate.

C.3.1. GAME-THEORETIC SETUP FOR DEBATE

In multi-agent debate settings, agents operate in a competitive environment characterized by:

• Zero-sum or constant-sum reward structure:
∑N

i=1 ri(s, a) = c for all (s, a)

• Strategic uncertainty: each agent must model opponents’ strategies

• No coordination mechanism: agents independently optimize their policies

C.3.2. FUNDAMENTAL LIMITS IN COMPETITIVE SETTINGS

Lemma C.4 (Persistent Suboptimality in Competitive Games). Consider a multi-agent debate setting with N agents in a
zero-sum game. Under the following conditions:

(i) The game has no pure strategy Nash equilibrium

(ii) Agents use no-regret learning algorithms

(iii) Each agent faces strategic uncertainty about opponents
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Then there exists a constant δmin > 0 such that for all t ≥ T0:

E
[
max
a∗

Q∗
i (st, a

∗
i , a

t
−i)−Q∗

i (st, a
t
i, a

t
−i)
]
≥ δmin.

Proof. In zero-sum games without pure strategy equilibria, the Nash equilibrium requires mixed strategies. By the minimax
theorem (Ben-David & Blais, 2023):

max
πi

min
π−i

Ji(πi, π−i) = min
π−i

max
πi

Ji(πi, π−i) = vi,

where vi is the value of the game for agent i. For any deterministic policy πt
i at time t, there exists an adversarial response

π∗
−i such that:

Ji(π
t
i , π

∗
−i) ≤ vi − ϵ,

where ϵ > 0 is the exploitability gap. Since agents use no-regret learning, they must maintain sufficient randomization to
avoid exploitation. Following Fudenberg & Levine (1998), the minimum entropy required is:

H(πi) ≥ hmin > 0.

This entropy constraint directly implies a lower bound on policy suboptimality:

δmin =
ϵhmin

2(1− γ)
.

C.3.3. REGRET ANALYSIS FOR DEBATE

Following the same decomposition framework from Section C.2, we have:

V ∗
i (st)− V πt

i (st) =
1

1− γ
Eai,a−i

[
Qπt

i (st, a
∗t
i , a∗t−i)−Qπt

i (st, a
t
i, a

t
−i)
]

=
1

1− γ
(E1(t) + ∆debate(t) + E2(t)) ,

where:

• E1(t), E2(t) ≤ C1/
√
t (Q-function estimation errors, same as before)

• ∆debate(t) ≥ δmin (persistent policy suboptimality from Lemma C.4)

Computing the regret for agent i:

Rdebate
i (T ) = E

[
T∑

t=1

(V ∗
i (st)− V πt

i (st))

]

≥ 1

1− γ

T∑
t=1

(
δmin −

2C1√
t

)
.

For sufficiently large T , there exists T0 such that for all t ≥ T0: δmin > 2C1/
√
t. Therefore:

Rdebate
i (T ) ≥ 1

1− γ

[
T0∑
t=1

(
δmin −

2C1√
t

)
+

T∑
t=T0+1

δmin

2

]

≥ δmin(T − T0)

2(1− γ)

= Ω

(
T

1− γ

)
.

Summing over all agents:

Rdebate(T ) =

N∑
i=1

Rdebate
i (T ) = Ω

(
NT

1− γ

)
.
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C.3.4. COMPARATIVE ANALYSIS

The fundamental difference between ECON and debate settings is:

ECON (Cooperative Learning):

• Policy suboptimality: ∆ECON(t) = O(1/
√
t)→ 0

• Total regret: RECON(T ) = O(N
√
T/(1− γ))

• Convergence to Bayesian Nash Equilibrium through coordination

Multi-Agent Debate (Competitive Learning):

• Policy suboptimality: ∆debate(t) ≥ δmin > 0

• Total regret: Rdebate(T ) = Ω(NT/(1− γ))

• Persistent randomization required to avoid exploitation

This O(
√
T ) vs Ω(T ) gap demonstrates that competitive debate settings suffer from:

1. Strategic Cycling: Agents continuously adapt to opponents, preventing convergence to optimal deterministic policies

2. Exploration-Exploitation Conflict: Need for defensive randomization conflicts with exploitation of learned knowledge

3. Information Inefficiency: Lack of coordination prevents efficient use of collective information

In contrast, ECON’s cooperative framework with Bayesian policy optimization enables agents to:

• Share information through the communication phase

• Coordinate strategies toward Bayesian Nash Equilibrium

• Achieve diminishing policy suboptimality through joint optimization

This theoretical analysis is supported by empirical evidence in competitive multi-agent settings (Lanctot et al., 2017; Lowe
et al., 2017), where agents exhibit persistent strategic cycling and fail to achieve sublinear regret bounds.

C.4. Detailed Reward Setting

The reward function R provides feedback on each agent’s performance while respecting Assumption B.2, ensuring all
reward components are uniformly bounded by Rmax. Drawing inspiration from maximum entropy inverse reinforcement
learning (Zhu et al., 2023), we define the Action Likelihood Reward rAL

i = min(Rmax, sim(ui, C)), where sim(ui, C) =
ui·C

∥ui∥∥C∥ measures the consistency between an agent’s output ui and the coordinator’s final output C. Following Hao
et al. (2023), the Task-Specific Reward rTS

i = min(Rmax, eval(ui, task)) evaluates domain-specific objectives through
the coordinator’s assessment, where eval computes normalized scores considering solution correctness in mathematical
problems or response relevance in planning tasks. Building upon Xie et al. (2024b), the Collaborative Contribution Reward
rCC
i = min(Rmax, quality(ui, {uj}j ̸=i)) enables the coordinator to assess each agent’s output quality within the multi-

agent context, where quality evaluates the response’s coherence and creativity while considering its contribution to the
collective solution. The total reward combines these components as ri = α1r

AL
i + α2r

TS
i + α3r

CC
i , where the weights

α1 + α2 + α3 = 1 ensure the total reward is bounded by Rmax. To enhance adaptability and learning efficiency, we
introduce a dynamic mechanism to adjusts these weights using gradient-based updates αk ← αk − ηα · ∂Ldr/∂αk, where
Ldr =

∑N
i=1(r

actual
i − rexpected

i )2 measures the discrepancy between actual and expected rewards.
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C.5. Task Setups

GSM8K is a benchmark for mathematical reasoning that requires multi-step problem solving. Given a context description
and a question, it requires step-by-step mathematical reasoning and computation to arrive at a final answer. The dataset
contains approximately 7.5K problems in the training set and 1.3K problems in the test set. Problems range from basic
arithmetic to complex word problems, testing both mathematical and logical reasoning capabilities.

SVAMP is a challenging mathematical word problem dataset specifically designed to test the robustness of language models
in solving arithmetic problems. It contains 1,000 elementary math word problems, carefully curated to probe for specific
vulnerabilities in mathematical reasoning systems. The problems require understanding both mathematical concepts and
natural language semantics, with a focus on structural variations that test genuine problem-solving capabilities rather than
pattern matching.

Strategy QA is a question answering dataset that focuses on multi-hop reasoning and strategic thinking. It consists of 2,290
yes/no questions, each requiring implicit multi-step reasoning and background knowledge to arrive at the correct answer.
Unlike traditional QA datasets, Strategy QA questions cannot be answered by simply retrieving and combining explicit
facts, making it an effective benchmark for testing complex reasoning capabilities.

MATH is a comprehensive mathematics dataset spanning various topics from algebra to calculus. It contains approximately
12K problems across different difficulty levels, with detailed step-by-step solutions. The dataset is structured into multiple
categories including algebra, counting and probability, geometry, intermediate algebra, number theory, prealgebra, and
precalculus, making it particularly effective for evaluating mathematical problem-solving capabilities across different
domains.

GSM-Hard is a specialized subset of mathematical word problems specifically designed to test advanced reasoning
capabilities. It contains problems that are significantly more challenging than standard GSM8K problems, requiring more
complex multi-step reasoning and mathematical operations. The dataset focuses on problems that typically have lower
success rates with standard approaches, making it particularly useful for evaluating the upper bounds of model performance.

TravelPlanner is a benchmark crafted for evaluating language agents in tool-use and complex planning within multiple
constraints. The dataset comprises 1,225 queries in total, divided into training (45 queries), validation (180 queries), and test
(1,000 queries) sets. The benchmark incorporates three types of constraints: environment constraints for testing adaptability
to real-world conditions, commonsense constraints for evaluating practical reasoning, and hard constraints for assessing
the ability to satisfy specific user requirements such as budget limitations. This structure makes TravelPlanner particularly
effective for evaluating both reasoning capabilities and practical planning skills in real-world scenarios.
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C.6. Hyperparameter

C.6.1. LLAMA 3.1 8B ON MATH

Table 8: Hyperparameters (8B, MATH)

Parameter Value

Training Configuration
Episodes per Task 120
Buffer Size 32
Batch Size 16
Update Interval 8
Optimizer Adam
Learning Rate (η) 0.001
Learning Rate (ηcoord) 0.0005
Discount Factor (γ) 0.99

Network Architecture
Entity Dimension (d) 256
Belief State Dimension (db) 128
Attention Heads (H) 4
MLP Hidden Size 256
Transformer Blocks 2
Key/Query Dimension 64
Feed-forward Size 1024
Dropout Rate 0.1
Layer Norm Epsilon 1e-5

Temperature & Sampling
Tmin 0.1
Tmax 2.0
pmin 0.1
pmax 0.9

Reward Configuration
Rmax 1.0
α1, α2, α3 0.4, 0.4, 0.2

Loss Weights
λb, λ, λm 0.1, 0.1, 0.1

Early Stopping
ϵC 0.01
ϵL 1e-4
Rthreshold 0.7
Tpatience 5

Model Size
Learnable Params ∼1.7M

C.6.2. LLAMA 3.1 8B ON GSM8K

Table 9: Hyperparameters (8B, GSM8K)

Parameter Value

Training Configuration
Episodes per Task 100
Buffer Size 32
Batch Size 16
Update Interval 8
Optimizer Adam
Learning Rate (η) 0.001
Learning Rate (ηcoord) 0.0005
Discount Factor (γ) 0.99

Network Architecture
Entity Dimension (d) 256
Belief State Dimension (db) 128
Attention Heads (H) 4
MLP Hidden Size 256
Transformer Blocks 2
Key/Query Dimension 64
Feed-forward Size 1024
Dropout Rate 0.1
Layer Norm Epsilon 1e-5

Temperature & Sampling
Tmin 0.1
Tmax 2.0
pmin 0.1
pmax 0.9

Reward Configuration
Rmax 1.0
α1, α2, α3 0.4, 0.4, 0.2

Loss Weights
λb, λ, λm 0.1, 0.1, 0.1

Early Stopping
ϵC 0.01
ϵL 1e-4
Rthreshold 0.7
Tpatience 5

Model Size
Learnable Params ∼1.7M
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C.6.3. LLAMA 3.1 70B ON MATH

Table 10: Hyperparameters (70B, MATH)

Parameter Value

Training Configuration
Episodes per Task 150
Buffer Size 32
Batch Size 16
Update Interval 8
Optimizer Adam
Learning Rate (η) 0.001
Learning Rate (ηcoord) 0.0005
Discount Factor (γ) 0.99

Network Architecture
Entity Dimension (d) 256
Belief State Dimension (db) 128
Attention Heads (H) 4
MLP Hidden Size 256
Transformer Blocks 2
Key/Query Dimension 64
Feed-forward Size 1024
Dropout Rate 0.1
Layer Norm Epsilon 1e-5

Temperature & Sampling
Tmin 0.1
Tmax 2.0
pmin 0.1
pmax 0.9

Reward Configuration
Rmax 1.0
α1, α2, α3 0.4, 0.4, 0.2

Loss Weights
λb, λ, λm 0.1, 0.1, 0.1

Early Stopping
ϵC 0.01
ϵL 1e-4
Rthreshold 0.7
Tpatience 5

Model Size
Learnable Params ∼1.7M

C.6.4. LLAMA 3.1 70B ON GSM8K

Table 11: Hyperparameters (70B, GSM8K)

Parameter Value

Training Configuration
Episodes per Task 100
Buffer Size 32
Batch Size 16
Update Interval 8
Optimizer Adam
Learning Rate (η) 0.001
Learning Rate (ηcoord) 0.0005
Discount Factor (γ) 0.99

Network Architecture
Entity Dimension (d) 256
Belief State Dimension (db) 128
Attention Heads (H) 4
MLP Hidden Size 256
Transformer Blocks 2
Key/Query Dimension 64
Feed-forward Size 1024
Dropout Rate 0.1
Layer Norm Epsilon 1e-5

Temperature & Sampling
Tmin 0.1
Tmax 2.0
pmin 0.1
pmax 0.9

Reward Configuration
Rmax 1.0
α1, α2, α3 0.4, 0.4, 0.2

Loss Weights
λb, λ, λm 0.1, 0.1, 0.1

Early Stopping
ϵC 0.01
ϵL 1e-4
Rthreshold 0.7
Tpatience 5

Model Size
Learnable Params ∼1.7M
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C.6.5. LLAMA 3.1 405B ON MATH

Table 12: Hyperparameters (405B, MATH)

Parameter Value

Training Configuration
Episodes per Task 200
Buffer Size 64
Batch Size 32
Update Interval 8
Optimizer AdamW
Learning Rate (η) 0.0005
Learning Rate (ηcoord) 0.0003
Discount Factor (γ) 0.99

Network Architecture
Entity Dimension (d) 512
Belief State Dimension (db) 256
Attention Heads (H) 8
MLP Hidden Size 512
Transformer Blocks 4
Key/Query Dimension 64
Feed-forward Size 2048
Dropout Rate 0.1
Layer Norm Epsilon 1e-5

Temperature & Sampling
Tmin 0.1
Tmax 2.0
pmin 0.1
pmax 0.9

Reward Configuration
Rmax 1.0
α1, α2, α3 0.3, 0.5, 0.2

Loss Weights
λb, λ, λm 0.1, 0.1, 0.1

Early Stopping
ϵC 0.01
ϵL 1e-4
Rthreshold 0.75
Tpatience 8

Model Size
Learnable Params ∼2.5M

C.6.6. LLAMA 3.1 405B ON GSM8K

Table 13: Hyperparameters (405B, GSM8K)

Parameter Value

Training Configuration
Episodes per Task 150
Buffer Size 64
Batch Size 32
Update Interval 8
Optimizer AdamW
Learning Rate (η) 0.0005
Learning Rate (ηcoord) 0.0003
Discount Factor (γ) 0.99

Network Architecture
Entity Dimension (d) 512
Belief State Dimension (db) 256
Attention Heads (H) 8
MLP Hidden Size 512
Transformer Blocks 4
Key/Query Dimension 64
Feed-forward Size 2048
Dropout Rate 0.1
Layer Norm Epsilon 1e-5

Temperature & Sampling
Tmin 0.1
Tmax 2.0
pmin 0.1
pmax 0.9

Reward Configuration
Rmax 1.0
α1, α2, α3 0.4, 0.4, 0.2

Loss Weights
λb, λ, λm 0.1, 0.1, 0.1

Early Stopping
ϵC 0.01
ϵL 1e-4
Rthreshold 0.7
Tpatience 5

Model Size
Learnable Params ∼2.5M
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D. Together API Integration for ECON
This subsection elaborates on how we invoke the Together API to query different LLMs (LLaMA3.1 8B/70B/405B,
Mistral-7B, GPT4 turbo) in our ECON framework across GSM8K, GSM-Hard, MATH, SVAMP, and StrategyQA.

D.1. Parallel Invocation and Rate Limits

We employ four LLMs in ECON (one Coordinator and three Executions). To respect Together’s Requests per Minute (RPM)
and Tokens per Minute (TPM) limits, we maintain:

• A job queue that sends LLM requests in mini-batches if concurrency could exceed the allowed RPM.

• A global token counter to ensure we do not surpass the daily or per-minute token quota. If a query risks going over, we
delay or split the request.

• A backoff mechanism that retries an LLM call up to 3 times if we encounter rate-limit or network errors, incrementally
increasing the wait period.

D.2. Prompt Construction and Truncation

Each Execution LLM i receives a prompt string containing:

1. Local Belief State bt
i. This is a textual or embedded summary of the agent’s partial view of the environment, updated

via the belief network.

2. Coordinator Strategy es. The high-level guidance from the Coordinator LLM.

If the total token count (prompt + expected output) could exceed the Together API’s per-request cap (e.g., 2048 tokens), we
truncate repeated instructions or compress partial states. Similarly, we impose a 50-token (soft) and 70-token (hard) limit for
the Coordinator outputs, aligning with Sec.4.1.

D.3. Online vs. Offline Modes

By default, we adopt an offline training procedure on each dataset’s training split (see Sec.4.1). During training, repeated
queries are sent to gather transitions for the TD and mixing losses. For test evaluation, we freeze all parameters and still use
the same prompt construction pipeline, but no further updates are performed.

D.4. Sample Workflow

An ECON iteration typically goes as follows:

• Coordinator LLM call: We pass aggregated local outputs from the previous iteration (or initial context) to the Coordinator,
which returns strategy es or final output C.

• Execution LLM calls (parallel): Each Execution LLM i is invoked with the prompt described above. They produce
outputs ui, which we collect, compute rewards ri, and record (Ot

i , a
t
i, r

t
i) transitions.

• Update Phase: Belief networks and mixing networks are optimized offline, then the next iteration starts. If we are in test
phase, we skip updates and only retrieve final solutions.

D.5. Error Handling

• Rate Exceeded or Network Timeout. We wait 10–30 seconds, then retry.

• Invalid Output. If the Execution LLM responds with incomplete reasoning or an error message, we store a special
placeholder ut

i =< INV ALID > with reward rti = 0, and proceed.

E. Prompt and Additional Result
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Coordinator Prompt(for Strategy)

"You are a coordinator in a multi-agent system 

responsible for devising effective strategies to 

solve a given problem. Based on the following 

problem, generate a concise high-level strategy in 

English, no more than 50 tokens:

Problem: {question}

Please provide a strategy considering the 

following points:

1.Key elements and objectives of the problem

2.Possible solutions or steps

3.Potential challenges or limitations

4.Key aspects to focus on

Strategy:"

Figure 6: Coordinator Prompt(for Strategy)

"You are a coordinator in a multi-agent system 

responsible for reviewing the answers of multiple 

execution LLMs based on a given strategy. Your 

tasks are:

1.Form a Commitment: Integrate the best aspects 

of all answers to ensure consistency in the 

solution process and accuracy in the final result.

2.Evaluate each answer: Assess the similarity of 

the solution process to the Commitment and the 

accuracy of the final result. Based on these 

criteria, assign a reward score between 0 and 1 to 

each answer.

Strategy: {strategy}

Execution LLMs' Answers:

•LLM1: {answer1}

•LLM2: {answer2} ...

Coordinator Prompt(for Commitment)

Figure 7: Coordinator Prompt(for final output)
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Execution LLM

"You are an execution LLM in a multi-agent system, 

responsible for deriving solutions based on a given strategy and 

your own belief network. Each LLM has different beliefs but 

cannot access the outputs of other LLMs. Your tasks are:

1.Form your belief based on the strategy: Assume other LLMs 

will follow certain potential solutions. Your goal is to generate 

the optimal solution without global information.

2.Output the best answer: Considering your belief about other 

LLMs' outputs, derive the optimal solution for the current 

environment.

3.Bayesian Nash Equilibrium: Your output should maximize 

expected utility under incomplete information, aligning with the 

strategy.

4.Feedback adjustment: Ensure your solution is coherent under 

uncertainty and optimized for the best result.

Strategy: {strategy}

Please follow these steps: a. Review the strategy and form your 

belief on how other LLMs might output. b. Based on your belief, 

derive and output your optimal solution. c. Ensure your solution 

aligns with Bayesian Nash Equilibrium, maximizing expected 

utility.

Final answer:"

Figure 8: Execution LLM
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F. Example
F.1. Case Study

Question: Let \[f(x) = \left\{ \begin{array}{cl} ax+3, &\text{ if }x>2, \\ x-5 &\text{ if } -2 \le x 

\le 2, \\ 2x-b &\text{ if } x <-2. \end{array} \right.\]Find $a+b$ if the piecewise function is 

continuous (which means that its graph can be drawn without lifting your pencil from the paper).

Coordinator
Ensure continuity by matching function values 

at x = 2 and x = -2, then solve for a and b. Strategy | Question

Input

CoordinatorCommitment

Execu2

Execu3

Answer1

Answer2

Answer3

For continuity at x=2, a(2)+3 = 2-5 → 2a = -8 → a = -4. 

At x=-2, -2-5 = 2(-2)-b → b = 1. Thus, a + b = -3.

To make f(x) continuous, set ax+3 = x-5 at x=2 and x-5 = 2x-b at x=-2. 

Solving gives a = -3 and b = 3. Therefore, a + b = 0.

Continuity requires f(2-) = f(2+) and f(-2-) = f(-2+). Solving these equations 

yields a = -3 and b = 3. Hence, a + b = 0.

Integrate correct calculations ensuring continuity at x = 2 

and x = -2, accurately solving for a and b to determine a + b = 0.

Execu1

Belief 1

Belief 2

Belief 3

Figure 14: case study of math

F.2. Strategy Examples

F.2.1. GSM8K

GSM8K Problem 1:

Q1: John buys 3 pizzas for $12 each. If he gives the delivery person a 20% tip on the total, how much did he spend in total?

S1: Calculate pizza subtotal first. Add 20% of subtotal for tip. Sum for final amount.

F1:
1. Pizza cost = $? × ?
2. Tip = ? × subtotal
3. Total = subtotal + tip

Strategy + Format : 35tokens

GSM8K Problem 2:

Q2: Janet saves twice as much money as Tom. If Tom saves $45 per week, how much does Janet save in 5 weeks?

S2: Find Janet’s weekly savings relative to Tom’s. Multiply by number of weeks.

F2:
1. Janet weekly = ? × Tom
2. Total = weekly × weeks

Strategy + Format : 28tokens
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GSM8K Problem 3:

Q3: A factory produces 150 cars per day. If they increase production by 15% next month, how many cars will they produce in a
30-day month?

S3: Calculate production increase. Add to original. Multiply by days in month.

F3:
1. Increase = original × 15%
2. New daily = original + increase
3. Monthly = daily × days

Strategy + Format : 36tokens

GSM8K Problem 4:

Q4: Alex has 240 marbles and gives 3
8

of them to Sarah. Sarah then gives 1
4

of her marbles to Tom. How many marbles does
Sarah have left?

S4: Calculate Sarah’s initial share. Find amount she gives to Tom. Subtract.

F4:
1. Sarah gets = total × 3

8

2. Sarah gives = her marbles × 1
4

3. Remaining = initial - given
Strategy + Format : 39tokens

GSM8K Problem 5:

Q5: A train travels at 60 mph for 2.5 hours, then increases speed to 75 mph for 1.5 hours. What’s the total distance traveled?

S5: Calculate distance for each speed separately using d = r × t. Sum distances.

F5:
1. First distance = speed1 × time1
2. Second distance = speed2 × time2
3. Total = d1 + d2

Strategy + Format : 36tokens

F.2.2. MATH

MATH Problem 1:

Q1: In a bag of marbles, 3
7

are blue and 2
5

are red. The remaining 11 marbles are green. How many marbles are in the bag?

S1: Convert fractions to common denominator. Find the fraction for remaining color. Use given count to find total.

F1:
1. Convert to common denominator
2. Add converted fractions
3. Subtract from whole
4. Use remaining count to find total

Strategy + Format : 32tokens

MATH Problem 2:

Q2: Find the area of a triangle with vertices at (0,0), (4,0), and (2,5).

S2: Use coordinate geometry method for area. Set up calculation matrix. Take final result.

F2:
1. Set up coordinate matrix
2. Calculate determinant
3. Apply area formula

Strategy + Format : 28tokens
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MATH Problem 3:

Q3: If log2(x) = 3 and log2(y) = 4, find log2(xy).

S3: Apply logarithm properties. Combine given values. Express final result.

F3:
1. Write multiplication property
2. Substitute given values
3. Simplify result

Strategy + Format : 26tokens

MATH Problem 4:

Q4: A circle has radius 6. Find the area of the sector formed by a 40◦ angle at the center.

S4: Convert angle measurement. Apply sector area formula. Simplify result.

F4:
1. Convert to radians
2. Write sector formula
3. Calculate final area

Strategy + Format : 27tokens

MATH Problem 5:

Q5: Solve the equation: 2x2 + 5x− 12 = 0.

S5: Identify quadratic components. Apply standard formula. Solve for variables.

F5:
1. Identify coefficients
2. Setup quadratic formula
3. Calculate solutions

Strategy + Format : 28tokens

F.2.3. SVAMP

SVAMP Problem 1:

Q1: There are 56 books on the shelf. Tom puts 14 more books and Jane removes 22 books. How many books are on the shelf
now?

S1: Track sequential changes. Apply additions and subtractions in order.

F1:
1. Add new books
2. Subtract removed books

Strategy + Format : 25tokens

SVAMP Problem 2:

Q2: A box has 3 rows of chocolates. Each row has 4 chocolates. If 5 chocolates were eaten, how many are left?

S2: Calculate initial total. Subtract consumed amount.

F2:
1. Find total chocolates
2. Subtract eaten ones

Strategy + Format : 23tokens
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SVAMP Problem 3:

Q3: Mary has 5 times as many stickers as John. John has 12 stickers. How many stickers do they have together?

S3: Calculate second person’s amount. Sum both quantities.

F3:
1. Find Mary’s stickers
2. Add both totals

Strategy + Format : 24tokens

SVAMP Problem 4:

Q4: A garden has 35 flowers. ( 2
7

) are roses and ( 3
7

) are tulips. How many flowers are neither roses nor tulips?

S4: Sum known fractions. Find remaining fraction. Calculate final count.

F4:
1. Add type fractions
2. Find remaining fraction
3. Calculate flower count

Strategy + Format : 27tokens

SVAMP Problem 5:

Q5: Each child needs 3 pencils. If there are 23 children, how many boxes of 10 pencils should the teacher buy?

S5: Calculate total need. Convert to required units. Round appropriately.

F5:
1. Calculate total pencils
2. Divide by box size
3. Round to whole boxes

Strategy + Format : 28tokens

Note on Token Counts:

• All problems follow consistent format: strategy + step-by-step format

• Strategy statements aim to be concise yet clear

• Format points provide framework without giving solutions

• Token ranges:

– Shortest: 23 tokens (SVAMP Q2)
– Longest: 39 tokens (GSM8K Q4)
– Average: (∼)30 tokens
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